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Abstract—Future robots operating in fast-changing anthropo-
morphic environments need to be reactive, safe, flexible, and
intuitively use both arms (comparable to humans) to handle task-
space constrained manipulation scenarios. Furthermore, dynamic
environments pose additional challenges for motion planning
due to a continual requirement for validation and refinement
of plans. This work addresses the issues with vector-field-based
motion generation strategies, which are often prone to local-
minima problems. We aim to bridge the gap between reactive
solutions, global planning, and constrained cooperative (two-arm)
manipulation in partially known surroundings. To this end, we
introduce novel planning and real-time control strategies leverag-
ing the geometry of the task-space that are inherently coupled for
seamless operation in dynamic scenarios. Our integrated multi-
agent global planning and control scheme explores controllable
sets in the previously introduced Cooperative Dual Task-Space
and flexibly controls them by exploiting the redundancy of the
high Degree-of-Freedom (DoF) system. The planning and control
framework is extensively validated in complex, cluttered, non-
stationary simulation scenarios where our framework is able to
complete constrained tasks in a reliable manner while existing
solutions fail. We also perform additional real-world experiments
with a two-armed 14 DoF torque-controlled KoBo robot. Our
rigorous simulation studies and real-world experiments reinforce
the claim that the framework is able to run robustly within the
inner loop of modern collaborative robots with vision feedback.

Index Terms—Reactive and sensor-based planning, motion and
path planning, dual arm manipulation, collision avoidance.

I. INTRODUCTION

DUAL-ARM robotic manipulation is an underdeveloped re-
search field despite holding significant untapped potential

[1], [2]. Cooperative manipulation can overcome the limitations
of a single arm when it comes to, for instance, handling heavy,
large or bulky payloads. Nevertheless, the advantages of multi-
robot collaboration come at the cost of increased complexity.
Bimanual manipulation requires more than the sum of uniman-
ual tasks [2]–[4]. Indeed, dual-arm manipulation tasks, as shown
in Fig. 1, require intrinsic spatial and temporal coordination
while adhering to closed-chain geometric constraints [5]. These
additional complexities are reflected in the modeling, planning,
and control of the coordinated multi-contact tasks. As a result,
dual-arm manipulation in the real world is often prone to
failure, particularly in human-centric activities. These often
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Fig. 1: Our globally informed multi-agent planner guides the constrained dual-
arm cooperative system through the absolute frame (located between the two
end-effectors) towards the landing (goal) location on the table whilst avoiding
obstacles in the scene. Throughout motion execution, tasks like joint limits
avoidance, end-effector tilt control, and safe interaction control are utilized
flexibly in order to successfully complete the complex manipulation task.

take place in unstructured and constrained environments and
are subjected to desired and undesired contact forces.

In real-world scenarios, achieving autonomy and safe dual-
arm manipulation requires the ability to plan reactive collision-
free maneuvers and trajectories in real-time. Notwithstanding,
classical sense-plan-act architectures which form the current
state-of-the art in motion-planning – mostly due to the success
of sampling-based global planners in the exploration of
collision-free space – do not meet the demand for reactiveness,
especially for higher DoFs systems [6]–[8]. On the other end, all
existing scarce results driven by reactive planners for dual-arm
manipulation, more suitable for real-time, fully rely on a single
vector-field solution, which considerably reduces their stability
in addressing different scenarios. Single vector-field dynamics
cannot account for the often competing multi-objectives in
cluttered dynamic scenes. These might be distance to obstacles,
path-length, and remaining distance to goal among others.

In this study, instead, we propose a multi-agent exploration
approach that plans virtual trajectories using various maneuver-
ing strategies. This intelligent look-ahead solution facilitates
robust and adaptive performance at all levels and enhances
planner reliability in finding feasible paths in different scenarios.
This approach is closely connected to a hybrid Cooperative Set-
based Task Priority control (CoSTP) framework, which better
integrates reactive motion with multiple constraints of varying
degrees. Our strategy relaxes and prioritizes constraints, which
is critical for effective dual-arm manipulation, and therefore
improves responsiveness and efficiency of the resulting planner.

Take, for example, the cooperative task in Fig. 1. The Pre-
dictive Multi-Agent Framework (PMAF) generates a globally
sub-optimal trajectory, which is further refined and relaxed by
the CoSTP. This combination leads to, for instance, reduced
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DoFs collision-free funnel constraints – around the desired
trajectory rather than the entire trajectory – and tray-cup tilt
safety margin constraints – around the z-axis. Conversely, the
CoSTP also provides cooperative manipulability and joint-space
information to the PMAF, which reshapes and refines the vector
fields with informed cooperative manipulation capabilities of
the robot. Our proposed integrated planning and control solution
also tackles geometric uncertainties and unwanted or desired
contacts on the load as in the final placement in Fig. 1. For
successful placement of objects, consistency in the contact
surface is critical to avoid failure and build-up of unexpected
stresses. Our hybrid approach incorporates stabilizing features
of the desired contact within CoSTP enhancing admittance
in load orientation – similar to landing-gear shock-absorbing
systems in airplanes that improves robustness in planning.

This work is the first to systematically integrate multi- agent
planning for dual-arm reactive motion generation and control.
In our initial investigations in this topic [8]–[10], we showed
that vector-field based strategies were able to guide both
single and dual-arm systems to the goal while staying within
safe operation bounds. In this article, we present extensions
and more in-depth insights from practical experiments. More
specifically, we comprehensively combine and reshape results
from [10] and [9], and extend them in a complementary fashion
to improve decision-making of multi-agent planners grounded
on its cooperative capabilities with prioritized dual-arm control,
including contact-force-based skills such as safe landing in
partly known environments. The proposed real-time solution
raises the potential for realistic use cases as shown later. Our
contributions extend dual-arm manipulation literature through:
• Predictive virtual multi-agent exploration with various ma-

neuvering strategies grounded with informed cooperative
manipulation capabilities leading to suboptimal real-time
obstacle avoidance;

• Flexible prioritized task switching strategy that adapts to
different scenarios in the reduced workspace leading to a
refined and relaxed solution;

• Integrated sensed contact wrenches into planning and
control framework to both evade undesired contacts as well
as to explore stabilizing features of desired environment
contact;

• Elaborate simulation and real-world studies validating the
effectiveness and reliability of our approach and providing
insights of general reactive planning for dual-arm setups;

• Our ROS based software framework is available for the
community and can be accessed through [11].

II. RELATED WORK

Dual-arm manipulation has a prolific research history. Due
to the recent efforts of including anthropomorphic benefits [12]–
[16], dual-arm manipulation has gained more traction in the
research community [17]. Based on the literature, bimanual
manipulation can be broadly divided into un-coordinated and
coordinated systems [18]–[23]. Furthermore, coordinated dual-
arm manipulation can be categorized into (a) goal-coordinated
and (b) bimanual/cooperative systems. In this work, we will
focus on the more challenging and constrained problem of
coordinated systems, i.e., both manipulators tightly coupled are
working towards one common task. More specifically, we are

interested in coordinated cooperative manipulation where both
the arms cooperate with each other in lifting or constrained
tasks like moving the cup-tray system as depicted in Fig. 1.
In this regard, the authors in [24] and [25] consider the two
robots as a cooperating system and formulate the absolute and
relative Jacobians to map task space velocities to the joint
space for trajectory generation. This was further developed
in [26] where task Jacobians where presented in terms of
Jacobians of the single manipulators. In this work, we take
advantage of the cooperative scheme in the dual quaternion
domain, first introduced in [27]. This work is further extended
to address switchings during tracking of existing trajectories
in [28]. However, most of these works do not consider local
or global planning in the presence of obstacles in the scene.
To the best of the authors’ knowledge, this is the first work
that connects cooperative manipulation to reactive planning
strategies and safe interaction control.

Sampling based offline planners [29], [30] like Rapidly
exploring Random Trees (RRTs) [31], [32] have been quite
popular in the motion planning community in the last decades.
This can be attributed to their ability to handle high degrees of
freedom and trivial implementation. However, the classic sense-
plan-act strategy is not suitable for effective collaborative ma-
nipulation [6], [7] and generating robot motions in fast changing
environments. In spite of efficient newer implementations [33]–
[36], solutions still tend to have significant computational
costs [37], [38], need non-trivial sampling in constrained
manifolds as in the case of cooperative manipulation, and
suffer from narrow passage problems [39], [40].

As reactive motion generation methods are intrinsically con-
nected to control, it provides faster interfaces to integrate with
controllers operating in rapidly changing environments [41].
The seminal work in the area took inspiration from electrostatic
phenomena to conceive artificial potential field (APF) that
steered the robot (usually modelled as a point mass at a specific
point of interest) to the desired goal while avoiding obstacles
through repulsive fields [42]. The concept was further extended
to multi-DoF robot manipulators and mobile robots. Enhanced
local-minima-free strategies, e.g., Harmonic and navigation
functions were introduced to generate more traction [43].
Similarly, circular fields (CFs) was first proposed in [44],
[45] with the aim to allow obstacle avoidance with a defined
rotation (local-minima free) model, inspired by Lorentz forces
and electro-magnetic fields, instead of a repulsive force as with
the classical APF approach. In order to address the problem
of consistent artificial current flow for each obstacle and make
further improvements for robust operation in partially known
environments, the design of the artificial obstacle currents
was changed in [46]. Recently, a meticulous mathematical
analysis of CF motion planning was conducted in [47], where
we were able to derive guarantees for collision avoidance
and goal convergence under clearly defined conditions. Yet,
different approaches were also proposed in the recent past like
modeling the magnetic field using Maxwell’s equations [48]
and Gyroscopic Forces Method (GFM) for pushing the limits
of vector field-based motion generation strategies.

