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Abstract

This paper considers the impact of ambiguity in strategic situations. It extends the exist-

ing literature on games with ambiguity-averse players by allowing for optimistic responses to

ambiguity. We use the CEU model of ambiguity with a class of capacities introduced by Jaf-

fray and Philippe (1997), which allows us to distinguish ambiguity from ambiguity-attitude,

and propose a new solution concept, Equilibrium under Ambiguity (EUA), for players who

may be characterized by ambiguity-preference. Applying EUA, we study comparative sta-

tics of changes in ambiguity-attitude in games with strategic complements. This extends

work in Eichberger and Kelsey (2002) on the e¤ects of increasing ambiguity if players are

ambiguity averse.
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1 INTRODUCTION

Beginning with the seminal work of von-Neumann and Morgenstern (1944), expected utility

theory (EUT) has been closely related to the analysis of strategic decision-making. Equilibrium

concepts for games combine consistency properties for the beliefs of players with assumptions

about decision-making in the light of these beliefs. Many researchers (e.g. Allais (1953), Ellsberg

(1961) and Kahneman and Tversky (1979)) questioned the descriptive validity of EUT. Despite

this, progress in applying the ensuing theoretical developments of Schmeidler (1989), Gilboa

and Schmeidler (1989), and Sarin and Wakker (1992) to game theory has been slow.

There is a small literature about strategic behaviour in games, reviewed below, which deals

with the three main issues arising in games by departing from expected utility theory:

1. How much consistency in beliefs does one want to impose in equilibrium?

2. To what extent do beliefs about the opponents�behaviour have to be independent?

3. How do attitudes towards ambiguity a¤ect behaviour in games?

In this paper, our research will focus on the third question. The literature which followed

Ellsberg (1961) has focused on ambiguity-aversion. As we will show, extending the analysis to

include ambiguity-seeking requires us to reconsider the question of consistency in beliefs.

Considering optimistic attitudes towards ambiguity introduces non-convexities in prefer-

ences. Thus, it is not possible to prove existence of equilibrium with standard techniques based

on �xed-point theorems. Instead we use lattice theory to demonstrate existence of equilibrium in

games with increasing di¤erences.1 We view it as an advantage of this approach that it enables

us to study existence and comparative statics in a common framework. Moreover, games with

increasing di¤erences have many economic applications, for instance in industrial organization,

macroeconomics, and public good provision.

1Jungbauer and Ritzberger (2011) propose an alternative solution to this problem using a set-based solution
concept.
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1.1 Ambiguity and Ambiguity-Attitudes

Following Ellsberg (1961)�s criticism of the subjective expected utility (SEU) approach of Savage

(1954), both experimental and theoretical research has been directed towards a better under-

standing of ambiguity and modelling it in individual decision making. Ambiguity describes sit-

uations where individuals cannot or do not assign subjective probabilities to uncertain events.

By now, there is also a substantial body of experimental evidence which shows that people

behave di¤erently in the presence of ambiguity (see for example Camerer and Weber (1992)).

Most of the literature following Ellsberg (1961) has assumed that individuals are ambiguity-

averse, i.e. they would pay some positive amount of money to avoid a situation where prob-

abilities are poorly de�ned. Experimental evidence, however, does not uniformly con�rm this

view (see for instance Abdellaoui, Vossmann, and Weber (2005), Gonzalez and Wu (1999) and

Kilka and Weber (2001)). Though many individuals behave cautiously when there is ambigu-

ity, a signi�cant group of individuals behave in the opposite way, a behaviour which we shall

call ambiguity-loving or ambiguity-seeking. Moreover, the same individual may express both

ambiguity-seeking and ambiguity-aversion in di¤erent contexts. In an experimental study of am-

biguity in games, Ivanov (2011) �nds that more subjects are ambiguity-loving than ambiguity-

averse.

In this paper we study the in�uence of ambiguity and ambiguity-attitude on behaviour in

games. Informally, ambiguity refers to how much uncertainty there is about the probabilities and

ambiguity-attitude measures how the individual reacts to unknown probabilities. We believe

that ambiguity-attitude is a personal characteristic of an individual player and thus should be

taken as exogenous.

We shall use Choquet Expected Utility (CEU), in which individuals have beliefs represented

by capacities, (non-additive subjective probabilities). CEU represents preferences as maximizing

the expected value of a utility function, where the expectation is represented as a Choquet

integral, Choquet (1953-4). These preferences have been axiomatized by Schmeidler (1989) and

Sarin and Wakker (1992). Ja¤ray and Philippe (1997) propose a class of capacities (henceforth

JP-capacities) that depend on a parameter which measures ambiguity-attitude. We shall use

their approach to represent preferences of players by the Choquet integral with respect to a
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JP-capacity2.

There is a small literature on strategic ambiguity3. Dow and Werlang (1994) use CEU pref-

erences to represent players�ambiguity about their opponents�strategy choice. Best responses

of a player depend on the capacity (i.e. their beliefs) and the degree of ambiguity embodied in

it. In equilibrium, consistency requirements relating beliefs about opponents to their strategy

choices have to be satis�ed. Dow and Werlang (1994) represented the strategies an individual

believes the opponents would play by the support of the capacity4. However there is more than

one way to de�ne the support of a capacity. Equilibrium concepts in the literature di¤er mainly

in the notion of support used to de�ne an equilibrium. One of the surprising facts is that the

support notions for capacities used in context with ambiguity-averse preferences are no longer

suitable if players may be ambiguity-loving. Hence, we propose a new de�nition of support,

which we believe is more appropriate, and use it as the basis of an equilibrium concept for games

with ambiguity.

1.2 Ambiguity in Games with Positive Externalities

Many games in economics have prices or quantities as strategies which can be ordered in a

natural way. Moreover, many of these applications are games of positive aggregate externalities

with increasing di¤erences. For such games, we show that an increase in ambiguity-seeking

increases equilibrium strategies. Intuitively, as a player becomes more ambiguity-loving, he will

place more weight on outcomes which are perceived as good. If there are positive externalities,

good outcomes are associated with opponents�playing high strategies. Increasing di¤erences

imply that raising the decision-weight on high strategies of the opponents will increase incentives

to play a high strategy. Hence, the best response function of the player will shift up, which

increases the equilibrium strategies of all players.

Strategic complementarity can lead to multiple equilibria. In this case, we show that for

2We explain the reasons for this modelling choice in more detail in Section 2.3 below.
3Ambiguity in games may also concern the type spaces of players in games with incomplete information. We

do not consider these models in this paper, since the equilibrium concept remains a type-contingent strategy
Nash equilibrium as introduced by Harsanyi (1967-68). This is not to say that there are no interesting economic
applications for such games. For some recent contributions to this literature, compare Azrieli and Teper (2011)
and Ui (2009).

4The support of a capacity is the analogue of the usual support of a probability distribution. It is explained
in more detail in De�nitions 3.1 and 3.3 and the related discussion.
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su¢ cient ambiguity, equilibrium will be unique. If players are su¢ ciently optimistic (resp.

pessimistic) the equilibrium strategies will be higher (resp. lower) than in the highest (resp.

lowest) equilibrium without ambiguity. Ambiguity and ambiguity-attitude have distinct e¤ects.

Ambiguity causes the set of equilibria to collapse to a single equilibrium, while an increase

(decrease) in optimism causes the set of equilibria to move up (down).

Organization of the Paper In section 2 we present our framework and de�nitions. Section

3 introduces the equilibrium concept for games with players of di¤ering ambiguity-attitudes.

For the case of games with strategic complements, we prove existence of equilibrium and derive

the comparative statics results in section 4. Related literature is discussed in Section 5 and

Section 6 contains our conclusions. Appendix A relates a number of alternative notions of the

support of a capacity and contains the proofs for results on capacities. All other proofs are

gathered in Appendix B. Our results are illustrated by an application to the centipede game,

which can be found in Section B.3 of the appendix.

2 MODELLING OPTIMISM IN GAMES

We consider a game � = hN ; (Si) ; (ui) : 1 6 i 6 ni with �nite pure strategy sets Si for each

player and payo¤ functions ui. The notation, s�i; indicates a strategy combination for all players

except i. The space of all strategy pro�les for i�s opponents is denoted by S�i. The space of all

strategy pro�les is denoted by S: Player i has utility function ui : S ! R; for i = 1; :::; n: When

convenient we shall write ui (s) = ui (si; s�i).

2.1 Non-Additive Beliefs and Choquet Integrals

In CEU, beliefs, ambiguity and ambiguity-attitude are represented as capacities, which assign

non-additive values to subsets of S�i. Formally, capacities are de�ned as follows.

De�nition 2.1 A capacity on S�i is a real-valued function � on the subsets of S�i such that

A � B ) � (A) 6 � (B) and � (?) = 0; � (S�i) = 1: The dual capacity �� on S�i is de�ned by

�� (A) = 1� � (Ac) ; where Ac := S�inA:
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The expected utility of the payo¤ obtained from a given act, with respect to a non-additive

belief, �; can be found using the Choquet integral, de�ned below.

De�nition 2.2 The Choquet integral of ui (si; s�i) with respect to capacity � on S�i is:

Vi (si) =

Z
ui (si; s�i) d� = ui

�
si; s

1
�i
�
�
�
s1�i
�
+

RX
r=2

ui
�
si; s

r
�i
� �
�
�
s1�i; :::; s

r
�i
�
� �

�
s1�i; :::; s

r�1
�i
��
;

where the strategy pro�les in S�i are numbered so that ui
�
si; s

1
�i
�
> ui

�
si; s

2
�i
�
> ::: >

ui
�
si; s

R
�i
�
:

A simple, though extreme, example of a capacity is the complete uncertainty capacity.

