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ABSTRACT9

This paper investigates the response of framed buildings on raft foundations to tunnel construc-10

tion using geotechnical centrifuge testing. Five framed building models were considered and the11

influence of building configuration, weight, eccentricity, and soil density were evaluated. Soil and12

foundation displacements, frame deformed shape, maximum structure deformation parameters (de-13

flection ratios and angular distortions), and associated modification factors are illustrated. Results14

indicate that, unlike equivalent isotropic plates, framed buildings primarily exhibit shear behavior15

and a semi-flexible response. Building deformed shapes indicate that angular/shear distortions16

(considering bay slope and local tilt) are more appropriate for quantifying framed building distor-17

tions than deflection ratios. A relative stiffness parameter is suggested to relate maximum angular18

distortions to greenfield settlement slope. Moreover, the efficiency of available relative stiffness19

parameters for the deflection ratio modification factors is confirmed. Limitations of the equivalent20

plate approach and practical implications of the results for framed buildings are discussed.21
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INTRODUCTION22

Tunnels are constructed beneath congested urban areas to satisfy needs for new infrastructure.23

Associated with these underground construction activities is the requirement to evaluate the poten-24

tial for damage to existing buildings that are subjected to tunneling-induced ground deformations.25

The response of buildings to tunneling has been investigated extensively. While several studies26

have indicated the importance of considering realistic (framed) building characteristics (Boone,27

1996; Boldini et al., 2018; Fu et al., 2018; Franza and DeJong, 2019; Son, 2015), equivalent beam28

or plate models are still generally adopted (Franzius et al., 2006; Pickhaver et al., 2010;Maleki et al.,29

2011; Namazi and Mohamad, 2013; Farrell et al., 2014; Bilotta et al., 2017; Franza and Marshall,30

2018). This simplification involves uncertainties that have not yet been sufficiently investigated for31

framed buildings. When estimating the total structure stiffness, most researchers have adopted a32

pure bending stiffness (Franzius et al., 2006; Goh and Mair, 2014; Haji et al., 2018) despite the33

evidence that shear flexibility can have an important role (Potts and Addenbrooke, 1997; Finno34

et al., 2005). Also, Franza et al. (2020) highlighted that bending and shear deformation modes35

of equivalent solids have not always been well distinguished because of the focus on the structure36

settlement profile. Finally, the local deformations of infill walls in frames is potentially not well37

described by equivalent beams or plates (Goh and Mair, 2014; Boldini et al., 2018).38

The tunnel-framed building interaction problem has frequently been studied using numerical39

modelingmethods. Using the finite elementmethod, Goh andMair (2014) investigated the response40

of a framed structure on either continuous or individual footings to tunnel excavation, focusing on41

the influence of the frame action on building deflections. Son (2015) considered the distortion42

and cracking of two different framed structures subjected to tunneling in sandy ground, in which43

tunneling-related parameters and ground condition were varied. Boldini et al. (2018) conducted44

a parametric study of the response of reinforced concrete framed structures to tunneling using the45

finite element method and found that framed structures always display hogging zones at the ends46

of the foundation due to the non-uniform contract pressure at the soil-foundation interface.47

There is a lack of experimental evidence to substantiate many of the findings reported by48
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the above numerical analyses. The aim of this paper is to investigate, through reduced-scale49

centrifuge tests, how a framed building responds to tunneling-induced ground movements in terms50

of foundation and superstructure displacements. The paper includes results from 24 plane-strain51

geotechnical centrifuge tests designed to model tunneling induced ground displacements in dry52

sand and its effect on multi-story framed buildings with different characteristics and locations.53

Soil and building displacements were measured and, subsequently, used to relate bay and panel54

distortions to greenfield settlements. Limitations associated with the simplification of frames as55

equivalent isotropic plates are also illustrated.56

BACKGROUND57

Risk assessment58

Excavation-induced ground movements can result in building displacements associated with59

both shear and bending deformations, as well as tilt (illustrated in Figure 1). In practice, structure60

deformations are generally estimated using a staged procedure (Mair et al., 1996): in the first61

(conservative) stage, greenfield movements are imposed on the building; if this results in an62

unacceptable risk level, then a second stage is conducted in which soil-structure interaction analyses63

are performed. To link building deformations with damage, the critical strain method is generally64

adopted (Boscardin and Cording, 1989); alternatively, thresholds from Son and Cording (2005)may65

be used. This associates the maximum tensile strain (εmax) within either bays or panels (defined in66

Figure 2), or the sagging/hogging portions of a building (see Figure 1) to a category of damage, as67

summarized in Table 1. Tensile strains are obtained using Equation (1) or (2) (Mair et al., 1996),68

based on a Mohr’s circle of strain for a plane-stress or plane-strain condition, respectively, where69

εxx is longitudinal strain due to axial and bending deformations associated with curvature χ, εxz is70

diagonal strain due to shear deformations associated with shear strain γ, and ν is Poisson’s ratio.71

εmax =
εxx (1 − ν)

2
+

√
1
4
ε2

xx (1 + ν)2 + ε2
xz (1)72

εmax =
εxx

2
+

√
1
4
ε2

xx + ε
2
xz (2)73
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TABLE 1. Critical tensile strain and categories of damage (Boscardin and Cording, 1989).
Category Level Limiting tensile
of damage of damage strain (%)

0 Negligible 0-0.05
1 Very slight 0.05-0.075
2 Slight 0.075-0.15

3 to 4 Moderate to severe 0.15-0.3
4 to 5 Severe to very severe >0.3

Traditionally, longitudinal and diagonal strains are evaluated from the vertical and horizontal74

building displacements at the ground surface level (i.e. the bottom of the structure, see Fig-75

ure 1), from which horizontal strains are inferred. Following this, sagging and hogging deflection76

ratios DRsag/hog can be inferred from the maximum deflections ∆sag/hog and lengths of the sag-77

ging/hogging zones Bsag/hog (Mair et al., 1996); or angular distortion β of each bay can be obtained78

from the total building rotationω′ and the slope S of the settlement profile (Boscardin and Cording,79

1989). Note in Figure 1 the difference between the building total tilt ω′ and the local tilt w, which80

is the cross-sectional rotation.81
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Fig. 1. Distortions of a building due to settlements and illustration of deformation parameters.

Deflection ratios, equivalent stiffness, and relative stiffness parameters82

To characterize the effects of building stiffness on the soil-structure interaction, Potts and83

Addenbrooke (1997) introduced the deflection ratio modification factors MDR,sag and MDR,hog,84
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defined as:85

MDR,sag/hog =
DRsag/hog,bld

DRsag/hog,g f
(3)86

where DRsag/hog,bld and DRsag/hog,g f are, respectively, the deflection ratios of the building settle-87

ment profile and the greenfield settlement trough.88

These modification factors have been related to relative soil-structure stiffness in a variety of89

formats (e.g. Potts and Addenbrooke (1997); Franzius et al. (2006)); in particular, Mair (2013)90

proposed the relative bending stiffness factors ρsag/hog as:91

ρsag/hog =
EI

EsB3
sag/hog,g f L

=
EI∗

EsB3
sag/hog,g f

(4)92

where EI (kNm2) is the bending stiffness of the building, EI∗ (kNm2/m) is EI per running meter93

of the building, Es is the representative Young’s modulus of the soil, Bsag/hog,g f is the length of94

building in the sagging/hogging zones defined by the greenfield settlement inflection point, and L95

is the length of the building in the longitudinal direction of the tunnel. In Equation (4), EI∗ is96

used to indicate the total building stiffness (e.g. Goh and Mair (2014); Haji et al. (2018)) without97

distinguishing between bending and shear contributions.98

To better represent the stiffness effects, Pickhaver et al. (2010) and Finno et al. (2005) suggested99

that buildings could be modelled with equivalent Timoshenko and laminated beams with both100

cross-sectional bending stiffness EI and shear stiffness GAs, whereas Losacco et al. (2016) used101

anisotropic equivalent solids. To isolate the contributions of shear and bending stiffness, Franza102

et al. (2020) modified the relative stiffness parameter η from Timoshenko beam theory as:103