Another issue that needs to be treated in this regard is scaling
to robots with many DoFs, e.g., humanoids and cooperative
robots, which are manipulating along increasingly complex
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environments and constraints. Among the few existing works,
most rely on a hybrid method of offline computation with real-
time reactiveness [49], [50]. Nevertheless, research efforts in
the recent past have been targeted towards collision avoidance
in human-centric environments by combining vector fields
and real-time optimization [51]. Danger fields have also been
proposed for safe human-robot coexistence which take into
account the Cartesian velocity for a specific point of interest
on the robot and change the influence of the vector-field based
on the heading direction [52], [53]. It is further combined with
a feedback based low level joint-space controller including
impedance regulation which is rendered passive by design [54].
This ensures collision avoidance and safety in stationary as
well as non-stationary human robot interaction (HRI) scenarios.

However, most of the frameworks are still susceptible to
local minima [55], and not connected to global path planning
which we consider. Furthermore, handling task constraints and
scaling up to bimanual tasks is something that was out of
the scope of most of the work in the literature. To leverage
the benefits of fast reactive vector-field like approaches and
sampling based planning, researchers proposed computationally
efficient guided vector field methods with reachability sets to
induce global information [56]. To further enhance the idea
of injecting global information in the planning framework, in
line with our ongoing quest, we generate globally sub-optimal
paths with locally reactive CF forces to avoid obstacles in
multiple directions [10]. Moreover, we were able to extend the
results to the full structure of single arm manipulators in [57].
Regardless, dual-arm manipulation and interaction control was
not analyzed.

III. PROBLEM FORMULATION

In this work, we are interested in finding a valid path P in
the free task space1 T c ⊂ Spin(3)nR3 from an initial pose
x0 to a goal pose xg such that the goal pose matches the pose
xl of the landing surface. Let Tobs denote the infeasible set
of task space regions occupied by obstacles. Thus, T c can be
formally represented as T c = T \ Tobs, where T stands for
the task space of the robotic system. Table I presents a list of
the standard notations used throughout the manuscript.

Furthermore, during task execution, we aim to satisfy
multiple geometric cooperative constraints, e.g., keeping a
tight grasp on the object while moving the cup-tray system,
as shown in Fig. 1, within a safe and acceptable set of
orientation deviations. The two end-effectors with a specific
relative orientation between them along with the shared load
form the Cooperative Dual Task Space (CDTS) (see Sec. V).
Mathematically, this can be encoded by using different task

primitives. By primitives we mean useful task definitions (fun-
damental geometric relationships/building blocks) as illustrated
in Fig. 1. These primitives could be defined in the task space as

1Herein, all the concepts utilize dual-quaternion algebra and unit dual
quaternion representation Spin(3)nR3 due to its intrinsic advantages (e.g.,
translation and attitude coupling, singularity-free representation and significant
computational efficiency [58]–[60]) over other representations. Moreover, (unit)
dual quaternions can be used to describe rigid body motions, twists, wrenches,
and multiple geometric primitives, e.g., Plücker lines, planes, cylinders, cones,
in a straightforward manner [61], [62]. They can also be used to describe and
easily extract geometric primitives even in complex and constrained cooperative
spaces [61], [63]. For more details, please see Appendix A.

TABLE I: DESCRIPTION OF MAIN NOTATIONS AND ABBREVIATIONS.

Notation Corresponding Description
x , Unit dual quaternion
x∗ , Dual quaternion conjugate
P (x) , Primary part of x
D (x) , Dual part of x
xa , Absolute pose
xr , Relative pose
S , Set of all dual quaternions
+
H ,

−
H , Hamilton operators

vec8 , Mapping from S → R8

q , Stacked joint positions ∈ R14

Jxa , Absolute pose jacobian
Jxr , Relative pose jacobian
Jφχ , EE tilt constraint jacobian
Jqi , Joint limits avoid. jacobian
Jg,rot , Safe landing jacobian
P , Nullspace projector
Fc , Circular Field (CF) force
Fg , Attractive goal force
Fd , Damping force
Fσ , Manipulability guidance force
c , Artificial current vector
b , Magnetic field vector
n , Surface normal vector
v , Normalized velocity
pa , Agent pose (translation)
p̂a , Desired agent pose
rr , Radius control point approximation
rd , Radius detection shell
O , Set containing obstacle info
∧ , Logical And operator
F̃ , Evaluation function for agents

well as in the joint space of the robotic system. As an example,
consider the task of holding the relative position and orientation
between the two end-effectors. Another primitive would be the
task of controlling the tilt of the tray during the motion. Lastly,
the task of keeping all the joints within the hardware limits
is an example of a primitive defined in the joint space. We
denote the general set of possible task primitives in the free
workspace of the manipulator by S ⊂ T c. The controlled set
of geometric structures is designated by R, which is essentially
compositions of subsets of S (c.f. Definition 2, in Section VI),
corresponding to a different cooperative primitive constraint
that must be satisfied during the cooperative task. For concrete
formalization of primitives we direct readers to Sec. V.

Now, let us suppose there are no obstacles in the scene
and na virtual explorer agents that traverse in T c. Herein,
we assume that the virtual multi-agents have single-integrator
dynamics (velocity controlled) with a maximum acceleration2.
We do not assume that the explorer agents exhibit pure flocking
dynamics. That is, they move towards a common target but do
not necessarily stay close enough to each other. Indeed, due to
their intrinsic modeling, each exhibits a different exploration
strategy resulting in na distinct agent paths Pa,j ⊂ T c with
j = 1, . . . , na. All agents are evaluated using a cost function
F̃ : R3×n → R+. The goal is to exploit the different agent
behaviors to select the sub-optimal path to the target (goal)
xg with an intuitive evasion strategy such that the dual-arm

2This is in accordance with the maximum feasible acceleration of the system.
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system is able to place the object in an area around the landing
location xl whilst still respecting the task-space constraints
within R.
Assumption 1. The explorer agents have information on the
obstacle’s dynamics, that is, we can obtain the obstacle’s
position and velocity up to a certain accuracy.

This assumption is reasonable because current state-of-the-
art computer vision algorithms can perform pose estimation and
real-time object tracking, as shown in [64]. The obstacles herein
are modeled as spheroids, as any object (both convex and non-
convex cross sections) can be approximated by ellipsoids [65].
The spheres can be considered as trivial cases for many
objects, however, problems might arise when an object is more
elongated along one dimension than the other. In such scenarios,
a spheroid or an ellipsoid is certainly a better approximation
choice [66]. Formally, we seek to solve the following:

Problem Statement 1. Given a desired control point of the
robot with the initial position x0, the goal position xg ≈ xl and
a set of obstacles Tobs, find a continuously differentiable path
P ∈ C1([0, T ], T c) such that P(0) = x0, P(T ) = xg ≈ xl,
and Br

(
P(t)

)
∩O(t) = ∅,∀O(t) ⊆ Tobs,∀t ∈ [0, T ], while still

satisfying the hard task space constraints R, joint constraints,
and ensuring F∗(P) = min

j∈[1,na]
F̃(Pa,j).

Here, C1([0, T ], T c) denotes all differentiable functions from
[0, T ] to T c whose derivative is continuous, and Br

(
P(t)

)
is the ball neighborhood of radius rr, that is, a spherical
approximation of the space occupied by the control point.
Thus, Br

(
P(t)

)
∩O(t) denotes the intersection of the inflated

robot path with an obstacle at time t. More specifically, in
this work, we aim to encapsulate global planning capabilities
along with a local collision avoidance strategy to execute
constrained manipulation planning in clutter. Since the gap
between planning and control is greatly reduced, the planner
is further fed back with information that enables safe HRI.

IV. REACTIVE MULTI-AGENT BASED MOTION GENERATOR

This section introduces the reactive motion generation
scheme for the reference trajectory of cooperative manipulators.
First, we describe the vector field shaped by the different forces,
including Circular Field (CF) forces for obstacle avoidance and
attractive forces for goal convergence. Second, we illustrate
our predictive multi-agent framework that we employ with
different force guidance strategies to improve the overall motion
generation performance. For the generation of the reference
trajectory, we use the following point mass dynamics,

m¨̂pa = Fg + Fcf , (1)

where ¨̂pa ∈ R3 is the desired acceleration of the robot control
point, m denotes its virtual mass, and Fcf and Fg are the CF
and the attractive goal force described in the following.

A. Attractive Force
We use the velocity limiting control force from [42] as the

virtual attractor dynamics in the form

Fg = −kd
(
ṗa − νṗg

)
, (2)

with the artificial desired goal velocity

ṗg =
ka
kd

(
pg − pa

)
. (3)

Here, pa ∈ R3 is the robot position, pg ∈ R3 is the
goal position, kd > 0 and ka > 0 are scaling factors and

ν = min

(
1, vmax

‖ṗg‖

)
is used to limit the force when the robot

velocity reaches a defined maximum magnitude vmax in the
direction of the goal. This definition of the attractive force leads
to improved trajectories compared to the standard definition of
a potential field as it results in the robot being attracted in a
straight line towards the goal position while being constrained
in its velocity magnitude.

B. Circular Field Force for Collision Avoidance

In order to reactively avoid obstacles, we use CFs which are
inspired by the laws of electromagnetism [67] and were first
presented in [44]. In contrast to classical artificial potential
fields, CF forces do not have local minima [44], do not change
the velocity magnitude of the robot, and do not apply a force
when the robot is moving parallel to an obstacle surface.
Furthermore, CF motion planning guarantees goal convergence
and obstacle avoidance under the assumptions defined in [47].

