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1 Introduction

Self-dual Yang-Mills (SDYM) and self-dual Einstein gravity (SDG) are very important
truncations of full Yang-Mills and gravity, respectively. Both are integrable, in the sense that
the most general solution of the non-linear field equations can be written down for example
via the perturbiner expansion (see [1] for the SDYM case and [2] for SDGR). The integrability
of these theories has also been understood from various other perspectives [3–6]. Moreover
the amplitudes of these theories take a simple form [7–10] and certain amplitudes in the full
theories can be computed from form factors of the self-dual ones [11]. Self-dual theories also
play a fundamental role twistor theory [12, 13] and celestial holography [14].

For self-dual theories there exists a field ansatz which reduces the problem of finding
solutions of the associated non-linear equations to a PDE on a single function. For SDYM this
equation was found in [15, 16] and for SDGR this is Plebanski’s second heavenly equation [17].
These equations make a property known as color/kinematics duality manifest [18] and exhibit
an infnite dimensional symmetry [14, 22]. This can be seen in the existence of the recursion
operator which produces solutions of the linearised equations of motion from other such
solutions (see for example appendix C.3 of [2] for the SDYM case and formulas (3.6)–(3.8)
of that reference for the SDGR case).

Self-dual theories are usually analysed in the light-cone gauge. This is manifest in
the treatment in [15], and is effectively what the analysis in [17] amounts to. Light-cone
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constructions proceed by introducing a set of null coordinates on Minkowski space, two of
which are real and two complex. The SDYM ansatz then sets two of the null components of
the gauge-field to zero, while the other two are given by partial derivatives of a (Lie-algebra
valued) scalar potential, see formula (5) in [15]. In the SDGR case one similarly introduces
a special null coordinate system, and then a potential for the metric. A drawback of the
light-cone approach is that after fixing null coordinates, it becomes difficult to see how the
results obtained depend on this choice. See [19, 22] for recent progress in this direction.

A different but related approach to study these theories is the spinor-helicity formalism,
see e.g. [20] and references therein, where the polarisation vector of a gluon with 4-momentum
kµ is expressed as:

ε+
MM ′ =

qM kM ′

⟨qk⟩
, (1.1)

where A, A′ are 2-component spinor indices of opposite chirality, qM is a 2-component reference
spinor, ⟨qk⟩ = qM kM , and kM , kM ′ are the momentum spinors arising from the fact that the
momentum kMM ′ is null and therefore kMM ′ = kM kM ′ . A similar representation exists for
graviton polarisations, which are essentially tensor products of gluon polarisations. Note
that the reference spinor encodes gauge symmetry and can be chosen arbitrarily. Light-cone
gauge then corresponds to (1.1) for a specific choice of the reference spinor, as is manifest in
e.g. formulas following (2.13) in [2]. In this paper, we will use a covariant light-cone ansatz
where the self-dual gauge field is of the form

Aµ = Ω̄µ
ν∂νϕ, (1.2)

where Ω̄µν is a decomposable (complex) self-dual 2-form and ϕ is an arbitrary “potential”
function. In terms of spinors the 2-form Ω̄µν is of the form Ω̄MM ′NN ′ = qM qN ϵM ′N ′ , where
ϵM ′N ′ is the spinor metric (not to be confused with the polarisation vector ε+

MM ′). In
momentum space, the ansatz becomes

AMM ′ = qM qN ϵM ′ N
′
kN kN ′ϕ = qM kM ′⟨qk⟩ϕ, (1.3)

which coincides with (1.1) for a suitable choice of ϕ. The ansatz (1.2) therefore combines the
benefits of both the light-cone and spinor-helicity formalisms. It also has a nice geometric
interpretation: as we will see below, after analytically continuing to Euclidean signature, the
choice of Ω̄ encodes a choice of complex structure in R4. Such an approach is far from new.
Its version in classical electrodynamics, where the electromagnetic field is parametrised by a
derivative of a scalar, is known as the Hertz and Debye potentials. These techniques have
also been applied to gravity since the 70’s, see e.g. [21] and references therein. A similar
approach for self-dual theories was also recently developed in [22].