Intuitively it describes a situation where the decision maker knows which strategy pro�les are

possible but has no further information about their likelihood.

Example 2.1 The complete uncertainty capacity, �0 on S�i is de�ned by �0 (S�i) = 1;

�0 (A) = 0 for all A $ S�i:

De�nition 2.3 A capacity, �; is said to be convex if for all A;B � S; � (A [B) > � (A) +

� (B)� � (A \B) :

Convex capacities can be associated in a natural way with a set of probability distributions

called core of the capacity.

De�nition 2.4 Let � be a capacity on S�i: The core, C (�) ; is de�ned by,

C (�) = fp 2 �(S�i) ;8A � S�i; p (A) > � (A)g ;

where p(A) :=
P

s�i2A
p (s�i) :

Since a capacity and its dual represent upper and lower bounds for the probability distrib-

utions in the core, it is natural to de�ne the degree of ambiguity of a player as follows.

De�nition 2.5 Let � be a convex capacity on S�i: De�ne the maximal degree of ambiguity

of � by: � (�) = max f�� (A)� � (A) : ? $ A $ S�ig and the minimal degree of ambiguity by


 (�) = min f�� (A)� � (A) : ? $ A $ S�ig :
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These de�nitions are adapted from Dow and Werlang (1992). They provide upper and lower

bounds on the amount of ambiguity which the individual perceives.

Schmeidler (1989) shows that for a convex capacity, �, the Choquet integral of a pay-o¤ func-

tion ui is equal to the minimum over the core of the expected value of ui; i.e.
R
ui (si; s�i) d� =

minp2C(�)Epui (si; s�i) ; where E denotes the expected value of ui with respect to the proba-

bility distribution p on S�i: Indeed, Schmeidler (1989) argues that convex capacities represent

ambiguity-aversion. More recently Wakker (2001) has shown that convexity is implied by a gen-

eralized version of the Allais paradox. This provides another reason to take convex capacities

as a representation of ambiguity and the Choquet expected utility as the pessimistic evaluation

of acts given this ambiguity.

2.2 Optimism, Pessimism, and JP-Capacities

The present paper is concerned with modelling both ambiguity-averse and ambiguity-seeking

behaviour. We achieve this by focusing on the class of JP-capacities introduced by Ja¤ray and

Philippe (1997).

De�nition 2.6 A capacity � on S�i is a JP-capacity if there exists a convex capacity � and

� 2 [0; 1] ; such that � = ��+ (1� �) ��: (Recall that �� denotes the dual capacity of �:)

Ambiguity is represented by a convex capacity � and its core, C (�). A JP-capacity is a

convex combination of the capacity � and its dual. As the following proposition shows, the

CEU of a JP-capacity is a weighted average of the minimum and the maximum expected utility

over the set of probabilities in C (�).

Proposition 2.1 (Ja¤ray and Philippe (1997)) The CEU of a utility function ui with respect

to a JP-capacity � = ��+ (1� �) �� on S�i is:

Z
ui (si; s�i) d� (s�i) = � min

p2C(�)
Epui (si; s�i) + (1� �) max

p2C(�)
Epui (si; s�i) :

These preferences lie in the intersection of the CEU and �-MEU models. When beliefs

are represented by JP-capacities, perceived ambiguity is represented by the capacity �, while
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ambiguity-attitude is represented by �; with higher values of � corresponding to more ambiguity-

aversion. If � = 1; then we obtain the MEU model axiomatized by Gilboa and Schmeidler

(1989). For � = 0; we deal with a pure optimist, while in general, for � 2 (0; 1); the player�s

preferences have both optimistic and pessimistic features. Hence, JP-capacities allow a distinc-

tion between ambiguity and ambiguity-attitude, which is formalized in the following de�nition.5

De�nition 2.7 Let � and � 0 be two capacities on S: We say that � is more pessimistic than � 0

if for all A � S; � (A) 6 � 0 (A) :

It follows that if �̂ > ~� and � is convex then �̂ = �̂� + (1� �̂) �� is more pessimistic than

~� = ~��+ (1� ~�) ��: A useful special case of JP-capacities is the neo-additive capacity.

Example 2.2 A neo-additive-capacity � on S�i is a JP-capacity with convex part � (A) =

(1� �)� (A) ; for ; $ A $ S�i; where 0 6 � < 1 and � is an additive probability distribution on

S�i:6 The associated JP-capacity is � (A) = � (1� �) + (1� �)� (A) ; for ; $ A $ S�i:

A neo-additive capacity describes a situation where the individual�s �beliefs�are represented

by a probability distribution �: However (s)he has some doubts about these beliefs. This

ambiguity about the true probability distribution is re�ected by the parameter �: The highest

possible level of ambiguity corresponds to � = 1; while � = 0 corresponds to no ambiguity. The

Choquet expected value of a pay-o¤ function ui (si; �) with respect to the neo-additive-capacity

� is given by:

Z
ui (si; s�i) d� (s�i) = �� min

s�i2S�i
ui (si; s�i)+� (1� �) max

s�i2S�i
ui (si; s�i)+(1��)�E�ui (si; s�i) :

This expression is a weighted averaged of the highest payo¤, the lowest payo¤ and an average

payo¤. The response to ambiguity is partly optimistic represented by the weight given to the

best outcome and partly pessimistic.

5Wakker (2011) presents a related theory of ambiguity and ambiguity-attitude.
6Neo-additive capacities are axiomatized by Chateauneuf, Eichberger, and Grant (2007) who write the neo-

additive capacity in the form � (A) = �� + (1� �)� (A) : In the main text we have modi�ed the de�nition of a
neo-additive capacity to be consistent with the de�nition of a JP-capacity.
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2.3 Modelling Players�Preferences

In order to study the impact of ambiguity, especially ambiguity-loving behaviour, in games, it

is necessary to make a clear distinction between ambiguity and ambiguity-attitude. There are,

however, only a small number of models which allow one to do this.

1. The �-MEU model, Marinacci (2002), which represents ambiguity by a set of probability

distributions and ambiguity-attitude by the parameter � expressing the weight given to

the worst possible expected utility.

2. Choquet Expected Utility (CEU), Schmeidler (1989) and Sarin and Wakker (1992) in

combination with JP-capacities. Preferences are represented by a Choquet integral with

respect to a non-additive belief, � = �� + (1 � �)�; where � is a convex capacity. The

parameter � can similarly be interpreted as a measure of ambiguity-attitude.

3. The smooth model or KMM-model, Klibano¤, Marinacci, and Mukerji (2005).

With the exception of the CEU model for the special case of a neo-additive capacity, none

of these has an axiomatization in terms of preferences over Savage acts, which would allow one

to distinguish ambiguity from the agent�s ambiguity-attitudes7. In the case of CEU, preferences

over acts determine the capacity � uniquely but not necessarily the JP-form � = ��+(1��)�;

which would achieve such a separation. For the �-MEU model, there is no axiomatization so

far in the standard single-time period Savage framework8. In �-MEU the set of priors is not

well de�ned. Siniscalchi (2006) shows that there may be more than one set of priors and more

than one �; which represent the same preferences9. In the axiomatization of the smooth model,

the attitude towards ambiguity re�ected in � is determined by a second preference order over

second-order acts, hence, not derived from preferences over Savage acts alone. We consider

the problem of the axiomatic separation of ambiguity-attitude and ambiguity as a challenge for

future research.
7See Chateauneuf, Eichberger, and Grant (2007).
8Ghirardato, Maccheroni, and Marinacci (2004) have proposed a way to de�ne a unique set of priors for the

�-MEU model. However as we argue in Eichberger, Grant, Kelsey, and Koshevoy (2011) there are some problems
with this approach when the state space is �nite. Klibano¤, Mukerji, and Seo (2011) uses an in�nite time period
model to axiomatize a version of �-MEU, which satis�es a symmetry assumption.

9See especially the on-line appendix to Siniscalchi (2006).

9



Given the unresolved issues surrounding the question of how to distinguish ambiguity of

beliefs from ambiguity-attitudes axiomatically10, we restrict attention to JP-capacities where

this distinction between ambiguity-attitude, as re�ected by the parameter �; and ambiguous

beliefs, as represented by the convex part of the capacity �; appears natural.

3 EQUILIBRIUM WITH OPTIMISM AND PESSIMISM

3.1 The Support of a Capacity

In the previous literature on games with ambiguity, the support of a player�s beliefs represents

the pro�le of strategies that he believes his opponents will play. An equilibrium is de�ned to

occur when all pro�les in the support consist only of best responses. In general, capacities

re�ect both ambiguity and ambiguity-attitudes. It is therefore necessary to separate ambiguity-

attitudes from the ambiguous beliefs in order to �nd an appropriate support notion.

It is not possible for us to use existing de�nitions of the support unmodi�ed since many

of them have implicitly assumed ambiguity-aversion. Two de�nitions have been used for

ambiguity-averse players with convex capacities: the Dow-Werlang (DW) support (Dow and

Werlang (1994)), and the Marinacci (M) support (Marinacci (2000)). The DW-support of the

capacity �; suppDW � is a set E � S�i; such that � (S�inE) = 0 and � (F ) > 0, for all F such

that S�inE $ F . It always exists, however it may not be unique. An example is the capacity

of complete uncertainty in Example 2.1, where fs�ig is a support for any s�i 2 S�i: Mari-

nacci (2000) de�nes the support of a capacity � to be the set of states with positive capacity,

suppM � = fs�i 2 S�i : � (s�i) > 0g : Provided it exists, suppM � is always unique. However,

this support can be empty.