In the CF approach, the robot is modeled as a charged particle
moving in artificial electromagnetic fields and is subject to the
following modified version of the Lorentz force

Fcf =
kcf

‖d‖ − rr
ḋ∥∥∥ḋ∥∥∥ ×B, (4)

where kcf > 0 is a constant gain, and d = po − pa denotes
the distance vector from the robot control point to the closest
point on the obstacle surface po. Every obstacle creates an
artificial magnetic field

B = c× ḋ (5)
with artificial current c. The artificial current defines the
direction of the magnetic field, and thus, the direction of
the CF force, that is, it defines the direction in which an
obstacle is avoided. Therefore, it is a crucial component in
the motion planning approach, and its choice is discussed in
detail in subsection IV-F. Additionally, we define a detection
shell with radius rd around each obstacle, so that the robot
reacts to an obstacle only when it enters its detection shell.
In this way, obstacles further away are neglected, which
reduces the resulting computational load. To further improve
the computational efficiency, we ignore obstacles that move
away from the robot, i.e., d · ḋ > 0 and are simultaneously
not between the robot and the goal, i.e., d ·

(
pg − pa

)
< 0.

Moreover, obstacle avoidance should have priority over goal
convergence. Therefore, we ensure that the attractive force does
not interfere with the CF forces by introducing the following
scaling factors, which were partly inspired from [68]. The first
term reduces the attractive force when the robot comes close
to an obstacle

kgcl = 1− exp

(
−‖d‖
rd

)
. (6)

The second term reduces the attractive force when an obstacle
is between the robot and the goal position and increases the
force otherwise

kgoc =

(
1−

( (
pg − pa

)
· d∥∥pg − pa

∥∥ ‖d‖
))2

. (7)
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For computational efficiency, both factors are only implemented
for the closest obstacle.
CFs by themselves are local minima free as shown in [47].
However, the combination with the virtual attractor dynamics
could induce new local minima. Thus, we deactivate the
attractive force when it would decelerate the control point
velocity below a defined limit vmin. That is, when it is not
in the vicinity ξ of the goal position, the following aggregate
goal scaling factor is induced combining kgcl and kgoc as

kg =

{
0 if ṗa ·Fg≤0 ∧ ‖ṗa‖≤vmin ∧

∥∥pg−pa∥∥>ξ
kgclkgoc otherwise.

(8)
In the presence of multiple obstacles, the forces of all
obstacles are superposed. These combined measures result
in the following control point dynamics

¨̂pa = kgFg +

no∑
i=1

Fcfi , (9)

where no is the number of obstacles.

C. Repulsive Potential Field Force for Self-Collision Avoidance
To avoid self-collisions, we used the classical APF forces

from [42] and approximated the structure of the robot via
spherical obstacles

Fr = krd

(
1
‖d‖ −

1
rd

‖d‖2

)
, (10)

where kr is the scaling factor of the repulsive force, which
is applied only if the control point of the robot is within the
detection shell radius rd of the respective obstacle3. Similar
to the CF forces, the repulsive forces of all nsc self-collision
obstacles are superposed, leading to the following updated
control point dynamics

¨̂pa = kgFg +

no∑
i=1

Fcfi +

nsc∑
j=1

Frj . (11)

D. Cooperative Guidance Strategies based on Artificial Forces
In order to extend the capabilities of the resulting vector-field

planner and make it robust to issues such as manipulability,
undesired contact, and joint limits, we introduce additional
task space forces that steer the cooperative system to more
favorable directions. First, we illustrate how undesirable
singular configurations can be avoided locally during motion
execution by exploiting the singular values of the motion
Jacobian. Next, we describe the concept of repulsive contact
wrenches. Finally, we demonstrate how the motion policy can
be further revamped by leveraging the joint bounds of the
system and designing artificial forces that reject configurations
closer to the limits.
CDTS Manipulability Force Guidance: In contrast to the
standard circular field approach, the integration of reactive
techniques into the Cooperative Dual Task Space (CDTS)
framework requires further knowledge of the existing con-
straints. The planning design must ensure that undesirable
configurations that could degrade performance are avoided,

3This was crucial in scenarios with the additional KoBo setup (see sec. IX),
where we placed a virtual repulsive sphere in the center of the robot.

e.g., joint limits and singular configurations. Even though we
can explore task-priority and the CDTS self-motion to this aim,
as we will show in the following subsection, in this work, we
propose a strategy to leverage such information to the circular
field. This allows for the motion generation to account for the
CDTS constraints in joint space and, consequently, to guide
the desired motion through regions of larger manipulability.

First, note that the reactive motion should be integrated into
either the absolute or relative position cooperative primitives as
described in (43). Details on the integration follow in Section V
as the task execution is defined. Now, from the desired motion
Jacobian, consider the singular value decomposition of Jpχ ,

Jpχ = USV T =
∑

i
σiwiv

T
i ,

where U = [w1 w2 w3], V = [v1 · · · vn], are orthogonal
matrices and S = [diag (σ1, · · · , σmin) 0]. Taking the output
singular vector wmin associated with the singular minimum
value σmin, we can design a repulsive field that guides the
system away from poor manipulability regions, that is, from
regions where the resulting reactive motion would require a
larger motion in joint-space. Hence, the updated vector field
becomes,

m¨̂pa = kgFg +

no∑
i=1

Fcfi+

nsc∑
j=1

Frj + Fσ (12)

Fσ = λwmin, (13)
where Fg is the attractor force, Fcf is defined in (4), and λ
is a gain defined similar to [69], however with positiveness
defined in order to build an opposite force to the direction of
Fcf + Fg.

λ =

{
(1− σmin

εσ
)λmax, if σmin < εσ;

0, otherwise,
(14)

where λmax > 0 and εσ > 0 defines the size of the singular
region we want our force to act. Notice that outside the region,
the repulsive force is void. Furthermore, the motion Jacobian
can also be weighted by the distance to joint limits to leverage
such information to the resulting force field.

The force Fσ adds repulsive dynamics that drives the robot
to directions further away from the task space vector associated
with the minimum singular value. In long horizon tasks where
large workspace distances need to be traversed, (13) can
explore a fixed value of w which is then updated whenever
the projection of the vector over wmin is higher than a given
angle threshold.
CDTS Joint-Limit Force Guidance: Similarly to the CDTS
manipulability force guidance, which aims to “push” the
trajectory to regions of the cooperative workspace with higher
manipulability, in this subsection we also propose a novel
virtual force guidance in task-space aiming to improve motion
generation from a joint-limit perspective.

The main concept is the following. We take motions in the
joint space leading to joint-limit avoidance, e.g., a first-order
system q̇jg=qc−q, where qc is the center joint position. This
leads to large velocities whenever the joint position is far away
from the center, and smaller ones otherwise. This motion is
mapped to task-space motion through a task-space velocity
Jacobian Jpχ(q). Then, we build a virtual force proportional
to this motion, i.e., Fj ≈ q̇jg, that generates accelerations in
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such direction with a proportional gain, that is,

Fj = kjg

Jpχ(qc−q)
‖Jpχ(qc−q)‖

, (15)

where kjg is a scalar gain to prescribe a given behaviour, e.g.,
an hyperbolic tangent in the proximity of joint-limits, an inertia-
dependent gain, among others. In this work, we consider a
proportional gain scaled by distance to the center joint position,
that is,

kjg = kjg
1
qr

max
i=1,..n

dz
(
‖qi,c−qi‖
qi,range

, 1−qr
)
, (16)

where dz(a, b) is a dead-zone correction given by

dz(a, b) :=


a+ b, a < −b,
0, |a| < |b|,
a− b, a > b,

(17)

with qr being the percentage of the range of motion, i.e., qi,range
for all i−joints, the forces will start to act to avoid limits. For
instance, when qr = 0.5, the Fj is always zero until one of
the joints reaches the outer 50% of its range. The upper-bound
kjg defines the force intensity and acts as a stiffness gain for
values above the deadzone.

Finally, the updated force field becomes

m¨̂pa = kgFg +

no∑
i=1

Fcfi +

nsc∑
j=1

Frj + Fσ + Fj. (18)

Although we do not consider the concept of repulsive contact
wrenches in this work, as shown in our previous study [9],
other virtual guidance forces similar to the ones mentioned
can be integrated straightforwardly in this framework.

E. Reference Trajectory Calculation

For the calculation of the reference trajectory, we use the
previously calculated desired control point acceleration and
point mass dynamics with bounds defined by the maximum
velocity vmax and maximum acceleration amax, i.e.,

˙̂pa(t+ 1) = kvb

(
˙̂pa(t) + kab¨̂pa(t)Tc

)
, (19)

p̂a(t+ 1) = p̂a(t) +
˙̂pa(t)Tc + kab¨̂pa(t)

T 2
c

2
, (20)

where

kvb =

1 if
∥∥∥ ˙̂pa(t)∥∥∥ ≤ vmax,

vmax

‖ ˙̂pa(t)‖ otherwise,
(21)

kab =

1 if
∥∥∥¨̂pa(t)∥∥∥ ≤ amax,

amax

‖¨̂pa(t)‖ otherwise,
(22)

and Tc is the step time for the control command calculation.

F. Predictive Multi-Agent Framework

One of the limitations of traditional CFs, which is predomi-
nantly a vector field based planning approach, is the omission of
global environment information. Thus, the application generally
leads to globally suboptimal paths and it is possible to design
trap scenarios where the point-mass agent can get stuck. Note
that this is not equivalent to the local minima of potential
field approaches as the robot does not stop moving but is
trapped in limit cycles which can be avoided with appropriate

parametrization. Therefore, we employ our predictive multi-
agent exploration approach, the circular field predictions (CFP),
which was introduced in our previous publication [10].

Our method allows for the generation of multiple trajectories
towards the goal pose by different virtual agents, each charac-
terized by a specific parameter set P̃ including, e.g. the circular
field gain, the artificial magnetic field vectors, the maximum
velocity and the safety margin. Additional parameters can be
incorporated depending on the environment under consideration.
In the planning stage, numerous virtual agents are created,
each with distinct dynamic parameters, to explore different
trajectories in the known environment. Each agent is steered
by the same forces as the real robot, but with its individual
parameter set. Simultaneously, the motions of known obstacles
in the environment are simulated using a prediction model
of choice. In our implementation, we make use of a constant
velocity model, in which the velocity was inferred from the last
known positions. More sophisticated models would enhance
the prediction and can also be adjusted to the available sensor
data if required.