Using (1.2), we show that the SDYM equation reduces to (2.14). This is equivalent
to results found long ago except that our choice of null coordinates is kept arbitrary and
parameterised by the tensor Ω̄. As a bonus, this formalism suggests a new mathematical
interpretation of the kinematic algebra of SDYM theory. This algebra was first described
in [18]. Our approach gives a spacetime covariant interpretation of this algebra. We then
apply the same ideas to SDGR using the pure connection formalism [23, 30] and re-derive
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Plebanski’s second heavenly equation in the form (2.31). Finally, we consider the problem
of self-dual gravity in a constant curvature background and re-derive the scalar equation
of motion first obtained in [24]. A striking feature of our SDGR calculation is its relative
simplicity. Indeed, the scalar equation of motion for SDGR in constant curvature background
was previously obtained from a very tedious calculation, but using the formalism developed
in this paper it can be derived in only a few lines. This suggests that the pure connection
formalism may provide a promising avenue for computing observables in (Anti) de Sitter space
((A)dS), which are crucial for the study of holography and cosmology. Due to their simplicity,
self-dual theories provide the ideal setting for developing new calculational techniques in these
backgrounds. In contrast to flat space however, very little is known about the observables of
self-dual theories in (A)dS, although the first steps in computing their boundary correlation
functions were recently taken in [25, 26]. It was also recently shown that SDGR in AdS4
exhibits color/kinematics duality and enjoys a w1+∞ symmetry [24, 27, 28]. For related
recent work, see [29].

2 Self-dual YM and GR in flat space of holography and cosmology

2.1 SDYM

As is well-known, the problem of finding self-dual YM fields can be reduced to a PDE for
a single Lie-algebra-valued potential function. We start by recalling a derivation of this
PDE, to establish notations but also to point out some facts that do not seem to have
been noticed before.

Self-dual, or rather anti-self-dual gauge fields, which we call self-dual for reasons of
language economy, are solutions to the following set of first-order PDE’s on the gauge field:

(F a
µν)+ = 0. (2.1)

Here

F a
µν = ∂µAa

ν − ∂νAa
µ + fabcAb

µAc
ν (2.2)

is the field strength, and the plus superscript denotes the projection onto the self-dual part.
The projection onto the self-dual part can be computed as follows. We introduce a basis

in the space of self-dual 2-forms. We will work in Euclidean signature, which reduces the
number of factors of the imaginary unit appearing in the calculations. In flat space, the
basis of self-dual 2-forms is given by

Σi = dt ∧ dxi − 1
2ϵijkdxj ∧ dxk. (2.3)

These objects satisfy the following set of relations:

Σi ∧ Σj ∼ δij . (2.4)

Also, if one raises one of the indices of Σi
µν to form an object Σi

µ
ν , this can be viewed as

an endomorphism of the (co-)tangent space. The triple of arising endomorphisms satisfies
the algebra of the imaginary quaternions

Σi
µ

αΣj
α

ν = −δijδµ
ν + ϵijkΣk

µ
ν . (2.5)

– 3 –



J
H
E
P
0
3
(
2
0
2
5
)
1
5
2

Using the basis of self-dual 2-forms introduced above, the self-duality equations (2.1)
can be rewritten as

ΣiµνF a
µν = 0. (2.6)

2.2 Complex self-dual 2-forms and a complex structure

For what follows, it will be very convenient to introduce the following complex linear
combinations of the self-dual 2-forms:

Ω := Σ1 + iΣ2, Ω̄ = Σ1 − i Σ2, ω = Σ3. (2.7)

We note that Σ1,2,3 are only real in Euclidean signature, and only in this signature is Ω̄ the
complex conjugate of Ω. The new complex self-dual 2-forms satisfy

Ω ∧ Ω = 0, Ω ∧ ω = 0, Ω ∧ Ω̄ = 2ω2. (2.8)

These equations have an interpretation as defining a complex structure on R4. Indeed, the
first equation states that the 2-form Ω is decomposable. It thus defines a 2-dimensional
subspace in the space of 1-forms Λ1. One can declare this subspace to be the subspace Λ(1,0)

of (1, 0) forms of some complex structure J : R4 → R4, J2 = −I. This defines the complex
structure. The second equation in (2.8) then says that ω ∈ Λ(1,1) ⊂ Λ2. Raising one of
the indices of ω with the metric and using the algebra (2.5) gives ωµ

αωα
ν = −δµ

ν , which
identifies ωµ

ν as the complex structure. It is thus clear that the choice we have made in
constructing (2.7) is the choice of a complex structure on R4.