Ryan (2002) studies notions of support for sets of probability distributions. Based on his

work, we suggest the following de�nition of support for a convex capacity.

De�nition 3.1 If � is a convex capacity on S�i; we de�ne the support of �; supp�; by

supp� =
\

p2C(�)
supp p: (1)

10For more discussion of this issue compare Epstein (1999) and Ghirardato and Marinacci (2002).
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In Appendix A we show that, for convex capacities, the DW-support and the M-support

coincide with the above notion if the DW-support is unique. Moreover, they also agree with the

weak support for MEU de�ned by Ryan (2002). We believe that this consistency of the support

notions for MEU and CEU, is a strong argument for using this de�nition. In the context of

games, states correspond to strategy pro�les of the opponents. This support notion appears

as the natural choice because it does not require best-reply behaviour against any strategy

opponents may possibly play but only against those which are unquestionably played.

A natural alternative de�nition is
S
p2C(�) supp p; which has been studied by Dow and Wer-

lang (1991) and Lo (1996). They show that solution concepts for games based on this de�nition

of support do not di¤er signi�cantly from Nash equilibrium (henceforth NE). The alternative

notion is therefore, not compatible with modelling deviations from NE due to ambiguity11.

It is not obvious how to extend the de�nition of support to non-convex capacities. Consider

the neo-additive capacity � = � (1� �) + (1� �)� from Example 2.2. This capacity assigns

positive values to all strategy pro�les s�i 2 S�i; provided � < 1; � > 0: Thus suppM � =

supp � = S�i and suppDW � = S�i provided C (�) 6= ?: Hence, none of these concepts are

suitable as a support notion for this capacity as they do not allow us to make a distinction

between those strategies which a given player believes are possible for his opponents and others.

The problem is that, whenever there is even a small amount of optimism, neo-additive

capacities assign positive capacity to all pro�les. However, this does not mean the player

�believes� in these pro�les. Looking at pro�les with positive capacity confounds belief and

ambiguity-attitude, since optimism increases the capacity values assigned to all pro�les.

Sarin and Wakker (1998) argue that the beliefs of a decision-maker can be deduced from

the weights used in the Choquet integral. Based on this criterion, one can show that a pro�le,

s�i; always gets positive weight in the Choquet integral of a neo-additive capacity if and only

if � (s�i) > 0: For this reason, it seems desirable that supp � = supp� in this case. This also

makes sense in terms of our intuition. A neo-additive capacity describes a situation where the

individual�s beliefs, although expressed with some doubts, are represented by the probability

distribution �. This intuition suggests that the set of pro�les in which the player believes is

11With an equilibrium notion, which is similar to the one used by Lo (1996), Bade (2011) also obtains that for
two-player games her ambiguous-act equilibria are observationally equivalent to NE.
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given by supp�:

Thus, we argue that a necessary condition for a player to believe in a pro�le is that it should

always get positive weight in the Choquet integral. This avoids the problem of confounding

between ambiguity-attitude and belief described above. The set of all pro�les with this property

can be de�ned as follows.

De�nition 3.2 De�ne the set of decision-weight increasing pro�les of a capacity v;

B (�) = fs 2 S�i : 8A $ S�i; s =2 A; � (A [ s) > � (A)g :

A non-convex capacity has a set of probabilities associated with it. These are the set of

decision-weights used in evaluating the Choquet integral. Essentially B (�) is the intersection of

the supports of these weights. This is in the spirit of Sarin and Wakker (1998) who argue that

an individual�s beliefs can be deduced from these decision-weights. For a convex capacity the

decision weights are the extreme points of the core. Thus B (�) may be seen as a generalization

of our de�nition of the support for a convex capacity.

One could use B (�) as the de�nition of the support of a capacity. However, B (�) depends

on �: Since � is a measure of ambiguity-attitude, one would prefer the set of strategy pro�les

in which a player believes to be independent of it. These considerations lead us to propose a

closely related set, instead. Hence, for JP-capacities, we propose a support notion which relates

only to the convex part �:

De�nition 3.3 If � = �� + (1� �) �� is a JP-capacity on S�i; we de�ne the support of

�; suppJP �; by suppJP �=supp�:

Our reason for de�ning the support of a JP-capacity in terms of its convex part is that

a capacity and its dual are simply two ways of representing the same information. Since the

JP-capacity � is a weighted average of � and its dual, � does contain as much information about

the player�s beliefs as �: The following result shows that all elements of suppJP � always receive

positive weight in the Choquet integral. Thus they meet the necessary condition described

above.

12



Proposition 3.1 Let � = ��+ (1� �) �� be a JP-capacity on S�i; then supp � � B (�)12:

If � is a JP-capacity, B (�) does not depend on the JP-representation. Thus, to a great

extent, our support notion is independent of the parameters of the JP-representation13.

We previously argued that for a neo-additive capacity, � = � (1� �)+(1� �)�; our intuition

required that the support of � be supp�: The following result shows that our de�nition of

support has this property.

Proposition 3.2 Let � = � (1� �) + (1� �)� be a neo-additive capacity on S�i, where 0 6

� 6 1 and 0 6 � < 1: Then suppJP � = supp�:

3.2 Independent Beliefs and Equilibrium under Ambiguity

In analogy to NE, we de�ne Equilibrium in Beliefs Under Ambiguity (henceforth EUA) to be

a situation where each player maximizes his (Choquet) expected utility given his ambiguous

beliefs about the behaviour of his opponents. These beliefs have to be reasonable in the sense

that each player believes that his opponents play best responses. We interpret this as implying

that the support of any given player�s beliefs should be non-empty and consist only of best

responses of his opponents. Let Ri(�i) = argmaxsi2Si
R
ui (si; s�i) d�i (s�i) denote the best

response correspondence of player i given beliefs �i:

De�nition 3.4 An n-tuple of capacities �̂ = h�̂1; :::; �̂ni is an Equilibrium in Beliefs Under

Ambiguity if for all players, i 2 I;

? 6= supp �̂i � �
j 6=i
Rj(�̂j):

If there is a strategy pro�le ŝ = hŝ1; ::::ŝni such that for each player ŝ�i 2 supp �̂i; we say

that ŝ is an equilibrium strategy pro�le. Moreover, if for each player supp �̂i contains a single

strategy pro�le ŝ�i we say that ŝ is a singleton equilibrium.

12The converse of this result is not true. There is a counter example available from the authors on request.
The counter example is non-generic, thus it is �almost�the case that supp � = B (�) :
13 In an earlier draft we used B (�) as our support notion. We obtained similar results to those reported in

the present version of the paper. This suggests that our results are reasonably robust. It also provides a way to
generalize our results to a larger class of capacities.
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In equilibrium, a player�s evaluation of a particular strategy may, in part, depend on strate-

gies of the opponents which do not lie in the support. We interpret these as events a player

views as unlikely but which cannot be ruled out. This may re�ect some doubts the player may

have about the rationality of the opponents or whether he correctly understands the structure

of the game.

In an EUA players choose pure strategies and do not randomize. Non-singleton equilibria

cannot be interpreted as randomizations. In such an equilibrium some player i will have two

or more best responses. The support of other players�beliefs about i�s play, will contain some

or all of them. Thus an equilibrium, where the support contains multiple strategy pro�les, is

an equilibrium in beliefs rather than in randomizations. If there are only two players and the

beliefs are additive, then an EUA is a NE.

The model can accommodate observed behaviour which is ruled out in NE. Players may be

better o¤ (in an ex-post sense) in an EUA than in the unique NE of a game. An example of

this is the centipede game discussed in Appendix B.3.

For games with more than two players, however, an EUA with additive beliefs may not be

a NE because players may not believe that their opponents act independently. In addition, it is

possible for any two players to have di¤erent beliefs about the behaviour of a third player. For

NE independence of beliefs follows immediately from the requirement that beliefs coincide with

the (mixed) strategies actually played by the opponents. The independent choices of mixed

strategies de�ne a unique probability distribution on the product space of strategy sets. Both

conditions fail for EUA beliefs.

It is well-known (Denneberg (2000) p. 53-56) that there are several ways of extending the

product of capacities from the Cartesian products of the strategy sets to general subsets of the

product space. One possibility to obtain a notion of independent beliefs would be to apply the

Möbius product, Ghirardato (1997), Hendon, Jacobsen, Sloth, and Tranaes (1996), and use the

JP-capacity of the Möbius product of � as the relevant product capacity14.

14Technically we need to assume that the convex part of a JP-capacity � is a Möbius independent product
of belief functions de�ned on the marginals. For a de�nition of the Möbius independent product and further
discussion see Ghirardato (1997).
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4 EXISTENCE AND COMPARATIVE STATICS

In this section we prove existence of equilibrium and study the comparative statics of changes

in ambiguity and ambiguity-attitude on equilibrium.

4.1 Existence of Equilibrium

In many economic applications strategies are real numbers, such as prices or quantities, which

have a natural order. Since strategy sets are �nite, we identify strategy sets with an interval of

the integers, Si = fsi; si + 1; :::; �sig ; for i = 1; :::; n15. The payo¤ function ui (si; s�i) satis�es

increasing (resp. decreasing) di¤erences in hsi; s�ii if ŝi > ~si; implies ui (ŝi; s�i) � ui (~si; s�i)

is increasing (resp. decreasing) in s�i: If ui (si; s�i) satis�es increasing di¤erences in hsi; s�ii

then it also has increasing di¤erences in hs�i; sii16. Increasing di¤erences implies that a given

player, who perceives his opponents increase their strategy, has an incentive to increase his own

strategy as well. Bertrand oligopoly with linear demand and constant marginal cost provides

an example of a game with increasing di¤erences.