ηsag/hog =
ρsag/hog

1 + aFsag/hog
=

EI∗

EsB3
sag/hog,g f (1 + aFsag/hog)

Fsag/hog =
EI

B2
sag/hog,g f GAs

(5)104

where aF = δshear/δbending is the ratio between shear (δshear) and bending (δbending) deflections,105

F is a dimensionless factor, and a = 12 was estimated from a simply supported beam condition.106

In general, F < 1/25 results in bending-dominated behavior, whereas F > 1 indicates shear-107

dominated behavior.108
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Angular distortion and shear strains109

Recent studies have linked measured or computed building displacements at varying elevations110

to the deformation parameters. For instance, for the tunnel-building interaction problem, Franza111

et al. (2020) suggested the Direct Strain Based Approach in which χ and γ estimated from bay112

displacements are input into Equations (1) and (2) to directly evaluate εmax , with no need to partition113

the building into sagging and hogging zones.114

Several approaches are available to evaluate deformation parameters from building displace-115

ments. Son and Cording (2005) directly estimated the angular distortion β using the top and bottom116

corner displacements of each bay (i.e. from the local cross-sectional rotations w) by subtracting117

the tilt w from the slope S, as described by:118

β = S − w =
Uz,D −Uz,C

bbay
−

Ux,A −Ux,C

H
(6)119

where for Ui, j , i = x; z is the displacement direction, and j = A; B; C; D is the location of the bay120

corner; as shown in Figure 2(a), C and D are the two lower corners of the base whereas A and B121

are the upper corners of an n-story framed building; H is the total height of the building; and bbay122

is the bay width.123

To isolate tilt, bending displacements, and shear displacements, Cook (1994) also suggested to124

use the top and bottom corner displacements of each bay. This approach was used on centrifuge125

test data by Ritter et al. (2020) and Franza et al. (2020) to evaluate bay curvature χ and shear strain126

γ from bending and shear displacements of bays (see Figure 1). In particular, Ritter et al. (2020)127

derived Equation (7) for the calculation of average shear distortion γ within the considered bay.128

Importantly, Ritter et al. (2020) highlighted that β ≈ γ for the methods of Son and Cording (2005)129

and Cook (1994) (e.g. they would match for a Timoshenko beam).130

γ =
Uz,D −Uz,C

bbay
−

3Ux,A − 3Ux,C −
(
Ux,B −Ux,D

)
2H

(7)131

Finally, several studies have distinguished between the shear deformationswithin a bay (averaged132

along the full-height of the building, as in Son and Cording (2005) and Cook (1994)), and the panel133

distortions (Boone, 1996; Elkayam and Klar, 2019). For example, for evaluating the distortions of134
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Fig. 2. (a) and (b) bay distortion modes; (c) parameter definition.

panels, Elkayam and Klar (2019) estimated axial and diagonal strains using the displacements at135

the four corners of a panel. On the other hand, for framed buildings with infill walls, to account for136

the beam/slab to column/wall connections, Boone (1996) suggested that the shear strain γ could137

be estimated directly from the maximum slope of the beam/slab with respect to the bay tilt w. As138

illustrated in Figure 2, beams/slabs within the superstructure may undergo either a uniform shear139

strain (γ1 in Figure 2(a)) or a varying profile of shear strain along the beam/slab with a maximum140

around the mid-point (γ1 in Figure 2(b)). Furthermore, because of ground pressures, the beam/slab141

shear strains at the foundation level (γ0) can differ from those within the superstructure (γ1).142

Importantly, these approaches for estimating average bay (Son and Cording, 2005; Cook, 1994)143

and local panel (Boone, 1996; Elkayam and Klar, 2019) shear deformations are comparable in144

terms of tensile strain εmax and, thus, categories of damage in Table 1. For the considered framed145

buildings on raft foundations, the high axial stiffness of horizontal elements (slabs) results in146

εxx ≈ 0. Consequently, Equation (2) simplifies to εmax = εxz = γ/2, which can be computed using147

(i) β from Son and Cording (2005), considering that β ≈ γ, (ii) γ from Cook (1994) and Elkayam148

and Klar (2019), or (iii) γ0 or γ1 from Boone (1996).149

EXPERIMENTAL DESIGN AND PROCEDURE150
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Experimental package and building models151

The 4m diameter geotechnical centrifuge at the University of Nottingham Centre for Geome-152

chanics (NCG) was used to perform the centrifuge tests. To model the tunneling process, the153

plane-strain experimental package developed by Zhou (2014) was used, including a strongbox, a154

transparent acrylic front wall to allow acquisition of digital images of the soil and framed building155

models, an aluminum back wall, and a flexible membrane model tunnel filled with water (consist-156

ing of a rigid aluminum cylinder with enlarged ends sealed within a latex rubber membrane and157

inserted into the front and back walls of the strongbox). A tunnel volume loss control system was158

used which included an actuator and water-filled hydraulic cylinder connected by pipes to the water159

within the model tunnel. The volume loss control system also included a solenoid valve to connect160

the tunnel, during centrifuge spin-up, to a constant-head standpipe. The standpipe maintained a161

water pressure within the model tunnel approximately equal to the overburden stress at the depth162

of the tunnel axis (which increases as the centrifuge spins up) and compensates for any volume163

change caused by the compression of air within the volume loss control system during centrifuge164

spin-up. Upon reaching the required g-level, the solenoid valve was configured to connect the165

tunnel to the actuator/hydraulic cylinder such that water could be extracted from the tunnel, thereby166

modeling the tunnel volume loss process (full details available in Zhou (2014)). A fine-grained167

silica sand known as Leighton Buzzard Fraction E was selected for the soil, with minimum (emin)168

and maximum (emax) void ratios of 0.65 and 1.01, respectively; all tests were performed with dry169

soil.170

To compare experimental results against comparable tests using equivalent plate model struc-171

tures (same sand and modeling procedure), the prototype scenario considered by Farrell (2010)172

and Farrell et al. (2014) was replicated. In Farrell (2010) and in this paper, the following pro-173

totype geometry is considered: a tunnel with a diameter Dt of 6.1m, a cover depth C of 8.0 m174

(resulting in a cover-to-diameter ratio C/D = 1.3), a building transverse width B of 30m, and a175

plane-strain tunnel-soil-structure system. The diameter of the model tunnel used by Farrell (2010)176

was Dt = 82mm, which differs from Dt = 90mm in the presented experiments. To match the177
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prototype scenario, the tests presented here were carried out at 68 g, instead of 75 g used by Farrell178

(2010) (refer to Taylor (1995) for centrifuge scaling laws).179

In this study, five framed building models were manufactured by machining and welding180

aluminum plates and angles. To achieve the plane-strain condition, the model structures extended181

the full width of the centrifuge strongbox in the direction of the tunnel axis, with continuous vertical182

walls and horizontal slabs (for both foundations and floors). For the connection between walls and183

slabs, 60% of the length along the longitudinal direction was welded (Xu et al., 2019). Considering184

that the Young’s modulus of aluminum and concrete have a similar order of magnitude and that185

the Young’s modulus is not affected by the centrifuge scaling laws (Taylor, 1995), the prototype186

cross-sectional stiffness of the model slabs and walls replicates reinforced concrete structures in187

the elastic range of behavior. The building models are 258 mm long in the tunnel longitudinal188

direction, leaving a 1mm gap at the front/back walls of the 260 mm wide centrifuge strongbox (the189

possible effect of this on the accuracy of measured displacement data will be discussed later). The190

thicknesses (t) of the building elements (foundation, elevated slabs, and walls) for a given building191

model are the same.192

TABLE 2. Framed building configurations.
Label No. of No. of Model scale (dimension in mm) Prototype (dimension in m)

stories bays t H B bbay t H B bbay
F5t5b6L 5 6 4.8 195.3 462.0 76.2 0.32 13.3 31.4 5.2
F2t5b6L 2 6 4.8 81.0 462.0 76.2 0.32 5.5 31.4 5.2
F2t3b6L 2 6 3.2 79.4 460.4 76.2 0.22 5.4 31.3 5.2
F2t3b3L 2 3 3.2 79.4 460.4 152.4 0.22 5.4 31.3 10.4
F2t3b3S 2 3 3.2 79.4 231.8 76.2 0.22 5.4 15.8 5.2
Note: hstory = 38.1mm at model scale and 2.6m at prototype for all frames