Using the complex self-dual 2-forms, the self-duality equations (2.6) get rewritten as

ΩµνF a
µν = 0, Ω̄µνF a

µν = 0, ωµνF a
µν = 0. (2.9)

2.3 Potential for self-dual gauge fields

We now reduce the problem of constructing solutions to (2.9) to the problem of solving a
PDE for a single function. To this end, we parametrise the gauge field as

Aa
µ = Ω̄µ

ν∂νϕa. (2.10)

Writing this equation in components shows that it is exactly the same ansatz for the gauge
field that is made when analysing the SDYM in the light-cone gauge [15]. One can refer
to the ansatz (2.10) as a covariant light-cone gauge, because the choice of the light-cone
coordinates is now explicitly parametrised by the tensor Ω̄µ

ν . One more novelty is that
we work in Euclidean signature where this tensor has a clear geometric interpretation of
defining a complex structure.

The ansatz (2.10) automatically satisfies two of the three equations in (2.9). Indeed, we
have the following algebraic properties of the complex 2-forms

Ω̄µ
αΩ̄α

ν = 0, Ω̄µ
αωα

ν = −i Ω̄µ
ν . (2.11)

The first of these shows that Ω̄µνF a
µν = 0 is automatically satisfied, while using the second

ωµνF a
µν becomes

ωµν(2∂µΩ̄ν
α∂αϕa + fabcΩ̄µ

α∂αϕbΩ̄ν
β∂βϕb) = i (−2Ω̄µα∂µ∂αϕa + fabcΩ̄να∂αϕbΩ̄ν

β∂βϕb) = 0,

where we again used the first relation in (2.11).
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The self-duality equation then reduces to the condition ΩµνF a
µν = 0, or, in terms of

parametrisation (2.10)

Ωµν(∂µΩ̄ν
α∂αϕa + fabcΩ̄µ

α∂αϕbΩ̄ν
β∂βϕc) = 0. (2.12)

Using the algebra of 2-forms

ΩµαΩ̄α
ν = −2gµν − 2iωµν , (2.13)

this becomes

□ϕa = 1
2fabcΩ̄µν∂µϕb∂νϕc. (2.14)

This is the well-known PDE for the function ϕa, see e.g. [15] for essentially the same derivation
as the one above, except that we parametrise different possible choices of the light-cone gauge
by the choice of a complex structure, and in particular, tensors Ωµν , Ω̄µν , ωµν .

2.4 New interpretation of the kinematic algebra of the SDYM

We note that the parametrisation (2.10) provides a new interpretation to the kinematic
algebra of self-dual YM theory. In [18] this algebra is interpreted as that of area-preserving
diffeomorphisms of a certain two-dimensional space. A simple calculation related to (2.10)
provides a somewhat different interpretation.

Consider vector fields on R4 that are of the form

Xµ
ϕ = Ω̄µν∂νϕ. (2.15)

These can be interpreted as Hamiltonian vector fields for the Poisson structure determined
by the Poisson bivector Ω̄µν . Such vector fields are necessarily (0, 1) vector fields, and so
vector fields of this type can be referred to as Hamiltonian (0, 1) vector fields. A standard
calculation shows that Hamiltonian vector fields form a Lie subalgebra of the algebra of
all vector fields. Indeed, we have

[Xϕ1 , Xϕ2 ] = Ω̄αβ∂βϕ1∂α(Ω̄µν∂νϕ2)− Ω̄αβ∂βϕ2∂α(Ω̄µν∂νϕ1) (2.16)

Here we are assuming all background tensors (such as Ω̄αβ) to be constant, and so can be
pulled out from under the derivative, so we have

[Xϕ1 , Xϕ2 ] = Ω̄αβΩ̄µν(∂βϕ1∂α∂νϕ2 − ∂βϕ2∂α∂νϕ1).

We can rewrite this as

[Xϕ1 , Xϕ2 ] = Ω̄αβΩ̄µν(∂βϕ1∂α∂νϕ2 + ∂β∂νϕ1∂αϕ2) = Ω̄αβΩ̄µν∂ν(∂βϕ1∂αϕ2).