We assess the performance of each agent using a predefined
step time, which can be adapted to a particular scenario, and
select the most favorable agent based on a specific cost function
(cf. Sec. IV-H). The parameter set P̃b of this best agent is
used to calculate the immediate next desired position for the
real robot to allow reactive responses to dynamic unforeseen
environment changes. Note that this control architecture allows
different sampling times for the control command calculation
Tc and environment exploration of the predictive agents
Tp = npTc, with np ∈ Z+. Thus, reactive motion planning
remains unaffected by (potentially long) global environment
explorations. In this study, we focus on the artificial current
vector because it defines the direction in which an obstacle is
avoided.

In contrast to [10], where we used a brute-force approach to
find the best parameter sets, herein, we define several heuristics
that are executed and evaluated in parallel. This significantly
reduces the number of necessary agents and therefore enhances
the computation performance, especially in more complex
environments, which is crucial for controlling complex systems
with high degrees of freedom. The number of maximum agents
na can be set beforehand and should reflect the computing
power of the hardware, particularly the number of available
hyperthreads. The procedure of the multi-agent framework is
shown in the upper part of Fig. 4.

G. Artificial Current Vector Heuristics

In the following, we introduce five different heuristics for
calculating the artificial current vector and thus define the
direction of the robot’s avoidance maneuver. Further heuristics
can be added depending on the desired behavior or task. We
also introduce an approach for utilizing randomized current
vectors if more hyper-threads are available on the computing
hardware. The calculation of the robot avoidance direction for
each heuristic is schematically illustrated in Fig. 3. The figure
presents all the vectors necessary for generating the artificial
current vectors, which will be explained comprehensively in
the following subsections. Note that the artificial current for
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(a) (b)

Fig. 2: Exemplary comparison of two heuristics in similar environments. In (a),
the Goal Vector Heuristic (red) results in a shorter and more easily traversable
path than the Obstacle Distance Heuristic (blue). However, a small change of
the obstacle placement, where all obstacles are elevated by 0.3m (subfigure
(b)) results in a collision of the red heuristic due to a violation of the workspace
limits and in a better trajectory of the blue heuristic. The remaining planned
path of the Goal Vector Heuristic in (b) is depicted with a dashed orange line.

calculating the CF forces needs to be perpendicular to the
obstacle surface normal.

a) Velocity Heuristic: The first heuristic is inspired by
[68], where the current robot velocity is projected onto the
obstacle surface, resulting in an avoidance direction which is
close to the current direction of the robot motion

cvel = ḋ− doc
‖doc‖

(
doc
‖doc‖

· ḋ
)
. (23)

Here, again, ḋ is the relative velocity between the robot control
point and the obstacle and doc is the vector pointing from the
robot control point to the obstacle geometric center.

b) Path Length Heuristic: The next heuristic aims to
minimize the path length for circumventing an obstacle.
Towards this end, we use the vector pointing from the robot
to the goal dg = pg − pa and project it onto the vector
pointing from the robot to the geometric center of the obstacle
doc = pogc − pa resulting in the following artificial current
vector

cpl = dg −
doc
‖doc‖

(
doc
‖doc‖

· dg
)
. (24)

Note that this heuristic might still result in globally suboptimal
path lengths as the artificial current is calculated for each
obstacle individually.

c) Goal Vector Heuristic: This heuristic is taken from
our previous work [46] and will lead to similar avoidance
maneuvers as the path length heuristics. Differences in the
resulting paths will occur in particular when dynamic obstacles
are considered, because we calculate a fixed avoidance direction
when the robot enters the detection sphere of an obstacle

c0gv =
dg
‖dg‖

(
dg
‖dg‖

· doc
)
− doc. (25)

This initial current vector is used for calculating an artificial
magnetic field vector

bgv = c0gv × doc, (26)
which is used for the calculation of the real current in each
time step

cgv =
doc × bgv
‖doc‖ ‖bgv‖

. (27)

Note that we can save computational resources by omitting the
subtraction of doc in Eq. (25), which is rendered redundant
due to the cross product in Eq. (26).

d) Obstacle Distance Heuristic: Using this heuristic the
robot will navigate around obstacles by always choosing a
path that leads further away from next closest obstacle of the
active obstacle. To prevent oscillations the avoidance direction
is defined when the robot first enters the detection shell of the
active obstacle by calculating an initial artificial current vector

c0od =
doc
‖doc‖

(
doc
‖doc‖

· doo
)
− doc, (28)

where doo denotes the vector pointing from the geometric center
of the active obstacle to the geometric center of its closest next
obstacle. This vector is used to calculate an artificial magnetic
field vector

bod = c0od × doc, (29)

which defines the avoidance direction. The artificial current in
each time step can then be calculated with

cod =
doc × bod
‖doc‖ ‖bod‖

. (30)

In the case of only a single obstacle, the current vector is
defined randomly as described in Eq. (34). In the same way as
in Eq. (25), we save computational resources by not performing
the subtraction of doc in Eq. (28) in our implementation.

e) Path Length - Obstacle Heuristic: This heuristic will
make the robot choose a path between the paths of the previous
two heuristics resulting in an avoidance direction, which is
a tradeoff between leading away from the other obstacle and
minimizing the path length. In the same way as the obstacle
distance heuristic, we use an initialization when the robot enters
the obstacle’s detection shell:

c0pl−od = cpl + cod, (31)
with cpl from eq. (24) and cod from eq. (30). This is again
used to calculate the artificial magnetic field vector

bpl−od = c0pl−od × doc (32)
which allows the calculation of the actual artificial current
vector

cpl−od =
doc × bpl−od
‖doc‖ ‖bpl−od‖

. (33)

Similarly to the obstacle distance heuristic, if only one obstacle
is present, the randomized approach is used for calculating
cod.

f) Random Artificial Current: As a fallback and in case
of free computation resources, we introduce an approach for
calculating random artificial current vectors. As mentioned
before, the artificial current must be perpendicular to the
obstacle surface. Additionally, the avoidance direction should
be fixed to prevent oscillations, thus we only use randomized
vectors to define the artificial magnetic field vectors for each
obstacle, which in turn can be used for calculating the current:

cran =
doc × bran
‖doc‖ ‖bran‖

, (34)

where bran is a random vector.
Note that each of the heuristics is designed for specific
configurations of the environment (see Fig. 2). Consequently,
the quality of the resulting avoidance behavior of each heuristic
highly depends on the placement of the obstacles. We illustrate
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Robot

Goal

Fig. 3: Schematic illustration depicting the essential vectors involved in calculating the heuristics for determining an avoidance direction. In each figure, the
purple vector denotes the artificial current vector, defining the direction for evading obstacles. Note that the resulting trajectory (green) is expected to be
comparable among all heuristics in the illustrated scenario featuring only one primary obstacle. Labels (a),(b),(c),(d), and (e) follow the description in sec. IV-G.

these characteristics by means of an exemplary comparison of
two heuristics in Fig. 2, where we show that a slight change in
the environment has a significant impact on the choice of the
heuristics. Moreover, we would like to emphasize that only the
combination of the different heuristics results in appropriate
trajectories in a multitude of environments. This always leads
to better or equally good results than applying the most suitable
heuristic individually, as we show later in sec. IX-B.

H. Cost Function for Agent Assessment
In this paper, the cost function F̃ is defined with the following

criteria for evaluating each predictive agent:
• The path length of the agent trajectory
cpl = wpl

∑t+Tp
i=t+1 ‖pa(i)− pa(i− 1)‖;

• The remaining distance to the goal position
cgd = wgd

∥∥pg − pa(t+ Tp)
∥∥;

• The minimal distance of the agent trajectory to all
obstacles

dmin = min
i∈[t+1,t+Tp],j∈[1,no],poj

(i)∈Oj

∥∥∥poj (i)− pa(i)
∥∥∥, (35)

cod =
wod
dmin

(36)

where poj (i) is the closest point of obstacle j to the robot
control point at the time step t = i;

• The deviation of the trajectory from predefined workspace
limits p+

k and p−k

cws = wws
∑t+Tp
i=t+1


(
pa,k(i)− p+

k

)2
if pa,k(i) > p+

k ,(
pa,k(i)− p−k

)2
if pa,k(i) < p−k ,

0 otherwise ,
for all k ∈ [1, 2, 3].

Here, wpl, wgd, wod, wws > 0 are the respective weighting
factors and the total cost of an agent trajectory is defined as

F̃ = cpl + cgd + cod + cws. (37)
Depending on the desired robot behavior and task, other criteria
can be also added to extend the definition.

V. THE COOPERATIVE DUAL TASK SPACE (CDTS)
This section elucidates fundamental concepts regarding the

cooperative task space and the various controllable cooperative
primitives. The CDTS framework exploits Spin(3) n R3

transformations to describe the cooperative space shared by
both arms. To start with, let us consider a two-arm system, as
the one shown in Fig. 1. This shared cooperative space can be

described by the variables xr and xa that respectively define
the relative pose, between left and right end-effectors, and the
absolute pose of a frame located between end-effectors w.r.t.
to a common coordinate system (see Fig 4). Without loss of
generality, the absolute pose can be shifted by means of a
constant transformation.

Definition 1. The CDTS variables, that is, the relative and
absolute poses, are defined as

xr = x∗2x1, (38)
xa = x2xr/2. (39)

where x1 and x2 represent the end-effector poses of the two
arms, and xr/2 is the transformation that corresponds to half
of the angle φr around the axis nr = înx + ĵny + k̂nz of the
quaternion P(xr) and half of the translation between the two
arms [63].