De�nition 4.1 A game, � = hN ; (Si) ; (ui) : 1 6 i 6 ni; has positive externalities and increas-

ing di¤erences if ui (si; s�i) is increasing in s�i and has increasing di¤erences in hsi; s�ii for

1 6 i 6 n:

Positive externalities and increasing di¤erences will be a maintained hypothesis throughout

the rest of the paper. Negative externalities may be de�ned in an analogous way.

The following existence result is proved in Appendix B. Fix a vector of ambiguity-attitude

parameters � = (�1; :::; �n) 2 [0; 1]n and maximal and minimal degrees of ambiguity (�; 
) =

((�1; 
1); :::(�n; 
n)); 0 6 
i 6 �i 6 1; then there exists an EUA where players� beliefs are

represented by JP-capacities with parameters �, satisfying �i(�i) 6 �i and 
i(�i) > 
i for all

i 2 I:

Theorem 4.1 Let � be a game of positive externalities and increasing di¤erences. Then for

any exogenously given n-tuples of ambiguity-attitudes �; maximal degrees of ambiguity �; and
15The crucial part of this assumption is the restriction to a �nite strategy set. It would be straightforward to

extend the results to a multi-dimensional strategy space.
16See Topkis (1998), p. 42.
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minimal degrees of ambiguity 
; (
 6 �) the game � has a singleton Equilibrium in Beliefs under

Ambiguity in JP-capacities � = h�1; :::; �ni, where �i = �i�i + (1� �i)�i for 1 6 i 6 n: The

convex capacity �i has maximal degree of ambiguity at most �i and minimal degree of ambiguity

at least 
i:

In general, EUA will not be unique. In part this arises because we have allowed a range

for the degrees of ambiguity, i.e. 
i < �i: If this range were reduced then EUA would have the

same uniqueness properties as NE.

4.2 Comparative statics

Comparative statics exercises are di¢ cult because the capacity represents three distinct con-

cepts: the perceived ambiguity, the attitude to that ambiguity, and beliefs about the opponents�

strategies. Moreover, these concepts are interrelated. For instance, if a player�s ambiguity-

attitude changes this may cause him to play a di¤erent strategy. The opponents are likely to

change their strategies in response, which would require the �rst player to revise his beliefs as

well so as to maintain consistency.

In order to investigate the comparative statics of ambiguity-attitude, we need to vary

ambiguity-attitude while holding perceived ambiguity constant. We do this by placing ex-

ogenous bounds on the maximal and minimal degrees of ambiguity. The comparative static

results do not depend on the values of these bounds despite the fact they are exogenous. For

the comparative static analysis we strengthen positive externalities to the following assumption.

De�nition 4.2 A game, �; has positive aggregate externalities if ui (si; s�i) = ui (si; fi (s�i)) ;

for 1 6 i 6 n, where ui is increasing in fi and fi : S�i ! R is increasing in all arguments.

This is a separability assumption. It says that a player only cares about a one-dimensional

aggregate of his opponents�strategies. An example would be a situation of team production, in

which the utility of a given team member depends on his own labour input and the total input

supplied by all other members of the team. Negative aggregate externalities may be de�ned in

an analogous way.
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The following comparative static result shows that an increase in pessimism will reduce the

equilibrium strategies in games with positive aggregate externalities and increasing di¤erences.

If there are multiple equilibria, the strategies played in the highest and lowest equilibrium will

decrease. We assume that when the ambiguity-attitude of one player changes, the ambiguity-

attitudes of other players and the perceived ambiguity are held constant.

Theorem 4.2 Let � be a game of positive aggregate externalities with increasing di¤erences.

Assume that beliefs are represented by JP-capacities and let � = (�i; ��i) denote the vector of

ambiguity-attitudes. Let s (�) (resp. �s (�)) denote the lowest (resp. highest) equilibrium strategy

pro�le when the minimal (resp. maximal) degree of ambiguity is 
 (resp. �): Then s (�) and

�s (�) are decreasing functions of �i:

4.3 Multiple Equilibria

Strategic complementarity can give rise to multiple Nash equilibria. Under some assumptions,

we can show if there are multiple equilibria without ambiguity and there is su¢ cient optimism

(resp. pessimism), equilibrium will be unique and will correspond to the highest (resp. lowest)

equilibrium without ambiguity. To prove this we need the following assumption.

Assumption 4.1 For 1 6 i 6 n; let ui (si; �s�i) and ui
�
si; s�i

�
have a unique maximizer, i.e.��argmaxsi2Si ui (si; �s�i)�� = 1 and ��argmaxsi2Si ui �si; s�i��� = 1:

This assumption is required for technical reasons. If the strategy space were continuous and

utility were concave in the player�s own strategy, it would be implied by our other assumptions.

It says that the gaps in the discrete strategy space do not fall in the �wrong place�.

Proposition 4.1 Consider a game, �; of positive externalities with increasing di¤erences

which satis�es Assumption 4.1. There exist �� (resp. �), 0 < � 6 �� < 1; and �
 such that

if the minimal degree of ambiguity is 
 (�i) > �
 and �i > ��, (resp. 6 �) for 1 6 i 6 n; then

there is a unique singleton equilibrium with an equilibrium strategy pro�le that is smaller (resp.

larger) than the smallest (resp. largest) equilibrium strategy pro�le without ambiguity.

Intuitively as ambiguity increases a player will become less con�dent in the behaviour of

his opponents. Consequently he will respond less to perceived changes in their behaviour.
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Thus, increasing ambiguity reduces the slope of the best response functions. When they are

su¢ ciently �at it is only possible for them to intersect once. Hence, the equilibrium strategy

pro�le is unique. Even when Assumption 4.1 is not satis�ed, Lemma B.9 shows that as ambiguity

increases the Choquet expected pay-o¤s tend to maxsi2Si
�
�iui

�
si; s�i

�
+ (1� �i)ui (si; �s�i)

	
:

Thus, the equilibrium pay-o¤s will be unique even when the equilibrium strategies are not.

In a game with increasing di¤erences and multiple Nash equilibria, increasing ambiguity

causes the multiplicity of equilibria to disappear, while increasing ambiguity-aversion causes

the equilibrium strategies to decrease. Hence, ambiguity and ambiguity-attitude have distinct

e¤ects.

5 LITERATURE REVIEW

In a broad view, the literature on games with ambiguity can be organized into two strands.

One way to approach ambiguity in games is to interpret Nash equilibria as equilibria in beliefs.

In this perspective, ambiguity concerns the behaviour of the opponents. Players choose pure

strategies but have ambiguous beliefs about the opponents�behaviour. Equilibrium means that

there is some degree of consistency between ambiguous beliefs and strategies played. The papers

by Dow and Werlang (1994), Marinacci (2000), Eichberger and Kelsey (2000), and the present

paper belong to this group. Haller (2000) noted the focus on a support notion for capacities

which is a common feature of these equilibrium concepts

The second way to approach equilibrium under ambiguity assumes that players choose mixed

strategies. Hence, ambiguity concerns the mixed strategies of the opponents. Equilibrium, once

again, requires some degree of consistency with the mixed strategies actually played. Klibano¤

(1996), Lo (1996), and more recently Bade (2011), and Lehrer (2011) choose this approach. A

characteristic feature of these papers is the �observational equivalence�, as Bade (2011) calls

it, between Nash equilibrium and these equilibrium notions for two-player games. Section 11

of Bade (2011) provides an excellent and extensive discussion of these equilibrium notions and

illustrates their similarities and di¤erences by examples. In particular, she highlights the fact

that all these approaches focus on the case of ambiguity aversion. For the remainder of this

review, we will concentrate on the more recent literature.
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Lehrer (2011) considers decision-making when individuals have incomplete information about

the probabilities. In the simplest version, they may have a probability de�ned on a sub-algebra

of events rather than on all measurable events. In more complicated versions, the individu-

als may only know the expectations of certain random variables. The model is a special case

of CEU with a convex capacity. It is less general than CEU since it is capable of modelling

ambiguity-aversion but not ambiguity-seeking.

Lehrer proceeds to apply this model to games with a �xed partition of the strategy spaces.

Players only know the probabilities of elements of the partition, but not those of individual

strategies. The key di¤erence to the present paper is that players regard their own mixed

strategies as being ambiguous. In contrast we assume that a given player views his opponents�

behaviour as potentially ambiguous but perceives no ambiguity about his own behaviour.

Bade (2011) investigates whether a player can gain a strategic advantage by deliberately

creating ambiguity? Given her assumptions, she �nds the answer is no. Since her model uses

general preferences over strategies, her results are applicable to a wide range of models. However,

her results do not apply to our model, because she makes two assumptions which our model

does not satisfy. Firstly, her monotonicity assumption rules out the possibility that a state may

have positive weight if associated with a bad outcome but zero weight if associated with a good

outcome. CEU preferences do not, in general, satisfy this assumption. Secondly, like Lehrer,

she assumes that players agree on the ambiguity of strategies. Hence, a player views his own

action as being as ambiguous as the opponent does.