Taking Ω̄αβ back under the derivative sign we can rewrite this as

[Xϕ1 , Xϕ2 ] = X[ϕ1,ϕ2], [ϕ1, ϕ2] := Ω̄αβ(∂βϕ1∂αϕ2). (2.17)

This is of course a version of the standard calculation in Poisson geometry, further simplified
by the fact that we have assumed the bivector Ω̄µν to be constant.
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The Lie algebra with the bracket [ϕ1, ϕ2] is precisely the kinematic Lie algebra of SDYM
theory. We have thus exhibited a homomorphism from this Lie algebra into the Lie algebra
of vector fields on R4, as the subalgebra of Hamiltonian vector fields for the Poisson structure
with Ω̄µν as the Poisson bivector. Alternatively, because such Hamiltonian vector fields span
all of (0, 1) vector fields, we can say that the kinematic Lie algebra of SDYM is the Lie
algebra of all (0, 1) vector fields on R4 endowed with a complex structure. This interpretation
appears to be new.

2.5 Flat space SDGR in the complex basis

We now consider flat self-dual GR, in the formulation described in [23]. The calculation in
this subsection is a pre-cursor to a more involved calculation in constant curvature space
in the next section. Viewing flat SD metrics as perturbations around flat space, the SDGR
action takes the following form:

S[A,Ψ] =
∫

Ψij(Σi + dAi)(Σj + dAj). (2.18)

Here Ψij is a 3 × 3 symmetric tracefree matrix, Σi is a triple of self-dual 2-forms for the
background (flat) metric, and Ai is a triple of 1-forms. The non-linear equation for self-dual
gravitons is obtained by varying the above action with respect to Ψij , and is given by

(Σi + dAi)(Σj + dAj) ∼ δij . (2.19)

The metric is then obtained from the triple of 2-forms Bi := Σi + dAi using the Urbantke
formula [31]

g(ξ, η)vg = 1
6ϵijkiξBi ∧ iηBj ∧ Bk. (2.20)

Here g(ξ, η) is the metric pairing of two vector fields ξ, η ∈ TM , and vg is the volume form for
the metric. Both sides are top forms, and the right-hand side defines a symmetric expression
in (ξ, η), which is identified with the metric pairing.

As in the case of SDYM, it will be beneficial to rewrite this action in a different basis,
introducing complex linear combinations of all the fields. We introduce the already familiar
complex self-dual 2-forms Ω, Ω̄, ω, as well as complex 1-forms

A := A1 + iA2, Ā := A1 − iA2, A3 := a. (2.21)

In this complex basis, the flat SDGR field equations (2.19) become the following system
of equations:

(Ω + dA) ∧ (Ω + dA) = 0, (Ω + dA) ∧ (ω + da) = 0, (2.22)
(Ω̄ + dĀ) ∧ (Ω + dA) = 2(ω + da)2,

together with their complex conjugates.
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2.6 Plebanski’s second heavenly equation

We make the following ansatz for all the fields

a = Ā = 0, Aµ = Ω̄µ
ν∂νϕ. (2.23)

Note that this is completely analogous to the ansatz (2.10) in the SDYM case. Then there
are three equations to satisfy:

(Ω + dA) ∧ (Ω + dA) = 0, dA ∧ ω = 0, dA ∧ Ω̄ = 0. (2.24)

The second and third are satisfied because of the identities satisfied by the 2-forms. Indeed,
using the self-duality of ω,Ω we can rewrite the second equation as

ωµν∂µΩ̄ν
α∂αϕ = 0. (2.25)

The action of ωµ
ν on any (0, 1) form corresponds to multiplying it by i . This gives

ωµν∂µΩ̄ν
α∂αϕ = i Ω̄µα∂µ∂αϕ = 0, (2.26)

because partial derivatives commute and Ω̄µν is anti-symmetric. For the third equation we have

Ω̄µν∂µΩ̄ν
α∂αϕ = 0. (2.27)

It is satisfied because two copies of Ω̄ contracting in a pair of indices gives zero, see (2.11).
The only non-trivial equation in (2.24) is then the first one, which can be re-written as

2ΩdA + dAdA = 0. (2.28)

Rewriting this in index notation gives

2Ωµν∂µΩ̄ν
α∂αϕ + ϵµνρσ∂µΩ̄ν

α∂αϕ∂ρΩ̄σ
β∂βϕ = 0. (2.29)

Using (2.13) we see that we get the box operator on the left-hand side. To simplify the
right-hand side we will use the self-duality of Ω̄, which implies that

ϵµνρσΩ̄µα = δα
νΩ̄ρσ + δα

ρΩ̄σν + δα
σΩ̄νρ. (2.30)