Figure 3 and Table 2 show the geometric parameters of the tested frame models. The model193

frames are labeled based on their structural characteristics as either FxtybzS or FxtybzL: x indicates194

the number of stories, y the thickness in mm of the structural elements, z the number of bays, and195

the suffix L and S are used for transversely long and short structures, respectively. As can be196

gleaned from Table 2, the number of stories, the thickness (t) of building elements, the building197

transverse width (B), the number of bays along the transverse width, and the width (bbay) of the198
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bays varies between building models to isolate the influence of individual structural characteristics199

on the interaction problem. The height per story (hstory) is 38.1mm for all building models, hence200

the building height H varies according to the number of stories. A thin layer of sand was bonded201

to the underside of the building foundations to replicate a rough soil-foundation interface. The202

GeoPIV digital image analysis technique (White et al., 2003) was used to measure soil and structure203

displacements. To enhance the performance of the image analysis of the model frames, the front204

faces of the models were pained matt black and small circular insets were machined within a grid205

on each face, which were subsequently painted white (see example in Figure S1). A Dalsa Genie206

Nano-M4020 monochrome camera, with a 12.4-megapixel sensor and 8mm Tamron lens, was used207

in the experiments. Furthermore, single wavelength light-emitting diodes (LEDs) were adopted for208

the lighting of the model to avoid issues related to chromatic aberration, which has been observed209

to cause a rainbow effect around the outer areas of images due to refraction of light within the210

acrylic wall of the strongbox (having a negative impact on the image analysis).211
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Fig. 3. Experimental layout and parameters.

Test plan and procedure212

A total of 24 centrifuge tests including 2 greenfield (GF) tests and 22 framed buildings tests213

were performed, as shown in Table 3 and Figure S2. For a given frame model, the relative density214

of the sand (Id), the eccentricity (e) of the building with respect to the tunnel, and the building215

self-weight (SW: standard self-weight; 2SW: doubled self-weight) were varied in the experiments.216
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The standard self-weight SW is due to the weight of the aluminum used for the model frames and217

was calculated for in-flight conditions considering the variation of gravity level along the vertical218

axis of the frames. The doubled self-weight 2SWwas achieved by adding simply supported (at wall219

locations) weights to the top of the frame; with this system, the additional weight did not increase220

the frame stiffness (see Figure S1).221

TABLE 3. Centrifuge testing plan.
Total no. tests Label Id (%) e/B Weight

2 Greenfield 30 & 90 - -

16 F2t3b3L, F2t3b6L, F2t5b6L, F5t5b6L 30 0 & 0.2 SW
90 0 SW& 2SW

6 F2t3b3S 30 0 & 0.5 SW
90 0 & 0.5 SW& 2SW

Figure S2 shows the framed building configurations and testing plan. For each of the long222

frames (label ending in "L"), a total of 4 tests were performed: 2 tests involving a central tunnel223

(e/B = 0) in loose and dense sands (Id = 30 and 90%) for a standard weight SW of the building, 1224

test with a central tunnel (e/B = 0) in dense sand (Id = 90%) and the 2SW frame, and 1 test for an225

eccentric tunnel case (e/B = 0.2) in loose sand (Id = 30%) and SW frame. For the short building226

model (F2t3b3S), 6 tests were performed; for the loose sand Id = 30%, normalized eccentricity227

e/B of 0 and 0.5 was tested for the standard building weight SW only, whereas for the dense sand228

Id = 90%, both normalized eccentricity (e/B = 0; 0.5) and building weight (SW and 2SW) were229

varied.230

The preparation of dense (Id = 90%) and loose (Id = 30%) sand models was carried out231

differently. The dense sand was poured into the container in-line with the model tunnel (consistent232

with Marshall et al. (2012); Farrell et al. (2014); Franza et al. (2019a)) before moving the pack-233

age onto the centrifuge cradle. The preparation of loose sand models was carried out with the234

experimental package on the centrifuge cradle (consistent with Franza and Marshall (2018), who235

showed good repeatability of results), achieving a relative density of Id = 30 ± 5%. This relatively236

quick preparation method for loose soil does imply a greater level of uncertainty relating to soil237

homogeneity (compared to sand pluviation), however the loose soil test results are mainly used to238

establish the contrasting effect of loose versus dense soil, hence this issue is not considered to be239
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significant. After pouring of the loose sample, the surface was leveled to ensure uniform contact at240

the soil-foundation interface. In all tunnel-frame interaction tests, the framed building model was241

carefully placed on the soil surface, the model was gradually spun to 68 g (at 5 g the model tunnel242

was connected to the standpipe), and two stabilization cycles were performed (going from 68 g to243

15 g and back to 68 g); the stabilization cycles are done to help achieve consistency between tests244

by reducing localized high-stress zones (‘hung-up’ particles), thereby achieving more uniformly245

stressed soil profiles. During the centrifuge spin-up, the stress imbalance between the pressures246

within the model tunnel and the surrounding soil, as well as the increase of the self-weight of the247

soil and the building, inevitably result in some non-uniformity of stress profiles around the tunnel248

and an increase of the soil density, however, the effects of these issues have been shown to be249

minimal (Zhou, 2014; Ritter et al., 2017). After stabilization cycles, tunnel volume loss Vl,t was250

simulated by extracting water from the model tunnel in increments up to a maximum Vl,t of 10%.251

At each Vl,t increment, digital images were taken, including both the soil and, when applicable, the252

model frame structure.253

EVALUATION OF BUILDING STIFFNESS254

To evaluate the total stiffness of the long frame models while distinguishing between bending255

and shear contributions, multiple load-deflection (P − δ) tests were performed at 1 g with varying256

constraint conditions, following the approach of Son and Cording (2007). The frame stiffness was257

evaluated at 1 g considering that the model building response (i.e. its stiffness) is not dependent258

on the centrifuge g-level given the assumption that building elements and node connections remain259

within the linear elastic range, which was confirmed for this study by checking that 1 g loading test260

results agreed for tests done both before and after centrifuge tests. Digital image analysis was used261

to measure the vertical and horizontal displacements of all wall-slab corners. In particular, simply262

supported 3-point and 4-point loading tests were carried out with varying spacings between the263

supports (see Figure 4(a)-(b)). A cantilever loading test was also carried out on model building264

F2t3b6L with one fixed-end and the free-end subjected to a concentrated load (see Figure 4(c)).265

The values of experimental bending (EI∗exp) and shear (GA∗s,exp) stiffness of the framed building266
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models were inferred from the load-deflection tests using Timoshenko beam theory (see formulas267

in Figure 4). Results are summarized in Table S1, in which tests 1 and 2 refer to 3-point loading268

tests with a free span length of B1 and B2, respectively, test 3 is a 4-point loading test with a free269

span length of B1, and test 4 is the cantilever test with a free deflection length of B3.270

The values of experimental bending and shear stiffness (EI∗exp and GA∗s,exp) were evaluated271

for the long frames F2t3b6L, F2t5b6L and F5t5b6L by combining results from two of the load-272

deflection tests (i.e. two unknowns in two equations). Interestingly, the average experimental273

building bending stiffness, EI∗exp,avg, was found to be about one-third of the theoretical bending274

stiffness obtained using parallel axis theory, EI∗parallel . Only a 4-point load-deflection test was275

performed for the long frame F2t3b3L because, for this frame, there is no central column. To276

calculate the shear stiffness of this frame from the single test, it was assumed that EI∗exp of F2t3b3L277

was equal to the average EI∗exp of F2t3b6L, which is reasonable given the identical element thickness278

and transverse width. No load-deflection tests were performed for the short frame; it was assumed279

that the values of EI∗exp and GA∗s,exp for the short frame matched those of the long frame F2t3b6L280

because of the identical element thickness and bay width.281
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Fig. 4. Configuration of experimental tests to evaluate building stiffness.