In a recent paper, Riedel and Sass (2011) study whether there is a strategic advantage to

creating ambiguity. In their paper players can commit to using an ambiguous randomizing

device, like an urn with partial information over the characteristics of the balls in it. As

equilibrium concept, they consider a Nash equilibrium in these �ambiguous strategies�. Hence,

players have common knowledge about �ambiguous strategies�. Riedel and Sass (2011) show

by example that �deliberate strategic ambiguity�may model behaviour which can be observed

in laboratory experiments.

In a dynamic repeated games context, Battigalli, Cerreia-Vioglio, Maccheroni, and Marinacci

(2012) use the smooth model of ambiguity. Individuals play the same game an in�nite number of
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times in a strangers setting. Hence, repeated game e¤ects do not arise. On the equilibrium path

players choose best responses to the actual population-wide distribution of strategies played by

opponents. O¤ the equilibrium path, however, non-Nash behaviour can be sustained due to

ambiguity about behaviour there. Thus the set of equilibria is larger than the set of Nash

equilibria. The dynamic equilibrium notions studied cannot be applied to games in strategic

form directly. For the case of ambiguity aversion, Eichberger and Kelsey (2004) provides a

�rst extension of the EUA concept to dynamic games which con�rms the analysis of Battigalli,

Cerreia-Vioglio, Maccheroni, and Marinacci (2012) that ambiguous out-of-equilibrium beliefs

may expand the set of Nash equilibria.

6 CONCLUSION

In this paper, we have studied the impact of ambiguity in games with players who are not

necessarily ambiguity-averse. We have extended previous work by proposing new de�nitions of

support and equilibrium which allow for an ambiguity-loving (optimistic) attitude towards un-

certainty. The new notion of equilibrium has already been successfully applied to the theoretical

analysis of games in Eichberger, Kelsey, and Schipper (2009), and to experimental studies in

Eichberger, Kelsey, and Schipper (2008) and Eichberger and Kelsey (2011).

Modelling optimistic responses to ambiguity introduces non-convexities in preferences. Hence,

existence proofs and comparative static results cannot be obtained with the same generality as

in the convex case which has been treated in the literature. In this context, the paper makes

a number of innovations, for instance developing techniques for analysing the distinct e¤ects

of ambiguity and ambiguity-attitude. Compared to Eichberger and Kelsey (2002), we study a

signi�cantly broader class of games. In particular, we do not assume symmetry nor concavity

in a player�s own strategy. Aggregate externalities are only assumed for the comparative statics

section.

A couple of issues remain for future research. Extending the analysis to games with more

than two players requires one to confront the problem of correlated beliefs. Lo (2009) argues

for accepting correlations among beliefs about the opponents�behaviour as the more adequate

way of modelling a Nash equilibrium. Bade (2011) suggests notions of independence in beliefs
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which need to be related to notions of independence for capacities and multiple priors. This is

a wide �eld for future research both theoretically and experimentally.

A second open question concerns the treatment of mixed strategies. Given preferences over

strategies yielding ambiguous pay-o¤s, mixed strategies can no longer be a straight-forward

extension of pure strategies. Whether mixed strategies should be treated as an ambiguity

reducing device (Rai¤a (1961)) or as a strategic element in its own right remains an unresolved

issue. Earlier work on preferences for randomization under ambiguity by Eichberger and Kelsey

(1996) and Klibano¤ (2001) has found experimental support in Dominiak and Schnedler (2011)

and a new theoretical perspective in Saito (2012). This work will lead to a reconsideration of

the role of mixed strategies in games under ambiguity.

21



APPENDIX

A ALTERNATIVE NOTIONS OF SUPPORT

In Section 3.1, we introduced a support notion for convex capacities, supp�; and argued that

it is suitable because it coincides with all common de�nitions of support for convex capacities

and a leading support notion for MEU. In this appendix, we will substantiate these claims with

some formal results.

Ryan (2002) discusses several notions of a support for MEU preferences17. For a set P �

�(S�i) of multiple priors, Ryan (2002) (page 56) de�nes a strong (resp. weak) support of P

as
S
p2P supp p (resp.

T
p2P supp p), where supp p denotes the usual support of a probability

distribution. The strong (resp. weak) support comprises the strategy combinations of the

opponents which have a positive probability under some (resp. all) probability distributions

from P: For convex capacities, preferences have both CEU and MEU representations. Hence,

these support notions can be applied to a convex capacity, �, in which case the weak support

coincides with supp�:

The following Proposition shows that supp� coincides with the M-support and the set of

states which always receive positive weight in the Choquet integral, B (�). Even the DW-

support, which is in general non-unique, is closely related to the support of De�nition 3.1 as

Proposition A.1 demonstrates.

Proposition A.1 For a convex capacity � :

1. if suppDW is unique, then supp� = B (�) = suppM � = suppDW �;

2. otherwise, supp� = B (�) = suppM � � suppDW �:

Proof. The proof of Proposition A.1 consists of three lemmata (below). Part 1 follows from

Lemma A.3 and Lemma A.2. Part 2 follows from Lemma A.3 and Lemma A.1.
17Ryan (2002) discusses these notions in a model where decision makers have lexicographically ordered beliefs.

In this context, Ryan (2002) introduces the concept of �rm beliefs which coincides with our support notion for the
non-lexicographic versions of the CEU and MEU models. An earlier unpublished paper, Ryan (1997), contains a
similar discussion in the more familiar context of CEU and MEU.
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Lemma A.1 If � is a capacity, then suppM � � suppDW � for any suppDW � 2 D (�), where

D (�) denotes the set of all DW-supports of the capacity �:

Proof. If suppM � = ?; then the result is trivial. Otherwise, there is ~s 2 suppM �: Suppose, if

possible, ~s =2 suppDW �: Then 0 = � (Sn suppDW �) > � (~s) > 0; which is a contradiction.

Lemma A.2 Let � be a capacity on S�i then suppDW � is unique i¤ suppM � is a DW-support.

Proof. Assume that suppDW � is unique. Let E be the DW-support: By Lemma A.1,

suppM � � E. Suppose, if possible, there exists ŝ 2 En suppM �; then �(ŝ) = 0: Hence,

F := S�infŝg satis�es �(S�inF ) = 0: Let G be a minimal set such that G � F and �(S�inG) =

0: Take �s 2 G and let G0 = Gn f�sg : Then by minimality �(S�inG0) > 0; which estab-

lishes that G is a DW-support di¤erent from E. However this contradicts uniqueness. Hence

suppM � = suppDW �:

Now assume M = suppM � is a DW-support. Let F be an arbitrary DW-support. By

Lemma A.1, suppM � � F: Suppose if possible that there exists ~s 2 FnM: Let F 0 = Fn f~sg :

Then since F 0 & F and F is a Dow-Werlang support � (S�inF 0) > 0: However since M is a

Dow-Werlang support and S�inF 0 � S�inM we must have � (S�inF 0) = � (S�inM) = 0; which

is a contradiction. The result follows.

Lemma A.3 If � is an convex capacity with support supp�; then supp� = suppM � = B (�) :

Proof. Let ~s 2 suppM � and let � 2 C (�) :18 Then, by de�nition, �(~s) > �(f~sg) > 0: Hence,

suppM � �
T

�2C(�)
supp� = supp�: On the other hand, suppose s 2

T
�2C(�)

supp�: Since � is

convex, �(s) = min
�2C(�)

�(s) > 0:19 Hence
T

�2C(�)
supp� � suppM �:

Suppose s 2 suppM �: Then �(s) > 0: For any A � S�i; s =2 A; by convexity of �; �(A[s) >

�(A) + �(s) > �(A): Hence, s 2 B (�) : Conversely suppose s 2 B (�) ; then �(s) = �(? [ s) >

�(?) = 0: Hence, s 2 suppM �: Thus suppM � = B (�) : The result follows.

Proof of Proposition 3.1: We shall prove this by demonstrating that for all A & S�i; ŝ =2

A; � (A [ ŝ) > � (A) : Take ŝ 2 supp � and A $ S�i; ŝ =2 A: Let p̂ = argminp2C(�) p (A [ ŝ) :
18Recall C (�) denotes the core of the capacity �; see De�nition 2.4.
19Although C (�) is an in�nite set, the minimum must occur at one of the extremal points. The set of extremal

points of a core is �nite. Thus the minimum must be positive.
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Because � is convex � (A [ ŝ) � � (A) = p̂ (A [ ŝ) � � (A) = p̂ (A) � � (A) + p̂ (ŝ) > 0; since

p̂ (A) > � (A) and p̂ (ŝ) > 0 by Lemma A.3. Similarly we may show �� (A [ ŝ)� �� (A) > 0: Hence

for A $ S�i; s =2 A; � (A [ ~s) > � (A) :

If � is a JP-capacity, B (�) does not depend on the JP-representation. Thus, to a great

extent, our support notion is independent of the parameters of the JP-representation.

We conclude this appendix with the proof of Proposition 3.2, which �nds the support of a

neo-additive capacity.

Lemma A.4 Let � = � (1� �) + (1� �)� be a neo-additive capacity on S�i, where 0 6 � 6 1

and 0 6 � < 1: Then:

1. � may be written in the form � = ��+ (1� �) ��; where � = (1� �)� (A) + ��0 (A); 20

2. the maximal and minimal degrees of ambiguity of � are � (�) = 
 (�) = � respectively.