Applying this identity to the contraction of ϵ with e.g. the first copy of Ω̄ gives three terms,
two of which will give a contraction of two copies of Ω̄, which vanishes. This leaves the
following equation:

□ϕ = 1
4Ω̄

µρΩ̄αβ∂µ∂αϕ∂ρ∂βϕ. (2.31)

This is Plebanski’s second heavenly equation. The derivation we presented is new, and
is significantly simpler than the one available in the literature, see e.g. appendix B of [2].
Note that the double copy structure of this equation as compared to (2.14) is manifest. In
the next section we obtain an appropriate non-flat covariant version of this equation for
SDGR in de Sitter space.
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3 Self-dual gravity in hyperbolic space

Our task now is to obtain a version of (2.31) for SDGR in a constant curvature background.
We will use a pure connection formalism, which allows one to describe 4d Einstein gravity
with non-zero cosmological constant Λ (and its self-dual truncation) as a particular theory
of an SU(2) gauge field. We start by reviewing this formalism.

3.1 Chiral pure connection description of GR and SDGR

Let us start with some generalities. General Relativity is normally described by a formalism
in which a field encoding a metric (this can be the metric field itself, or e.g. the frame field)
is subject to second-order PDE’s, notably the Einstein equations. There exists, however, a
first order formalism, in which the connection field that defines the appropriate covariant
derivative is treated as an independent one. An action is then written that depends both on
the metric and connection fields. In the case of the metric description this is called the Palatini
formalism, in which the metric appears in the action together with the field Γµν

ρ which gets
identified with the Christoffel symbol on-shell. In the case of the tetrad description one has
the Einstein-Cartan action, in which the tetrad field appears in the action together with the
spin connection. See e.g. [32], sections 2.4 and 3.2 for more details. One can integrate out the
connection field from these Lagrangians by solving the (algebraic) equations of motion for
this field and substituting the result back into the Lagrangian. One then recovers the usual
second-order in derivatives formalism. However, when Λ ̸= 0, there is an alternative. One
can instead solve an (algebraic) field equation obtained by varying the action with respect to
the metric, and substitute the result back into the Lagrangian. One then obtains a “pure
connection” description of gravity. This trick is only possible when Λ ̸= 0, which is reflected by
the fact that one obtains a factor of 1/Λ in front of the resulting pure connection Lagrangian.
In the metric description of gravity, the corresponding pure connection formalism is that of
Eddington description of GR, see section 2.5 of [32]. In the case of the frame formalism, the
corresponding pure connection formulation is described in section 3.4 of that reference.

In addition to the metric and the frame formalisms, in 4D there is also the Plebanski
formalism that uses a triple of 2-forms to encode the metric, see section 5 of [32]. This is a
first-order description of gravity, in which the action depends on both a collection of 2-forms
Σi, as well as an independent collection of 1-forms Ai. When Λ ̸= 0, the 2-form field Σi

can be integrated out from the action, resulting in a pure connection description of gravity.
The most useful version of this description is one where a certain Lagrange multiplier field
is also kept. The GR action then takes the form

S[A,Ψ] = 1
16πG

∫ (
Ψij + Λ

3 δij
)−1

F i ∧ F j . (3.1)

Here Ψij is a symmetric, trace-free Lagrange multiplier field, Ai is an SO(3) connection,
and F i is its curvature 2-form. The Lagrange multiplier field can also be integrated out,
producing an action first described in [33]. But the action in the way we wrote it will be
more convenient for the purposes of this paper.
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One can expand the tensor
(
Ψij + Λ

3 δij
)−1

appearing in the action in powers of Ψij . The
first term that results is the topological F i ∧ F i term. The second term gives the action

SSDGR[A,Ψ] =
∫

ΨijF i ∧ F j . (3.2)

It can then be shown that the critical points of this action are Einstein (with non-zero Λ)
half Weyl-flat manifold, i.e. manifolds where the Ricci curvature satisfies Rµν = Λgµν and
half of the Weyl curvature vanishes W + = 0. More precisely, the statement is that any SO(3)
connection that satisfies the set of first-order PDE’s

F i ∧ F j ∼ δij (3.3)

defines a metric that is Einstein (with non-zero Λ) and half Weyl-flat. This metric is defined
by introducing a triple of 2-forms

Bi := 1
ΛF i, (3.4)

and substituting this into Urbantke formula (2.20). For details of the proof of this statement,
the reader is advised to consult e.g. section 6.3 of [33].