Finally, Table S1 also reports the value of δshear/δbending in the 3-point tests with a free span282
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length of B1. Interestingly, shear deflection dominates the total deformation for all the frames,283

with a shear deflection ranging between about 8 and 50 times the bending deflection. This is284

also confirmed by the measured deformed shape of frame F2t3b6L in Figure 5. The axial strains285

within the top and bottom slabs were minimal (indicating minimal global bending deformation of286

the structure), whereas differential settlements between adjacent bays occurred due to the shear287

deformation of panels.288

Furthermore, as displayed by Figure 5(a), the deflection in a shear-dominated building is the289

result of the changing of the sign of the shear deformations, rather than the absolute value of290

shear distortions. Figure 5(b) also illustrates that (neglecting the presence of the fixed bay), an291

approximately straight settlement profile (associated with DR ≈ 0 and a given total tilt ω′) may be292

associated with large shear deformations if local tilt w is prevented (e.g. β = S when w = 0). On293

the other hand, for a frame that is able to undergo tilt w, a straight settlement profile can indicate294

rigid body motion with no deformations (e.g. β = 0 when S = w).295

Fig. 5. Deformed shape of F2t3b6L in the load-deflection tests (scale factor: 50).

To compare these frame results against the centrifuge data for plates from Farrell et al. (2014)296

(labelled as ‘STR’), "pure" equivalent bending stiffness, EI∗EB,eq, of buildingmodels were computed297

assuming rigid behavior in shear (i.e. GAs is infinite and pure bending deformations occur, as298

for an Euler-Bernoulli beam). The thicknesses of the corresponding equivalent plates teq and299

log10

(
EI∗EB,eq

)
are reported in Table 4 in prototype scale; the latter is provided because tunnel-300

structure interaction varies with relative stiffness parameters according to a semi-log scale (Potts301

and Addenbrooke, 1997; Mair, 2013).302

From Table 4, it can be seen that the stiff frame F5t5b6L and the equivalent plate STR4 have303
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TABLE 4. Equivalent EI of structures and pressure beneath the foundations (prototype scale).
Structure EI∗EB,eq teq log10

(
EI∗EB,eq

)
EI∗exp,avg GA∗s,exp,avg Pressure (kPa)

(GNm) (m) (Nm) (GNm) (MNm) SW / 2SW
F2t3b3L 1.48 0.63 9.17 - 14 19.4 / 38.8
F2t3b6L 3.24 0.82 9.51 60 42 22.8 / 45.6
F2t5b6L 9.31 1.17 9.97 88 130 34.8 / 69.6
F5t5b6L 21.11 1.54 10.32 970 270 73.5 / 147
STR2 0.32 0.38 8.50 - - 9.9 /
STR3 2.46 0.75 9.40 - - 19.8 /
STR4 19.69 1.50 10.30 - - 39.7 /
Note: Pressure for SW and 2SW of F2t3b3S are 23.9 and 47.8 kPa, respectively

nearly identical values of EI∗EB,eq; however, the average pressure beneath model F5t5b6L is almost304

twice that of STR4. Frame F2t3b6L has slightly larger values of EI∗EB,eq and pressure than plate305

STR3. The rather flexible plate STR2 is less stiff than the frame F2t3b3L. Finally, note that the306

variation of log10

(
EI∗EB,eq

)
values for all frames is rather limited. The context of these results307

will be clearer in later sections of the paper where results from tunnel-building interaction tests are308

compared.309

CENTRIFUGE RESULTS310

Framed building foundation displacements and comparison with equivalent plates311

The settlements, Uz, of the foundations of the model framed buildings and equivalent plates at312

a tunnel volume loss Vl,t = 1% are presented in Figure 6 along with the greenfield settlements at313

the surface. The greenfield (GF) settlements between the two data sets (GF-Xu is the new data in314

Figure 6(a); GF-Farrell in Figure 6(b) is from Farrell (2010)) are sufficiently consistent to allow315

comparison of the tunnel-structure interaction outcomes. It was found that (not reported here),316

after about Vl,t = 3%, differences between the greenfield data became greater, hence comparisons317

are not made outside of this range of Vl,t .318

In terms of minimum and maximum structure settlements, frames and plates follow the same319

principle: 1) the lower the total stiffness (depending on teq) of the structure, the greater themaximum320

settlement; and 2) the stiffer the structure, the greater the minimum settlement. However, the self-321

weight (discussed later) also has a role. Both the frames and plates responded rigidly to tunneling322

in the horizontal direction, resulting in very small differential horizontal displacements in the frame323
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Fig. 6. Vertical displacement of model frames and equivalent plates for e/B = 0 and Vl,t = 1%.

foundation slabs and plates, as reported later.324

Figure 6 indicates that all frames have both sagging and hogging regions, whereas the plates325

mostly undergo a sagging deformation mode, regardless of their stiffness and transverse width.326

On the other hand, for the structures with similar equivalent bending stiffness, EI∗EB,eq (refer to327

Table 4), framed buildings tend to have a more flexible response to tunneling than equivalent plates328

(compare frame F5t5b6L against plate STR-4, and frame F2t3b6L against plate STR-3). This point329

can also be demonstrated by comparing frame F2t3b3L and plate STR-2, in which the frame not330

only has a large deflection ratio in the sagging zone, but also displays significant hogging zones.331

This mechanism is likely due to the role of the shear flexibility being negligible (1/GAs ≈ 0) for the332

equivalent isotropic plates. Similar phenomena for frames have also been observed in numerical333

studies (e.g. Boldini et al. (2018)), whereas Franza et al. (2019b) discussed how equivalent Euler-334

Bernoulli beams and structures that are rigid in shear tend to undergo singular sagging or hogging335

settlement profiles for central and eccentric tunnels, respectively.336

These observations indicate that, although frames F5t5b6L and F2t3b6L have similar values337

of EIEB,eq as plates STR-4 and STR-3, respectively, the structural characteristics (i.e. those338

producing a shear-dominated or a bending-dominated deformation behavior) have a significant339

effect on the resulting soil-structure interactions. The presented data therefore confirms that the340

tunneling-induced settlement profile depends on the structure configuration; furthermore, the use341
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of equivalent pure bending EIEB,eq representations of building behavior may lead to significant342

errors for some tunnel-building interaction cases.343

Effect of building weight344

To evaluate the impact of structure weight, the vertical (Uz) and horizontal (Ux) displacements345

of the foundations of the model framed buildings and soil beneath the foundations are presented346

in Figure 7 at Vl,t = 2% for a selection of centrifuge tests, together with greenfield test results.347

Results are compared using tunnel volume lossVl,t rather than soil volume lossVl,s (calculated as the348

integration of surface settlements) becauseVl,t is a more generally used parameter that relates to the349

performance of tunneling operations. In Figure 7, markers are used for foundation displacements,350

and lines are used for surface soil displacements in greenfield and framed building tests. The data351

can be used to distinguish a gap forming between the soil and foundation in some tests; to better352

illustrate this feature, the maximum gap height is plotted against tunnel volume lossVl,t in Figure S3353

of the Supplemental Data. In some cases, the data indicate that the foundations settled slightly354

more than the soil beneath them at the edges of the building models. This inconsistency occurs355

because the front of the frames was not immediately against the inner face of the acrylic wall (also356

observed in Farrell (2010) and Ritter et al. (2017)). As a result, a negative gap height in Figure S3357

relates to measurement errors.358

First, settlement profiles in Figure 7 are considered. The dense sand data (dark color) in359