Proof. Clearly �� (?)+(1� �) �� (?) = 0 = � (?) and �� (S�i)+(1� �) �� (S�i) = 1 = � (S�i) :

If ? & A & S�i then

�� (A) + (1� �) �� (A) = � (1� �)� (A) + (1� �) (1� �)� (A) + (1� �) � � 1

= � (1� �) + (1� �)� (A) = � (A) :

If ? & A & S�i then �� (A)� � (A) = [1� (1� �)� (Ac)]� (1� �)� (A) = �;

since � (A) + � (Ac) = 1:

Proof of Proposition 3.2: By Lemma A.4, � = ��+(1� �) ��; where � = (1� �)� (A)+

��0 (A) : By de�nition, supp �JP = supp�: Suppose that ŝ 2 supp�: If p 2 C (�) then p (ŝ) >

� (ŝ) = (1� �)� (ŝ) > 0: Thus 8p 2 C (�) ; p (ŝ) > 0; which implies ŝ 2 supp�; hence supp� �

supp�:

To show supp� � supp�; suppose if possible, there exists ~s 2 supp�n supp�: Then � (~s) =

(1� �)� (~s) = 0: If q = argminp2C(�) p (~s) ; then q (~s) = 0: Thus, ~s =2 supp q and consequently

~s =2 supp� =
T
p2C(�) supp p: However, this is a contradiction, which establishes that supp� �

supp�: The result follows.

20Recall �0 denotes the complete uncertainty capacity in Example 2.1.
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B GAMES WITH AMBIGUITY

This appendix contains proofs of our existence and comparative statics results and some sup-

plementary results. It uses techniques from Topkis (1998).

B.1 Existence

We start with a preliminary de�nition and Lemma.

De�nition B.1 Suppose that B is a correspondence from a partially ordered set S to a lattice

T such that for all s 2 S;B (s) is a sub-lattice of T; then we say that B is increasing if when

ŝ > ~s; and t̂ 2 B (ŝ) ; ~t 2 B (~s) then min
�
t̂; ~t
	
2 B (~s) and max

�
t̂; ~t
	
2 B (ŝ) :

Lemma B.1 Let S be a lattice and let � : S ! S be an increasing correspondence. Then

1. � has a �xed point;

2. sup fs : � (s) > sg is the greatest �xed point of �:

Proof. Let T = fs : � (s) > sg : Note that T is non-empty since s 2 T ; (where s = minS).

Let s0 = sup T : By de�nition, if s00 > s0 then

�
�
s00
�
< s00: (2)

Suppose ~s 2 T ; then � (~s) > ~s: Since � is increasing, � (s0) > � (~s) and � (s0) > s0 > ~s: Thus,

� (� (s0)) > � (s0) > s0; which implies � (s0) 2 T and hence s0 > � (s0) > s0:21 The last equation

implies that s0 is a �xed point of �: Equation (2) implies that there is no greater �xed point.

Proof of Theorem 4.1 Choose an n-tuple of parameters � = h�1; :::; �ni such that � >

� > 
: Let � ŝ�ii denote the neo-additive capacity on S�i de�ned by �
ŝ�i
i (S�i) = 1; �

ŝ�i
i (A) =

�i (1� �i) ; if ŝ�i =2 A; � ŝ�ii (A) = �i (1� �i)+1��i; otherwise.22 De�ne Vi (si; ŝ�i) to be player

i�s (Choquet) expected utility from playing si when his beliefs are represented by �
ŝ�i
i i.e.

Vi (si; ŝ�i) =

Z
ui (si; s�i) d�

ŝ�i
i (s�i) = �i (1� �i)ui (si; �s�i)+�i�iui

�
si; s�i

�
+(1� �i)ui (si; ŝ�i) :

21� (� (s0)) = fs : 9~s 2 � (s0) ; s = � (~s)g :
22 Informally �

ŝ�i
i represents a situation where i has an ambiguous belief that his/her opponents will play ŝ�i:
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De�ne �i (ŝ�i) = argmaxsi2Si Vi (si; ŝ�i) and � (ŝ) = h�1 (ŝ�1) ; :::; �n (ŝ�n)i : Thus �i (ŝ�i)

is the best response of player i; if his beliefs are a neo-additive capacity which represents an

ambiguous belief that his opponents will play ŝ�i: Lemma B.6 implies that Vi (si; ŝ�i) has

increasing di¤erences in hsi; ŝ�ii ; hence �i is an increasing correspondence. (The proof is

similar to that of Lemma B.8.) Thus by Lemma B.1, � has a �xed point s�: This implies

�s
�
=
D
�
s��1
1 ; :::; �

s��n
n

E
is a singleton equilibrium. By Proposition 3.2, �

s��i
i may be written in

the form �
s��i
i = �i�i + (1� �i) ��i; where �i is convex and � (�i) = 
 (�i) = �i:

B.2 Comparative Statics Proofs

B.2.1 Correspondences on Partially Ordered Sets

This section contains some results about increasing correspondences and selections from them.

Lemma B.2 Suppose that B� is an increasing correspondence from a partially ordered set

S to a totally ordered set T for all � in an index set �; then �B (s) = max�2�B� (s) and

B (s) = min�2�B� (s) are increasing functions from S to T:

Proof. Suppose that ŝ > ~s: Then there exists ~� 2 � such that �B (~s) = B~� (~s) : Since B~� is

increasing, �B (ŝ) < B~� (ŝ) < B~� (~s) = �B (~s) ; which demonstrates that �B is increasing.

There exists �̂ 2 � such that B (ŝ) = B�̂ (ŝ) = minB�̂ (ŝ) : Since B�̂ is increasing, B�̂ (ŝ) <

B�̂ (~s) : Finally B�̂ (~s) < B (~s) ; which establishes that B (ŝ) < B (~s) :

The following lemma describes some properties of �xed points of functions on partially

ordered sets.

Lemma B.3 Let S and A be partially ordered sets and let f : S � A! S be a function which

is increasing in s and �: Then the greatest �xed point of f (�; �) is an increasing function of �:

Proof. Let s (�) denote the greatest �xed point of f (�; �) : Since f is increasing in �; if �̂ >

~�; fs : f (s; ~�) > sg � fs : f (s; �̂) > sg :Hence s (�̂) = sup fs : f (s; �̂) > sg > sup fs : f (s; ~�) > sg =

s (~�) by Lemma B.1.
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B.2.2 Constant Contamination Capacities

Below we de�ne a special case of JP-capacities which arise naturally when considering pure

equilibria in games.

De�nition B.2 (Constant Contamination) A capacity, �~si (�i; �i; & i) ; on S�i is said to dis-

play constant contamination (henceforth CC) if it may be written in the form �~si (�i; �i; & i) =

�
~s�i
i (A;�i; �i; & i) = (1� �i)�~s�ii (A) + �i [�i& i (A) + (1� �i) �& i (A)] ; where �~s�ii denotes the

probability distribution23 on S�i; which assigns probability 1 to ~s�i and & i is a convex capacity

with supp & i = ;: To simplify notation we shall suppress the arguments (�i; �i; & i) when it is

convenient.

We interpret the capacity �i (& i; �i; �i) as describing a situation where player i �believes�

that his opponents will play the pure strategy pro�le ~s�i but lacks con�dence in this belief.

The CC-capacity embodies a separation between beliefs represented by �i; ambiguity-attitude

represented by �i and ambiguity represented by & i and �i. The parameter �i determines the

weight the individual gives to ambiguity. Higher values of �i correspond to more ambiguity: The

capacity & i determines which strategy pro�les the player regards as ambiguous. The following

result �nds the support of a CC capacity.

Lemma B.4 Let �i = (1� �i)�~s�i (A) + �i [�i& i (A) + (1� �i) �& i (A)] be a CC capacity. Then

suppJP �i = f~s�ig :

Proof. If we de�ne a convex capacity �i (A) by �i = (1� �i)�~s�i + �i& i (A) then �i =

�i�i + (1� �i) ��i. By de�nition suppJP �i = supp�i: If p 2 C (�i) then p (~s�i) > �i (~s�i) =

(1� �i)�~s�i (~s�i) + �i& i (~s�i) = (1� �i) ; since supp & i = ?; which implies & i (~s�i) = 0: Thus

8p 2 C (�i) ; p (~s�i) > 0; which implies ~s�i 2 supp�:

To show f~s�ig = supp�; suppose if possible, there exists �s�i 2 supp� such that ~s�i 6= �s�i:

Then �i (�s�i) = (1� �i)�~s�i (�s�i) + �i& i (�s�i) = 0 since �~s�i (�s�i) = 0 and supp & i = ?: If

q = argminp2C(�) p (�s�i) ; then q (�s�i) = 0: Thus, �s�i =2 supp q and consequently �s�i =2 supp�i =
23This distribution is usually denoted by �ŝ�i : However we are using the symbol � elsewhere to denote degree

of ambiguity.
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T
p2C(�i) supp p: However, this is a contradiction, which establishes that supp�i � f~s�ig : The

result follows.

The following lemma shows that any capacity which describes the equilibrium of a game is

a CC-capacity. This provides a useful characterization of equilibrium beliefs.

Lemma B.5 Let � be a game with positive externalities and let �̂ be a singleton equilibrium

in JP-capacities of � with equilibrium strategy pro�le ŝ: Then �̂ is a pro�le of CC-capacities,

i.e. there exist convex capacities �i; 1 6 i 6 n; with supp �i = ? and �i; 1 6 i 6 n; such

that if we de�ne �i = �i& i + (1� �i)�
ŝ�i
i then �i = ��i + (1� �i) ��i for 1 6 i 6 n: Moreover

� (�) = (1� �i)� (�) and 
 (�) = (1� �i) 
 (�) :

Proof. Since �̂ is an equilibrium in JP-capacities, we may write the equilibrium beliefs of indi-

vidual i in the form �̂i = �i�i+(1� �i) ��i for some convex capacity �i: De�ne a capacity �i by

�i =
�i��i�

ŝ�i
i

1��i ; where �i = �i (ŝ�i) : Then �̂i = �i�
ŝ�i
i (A) + (1� �i) [�i& i (A) + (1� �i) �& i (A)] :

We claim that �i is convex. To prove this we need to show �i (A [B) > �i (A) + �i (B) �

�i (A \B) for all A;B � S�i: There are four cases to consider.