The goal from here on is to define task-specific geometric
primitives and corresponding Jacobians for controlling them
in the sense that these cooperative Jacobians map robot joint
velocities to the CDTS variables and vice-versa. Note that,
in this case, the joint vector qcp ∈ Rn represents the entire
system i.e., it is the stacked vector of the joint variables of the
individual arms that produce the dual-arm system and is given
by, qcp = [qT1 qT2 ]

T . Analytically, the primitive u and joint
qcp are related by

u̇=J taskq̇cp , (40)

where J task is the Jacobian capturing the first-order task dy-
namics. The following subsections detail the various primitives
(see Table II for the list) that we consider for effective bimanual
manipulation for our use case.

A. Relative Dual Pose Control:
The joint vector qcp is related to the task cooperative variable

xr by the relative dual quaternion Jacobian Jxr as conveyed
by

Jxr =

[
+

H(x∗2)Jx1

−
H(x1)J

∗
x2

]
, (41)

where Jxi = ∂fi/∂qi is the analytical Jacobian, which
can be easily derived using dual quaternion algebra as in

[70]–[72]. The matrix
+

H and
−
H are Hamilton operators

that can be used to commute terms when performing dual
quaternions multiplications.4 Considering the mapping of the

4Similar to SE(3), unit dual quaternion multiplication is not commutative.
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Fig. 4: Overview of our planning and control architecture: The main focus in this work are the highlighted (i) Predictive Multi-Agent Framework (PMAF)
block which spawns different virtual agents and evaluates them, finally leading to the agent with the best parameter set P̃b which is then used to compute the
reference pose p̂a, the (ii) Cooperative Set-based Task Priority (CoSTP) block with switching equality and set-based constraints, and the information exchange
among both. The perception module for obstacle information and the admittance-based inner motion controller along with the dual-arm set-up complete the
system. The CoSTP controller, along with the lower level motion controller, runs at 1KHz dispensing effective torque commands for the dual-arm system.

dual quaternion set S into R8, that is, vec : S → R8 and the

dual quaternion z=xy, the Hamilton operators,
+

H and
−
H ,

satisfy vec z=
+

H (x) vecy=
−
H
(
y
)
vecx, [70]–[72].

B. Absolute Dual Pose Control:

In a similar fashion, the absolute dual quaternion Jacobian
can be expressed as (refer to appendix for definitions)

Jxa =

[
−
H(xr/2)Jx2ext

+
+

H(x2)Jxr/2

]
, (42)

where Jx2ext
= [0 Jx2

], and Jxr/2 is given by

Jxr/2 =

 1
2

−
H4(r

∗
r/2)JP(xr)

1
4

( −
H4(rr/2)Jpr +

+

H4(pr)JP(xr/2)

)


in which JP(xr/2) refers to the first four rows of the relative
dual quaternion Jacobian Jxr .

As impressed upon in earlier instances, we now exemplify the
trivial extraction of the cooperative geometric task primitives.
These stem from the relative and absolute variables defined in
(38)-(39) and the corresponding Jacobians (41)-(42) which then
makes the way for the (local) task-space to joint-space mapping
of these task primitives. Following the demonstration in [8], the
relative translation between arms and the absolute translation
in coordinate-frame is defined by pχ = 2D

(
xχ
)
P
(
xχ
)∗

,
where χ = {r, a} refers to the relative or absolute variables.

Funnel designed 
using eq. (45)

Obstacle

Trajectory obtained from CFP

Point actually tracked 
using funnel tracking

Fig. 5: Funnel tracking which tracks not the 3 DoF CFP trajectory through
the absolute position of the cooperative system but only a scalar distance. For
brevity, funnels are only shown at the beginning and end of the trajectory.

The translation Jacobians are therefore

Jpχ=2
−
H4

(
P
(
x∗χ
))

JD(xχ)
+2

+

H4

(
D
(
xχ
))

J∗P(xχ)
. (43)

with JP(xχ) and JD(xχ) being the four upper and lower rows
of Jxχ , respectively.

The geometric relative distance and absolute distance define
the square distance, that is, the radius of the ball given by
c ,

∥∥pχ∥∥2
. The corresponding Jacobian is given by

Jdχ = 2
(
vec4 pχ

)T
Jpχ . (44)

The relative and absolute orientation are given by the unit
quaternion rχ = P

(
xχ
)
. The corresponding mapping can

therefore be trivially derived through JP(xχ)
.
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C. Reactive Funnel Tracking:

As discussed before, the absolute position primitive requires
the definition of 3 DoF. Herein, we bring in the concept of
funnel trajectory which is generated from the force-field output
together with the information of the closest obstacle from
the no present, given by eq. (35). In this context, the desired
motion coordination satisfying the reactive approach leads to a
collision free trajectory and is given by Rd(Ra) with d← dmin

defined from (35) and distance given by

dCF = ‖p̂a−pa‖ , (45)
where p̂a is the desired CF trajectory at a given instant and
the pa the current absolute position of the cooperative system.
As illustrated in Fig. 5, this leads to an improved task defined
within 1 DoF instead of the usual 3 required from a naive
integration. More specific to the planning context, we define
the desired trajectory from the CF output to be within a desired
distance, instead of specific Cartesian position. Thus, the control
primitive is d ,

∥∥pχ∥∥2
.

D. Cooperative Tilt Control:

As depicted in Fig. 1 we are also interested in con-
trolling the tilt of the coordinated object (e.g., the tray
with the glass for instance) and therefore it is necessary
to bring to light the Jacobian mapping from q̇ w.r.t. the
line passing through the z-axis of the absolute/relative
reference frame (see Fig. 6). This changes according
to the robot’s (held object’s) motion and mathematically,

Fig. 6: Cooperative inclination control
of the tray using Plücker lines defined
on the CDTS frame(s).

that line lz can be encoded
as,

lz = lz + εmz , (46)

where lz = rk̂r∗ is the frame
transformation of the z-axis
and mz is the moment of
the line. The end-effector
constraint Jacobian can then
be defined as,

Jrz =

[
−
H4(k̂r

∗)Jr +
+

H4(rk̂)C4Jr

]
, (47)

in which Jrχ = JP(xχ)
is the rotational Jacobian and

C4=diag (1,−1,−1,−1). Therefore, in order to avoid un-
desired end-effector configurations we want to control the
angles between the static Plücker line and lz . This distance
can be represented by [73], f = (l − lz)

T (l − lz). The end
effector constraint Jacobian error definition can then be,

Jlzerr = −2vec4(l− lz)
TJrz . (48)

This constructs the primitive definition as l̃ = (l− lz)
T (l− lz).

E. Joint Limits Control:

To ensure that the computed joint velocities do not push the
system beyond the limits, we enforce joint limit control through
the Jacobian Jq. We define the middle of the joint bounds
using qmid =

(qi+qi)

2 , where qi and qi represent the lower and
upper limits of joint i, respectively. In our quest to drive the
joints to their center, we define s = 0.5

∑
(qi − qi,mid)

2. Jq
is then generated by the derivative δs

δq .

TABLE II: MAIN GEOMETRIC TASKS PRIMITIVES AND TASK JACOBIANS.

Task Primitive u Contr.Sets DOF Task

Rel/Abs distance (d∈Rd) d≤d 1 Jdχ in (44)

Rel/Abs position (p∈Rp) p�p�p 3 Jpχ in (43)

Rel/Abs orientation
(r∈Ro)

r`� log r�r` 3 Jrχ=JP(xχ)

Rel/Abs tilt (φι∈Rφι ) φι≤φι≤φι 1 Jφχ in (48)

Rel/Abs Sing. (σmin∈R) σ≤σmin 1 Jσ=
∂σmin(χ)

∂q

Joint limits (qi∈Rn) qi≤qi≤qi 1 Jq=qi−
(qi+qi)

2

VI. COOPERATIVE SET-BASED TASK PRIORITY (COSTP)

This section describes the switching strategy employed for
flexible control of the geometric task primitives introduced
in the previous section. First, we mathematically define
controllable sets originating from geometric primitives. Second,
we incorporate convergence guarantees for these hybrid sets
in the form of task priorities, similar to the work in [74],
combined with hysteresis-based switching of the controlled
cooperative tasks [61]. These enable robust prioritized handling
of reference trajectory tracking generated by the vector fields
as well as the other defined CDTS primitives.

In an ideal scenario, during task execution, we do not want
the system to depart from the geometric constraint subsets
R, that govern the complex cooperative manipulation task. In
other words, the objective is to ensure that the tasks remain
restricted in pre-defined sets such that successful achievement
of several tasks is possible. This is similar to the concept of
area of satisfaction from [75], where the motion is defined
over desired feasible intervals along the controlled primitives.
Keeping that in mind, we now elucidate the several primitives
in connection with the Cooperative Dual Task Space.

Definition 2. Given a set S ⊆ Spin(3)nR3 in the cooperative
space and a dual quaternion pose xg, we delineate the
following proper geometrical subsets with regards to S,

Rd (S) =
{
xg∈S | d =

∥∥T (xg)∥∥ , d ∈ R
}
,

Rp (S) =
{
xg∈S | p = T

(
xg
)
, p ∈ H0

}
,

Ro (S) =
{
xg∈S | r = P

(
xg
)
, r ∈ Spin(3)

}
,

Rφι (S) =
{
xg∈S |φι=cos−1(〈lz, l〉),r=P(xg), lz=rk̂r∗

}
,

where T
(
xg
)
, 2D

(
xg
)
P
(
xg
)∗

is the translation corre-
sponding to xg and H0 is the set of all pure quaternions,
isomorphic to R3. The subscripts d, p, o, and φι denote distance,
translation, rotation, and tilt angle respectively. More in detail,
φι describes the opening angle of a solid cone defined by
the rotation of the body z−axis (Plücker line) to the absolute
coordinate frame, i.e., lz around a desired line l. (Fig. 6).