Figure 7 can be used to demonstrate the effect of building weight: an increase of weight increases360

the distortions of centrally located structures (see Figure 7(a), (c)-(f)), and decreases the size of the361

gap formed between the soil and foundation, whereas the effect of weight on settlement at the edges362

of the buildings is minor. Note that, at Vl,t = 2%, a gap was not observed beneath the centrally363

located structures with double weight 2SW, except for frame F2t5b6L, whereas only frame F2t3b3L364

did not show a gap for standard weight SW. Importantly, for the short frame F2t3b3S, the influence365

of building weight was lower for the eccentric case e/B = 0.5 than for the central case e/B = 0.366

An interesting comparison can also be made between tests with frame F2t5b6L with 2SW and367

frame F5t5b6L with SW because they have a similar pressure acting beneath the foundations, but368
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Fig. 7. Displacement of model frame foundations and underlying soil at Vl,t = 2%.

different stiffness (compare dark circles in Figure 7(e) with dark triangles in Figure 7(f)). As369

expected, a larger deflection ratio and smaller gap (quantified in Figure S3(a)) are observed in the370

former test since the frame has a smaller stiffness.371

In Figure 7(g)-(l), all frames with e/B = 0 experienced negligible horizontal displacements372
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(except for the short frame in Figure 7(g) on loose soil) and the restriction provided by the foundation373

roughness and building weight acted to reduce horizontal soil displacements. When the building374

weight was doubled (i.e. 2SW compared to SW), the restraint provided by the foundations to375

the underlying soil was increased and horizontal soil displacements decreased. In the tests where376

nearly no gap was observed, surface horizontal soil displacements were found to be very small or377

negligible (e.g. test 2SW in Figure 7(j)-(l)).378

Effect of soil relative density379

First, the effect of soil relative density is discussed using the data in Figure 7 for a constant380

tunnel volume loss Vl,t = 2%. Because of the different volumetric response of the dense and loose381

sands to tunneling induced soil shear strains, the greenfield surface settlements in the loose sand382

are much higher than in the dense sand (also refer to the tunnel versus soil volume loss data in383

Figure 9). This caused the frames to experience larger average and differential settlements in the384

loose sand tests compared to the dense sand. Relative density also affected the size of gap that385

formed at the soil-foundation interface; for example see Figure S3 for Vl,t = 2%, where larger gaps386

formed for Id = 30% because of the higher levels of ground movement near the surface.387

To evaluate the soil-structure interaction for settlement troughs of equal volume, results are also388

compared for a given soil volume loss Vl,s = 1.6%. First, trough characteristics of the greenfield389

settlements for Id = 30 and 90% are listed in Table 5, which were obtained by fitting modified390

Gaussian curves (Vorster et al., 2005) to the settlement data. The settlement trough for loose soil391

is slightly wider (a larger i and K) than in dense sand, although the maximum settlement values392

are close. The wider greenfield settlement curve for Id = 30% should result in lower differential393

settlements and distortion levels of a building than the dense soil Id = 90%. The settlements394

of central building foundations (e/B = 0) with standard weight (SW) are presented in Figure 8395

for Vl,s = 1.6% (calculated using soil settlements beneath the building foundations). Except396

for the most flexible frame F2t3b3L, a greater maximum settlement is observed for the building397

foundations in loose soil. Differential settlements along corresponding building foundations are398

qualitatively similar for the given magnitude of soil volume losses; a more direct assessment of399
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building deformations is given later by considering angular distortions of the buildings.400

TABLE 5. Greenfield settlement trough characteristics (prototype scale).
Id (%) Vl,t (%) Vl,s (%) Uz,max (mm) i (m) K
30 1 1.6 31.68 3.79 0.344
90 2.5 1.6 32.78 3.32 0.302
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Fig. 8. Displacements of selected model foundations (e/B = 0, SW) at identical Vl,s = 1.6%: (a)
Id = 90% and (b) Id = 30%.

Effect of relative tunnel-building location401

The data in Figure 7(a) and (b) can be compared to study the effect of relative tunnel-building402

location. Results indicate that the eccentric short frames in (b) have a smaller relative deflection403

∆ than the central frames in (a) because of building tilt w for the eccentric cases. This effect of404

e/B on relative deflections was not as significant for the long frames (not presented here), partly405

because the maximum eccentricity e/B achievable in the centrifuge tests for the long frames was406

0.2, compared to 0.5 for the short frames.407

At the soil-structure interface, the increase of building eccentricity e/B reduced the size of408

the gap formed beneath the foundation (see also Figure S3(b)), in agreement with the trends409

highlighted by Franza andDeJong (2019). The short frameswith normalized eccentricity e/B = 0.5410

show horizontal movements that are approximately equal to the maximum greenfield horizontal411

displacement (see Figure 7(h)), whereas for the eccentric long frames with e/B = 0.2 (not presented412

here), horizontal movements of the foundations were minimal. The horizontal displacements of413

the soil beneath the short frame with e/B = 0.5 are generally greater than greenfield ground414
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displacements; this is due to the compliance of the soil-foundation interface (see Figure 7(h)).415

Soil volume losses416

It could be argued that the variation of soil volume loss Vl,s at the surface (given by the417

integration of the surface settlements) with building self-weight may impact the structure distortion.418

To investigate this aspect, soil volume lossesVl,s against tunnel volume lossVl,t is shown in Figure 9.419

Interestingly, there is only a minor increase in the value of Vl,s when the self-weight of the frame420

is doubled for central tunnels in dense sand, while an increase of normalized eccentricity e/B for421

loose sand slightly reduced Vl,s. Soil relative density Id clearly dominated the Vl,s −Vl,t relationship422

for all considered structures, which impacted the overall structure settlement level.423
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Fig. 9. Variation of soil volume loss with tunnel volume loss.

Deformation parameters and modification factor approach424

Deflection ratios, DR, of the framed buildings in selected tests are presented in Figure 10(a)425

and (b) according to normalized eccentricity for tunnel volume loss up to 3%. A complete set426

of results of building deformation parameters (DR, MDR and β) are reported in Figure S4. To427

compute the deflection ratios of the buildings, both the length of sagging and hogging zones as well428

as the relative deflections were determined from the frame settlement profiles (considering points429

at raft-column intersections and the centre of rafts between two columns). On the other hand,430

greenfield values of DR and lengths of sagging/hogging zones were interpolated using modified431

Gaussian curves.432
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Fig. 10. Building deflection ratios against tunnel volume loss in selected tests.

Results of DR in Figure 10 show that long frames underwent both sagging and hogging433

deformations, whereas short frames mostly displayed either a sagging or hogging deformation434

mode when e/B = 0 or 0.5, respectively. For the centrally located long frames, sagging DR values435

tend to be larger in magnitude than hogging values. For all tests with long framed buildings, a436

stiffer frame tends to reduce DR in both sagging and hogging. Results in Figure 10 also show that437

the increase of building weight (compare solid and hollow markers) tends to increase DR values,438

especially in sagging. In addition, the decrease of soil relative density (from 90% to 30%; compare439

results in dark and light colors) increases DR values for a given Vl,t ; this effect is significant for the440

very flexible frame F2t3b3L (displayed in Figure S4(b)-(c)) because the frame tends to conform441

to the tunneling-induced ground movements. Finally, results in Figure 10(a)-(b) indicate that the442

increase of building eccentricity has a reducing effect on DR values for most frames.443