If ŝ�i 2 A and ŝ�i 2 B; then �i (A [B)+�i (A \B) = 1
1��i (�i (A [B) + �i (A \B)� 2�i) >

1
1��i (�i (A) + �i (B)� 2�i) by convexity of �i: Since �i (A)+�i (B) =

1
1��i (�i (A) + �i (B)� 2�i)

the claim is proved in this case.

If ŝ�i =2 A and ŝ�i =2 B; then the claim follows from convexity of �i; since �i =
1

1��i�i for

all four sets.

If ŝ�i 2 A and ŝ�i =2 B; �i (A [B)+ �i (A \B) = 1
1��i (�i (A [B)� �i)+

1
1��i�i (A \B) >

1
1��i�i (A)+

1
1��i�i (B)�

�i
1��i ; by convexity of �i: Since �i (A)+�i (B) =

1
1��i (�i (A) + �i (B)� �i)

this proves convexity in this case. The remaining case can be established by similar reasoning.

Since suppJP �i = ŝ�i; supp�i = ŝ�i: Hence for ~s�i 6= ŝ�i; �i (~s�i) = 0; which implies

that for all s�i 2 S�i; �i (s�i) = 0. Since �i is convex, it follows from Proposition A.1 that

supp �i = ?:

Now consider A & S�i: Assume without loss of generality ŝ�i 2 A. Then

1� �i (A)� �i (Ac) = 1� 1
1��i (�i (A)� �i)�

1
1��i (�i (A

c))

= 1
1��i [1� �i � �i (A) + �i � �i (A

c)] = 1
1��i [1� �i (A)� �i (A

c)] ; which implies (1� �i)� (�) =
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� (�) and (1� �i) 
 (�) = 
 (�) :

B.2.3 Increasing/decreasing Di¤erences

Recall that a game, � = hN ; (Si) ; (ui) : 1 6 i 6 ni; has positive aggregate externalities if

ui (si; s�i) = ui (si; fi (s�i)) ; for 1 6 i 6 n, where ui is increasing (resp. decreasing) in fi and

fi : S�i ! R is increasing in all arguments. Since S�i is �nite, we may enumerate the possible

values of fi; f0i < ::: < f
M
i : Since f is increasing f

0
i = f (s1; :::; sn) and f

M
i = f (�s1; :::; �sn) : The

Choquet integral of ui (si; s�i) with respect to capacity �i on S�i may be written in the form

Vi (si) =

Z
ui (si; s�i) d�i = ui (si; fM ) �i (HM ) +

M�1X
r=0

ui (si; fr) [�i (Hr)� �i (Hr+1)] ;

where Hr denotes the event fs�i 2 S�i : f (s�i) > frg :

De�ne Wi (si; ~s�i; �i; �i; & i) to be player i�s (Choquet) expected payo¤ given that his beliefs

are represented by the capacity �~s�ii (A;�i; �i; & i) i.e.

Wi (si; ~s�i; �i; �i; & i) =

Z
ui (si; s�i) d�

~s�i
i (A;�i; �i; & i) :

Lemma B.6 If ui (si; s�i) satis�es increasing di¤erences in hsi; s�ii so doesWi (si; s�i; �i; �i; & i) :

Proof. Suppose s0�i > s
00
�i; then Wi

�
si; s

0
�i; �i; �i; & i

�
�Wi

�
si; s

00
�i; �i; �i; & i

�
= �i�i

R
ui (si; s�i) d&i+(1� �i) �i

R
ui (si; s�i) d�& i+(1� �i)ui

�
si; s

0
�i
�
��i�i

R
ui (si; s�i) d& i

� (1� �i) �i
R
ui (si; s�i) d�& i�(1� �i)ui

�
si; s

00
�i
�
= (1� �i)

�
ui
�
si; s

0
�i
�
� ui

�
si; s

00
�i
��
; which is

increasing in si since ui has increasing di¤erences in hsi; s�ii :

Lemma B.7 The function Wi (si; s�i; �i; �i; & i) has decreasing di¤erences in hsi; �ii :

Proof. Suppose s0i > s
00
i ; then Wi (s

0
i; s�i; �i; �i; & i)�Wi (s

00
i ; s�i; �i; �i; & i)

= �i�i
R
ui (s

0
i; s�i) d& i + (1� �i) �i

R
ui (s

0
i; s�i) d�& i + (1� �i)ui (s0i; s�i)

��i�i
R
ui (s

00
i ; s�i) d& i � (1� �i) �i

R
ui (s

00
i ; s�i) d�& i � (1� �i)ui (s00i ; s�i)

= �i�i
�R
[ui (s

0
i; s�i)� ui (s00i ; s�i)] d& i �

R
[ui (s

0
i; s�i)� ui (s00i ; s�i)] d�& i

	
+�i

R
[ui (s

0
i; s�i)� ui (s00i ; s�i)] d�& i + (1� �i) [ui (s0i; s�i)� ui (s00i ; s�i)] :
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We have used the fact that since there are positive aggregate externalities, all four integrands in

the curly brackets are comonotonic. It is su¢ cient to show that the coe¢ cient of �i is positive.

This is equal to

�
ui
�
s0i; fM

�
� ui

�
s00i ; fM

��
& i
�
sM�i
�
+
M�1X
r=0

�
ui
�
s0i; s

r
�i
�
� ui

�
s00i ; s

r
�i
��
[& i (Hr)� & i (Hr+1)]

�
�
ui
�
s0i; fM

�
� ui

�
s00i ; fM

��
�& i
�
sM�i
�

�
M�1X
r=0

�
ui
�
s0i; s

r
�i
�
� ui

�
s00i ; s

r
�i
��
[�& i (Hr)� �& i (Hr+1)] : (3)

By increasing di¤erences, ui (s0i; s�i)�ui (s00i ; s�i) > 0 and is an increasing function of s�i: Equa-

tion (3) is the di¤erence of two weighted sums of ui (s0i; s�i) � ui (s00i ; s�i). The �rst k weights

in the �rst sum add up to: & i
�
sM�i
�
+
PM�1
r=M�k+1 [& i (Hr)� & i (Hr+1)] = & i (HM�k+1) : Similarly

the �rst k weights in the second sum in total are equal to: �& i (HM�k+1) : Since & i is convex,

& i (HM�k+1) 6 �& i (HM�k+1) ; hence the weights in the �rst sum are �rst order stochastically

dominated by those in the second. Thus, the �rst sum is smaller which makes the overall ex-

pression negative. This establishes that Wi (s
0
i; s�i; �i)�Wi (s

00
i ; s�i; �i) is a decreasing function

of �i:

Lemma B.8 The best response correspondence of player i; Bi (ŝ�i; �i; �i; & i) ; de�ned by

Bi (s�i; �i; �i; & i) = argmaxsi2SiWi (si; s�i; �i; �i; & i) is increasing in s�i and decreasing in �i:

Proof. To show Bi (s�i; �i; �i; & i) is increasing in s�i; assume ŝ�i > ~s�i: Consider y 2

Bi (~s�i; �i; �i; & i) ; z 2 Bi (ŝ�i; �i; �i; & i) and let m = min fy; zg and M = max fy; zg : Now

Wi (y; ~s�i; �i; �i; & i) >Wi (z; ~s�i; �i; �i; & i) which impliesWi (M; ~s�i; �i; �i; & i) >Wi (z; ~s�i; �i; �i; & i) :

By increasing di¤erences,Wi (M; ŝ�i; �i; �i; & i) >Wi (z; ŝ�i; �i; �i; & i) ; henceM 2 Bi (ŝ�i; �i; & i) :

Since Wi (y; ŝ�i; �i; �i; & i)�Wi (z; ŝ�i; �i; �i; & i) 6 0; increasing di¤erences implies

Wi (y; ~s�i; �i; �i; & i)�Wi (z; ~s�i; �i; �i; & i) 6 0: Thus Wi (m; ~s�i; �i; �i; & i) >Wi (y; ~s�i; �i; �i; & i)

and hence m 2 Bi (~s�i; �i; �i; & i) : This establishes that Bi (s�i; �i; �i; & i) is increasing in s�i:

We may establish that Bi (s�i; �i; �i; & i) is decreasing in �i by a similar argument.