Remark 1. These definitions of basic sets allow us to introduce
the various controllable subsets as shown in Table II.5 As far as
cooperative manipulation tasks are concerned, our focus in this
paper is limited to these introduced subsets which are utilized
for flexible control of the dual-arm system. For further details
regarding cooperative primitives, we refer readers to [63]
and also to [70], [72]. For a general treatment of geometric
feature extraction from dual quaternions, we allude to [61],
[62], and [73].

5Joint limits is an exceptional case where joint and task-space coincide.
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Now that the constraint subsets Rζ (ζ can be d, p, o, and
φι) are defined respecting the controllable primitives, we can
demarcate the domains corresponding to different subsets.
For instance, the absolute/relative position Rp which has
3 degrees of freedom and resides in p�p�p. Comparably,
the relative/absolute distance Rd controls the scalar distance
dr ∈ Rd that enables reactive funnel tracking. That is, in
this case, the feasibility of the task requires that primitives
operate within their valid domain D defined as d̃min�d̃�d̃max,
where d̃min and d̃max are the boundaries of the feasible set. It
is important to note that each geometric primitive requires
different degrees of freedom from the CDTS, which can
be further explored to enhance flexibility and in complex
cooperative planning scenarios. The primitives that we consider
along with their domain sets and degrees of freedom are
reported in Table II.6 Here it can be seen that according to the
definition, the task is still feasible and valid at the boundary
domain, however control intervention is needed once it departs
the defined sets. We address this by employing the multi-priority
switching strategy as described in the next subsection.

A. Switching Strategy for Multi-Priority Control
For each of the defined cooperative tasks, the goal is to

design a control scheme such that set-based tasks are satisfied.
As encoded in the first order differential equation (40), the error
e towards a desired equilibrium can be defined as e=u−û
where û denotes the current state of the system. The resulting
acceleration is given by the expression ë=J̇uq̇+Juq̈. For the
purpose of accomodating all other tasks in this formulation,
we explore the redundant space accessible within the CDTS
framework. More specifically, we can define priorities by
exploiting the nullspace of the main task u. This is captured
mathematically in the equation

q̇ = J+
u
˙̂e+ P uq̇null, (49)

where qnull is the lower priority task that is executed on the
condition that the nullspace has the freedom, P u = (I−J+

u Ju)
is the linear operator that projects q̇null∈Rn in the nullspace
of Ju, and ˙̂e is the desired error convergence [76]. It is a
known fact that the evolution of the stack of the active tasks
(set-based) is affected by the higher priority main task [77].

The arbitrary joint velocity q̇null can be explored for multiple
tasks following a priority order—since it acts in the nullspace of
the task u.7 Hence, given an order of the cooperative primitives
defined in Section V, which we can rename as u1 · · ·uη for
expositional reasons, the resulting joint velocities should be

q̇ = J+
u1
κ1

˙̂e1+P u1κ2
˙̂e2+P u1:2κ3

˙̂e3+ · · ·+P u1:η−1κη
˙̂eη,

where κi is the positive gain which is defined accordingly to
[77] such to ensure asymptotic convergence of the resulting
tasks—if they are defined independently, i.e., if the one task
does not disturb a higher priority one (in which case this
should not be satisfied). The matrix Pu1:i

indicates the nullspace
projector for an augmented Jacobian J=[Ju1 · · · Jui ].

In practice, however, a closer look at the task definition and
the cooperative primitives in Table II, reveals that most tasks

6Notice that the min SVD σmin refers to both relative and absolute tasks
which define the CDTS, and not to individual manipulators.

7Herein, we define q̇null based on [69] in order to be free of algorithmic
singularities.
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Fig. 7: Switching between the different priority tasks during the evolution of
the dual-arm use-case on the KoBo setup. Blue denotes relative pose, orange is
absolute distance, yellow depicts tilt control, and purple represents joint-limit
avoidance. As expected, the relative pose between the two arms is set as the
default first task (top priority) which cannot be disturbed at any given instance.

in CDTS can be satisfied even if the exact configuration is
not met, i.e., it does not converge to an equilibrium but rather
remains stable/converge to a set around it. In this context,
the main idea is to explore bounded geometric regions from
Table II. The stability and convergence follows from [74],
[77], yet we introduce a linear blending based strategy that
avoids chattering and ensures continuity in the joint space. The
switching is performed based on the activation/deactivation of
tasks in accordance with the set-based condition and the time
evolution of each individual task in the current mode, i.e.,

ėi = Juiq̇ = Ju

(
J+
u1
κ1

˙̂e1+ · · ·+P u1:η−1κη
˙̂eη

)
.

Hence, a set-based task is activated if it lies outside the set
region defined in Table II and if its evolution pushes it away
from the boundaries. In contrast, if any of the conditions

(i) ei ∈
(
ei, ei

)
,

(ii) ei � ei and ėi � 0,

(iii) ei � ei and ėi � 0,

is satisfied, then the task will be deactivated—that is, it will
only act in the lower priority of the self-motion. The activation
and deactivation of tasks, with all being defined in the lower-
priority level yields the desired switching strategy. That is, if
for instance, a task with priority 2 is deactivated, this will be
pushed below all activated tasks.

The asymptotic stability of active tasks follows from the fact
that all possible N modes are asymptotically stable. This has
been proved in [74] with specific control gains, which we use
in the paper. Hence, by building a continuous function over
the dynamics of each mode, i.e., f , λ1f1+λ2f2 · · ·+λNfN ,
where

∑
iλi=1 for λi>0, we can build a quadratic Lyapunov

function for the augmented vector which guarantees global
asymptotic stability. As active tasks reach equilibrium or are
within their desired sets, they will be deactivated, which in turn
opens space for the subsequential tasks to reach equilibrium.
Further details of the augmented dynamics for any task and
the resulting Lyapunov-Krasovskii analysis are shown in [74].

Illustrative Example: Here, we present a didactic overview
of our switching strategy by analyzing the scenario illustrated
in Fig. 1. The first main task, defined as an equilibrium, is the
control of the tightly coupled fixed relative orientation between
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the two end-effectors, which is encoded by ẋr=Jxr q̇=0. Any
motion or task should not disturb this main cooperative task.
Our integrated (multi-agent based) feedback planner generates
the reference trajectory, which is then followed through the
absolute pose funnel (45). During tracking, we also want the
system not to tilt the tray beyond a certain safety threshold,
which is regulated by the tilt control task. This initially operates
in the nullspace of the tracking, however if it is closer to its
limit then tracking becomes lower priority and operates in the
nullspace of the tilt-control (see Fig. 7).

It is important to note that the above-introduced tasks require
only 8 DoFs for successful execution (in contrast to the trivial
12 from a complete modeling). Subsequently, tasks such as
joint limit avoidance and local manipulability optimization
are accomplished in the augmented nullspace of the above
mentioned three main tasks. In this regard, deactivating specific
tasks and pushing lower tasks up in the order as the satisfaction
conditions are violated and re-activating them back is a critical
feature of our framework and is essential for real-time planning
success.

Continuity at the Joint Level: Our linear blending strat-
egy allows a continuous joint-space velocity profile during
switching. This improves previous results, e.g., [74], which
could lead to undesirable residual torques and degrade robot
performance. When a task is pushed inside the corresponding
controllable sets, its deactivation is started. Instead of using a
harsh switch, we introduce linear blending, which outputs a
convex combination between tasks gaining a higher priority e↑
and those losing priority e↓, that is, Λe↑ + (1−Λ)e↓, where
Λ is a state-dependent variable that evolves within the region.
This ensures a smooth and continuous transition of tasks in
the joint-space which may otherwise result in jerky profiles.

VII. CONTACT HANDLING AND LANDING CONTROLLER

In this section, we illustrate the bimanual contact detection
scheme as well as our landing controller which helps to provide
a safe and human-like placement of objects with a sense of
touch in non-static environments.

A. Bimanual Collision Detection and Wrench Estimation

For successful completion of the landing task, the first
challenge that needs to be addressed is to detect the contact.
Usually, classical approaches to detect contacts based on
external torques and momentum observers will fail to provide
robust detection in bimanual tasks as the internal strain of
the system even with low errors in the relative control will
easily exceed the torque thresholds. We therefore developed
the following approach for bimanual contact detection utilizing
the estimation of the external wrenches at the end-effectors of
both arms. The contact wrenches Fext,l =

(
fT

ext,l mT
ext,l

)T
and Fext,r =

(
fT

ext,r mT
ext,r

)T
for left and the right arm,

respectively, are calculated internally in the robot controller
based on the external torque estimation. We use them to calcu-
late the estimated external wrench Fext =

(
fT

ext mT
ext

)T
on

the intermediate frame between the two arms (absolute pose)
as

Fext :=

(
fext,l+fext,r

mext,l+mext,r− 1
2
vlr×fext,l+

1
2
vlr×fext,r

)
, (50)

Fig. 8: Overview of our novel integrated planning and control framework.
The symbol ∪ denotes the concatenation of the matrix inputs into the block
for creation of the augmented jacobians. The P block depicts the nullspace
projection of the input matrix M applied to the input vector v, i.e. the
output vector o would be o = (I −M#M)v. The # symbol denotes the
robust pseudo inverse defined later in the section. For illustrative purpose, this
picture only uses 5 agents for environment exploration and a fixed order of
task-priorities. The ∗ symbolizes the fact that rel. control is always the first.

where vlr is the vector from the left to the right arm end-effector.
We test Fext against a fixed threshold Fext,th element-wise
for contact detection. The advantage of using Fext for contact
detection is the elimination of false detections due to internal
strain, as any internal strain will show up in both arms wrenches
but with a different sign and therefore does not influence Fext.
A dead-zone function is also applied to the elements of fext

in the experiments so that the system does not react to sensor
noise or modelling errors. More specifically, the estimated
force f∗ext,i can be given by:

f∗ext,i :=

 fext,i + fo, fext,i < −fo
0, −fo <= fext,i <= fo
fext,i − fo, fext,i > fo

(51)

where i ∈ {x, y, z} and fo is the half size of the dead zone.
Furthermore, one can also utilize this information as an input to
the planner for integrating sudden contact and reflex reactions.