Deflection ratio modification factors, MDR, of the framed buildings in selected tests are pre-444

sented in Figure 11 according to normalized eccentricity for tunnel volume loss up to 3%. Results445

of the deflection ratio modification factors MDR in Figure S4 show that most MDR trends are char-446

acterized by a steady decrease with Vl,t over the investigated range, and a greater rate of decrease is447

obtained for the loose soil. The decrease of MDR with Vl,t is due to both soil stiffness degradation448

that occurs with tunnel volume loss (Farrell et al., 2014) and, when present, gap formation (quan-449

tified in Figure S3) (Deck and Singh, 2012; Franza and DeJong, 2019). Furthermore, increased450

building stiffness tends to decrease MDR. In the sagging deformation mode, the increase of soil451
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Fig. 11. Building modification factors of deflection ratios against tunnel volume loss in selected
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relative density (from 30% to 90%), building weight, and normalized eccentricity tend to increase,452

increase, and decrease, respectively, the MDR,sag values for a givenVl,t . The values of MDR,hog tend453

to be larger than MDR,sag for all tests (see Figure S4) due to 1) the effect of gap formation in the454

sagging zone, and 2) embedment at the building corners in the hogging zones. Generally, MDR,hog
455

values in the dense soil tests tend to be larger than in the loose soil tests. Interestingly, the increase456

of frame eccentricity tends to increase MDR,hog, likely because a larger portion of the building was457

subjected to the hogging deformation mode in these cases.458
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Fig. 12. Building deflection ratios and angular distortions against tunnel/soil volume loss in selected
tests (Id =90% and SW).
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The maximum values of the building angular distortion, β, within bays in selected tests are459

reported against Vl,t in Figure 12(b), along with the maximum magnitude of the building deflection460

ratios in sagging, DRsag,bld , in Figure 12(a). It is found that the effects of building weight, soil461

relative density, and building eccentricity on β mostly agree (qualitatively) with the trends relating462

to DR (see figures S4 and 10).463

Despite this agreement, building angular distortion is not only related to building stiffness, but464

also to the structural configuration. On one hand, for the long frames F2t3b6L, F2t5b6L, and465

F5t5b6L with the same bay and building widths, the increase of building stiffness (due to thicker466

elements or additional stories) decreased the angular distortion (see Figure 12(b)). On the other467

hand, shorter bay length is observed to increase bay distortions; in Figure 12(b), the most flexible468

frame F2t3b3L (with a long bay length; consider stiffness values in Table 4) has β values lower469

than F2t3b6L (with similar characteristics but shorter bays), although F2t3b3L did undergo the470

largest DR values. Furthermore, Figure 12(a) also displays that the short frame F2t3b3S and the471

long frame F2t3b6L have similar sagging deflection ratios, however the angular distortion for the472

shorter frame is much smaller. These results indicate that the deflection ratios are not always as473

efficient as angular/shear distortions for quantifying framed building distortions.474

It is also of interest to analyze building angular distortion β for a given soil volume loss Vl,s. In475

Figure 12(c), the maximum β for tests with e/B = 0 and SW (see Figure 8) are plotted against Vl,s476

(full data set is in Figure S5). Interestingly, for a given Vl,s, Figure 12(c) shows that there is little477

difference in building deformation for loose and dense sand.478

Finally, the role of structure tilt on the frame deformations is discussed. The short frame F2t3b3S479

with e/B = 0.5 can be regarded as half of the long frame F2t3b6L with e/B = 0. Interestingly, the480

eccentric short frame F2t3b3S has a much smaller angular distortion than the central long frame481

F2t3b6L in Figure 12(b), despite the fact that they have similar values of DRhog and MDR,hog (see482

Figure 10 and Figure 11(c)-(d)). As will be displayed later by plotting the frame deformed shapes,483

this behavior is due to the fact that the eccentric (short) frame can tilt to accommodate ground484

settlements, whereas tilt is prevented by the symmetry condition for the central structure. These485
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outcomes confirm that DR alone does not always provide an accurate description of distortion for486

a shear-dominated building.487

Level of damage based on strain theory488

Figure 13 shows frame deformed shapes and ground movements for 14 of the centrifuge tests at489

Vl,t=2%; for F5t5b6L only the results of the first and second stories are presented. To quantify the490

deformation levels of bays and panels across the frames, indicators (markers) are used which are491

associated with a range of shear strains γ and a category of damage; the category was computed492

using a Mohr’s circle of strain under plane-strain conditions (i.e. εmax = εxz for framed buildings493

on raft foundations). In Figure 13, the left and right columns relate to dense and loose sands,494

respectively. Indicators plotted within bays are indicative of γ values (calculated based on the495

displacements at the corners of bays), whereas indicators of γ0 and γ1 (computed from slab slopes)496

are placed along the foundations or floor slabs. A color schemewas adopted to denote low (category497

of 0-1); medium (category 2), and high (category 3+) levels of deformation (see Table 1). For498

reference, the values of γ presented in Figure 13 are also listed in Table S2 of the Supplemental499

Data.500

First, the deformed shapes of the short frame F2t3b3S tests are considered to evaluate the effects501

of normalized eccentricity e/B and soil relative density Id . Figure 13(a) and (b) show the results502

for frame F2t3b3S with e/B = 0.5. Although the frame tested in loose sand was subjected to larger503

settlements and global tilt, the same level of deformation is observed for both soil densities: low504

levels in all bays and medium levels at the foundation level (due to the ground pressure). When505

the same short frame was centrally located with e/B = 0 (Figure 13(c) and (d)), the external bays506

underwent larger distortions (medium level for all slabs according to Boone (1996)) than for the507

eccentric configuration e/B = 0.5 in Figure 13(a) and (b). For e/B = 0, the looser soil led to508

slightly increased values of γ related to panel deformations.509

The impact of the transverse width B is now considered. First, the short structure F2t3b3S510

can be seen as a portion (sub-structure) of the long frame F2t3b6L. Comparing Figure 13(c) to (g)511

and Figure 13(d) to (h) shows that increasing building transverse width (from spanning only the512
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Fig. 13. Post-tunneling frame deformed shapes and level of damage (scale factor: 100); left column
is dense sand tests, right column is loose sand tests.

sagging zone to spanning both sagging and hogging zones) significantly increases the maximum513

angular distortion; from low to medium levels based on Cook (1994) and Elkayam and Klar (2019),514

and from medium to high levels according to Boone (1996). Second, the short frame F2t3b3S in515

Figure 13(a)-(b) can be regarded as the left half of the long frame F2t3b6L in Figure 13(g)-(h).516

Results show that the short frame F2t3b3S with e/B = 0.5 underwent significantly lower levels of517
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distortion (low level for most panels) than the long frame F2t3b6L with e/B = 0 due to the effect518

of tilt for the eccentric configuration. These experimental results clearly display that the decrease519

of the transverse width B has a positive effect on reducing framed building distortions (for both520

central and eccentric tunneling scenarios).521

The effect of the width of the bay can be illustrated by comparing Figure 13(e)-(h). The results522

show that the external bays of the frame F2t3b3L (with larger bay width) experienced high levels523

of distortion in Figure 13(f) based on all approaches; this frame conformed closely to the ground524

movements. Frame distortion in Figure 13(e) tends to be similar to that in Figure 13(g), possibly525

due to the effect of averaging the β values.526

Interestingly, the decrease of soil relative density from Id = 90% to 30% tends to increase the527

building distortion at a given Vl,t because of higher values of Vl,s (caused by greater levels of soil528

contraction for Id = 30%, refer to Figure 9), despite the increase of relative structure-soil stiffness.529

This can be seen in Figure 13(c-d), (e-f), (g-h), and (m-n); the stiffer the structure, the less the530

impact.531

It is of interest to evaluate the efficiency of DR in identifying the structures with the largest532

distortions. Figure 13(g), (h), (i), and (k) show that the maximum shear distortion of the central533

long frames was generally observed at the second and fifth bays (near where the maximum slope of534

the ground settlement trough occurs), whereas for the third and fourth bays, which were subjected535

to the largest relative deflections associated with DR, building distortions are relatively small. The536

underlying cause of these limitations related to the deflection ratio, as also pointed out by Finno537

et al. (2005), can be mechanically interpreted as follows. The experimental load-deflection tests538

illustrated that the structure deformations (i.e. their response to loadings) were shear-dominated.539