The pure connection description of Λ ̸= 0 SDGR makes it clear that this theory is a
truncation of full GR in which one keeps only the first non-trivial term in the expansion
of the full GR action (3.1) into powers of Ψij . We thus get a very clear description of
how SDGR sits inside full GR.

Our task now is to describe self-dual gravitons as certain perturbations of the connection
Ai around the constant curvature background. We start by describing the background.

3.2 Hyperbolic space

We will use the conformally flat description of the hyperbolic space, for which the metric is

ds2 = 1
t2 (dt2 + dx2 + |dz|2). (3.5)

Here t, x are real coordinates, and z ∈ C is a complex coordinate on R2 ∼ C. We use the
Plebanski formalism, in which the metric is encoded into a triple of 2-forms Σi, i = 1, 2, 3, with

Σi = e4 ∧ ei − 1
2ϵijkej ∧ ek, (3.6)

where e4,1,2,3 are the frame 1-forms. In Plebanski formalism one then proceeds to find the
connection 1-forms Ai from the equations dΣi + ϵijkAj ∧ Σk = 0.

An equivalent approach that is more useful for the problem at hand is to use a complex
decomposable 2-form, as well as a real 2-form ω := Σ3,Ω := Σ1 + iΣ2. For the hyperbolic
space metric these are given by

ω = 1
t2

(
dtdx + 1

2i dz ∧ dz̄

)
, Ω = 1

t2 (dt − i dx)dz. (3.7)
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The corresponding connection is encoded by a real 1-form A3, and a complex 1-form A. They
are determined by the following equations:

dω + 1
2i (ĀΩ− AΩ̄) = 0, dΩ− iAω + iA3Ω = 0, (3.8)

and are given by

A = dz

t
, A3 = dx

t
. (3.9)

The curvature 2-forms are

F = dA + iA3A, F̄ = dĀ − iA3Ā, F 3 = dA3 − 1
2i AĀ. (3.10)

A simple computation gives

F = −Ω, F 3 = −ω, (3.11)

which confirms that this is a space of negative scalar curvature.

3.3 Λ ̸= 0 SDGR equations in the complex basis

As we have already described, SDGR with Λ ̸= 0 is described in the pure connection formalism
by a triple of connection 1-forms Ai. The SDGR field equations are then F i ∧ F j ∼ δij .
However, it will be more convenient to switch to the complex basis, in which we instead
consider a complex 1-form A and a real 1-form A3. The curvatures are given by (3.10),
and the SDGR equations take the form

F ∧F = 0, F ∧F 3 = 0, F̄ ∧ F̄ = 0, F̄ ∧F 3 = 0, F ∧ F̄ = 2F 3 ∧F 3. (3.12)

3.4 SDGR in a space of constant curvature

We now consider the problem of describing SDGR with Λ ̸= 0. We consider the connection
configuration given by

A = dz

t
+ a, A3 = dx

t
, Ā = dz̄

t
, (3.13)

where

aµ = 1
2t
Ω̄µ

ν∂νϕ, (3.14)

or explicitly

a = 1
t
∂zϕ(dt + i dx)− 1

2t
(∂tϕ + i ∂xϕ)dz̄, (3.15)

and ϕ is a field that depends on all 4 coordinates t, x, z, z̄. Note that this is a chiral
configuration in the sense that Ā ̸= A∗. Note that our connection ansatz is completely
analogous to (2.23), with the only difference being the presence of the factor of 1/t in front.
The need for this factor is not surprising, and reflects the fact that the background is curved.
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For completeness, let us spell out how (3.15) is obtained from (3.14). We have

Ω̄ = 1
t2 (dt + i dx) ∧ dz̄. (3.16)

Raising one of its indices with the inverse metric

gµν = t2
((

∂

∂t

)µ (
∂

∂t

)ν

+
(

∂

∂x

)µ (
∂

∂x

)ν

+2
(

∂

∂z

)µ (
∂

∂z̄

)ν

+2
(

∂

∂z̄

)µ (
∂

∂z

)ν)
, (3.17)

gives the following object:

Ω̄µ
ν = 2(dt + i dx)µ

(
∂

∂z

)ν

− dz̄µ

((
∂

∂t

)ν

+ i
(

∂

∂x

)ν)
. (3.18)