B. Safe LAnding Controller (SLAC)
When the tray is close to the landing location/surface of

roughly known position and orientation, the robotic system
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will establish contact with that surface. At this point, using
the wrench estimation technique explained above it is straight-
forward to design a rotational admittance controller to be able
to adapt to unknown surfaces. We design and implement the
following admittance control law

q̇rot := J+
g,rot

∫ t

0

m∗ext(τ)− kωω(τ)dτ, (52)

where J+
g,rot, ω and kω denote a robust pseudo inverse of the

rotational geometric Jacobian, the rotational velocity of the
intermediate frame, and the damping gain of the admittance
control, respectively. Similar to the force, the dead zone
function from (51) is also applied to mext. This approach
allows the robot to adapt to unknown surface inclinations and
establish steady contact before releasing the object.

VIII. ADDITIONAL IMPLEMENTATION DETAILS

The overall control scheme is depicted in Fig. 8. As an
illustrative example, if we assume that the priority order is
keeping the relative pose first, and then the absolute position
control followed by the absolute tilt and joint limit avoidance,
the closed loop control equation is given by

q̇ = q̇rel + P
(
Jxr

)
q̇abs + P

([
JTxr JTpa

]T)
q̇tilt

+ P

([
JTxr JTpa JTxlzerr

]T)
q̇jl,

(53a)

q̇rel = J#
xr

(
vecxr,0 − vecxr

)
, q̇abs = q̇c + q̇ff , (53b)

q̇tilt = J#
xlzerr

|vec (l− lz)|2 , q̇jl =
1

4
J#
xqi

(
JT
xqi

Jxqi

)
The # symbol defines the robust pseudo-inverse of a matrix M ,
i.e., M# = MT

(
MMT + λεI

)−1
, where I is the identity

matrix weighted by λε > 0 for damping the pseudo-inverse.
Furthermore, xr,0 denotes the relative pose at the beginning
of the task.

The control joint velocity q̇c and feed-forward joint velocity
q̇ff are defined as follows (see (56) and (57)). The resulting
joint velocity q̇ is integrated and the resulting desired position
is controlled by a low level joint impedance controller. As
the distance and velocity between two consecutive goals can
vary, the instantaneous Cartesian control goal pi is interpolated
according to the actual velocity vact of the robot, in order to
ensure a smooth movement

pi := pi + vactT
pd − pi

|pd − pi|2
, (54)

and whenever |pd − pi|2/T < vact, pd is updated. If vact is
below the commanded velocity for the current segment

vts =
pd(t)− pd(t− T )

T
, (55)

where T is the planning cycle time, it is increased in each time
step by a constant acceleration (we used a constant increment
of 0.05 m/s) until vts is reached to ensure a smooth transition
to higher velocities.

The feed-forward joint velocity

q̇ff := vact
˙̃qff

1

| ˙̃qff |
2

, (56)

with ˙̃qff :=
(
JxrJpa

)# (
0T pT

i (t+ T )− pT
i (t)

)T
and the

control velocity

q̇c := kpos
˙̃qc

1

T | ˙̃qc|
2

, (57)

where ˙̃qc := J#
pa(pi − p),

enable the robot to reach the instantaneous control goal pi(t)
in each time step. The relative pose and the absolute position
Jacobians are denoted by Jxr and Jpa , and p is the current
position of the robot according to the commands, i.e. assuming
perfect low-level control. The parameter 0 ≤ kpos ≤ 1 is
the position control gain. Due to the use of Jxr in (56), the
feed-forward velocity respects the relative orientation of the
robot and is thus not reduced when being projected into the
nullspace of the relative pose controller.

IX. SIMULATIONS AND QUANTITATIVE ANALYSES

To demonstrate the effectiveness of our planning approach,
we compared our proposed motion planner with other state-of-
the-art reactive planning methods [8], [46], [68] including the
work from [42] in several challenging scenarios. These planning
scenarios include multiple random-placed dynamic obstacles
as well as static and dynamic trap-like barriers obstacles,
which generally pose major challenges for reactive planning
approaches. Additionally, to test portability of our framework
we considered different dual-arm robot setups, for instance, a
humanoid-like KoBo robot and a cooperative setup with two
table-mounted Franka-Emika research robots [78].

A. Implementation Setup

For the simulations, a laptop running Ubuntu 18.04 (power-
save mode) with an Intel® Core i9-9880H CPU with 8 cores
and a base frequency of 2.30GHz was used. All controllers
and robot kinematic models were implemented using the DQ-
Robotics library [79]. The low-level controller, running at
1 kHz, is programmed in unoptimized C++ using libraries
provided by the robot manufacturer, and exploiting the ROS
control framework [80]. The planner, on the other hand, runs
at a frequency of 100Hz in a different process and exchanges
information with the control in the form of messages. Note that
due to the restrictive time constraints within our robot control
framework (time step requirements: Tc < 10ms) comparisons
with classical sense-plan-act approaches are not feasible.

The cooperative control priorities deployed for all simula-
tions are maintaining the relative pose, the absolute distance
to the prescribed Cartesian path – that is the abs. distance
funnel, the tilt-angle of the shared tray, and remaining within
the joint-limits with gains of κrp=0.005, κee=0.1, κap=1.0,
and κjl=5.0, respectively. The gains and planner parameters
were not optimized and perform similarly throughout multiple
scenarios. To ensure replicability, all simulation parameters are
available in our accompanying data repository [81]. Overall,
parameters are na = 10, rr = 0.05, rd = 0.35, kcf = 0.015,
ka = 4.0, kd = 4.0, kr = 0.08, vmax = 0.2m/s, amax =
13.0m/s2. The cost function for evaluating the agents uses the
weights wpl = 10.0, wgd = 100.0, wod = 0.001, wws = 1.0.

Detailed information on the scenarios and parameters for all
simulations is available in [81]. This data repository for the
paper also includes videos for all generated simulations.
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Fig. 9: Comparison of the different planners in the three static environments with two Franka Emika robots cooperatively grasping a tray. In subfigure (a), the
narrow passage scenario Dual Arm Static 1 is depicted. The scenarios Dual Arm Static 2 and Dual Arm Static 3 with disparate obstacle arrangements are
shown in subfigure (b) and (c), respectively. The trajectory of the CFP planner is depicted in green, the CF planner in red, MFI in blue, and APF in orange.

TABLE III: QUANTITATIVE COMPARISON OF THE VARIOUS REACTIVE PLANNING APPROACHES IN 30 RANDOM DYNAMIC SCENARIOS.

Environments Planner Number Success Path Tracking Best Agent
(Scenes) of runs Rate [%] Length [m] Error [mm] Switches

Dual Arm
Dynamic

CFP 30 96.67% 1.39± 0.07 2.7± 1.2 0.57± 0.60
CF 30 53.33% 1.32± 0.03 2.2± 0.4 -

MFI 30 23.33% 1.96± 0.22 63.7± 40.3 -
APF 30 3.33% 1.99± 0.00 11.1± 0.0 -

TABLE IV: COMPARISON WITH STATE-OF-THE-ART PLANNING AP-
PROACHES IN VARIOUS SCENARIOS.

Envs. Planner Suc. Path Tracking B. Agent
(Scenes) Len. [m] Err. [mm] Switches

Dual Arm
Static 1

CFP Yes 1.37 1.9 1
CF Yes 1.37 1.3 -

MFI No - - -
APF No - - -

Dual Arm
Static 2

CFP Yes 1.66 2.0 0
CF Yes 1.66 1.6 -

MFI No - - -
APF No - - -

Dual Arm
Static 3

CFP Yes 1.51 2.4 1
CF Yes 1.67 2.2 -

MFI Yes 2.35 0.9 -
APF No - - -

KoBo
Dynamic 1

CFP Yes 1.22 0.3 4
CF Yes 1.18 0.4 -

MFI Yes 1.31 0.2 -
APF Yes 1.32 0.2 -

KoBo
Dynamic 2

CFP Yes 1.12 0.2 3
CF Yes 1.21 0.4 -

MFI Yes 1.27 0.3 -
APF Yes 1.36 0.2 -

KoBo
Dynamic 3

CFP Yes 1.22 0.1 5
CF No - - -

MFI Yes 1.26 0.2 -
APF Yes 1.51 0.2 -

B. Results and Discussion
The results for the expository scenarios consisting of trap-

like barrier obstacles, three examples are shown in Fig. 9
(rest can be found in [81]), are summarized in Table IV. We
compare our proposed framework (CFP) against state-of-the-
art circular field approaches (CF), e.g., [8], [9], [46], magnetic
field (MFI), e.g., [68], as well as standard artificial potential
fields (APF) [42].

The results for the illustrative cases clearly show that our
proposed CFP planner, is the only planner that successfully
finds a collision-free path across all the designed environments.
This result emphasizes the reliability of the proposed framework
based on global environment exploration with local control

relaxations. The tracking flexibilities, e.g., following a funnel
rather than a straight rigid path is highlighted in the slighter
higher tracking error. On the other hand, the CFP planner finds
the shortest path in almost all scenarios mostly due to its larger
exploration space.8 For instance, consider the KoBo Dynamic
2 scenario, where all the planners were able to compute a path
to the goal. Our CFP planner generated the shortest path with
a length of 1.12m while APF had the longest (1.36m). The
proposed framework is also capable of running well below the
real-time limits. The average step time for calculating the next
reference position is 695.18 µs. The tracking error of 0.2mm
was also the lowest in this environment with our CFP, which
is the same as using APF. We also report that the average step
time for the controller, that is, preparing and computing the
augmented Jacobians, projectors, inverses, and the final desired
joint velocities for the cooperative system is 641.56(±396) µs.
As far as agent switching is concerned, the most switches (5)
occurred for the KoBo Dynamic 3 scene.