For Timoshenko beam theory, while bending-dominated structure settlement profiles naturally dis-540

play a relative deflection, in a shear-dominated structure the relative deflection (of sagging/hogging541

portions) is due to the change in the value of internal shear forces (e.g. change in sign of the shear542

due to a concentrated force). Because diagonal strains εxz = γ/2 are proportional to the absolute543

value of the shear forces rather than the changes in forces, DR is not as efficient as γ ≈ β to evaluate544
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distortions of framed buildings.545

Figure 13(g) and (i) show that the increase of building weight significantly increased the angular546

distortion for the third and fourth bays of the frame: from low to medium levels based on Cook547

(1994) and Elkayam and Klar (2019), and to a high level according to Boone (1996). At the same548

time, angular distortion is also observed to increase in the second and fifth bays according to Boone549

(1996); from medium to high. Furthermore, high levels of damage are observed for most parts of550

the foundation slab due to the redistribution of pressure along the soil-foundation interface.551

Consistent with the short frame F2t3b3S, Figure 13(h) and (j) illustrate that the increase of552

building eccentricity decreased maximum shear distortions: from high to medium levels of damage553

for elevated slabs.554

The increase of the thickness t of building elements, which increased both stiffness and weight,555

resulted in the decrease of the structure distortions despite the increment in pressure beneath the556

building, as shown by comparing Figure 13(k) against (i), as well as (j) against (l).557

Finally, to isolate the effects of building stiffness from changes in pressure, experimental results558

in Figure 13(k) and (m) can be compared since these two frames result in similar magnitudes of559

pressure beneath the building (refer to Table 4). As expected, results show that, for the given560

pressure, the increase of stiffness significantly reduced building distortions; from medium to low561

levels of damage for the second and fourth bays.562

Modification factor against relative soil-building stiffness563

Although deflection ratios DR may not be fully representative when estimating the shear564

deformations of long frames, they are still valuable for evaluating the efficiency of design charts565

and interaction models in predicting the effects of soil-structure interaction.566

Figure 14 displays the modification factors MDR,sag and MDR,hog at Vl,t = 1% and 2% against567

relative bending stiffness, ρsag/hog (Mair, 2013) and ηsag/hog (Franza et al., 2020), which were568

estimated using Equation (5) with EIexp and GAs,exp as well as the values of Bsag/hog,g f (i.e.569

based on greenfield displacements). Soil stiffness Es was estimated using the approach adopted by570

Farrell (2010), which consists of two steps: 1) a representative soil shear strain (considering stiffness571
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degradation due to tunnel volume loss) is assessed at a mid-point between the surface and the tunnel572

crown for each tunnel-building interaction test; 2) soil stiffness Es is estimated using triaxial test573

provided by Zhao (2008) (for the same sand used in these tests). Using this approach, for greenfield574

tests, at Vl,t = 1 − 2%, Es = 68 − 45MPa for Id = 90% and Es = 34 − 21MPa for Id = 30%.575

For the extreme cases with the heaviest frame F5t5b6L, again at Vl,t = 1 − 2%, Es = 93 − 60MPa576

for Id = 90%, and Es = 65 − 37MPa for Id = 30%. Data from all 22 tunnel-framed building577

interaction centrifuge tests presented in this paper are reported in Figure 14. Upper and lower578

envelopes suggested by Mair (2013) and Franza et al. (2020) are also included in Figure 14(a) and579

(b), respectively. In Figure 14(b), the envelopes for plane-strain conditions were selected.580

The results in Figure 14(a) show that all the framed building data points are outside the581

envelopes when ρsag/hog is estimated from the actual structure bending stiffness EI∗exp, which582

for the considered frames is about a third of the bending stiffness suggested by Franzius et al.583

(2006) obtained when using parallel axis theorem. The structure stiffness relative to the soil was584

overestimated, and thus values of MDR are significantly underestimated. This is because thismethod585

neglects the impact of the global shear flexibility of the frame, which dominates the interaction586

problem for framed structures (with no bearing infill walls).587
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Fig. 14. Modification factors of DR against relative stiffness (Vl,t =1 and 2%): (a) ρsag/hog (Mair,
2013), and (b) ηsag/hog (Franza et al., 2020).

Figure 14(b) shows that ηsag/hog provides a better description of the relative structure-soil588

stiffness for framed buildings, supporting the robustness of the analytical interaction solutions of589
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Franza et al. (2020). However, it is important to note that ηsag/hog = ρsag/hog is obtained from590

Equation (4) by assuming EI∗ = EI∗EB,eq = Et3
eq/12. This confirms the reliability of the framework591

provided by Mair (2013) relating the equivalent (pure) bending stiffness EIEB,eq to the deflection592

ratio modification factor through ρsag/hog. Therefore, when estimating building stiffness, it is593

important to distinguish if the equivalent bending stiffness EIEB,eq is already decreased (to account594

for the shear flexibility) from the actual value of EI; for instance, EIEB,eq is obtained by using the595

column stiffness factor with the algebraic sum proposed by Goh and Mair (2014) rather than EI.596

Regarding trends shown in Figure 14, the values of MDR,hog (solidmarkers) tend to be larger than597

MDR,sag (hollowmarkers) for all frames. The largest measured values of MDR,sag are approximately598

1.0, whereas the more flexible frames give MDR,hog values greater than unity. This is possibly due599

to the effects of gap formation in the sagging zone (at Vl,t = 2%) and frame embedment at its edges600

(with the formation or increase of a hogging settlement profile in the outer regions of the building).601

To link angular distortion with relative soil-building stiffness, a logic similar to Son and Cording602

(2005) is followed by developing a modification factor chart to estimate β from the slope of the603

greenfield surface settlement profile and a relative stiffness parameter that relates to the structure604

shear stiffness. First, for each bay of a given frame, the building angular distortion β (estimated605

using Equation (6)) and average greenfield ground slope (GS = ∆Uz,g f ,max/bbay, where ∆Uz,g f ,max606

is the differential settlement of the portion of greenfield surface settlement trough corresponding607

to bbay) are calculated. Then, the maximum experimental angular distortion among all bays βmax608

is normalized by the maximum greenfield slope corresponding to the building (GSmax) to obtain a609

modification factor of angular distortion, M β:610

M β =
βmax

GSmax
(8)611

For instance, M β = 1 for a fully flexible structure deforming purely in shear according to the612

greenfield settlement trough with local tilt ω = 0. The modification factor of angular distortion is613

then related to the relative soil-building shear stiffness, estimated as614

κ =
EsB
GA∗s

=
EsBL
GAs

(9)615
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where GA∗s is the building shear stiffness per meter run (i.e. GAs normalized by the building length616

L in the longitudinal direction of the tunnel).617

Figure 15 presents the relationship between M β and κ (in log scale) atVl,t = 1 and 2% (numbers618

beneath markers indicateVl,t). To highlight the effects of soil density and building transverse width,619

a color scheme was adopted to distinguish between soil density and the value of the ratio B/i,620

where i is the distance to the inflection point of the greenfield settlement trough. Data from central621

(e/B = 0) and eccentric (e/B > 0) structures are plotted in Figures 15(a) and (b), respectively.622

Several trends can be gleaned from Figure 15: M β tends to increase linearly with an increase of623

relative soil-building shear stiffness (which agrees with Son and Cording (2005)); a decrease in624

building width ratio B/i decreases M β; and an increase of building eccentricity e/B reduces M β
625

(because of the building tilt, which is in agreement with Figure 13). Finally, an increase of building626

weight also results in a higher M β (compare hollow to solid markers), partially because of greater627

ground deformations transmitted to the heavier buildings in cases where gap formation was less628

significant. Upper and lower envelopes for the modification factors of building angular distortions629

are also suggested in Figure 15.630
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Fig. 15. Modification factors of β against relative soil-building shear stiffness (numbers beneath
markers indicate Vl,t).