It is now immediate to see that (3.15) is indeed given by (3.14).
Using (3.11), the curvature components take the following form

F = −Ω+ da + iA3 ∧ a, F̄ = −Ω̄, F 3 = −ω − 1
2i a ∧ Ā. (3.19)

A computation shows that all of the equations in (3.12) are satisfied by this connection ansatz,
apart from the equation F ∧ F = 0, which takes the following form:

1
t
(4∂z∂z̄ϕ + ∂2

xϕ + ∂2
t ϕ) = ∂2

z ϕ

(
∂u − 2

t

)
∂uϕ − (∂u∂zϕ)

(
∂u − 2

t

)
∂zϕ, (3.20)

where

∂u = ∂t + i ∂x. (3.21)

This is the same as the equations (34), (36) in [24]. A similar formula written in terms of
spinors also appears in [29] (see equation (54) of that reference). The last reference also
used the pure connection formalism. The novelty here is that we do not need spinors in
our treatment. The calculation that verifies all the equations in (3.12), and also obtains a
covariant version of the equation (3.20) is spelled out below.

3.5 Computation of da + i A3a

We now want to perform the calculation leading to (3.20) by hand, and also rewrite this
formula in a way analogous to (2.31). The new curvature 2-forms are given by (3.19). This
means that F̄ F̄ = 0 is unchanged and F̄F 3 ∼ Ω̄Ā = 0 continues to hold because both Ω̄, Ā

contain dz̄. The other equations need some work to be established. To this end, we first
compute the object da + iA3a.

We have

da + iA3a = d

(1
t
∂zϕ(dt + i dx)− 1

2t
(∂tϕ + i ∂xϕ)dz̄

)
(3.22)

+ i
t2 dx

(
∂zϕ(dt + i dx)− 1

2(∂tϕ + i ∂xϕ)dz̄

)
.

This can be written as
1
2t
Ω̄[ν

α∂µ]∂αϕ − 1
t2 (dt − i dx)[µ

(
(dt + i dx)ν]∂zϕ − 1

2dz̄ν](∂t + i ∂x)ϕ
)

(3.23)

= 1
2t
Ω̄[ν

α∂µ]∂αϕ − 1
2t2 (dt − i dx)[µΩ̄ν]

α∂αϕ.
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We can now easily compute

Ω̄µν(∂µaν + iA3
µaν) = 0, (3.24)

ωµν(∂µaν + iA3
µaν) = −2i ∂zϕ, (3.25)

Ωµν(∂µaν + iA3
µaν) = 1

2t
ΩµνΩ̄ν

α∂µ∂αϕ = −t□ϕ, (3.26)

where we used the algebra of 2-forms to get the last equality in the last line. The box here is the
flat metric box. The contraction of the first derivative terms with both Ωµν and Ω̄µν vanishes.

3.6 Analysis of equations continued

We can use the self-duality of ω, Ω̄ to rewrite the equation 2F 3F 3 = FF̄ as

2
i ωµνaµĀν = −Ω̄µν(∂µaν + iA3

µaν). (3.27)

However, both aµ and Āµ are (0, 1) forms, and the left-hand side is their contraction, which
vanishes. The right-hand side vanishes, as we confirmed in (3.24). This verifies that the
equation 2F 3F 3 = FF̄ is satisfied.

Let us now analyse the equation FF 3 = 0. Using self-duality we can rewrite this as

1
2i Ω

µνaµĀν = ωµν(∂µaν + iA3
µaν). (3.28)

The right-hand side of this was already computed in (3.25). The left-hand side is equal to

1
4i tΩ

µνΩ̄µ
α∂αϕĀν = 1

2i t(g
να + iωνα)Āν∂αϕ = 1

i tgναĀν∂αϕ = −2i ∂zϕ, (3.29)

where we used the algebra of 2-forms to get the first equality and the fact that ω acts on (0, 1)
forms by multiplication with i to get the second. Thus, the equation FF 3 = 0 is satisfied.