De�nition B.3 The maximal and minimal best response correspondences of player i are de�ned
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respectively by

�Bi (s�i; �i; 
i; �i; �i) = max
�i

�
Bi (s�i; �i; �i; �i) ;8A & S�i;

�i
1� �i

> ��i (A)� �i (A) >

i

1� �i

�
;

Bi (s�i; �i; 
i; �i; �i) = min
�i

�
Bi (s�i; �i; �i; �i) ;8A & S�i;

�i
1� �i

> ��i (A)� �i (A) >

i

1� �i

�
:

It follows from Lemma B.5 that the maximal (resp. minimal) best response correspondence

is the greatest (resp. least) best response to all beliefs whose support is the pure strategy s�i

with minimal (resp. maximal) degree of ambiguity is at least 
 (resp. at most �):

Proof of Theorem 4.2 We shall prove the result for the highest equilibrium strategy. The

lowest equilibrium strategy can be covered by a similar argument. Lemma B.5 establishes that

if ŝ is an equilibrium strategy pro�le when the minimal (resp. maximal) degree of ambiguity is


 (resp. �); then there exist �i with
�i
1��i > ��i (A

c)� �i (A) >

i
1��i such that ŝi 2 Bi (s�i; �i; �i)

for 1 6 i 6 n: Thus any given equilibrium, satisfying these constraints, is smaller than the

largest �xed point of the maximal best response correspondence �Bi (s�i; �i; 
i; �i) :

Therefore since �s (�) is the pro�le of greatest equilibrium strategies it is the largest �xed

point of the maximal best response function, i.e. �s (�) 2 �B (�s; ��) and s (�) 2 B (s; �) : By

Lemma B.8, �Bi (s�i; �i; 
i; �i) is increasing in s�i and decreasing in �i: It follows from Lemma

B.3 that �s (�) is decreasing in �:

B.2.4 Multiple Equilibria

In this section we show that equilibrium is unique if there is su¢ cient ambiguity.

Lemma B.9 Consider a game, �; of positive externalities and increasing di¤erences. There

exists �
 such that if the minimal degree of ambiguity is 
 (�i) > �
, then in any equilibrium � =

h�1; :::; �ni ; supp �i � A; where A denotes the set argmaxsi2Si
�
�iui

�
si; s�i

�
+ (1� �i)ui (si; �s�i)

	
;

for 1 6 i 6 n:

Proof. Suppose ŝi 2 A; ~si =2 A. Number the strategy pro�les of the opponents so that

ui
�
ŝi; s

1
�i
�
> ui

�
ŝi; s

2
�i
�
> ::: > ui

�
ŝi; s

R
�i
�
and ui

�
~si; �

1
�i
�
> ui

�
~si; �

2
�i
�
> ::: > ui

�
~si; �

R
�i
�
:

Although in general �r�i 6= sr�i; positive externalities implies that s
1
�i = �1�i = �s�i and sR�i =
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�R�i = s�i: Suppose that the beliefs of individual i may be represented by a JP-capacity, �i =

�i�i + (1� �i) ��i: If i plays strategy ŝi; (s)he receives utility:

Vi (ŝi) = �i
R
ui (ŝi; s�i) d�i + (1� �i)

R
ui (ŝi; s�i) d��i

= �iui (ŝi; �s�i)�i (�s�i) + �i
PR�1
r=2 ui

�
ŝi; s

r
�i
� �
�i
�
s1�i; :::; s

r
�i
�
� �i

�
s1�i; :::; s

r�1
�i
��

+�iui
�
ŝi; s�i

� �
1� �i

�
S�ins�i

��
+ (1� �i)ui (ŝi; �s�i) [1� �i (S�in�s�i)]

+ (1� �i)
PR�1
r=2 ui

�
ŝi; s

r
�i
� �
�i
�
sr�i; :::; s

R
�i
�
� �i

�
sr+1�i ; :::; s

R
�i
��
+(1� �i)ui

�
ŝi; s�i

�
�i
�
s�i
�
.

Similarly if i plays strategy ~si (s)he receives utility:

Vi (~si) = �iui (~si; �s�i)�i (�s�i) + �i
PR�1
r=2 ui

�
~si; �

r
�i
� �
�i
�
�1�i; :::; �

r
�i
�
� �i

�
�1�i; :::; �

r�1
�i
��

+�iui
�
~si; s�i

� �
1� �i

�
S�ins�i

��
+ (1� �i)ui (~si; �s�i) [1� �i (S�in�s�i)]

+ (1� �i)
PR�1
r=2 ui

�
~si; �

r
�i
� �
�i
�
�r�i; :::; �

R
�i
�
� �i

�
�r+1�i ; :::; �

R
�i
��
+(1� �i)ui

�
~si; s�i

�
�i
�
s�i
�
:

In the limit, as �
 tends to 1; all the terms involving �i tend to 0: Hence Vi (ŝi) tends to

�iui
�
ŝi; s�i

�
+(1� �i)ui (ŝi; �s�i) and Vi (~si) tends to �iui

�
~si; s�i

�
+(1� �i)ui (~si; �s�i) : Since

ŝi 2 A; ~si =2 A; �iui
�
ŝi; s�i

�
+ (1� �i)ui (ŝi; �s�i)�

�
�iui

�
~si; s�i

�
+ (1� �i)ui (~si; �s�i)

�
> 0: It

follows that ~si will not be played when �
 is su¢ ciently high.

Proof of Proposition 4.1 By Lemma B.9, if the minimal degree of ambiguity is su¢ -

ciently high, supp �i � argmaxsi2Si
�
�iui

�
si; s�i

�
+ (1� �i)ui (si; �s�i)

	
; for 1 6 i 6 n: If �i

is also su¢ ciently high (resp. low) then supp �i � argmaxsi2Si ui
�
si; s�i

�
(resp. supp �i �

argmaxsi2Si ui (si; �s�i)). By Theorem 4.2, the resulting equilibrium is smaller (resp. greater)

than the lowest (resp. highest) equilibrium without ambiguity.

B.3 The Centipede Game

In this appendix, we illustrate our model by applying the EUA concept to a simpli�ed version

of the Centipede game. Two players, I = f1; 2g; with actions c (�continue�) and e (�exit�),

A := fc; ag; alternate in choosing their actions. We shall consider the case of three periods

represented in Figure ??.

Denote by ce the strategy of Player 1 to continue at t = 1 and to exit at t = 3: Similarly,

cc indicates the strategy to continue both at t = 1 and t = 3: In strategic form the game is
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represented by the following table24.

Player 2

Player 1

e c

e 1; 0 1; 0

ce 0; 6 11; 5

cc 0; 6 10; 10

In the unique NE, has Player 1 exits immediately and Player 2 chooses an arbitrary mixed strat-

egy. Given the attractive pay-o¤s after continuation, it is not surprising that most experimental

studies of the centipede game show that players continue for a sequence of moves, though not

to the end of the game25.

The following result provides conditions on the ambiguity-attitude parameters (�1; �2) and

players�beliefs represented by JP-capacities (�1; �2) for an equilibrium in beliefs under ambi-

guity, where Player 1 continues for one stage, even though Player 2 will exit in stage 2.

Proposition B.1 Suppose 10 � 11 � �1 (1� "c) > 0 and (1 � �2)
�
9� 5 � 
e;ce

�
� �2
cc;ce > 0,

then the beliefs

�1(E) :=

8><>:
0 for E = feg

"c for E = fcg
; �2(E) :=

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

0 for E = feg


ce for E = fceg

0 for E = fccg


e;ce for E = fe; ceg

0 for E = fe; ccg


cc;ce for E = fcc; ceg

;

with supp�1 = fcg and supp�2 = fceg are an EUA.

Notice that the conditions of the claim require only a small degree of ambiguity for both

players about the behaviour of the opponent paired with a little optimism �1 < 0 and �2 < 1.

24The table contains a slight abuse of notation. Strictly we should distinguish between the strategies ec exit
then continue and ee exit at both nodes for player 1: However since these two strategies always yield the same
pay-o¤ we have combined them into a single strategy e:
25See, e.g., McKelvey and Palfrey (1992) and Nagel and Tang (1998).
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Behaviour in this equilibrium resembles the behaviour observed in laboratory experiments of

the centipede game. Both players will be better o¤ (ex-post) given their behaviour in this EUA

than in the unique NE.

Denoting beliefs by

�1(E) :=

8><>:
"e for E = feg

"c for E = fcg
and �2(E) :=

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:


e for E = feg


ce for E = fceg


cc for E = fccg


e;ce for E = fe; ceg


e;cc for E = fe; ccg


cc;ce for E = fcc; ceg

Player 1�s CEU payo¤ from actions e; ce; and cc can be written as

V1(e;�1; �1) = 1;

V1(ce;�1; �1) = 11 [�1"c + (1� �1) (1� "e)] ;

V1(cc;�1; �1) = 10 [�1"c + (1� �1) (1� "e)] :

Similarly, one obtains Player 2�s CEU payo¤:

V2(e;�2; �2) = 6�2
cc;ce + (1� �2) [1� 
e] ;

V2(c;�2; �2) = 5
�
�2
�

cc + 
cc;ce

�
+ (1� �2)

�
2� 
e;ce � 
e

��
:

Let

� "c > 0 "e = 0

� 
e;ce = 
cc;ce = 
ce > 0 
E = 0 otherwise.

Proof of Proposition B.1 We need to show that supp�1 � R2(�2; �2); and supp�2 �

R1(�1; �1); or equivalently, that (i) V1(ce;�1; �1) > V1(cc;�1; �1); (ii) V1(ce;�1; �1) > V1(e;�1; �1)

and (iii) V2(c;�2; �2) > V2(e;�2; �2) hold.

Straightforward calculations yield: V1(e;�1; �1) = 1; V1(ce;�1; �1) = 11 [�1"c + (1� �1)] ;

and V1(cc;�1; �1) = 10 [�1"c + (1� �1)] : Since ce dominates cc, (i) is always satis�ed with
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strict inequality. Moreover, (ii) holds for 10 � 11�1 (1� "c) > 0: For Player 2, one computes

V2(e;�2; �2) = 6�2
cc;ce+(1��2) and V2(c;�2; �2) = 5�2
cc;ce+(1��2)
�
10� 5
e;ce

�
. Hence,

(iii) holds for (1� �2)
�
9� 5
e;ce

�
� �2
cc;ce > 0:
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