CONCLUSIONS631

A comprehensive study on the response of framed buildings on raft foundations to tunneling was632

presented, including data fromaunique set of centrifuge tests. The tunneling-induced displacements633
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of the framed buildings and the underlying soilwere analyzed, and the framed structure deformations634

were studied using deflection ratios, angular distortions, and strain-based damage categories. The635

following conclusions can be drawn from the work.636

• Comparison of settlement profiles demonstrated that the settlements of equivalent isotropic plate637

models (with a bending dominated deformation mode) do not always adequately match those638

from framed building models, missing important features mainly with respect to the shape of the639

foundation settlement.640

• Generally, for both loose and dense soil, a greater building weight and larger transverse width641

increase the tunneling-induced framed building distortions, whereas a larger building eccentricity642

(facilitating building tilt) and higher stiffness tend to reduce frame distortions.643

• For a given tunnel volume loss (representative of the performance of tunneling operations),644

the relative density of dry sands impacted the level of settlement of the ground surface and,645

consequently, the distortions of the frames. Loose sands have greater potential for building646

distortions than dense sands at a given tunnel volume loss. On the contrary, for a given soil volume647

loss at the ground surface, buildings experienced similar levels of settlement and distortion for648

varying sand densities, with loose sand tests giving slightly smaller distortions.649

• Experimental data of deflection ratio modification factors agreed with existing charts; in particu-650

lar, experimental results confirmed that the bending and shear stiffness of framed buildings may651

be directly estimated by modeling load-deflection tests.652

• A modification factor was suggested to link framed building angular distortion to relative soil-653

building shear stiffness, in which interesting linear trends were highlighted; upper and lower654

envelopes for preliminary damage assessment considering building eccentricity were suggested.655

• Several key aspects were highlighted from the work which have implications for engineering656

practice. First, the need to monitor/evaluate framed building displacements at multiple elevations657

to better estimate deformations and damage was confirmed; foundation level deformations may658

be greater than within the superstructure. Framed buildings on raft foundations will likely have659
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a shear dominated deformation mode. Framed structures centrally located above a tunnel will660

have the greatest potential for distortions compared to eccentric cases. When possible, to better661

estimate the distortions of frames, shear strains should be evaluated using the displacements of662

the corners of bays/panels rather than using a deflection ratio based evaluation.663

In this paper, the considered scenarios are limited to a tunnel with constant cover-to-diameter664

ratio constructed in dry sand beneath an elastic framed building with a raft foundation. Future665

work could investigate the effects of tunnel relative depth, water table, foundation type, foundation666

embedment, building skew, and nonlinear building behavior.667
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NOTATION675

SW self-weight of the building
2SW doubled self-weight of the building
bbay width of the bay
B building width transverse to the tun-

nel
B1,2,3 frame span length in the load-

deflection tests
Bsag/hog lengths of the sagging/hogging

zones
Bsag/hog,gf length of building corresponding

to the greenfield sagging/hogging
zones

C cover depth of the tunnel crown
Dt diameter of the tunnel
DR deflection ratio
e building eccentricity with respect to

the tunnel
EI bending stiffness
EI∗ building bending stiffness per run-

ning meter
EI∗EB,eq equivalent bending stiffness per me-

ter run of an Euler-Bernoulli beam
Es representative Young’s modulus of

the soil
GAs building shear stiffness
GA∗s building shear stiffness per meter

run
GS average slope over bbay of the green-

field settlements corresponding to
the bay edges

hstory height of the building story
H height of the building
i distance to the inflection point of the

settlement trough
Id relatively density of sand
K settlement trough width parameter
L length of the building in the longitu-

dinal direction of the tunnel

Mβ modification factor of angular dis-
tortion

MDR deflection ratio modification factor
S slope
t thickness of the building element
Ui, j corner point displacement; i is the

displacement direction, and j is the
location of the bay corner

Ux horizontal displacement
Uz vertical displacement
Vl,s soil volume loss
Vl,t tunnel volume loss
w local/cross-sectional rotation
Zt depth of the tunnel axis
β angular distortion
χ curvature
δ frame deflection
∆ relative deflections
εmax maximum tensile strain
εxx longitudinal strain
εxz diagonal strain
η relative stiffness parameter
γ shear strain
γ0 building foundation slab shear strain
γ1 building elevated slab shear strain
κ relative soil-building stiffness
ν Poisson’s ratio
ω′ total building rotation/tilt
ρ relative bending stiffness
AVG average
BLD building
GF greenfield
HOG hogging
PARALLELusing parallel axis theorem
SAG sagging
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SUPPLEMENTAL DATA753

LEDs for lighting

Dead weights

Frame control points

Acrylic wall control points

Model tunnel

Soil-structure interface

Sand

Raft foundation

F2t3b6L

Fig. S1. Set up of centrifuge model with frame F2t3b6L.
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Fig. S3. Maximum gap height against tunnel volume loss.
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TABLE S1. Experimental results of bending and shear stiffness (per running meter) of building
models (at model scale).

Frame Tests (†) EI∗exp EI∗exp,avg EI∗
parallel

GA∗s,exp GA∗s,exp,avg δshear/δbending(Nm) (Nm) (Nm) (N/m) (N/m)

F2t3b6L

1 & 2 1.8E+05

1.9E+05 6.6E+05

6.2E+05

6.2E+05 18.0

1 & 3 2.1E+05 6.2E+05
1 & 4 2.0E+05 6.2E+05
2 & 3 2.1E+05 6.2E+05
2 & 4 2.0E+05 6.2E+05
3 & 4 1.8E+05 6.2E+05

F2t5b6L
1 & 2 2.9E+05

2.8E+05 9.7E+05
1.9E+06

1.9E+06 8.21 & 3 2.9E+05 1.9E+06
2 & 3 2.4E+05 1.9E+06

F5t5b6L
1 & 2 3.1E+06

3.1E+06 8.5E+06
3.9E+06

3.9E+06 44.51 & 3 3.1E+06 3.9E+06
2 & 3 3.1E+06 3.9E+06

F2t3b3L 3 1.9E+05 - 6.6E+05 2.1E+05 - 51.7
(†) #1: 3-point bending with B1; #2: 3-point bending with B2; #3: 4-point bending with B1; #4: cantilever.

TABLE S2. Maximum building angular distortion (γ = β) at Vl,t=2%.
Test label Bay1 Bay2 Bay3 Bay4 Bay5 Bay6 Soil

(%) (%) (%) (%) (%) (%) relative density
F2t3b3S_eB0.5_SW 0.06 0.02 0.09 - - -

Id=90%

F2t3b3S_eB0_SW 0.10 0.02 0.12 - - -
F2t3b3L_eB0_SW 0.14 0.00 0.15 - - -
F2t3b6L_eB0_SW 0.08 0.15 0.03 0.06 0.20 0.10
F2t3b6L_eB0_2SW 0.08 0.23 0.15 0.16 0.25 0.09
F2t5b6L_eB0_2SW 0.09 0.17 0.08 0.11 0.19 0.08
F5t5b6L_eB0_SW 0.05 0.07 0.05 0.01 0.09 0.05
F2t3b3S_eB0.5_SW 0.07 0.02 0.08 - - -

Id=30%

F2t3b3S_eB0_SW 0.11 0.03 0.16 - - -
F2t3b3L_eB0_SW 0.30 0.03 0.33 - - -
F2t3b6L_eB0_SW 0.13 0.24 0.09 0.08 0.28 0.15
F2t3b6L_eB0.2_SW 0.04 0.02 0.16 0.12 0.14 0.19
F2t5b6L_eB0.2_SW 0.00 0.07 0.11 0.03 0.09 0.11
F5t5b6L_eB0_SW 0.07 0.12 0.07 0.06 0.13 0.06
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Fig. S4. Building distortion parameters against tunnel volume loss.
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Fig. S5. Building angular distortion against soil volume loss.
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