We now need to analyse the last equation F ∧ F = 0, which becomes

2Ωµν(∂µaν + iA3
µaν) = ϵµνρσ(∂µaν + iA3

µaν)(∂ρaσ + iA3
ρaσ). (3.30)

The left-hand side was already computed in (3.26). For the right-hand side we have

ϵµνρσ
( 1
2t
Ω̄ν

α∂µ∂αϕ − 1
2t2 (dt − i dx)µΩ̄ν

α∂αϕ

) ( 1
2t
Ω̄σ

β∂ρ∂βϕ − 1
2t2 (dt − i dx)ρΩ̄σ

β∂βϕ

)
= 1

4t2 ϵµνρσΩ̄ν
α∂µ∂αϕΩ̄σ

β∂ρ∂βϕ − 1
2t3 ϵµνρσΩ̄ν

α∂µ∂αϕ(dt − i dx)ρΩ̄σ
β∂βϕ.

We again use (2.30), which we write as

ϵµνρσΩ̄ν
α = gραΩ̄µσ + gµαΩ̄σρ + gσαΩ̄ρµ. (3.31)

Then the right-hand side becomes

− 1
4t2 Ω̄

µρ∂µ∂αϕΩ̄αβ∂ρ∂βϕ + 1
2t3 Ω̄

µρ∂µ∂αϕ(dt − i dx)ρΩ̄αβ∂βϕ. (3.32)
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Using

Ω̄µρ(dt − i dx)ρ = −4t2
(

∂

∂z

)µ

, (3.33)

we get the following equation:

1
t
□ϕ = 1

8t4 Ω̄
µρ∂µ∂αϕΩ̄αβ∂ρ∂βϕ + 1

t3 ∂z∂αϕΩ̄αβ∂βϕ. (3.34)

This is (3.20) written in a covariant form, which is our main new result. It can also be
rewritten more compactly as

1
t
□ϕ = 1

8t4 Ω̄
µρ∂µ∂αϕ Ω̄αβ

(
∂ρ −

2
t
(dt − i dx)ρ

)
∂βϕ. (3.35)

4 Conclusion

In this paper we provide a concise new derivation of the constant curvature background
version (3.20) of the Plebanski second heavenly equation (2.31). We also rewrite this equation
in the new form (3.35), which is considerably more compact than (3.20). This exhibits the
clear parallel with the flat version of this equation in the form (2.31). The key ingredients
were the pure connection formalism and a covariant ansatz for the connection in (3.14)
which was inspired by a similar ansatz for the gauge field in SDYM in (2.10). The key
ingredient of the ansatz is a complex 2-form Ω̄ which encodes the choice of null coordinates,
or equivalently the choice of complex structure. This in turn suggests a new interpretation
for the kinematic aglebra as of SDYM as the Lie algebra of (0, 1) vector fields on a R4

endowed with a complex structure.
This work opens a number of avenues for future research. Perhaps the most immediate

goal would be to use the formalism developed in this paper to compute boundary correlators
of SDGR in a constant curvature space and compare to the results recently obtained in [26].
This reference computes correlators of the scalar potential ϕ. The formalism we described
presents an alternative. It is not difficult to work with the covariant SDGR Lagrangian (3.2)
directly, by appropriately gauge-fixing the kinetic term to obtain the propagator. A way to
do this gauge-fixing is described in [30]. The ansatz (3.14) should then be interpreted as one
to be imposed on the on-shell external legs of the Feynman diagrams to be computed, where
an appropriate choice of the potential ϕ would parametrise the graviton polarisations. In [26]
it was also observed that different choices of lightcone gauge have the potential to simplify
the results and that perturbation theory may be simplest if the lightcone direction lies along
the boundary of AdS4. The covariant formulation presented in this paper may therefore
be very convenient because it allows for a general choice of the null direction. Moreover
the complex 2-form Ω̄ can be readily expressed in terms of a reference spinor making the
mapping to spinor-helicity variables more straightforward.

In flat space, all-multiplicity formulae for MHV amplitudes in full YM and GR can be
derived [30] using the technology of Berends-Giele currents [34], applied to the self-dual sectors.
More recently, this was also carried out using the pertubiner expansion [2]. Berends-Giele
recursion was also recently generalised to full YM and GR in (A)dS in [35], see also [36]. It
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would therefore be very interesting to attempt to use Berends-Giele recursion to compute
boundary correlators of SDYM and SDGR in (A)dS4 in the hope that the integrability of
these theories allows one to derive explicit formulae for any multiplicity. Thus, one could
hope for a Λ ̸= 0 version of the Parke-Taylor formula for gluons [37] or the Hodges formula
for gravitons [38]. We hope to explore this in future work.
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