Our quantitative analysis supports these findings (cf. Tab. III).
Herein, we additionally analyzed the different planning ap-
proaches in 30 distinct complex environments with three
dynamic obstacles. In each trial, we randomly changed the size,
initial position, and/or velocity of the obstacles. Two of these
obstacles were always placed to form a barrier and posed a
major challenge for the APF approach, which only succeeded in
a single trial out of the 30 runs that were conducted per planner.
Notably, the CF planner resulted in lowest tracking error while
MFI planners were the worst. Regarding path lengths, CFP and
CF planners resulted in lengths of ≈ 1.3m whereas MFI and
AFP planners had lengths of ≈ 1.9m. Overall, the advantages

8Note that the multi-agent simulation for finding the best agent settings
(which corresponds to a global path planning query) is called with Tp = 10ms
in the current implementation and while most of the agent simulations are
done in parallel, there is still a considerable computation overhead. Thus, the
calculation step time can be lowered even more by calling the multi-agent
simulation less frequently.
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Fig. 10: Predicted and planned paths for a static narrow passage scenario used
in the simulation studies. Here, the number of explorer agents, na, was set to
10. The Cartesian absolute position of the cooperative system during starting
is at (−0.7567, 0.0063, 0.6185) and the goal is defined to be (0.5, 0.0, 0.7).
It can be seen that the final planned path evades the different obstacles in a
sub-optimal fashion and also respects the constraints of the dual-arm system.

and mainly reliability of the proposed framework are reflected
in the considerably higher success rate compared to other
approaches. While CF planners reach 53%, our proposed CFP
framework achieves a success rate of ≈ 97%. The only failure
case with our approach occurred due to joint limits in a multiple
simultaneous boundary constraint scenario, in which all other
planners also failed.

Note that the CFP exhibited slightly longer path lengths on
average than the CF planner, despite having a higher overall
success rate. This observation can be attributed to the fact
that the CF planner only succeeds in simpler scenarios, which
require shorter paths, skewing its average path length towards
shorter values.

In Fig. 10, we visualized the predicted paths of all explorer
agents at the initial time step. The presented visualization
clearly shows the ability of the diverse heuristics and random-
ized agents to comprehensively cover and evaluate numerous
paths for obstacle avoidance.

The predictive multi-agent framework demonstrates an
additional advantage in the scenarios Dual Arm Static 3 (cf.
Fig. 9 (c)) and KoBo Dynamic 3 (cf. Fig. 11). Both scenarios
show that switching between agent parameter sets during the
execution yields improved results compared to solely evaluating
an initial cost function and utilizing a single agent parameter
set. In Fig. 9 (c) the CFP planner initially adopts the same
parameter set as the CF planner but switches to a more optimal
parameter set just before passing the obstacles. More parameter
set switches in one run are also possible as can be observed in
Fig. 11, which shows the costs of all agents at each time step.
Here, the real robot switches between the parameter sets of
agent (d), agent (a) and two distinct random agents, i.e., agent
(f). The switching occurs when the priority of the absolute pose
in the CoSTP controller is low and the real robot is no longer
able to follow the predicted trajectory. Consequently, the cost
of the current best agent increases and the parameter set of the
new best agent is adopted (cf. iterations 180, 298, 316, 449

Number of planning iterations
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Fig. 11: The cost function value of all agents used in the scenario KoBo
Dynamic 3. For better visualization purposes the original data has been
smoothed out with a Gaussian-weighted moving average filter with a window
of length 10. It is important to note that, as the planning horizon comes to
an end, the multi-agents converge. The orange area denotes the approximate
time agent (d) was selected as best agent, and the green area was dominated
by agent (a). In the purple and grey areas the parameter sets of two different
agents of type agent (f) were used.

and 559 in Fig. 11). More detailed comparisons of our reactive
planner CFP, including comparisons with global, non-reactive
planners are in our previous publications [10], [57].

C. Ablation Studies

Furthermore, in order to test the robustness of the task
hierarchy choice and the switching strategy, we perform
ablation studies. For this, we use the constrained Dual Arm
Static 1 scenario described in Fig. 9 (a) of the paper. All
scenarios are run with 5 explorer agents. A comparison was
made of the following two control strategies:
Exp 1: Task switching is active through CoSTP: This is the
basic scenario and as expected, the system is able to reach the
goal without any difficulty.
Exp 2: Task switching is inactive: The task hierarchy, main-
tained from the commencement to the end, in this case was:
(1) Relative pose (2) Joint limits (3) Absolute Pose (4) EE
Tilt. We found that the system was unable to track the absolute
pose of the cooperative task space after a certain point in time.
The explanation would be that during the evolution of the
complex task, the number of degrees of freedom in the (static)
nullspace gets diminished significantly, and the 3rd and 4th
tasks get executed only with a reduced priority.

Note that the gains for tasks 1, 2, 3, and 4 were fixed
throughout the experiments and deployed several times to
ensure consistency with values of 0.005, 2.0, 1.0, and 0.1,
respectively. The key point is that static solutions lead to
infeasible results, and are dependent on tightly tuned control
construction which might fail with slight change in scenarios.
Reduced Joint-limits: To further highlight and evaluate the
performance of the CoSTP we perform a series of experiments
where we artificially reduce the joint limit span. The range
of joints 1, 2, 3, 4, 5, and 7 are reduced by a factor of ≈ 12%.
Joint 6 has a reduced limit originally and therefore was lowered
by a factor of ≈ 5%. Even in this highly constrained setup, the
framework is still able to generate feasible control signals that
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Fig. 12: Non-stationary environments: Illustration demonstrating dynamic
obstacle avoidance (the ArUco marker denotes the centre of the obstacle).

complete the task successfully. Using the suitable gains that
we choose, the controller reaches a globally asymptotically
stable equilibrium point in all modes. Our algorithm switches
effectively within modes that fulfill the equality tasks (such
as maintaining the relative pose) while ensuring the set-based
tasks (such as the joint limits) are not violated.

Although harsher penalty functions can be used for the
joint limit avoidance task (cf. subsection V-E), this experiment
demonstrates that with robust task-switching, the different
tasks we consider can be achieved in a dual-arm scenario. We
consider the choice of the function an exciting topic for future
investigation, including selective activation and de-activation
of joints instead of pushing all joints toward their centers.

X. REAL ROBOT EXPERIMENTS

In this section, we present thorough real-world experimental
evaluation of the planner and control framework. As the
experimental test bed, we used the KoBo setup with two Franka-
Emika research robots, as shown in Fig. 1. The experiments
were executed using an Intel® Core i7-7700 processor with
4 CPUs and 2 threads per core, having a clock speed of
3.60 GHz and running Ubuntu 18.04 LTS operating system
with a real-time kernel. Otherwise, the software structure
and implementation are identical to the simulations. The
vision thread, explained later, runs in a separate computer
for computational load reduction and due to the restrictions
stemming from the use of a real-time kernel. Indeed, we
emphasize the fact that the controller for the Franka Emika
robots needs access to a real-time kernel with a thread running
below 1 kHz; otherwise, there would be a communication
failure. Additionally, no code optimization was done for the
computer system which was set to the default powersave mode.
We report and inspect 2 case studies and the additional 10+
trials in the form of videos can be found in [81]. Herein, we
focus on 2 distinct case studies, as well as an assessment of
a landing experiment, to demonstrate the real-time evasive
strategies in fast-changing environments as well as in highly
constrained static scenes.

A. Case Study #1: Reactive planning with dynamic obstacles

The central intention of this experiment is to demonstrate the
reactive capability and, mainly, the reliability of the proposed
framework. As shown in Fig. 12 and the accompanying video

0.66
0.68

Agent (c)
Agent (d)Start Configuration

Goal Configuration

Planned path
using CFP

Goal pose

Start pose

0.7

0.35

-0.6

0.45

0.55

-0.2 0.720.2

0.6

Fig. 13: Planning in static environments: As can be seen in the snapshots at the
top, the dual arm system successfully avoids the obstacle (plant) and releases
the tray on the table-top. The plot below exemplifies our agent switching
strategy during the final planned path for the constrained scenario.

attachment, the robot successfully executes a pick and place
task after the human places the tray at the pick-up location.
The non-stationary obstacle is then introduced midway along
the path which is detected by a real-sense D435 through an
attached aruco-marker. We use fiducial markers to simplify the
visual sensing aspect of robotic experiments. For detection, we
use the ArUco module of OpenCV [82]. For the calibration
process we obtain the marker poses in the robot frame by
estimating the fixed SE(3) transform between the robot base
and the camera frame. To solve this estimation problem, we
use the ViSP package [83].

The cooperative control primitives deployed in this study
are maintaining the relative pose between arms, the absolute
distance to the originally planned trajectory, i.e., abs. distance
funnel, the tilt-angle of the shared tray, and remaining within the
joint limits with gains of κrp=0.005, κap=0.9, κee=0.1, and
κjl=5.0, respectively. The planning parameters are na = 4,
rr = 0.05, rd = 0.3, kcf = 0.001, ka = 4.0, kd = 4.0,
kr = 0.08, kσ = 0.0, kω = 10.0, fo = 1.5 for forces and
fo = 0.0 for torques. The remaining parameters are the same
as the simulations in the previous section. Our robust strategy
ensures that the set-based constraints remain satisfied at all
times. Despite the fact that continued disturbance is added in
the form of an unforeseen obstacle, as is illustrated in Fig. 12,
the evasion for the elaborate system is made possible through
intelligent agent switching as well as flexible task adjustment.

B. Case Study #2: Planning - static scenario

In this second scenario, the robotic task is to plan a path
in a highly constrained scenario, as depicted in Fig. 13. Note
the main obstacle, i.e., the plant, covers most of the reachable
space of the cooperative system.

After reaching the goal, we also want the system to detect
uncertain landing surfaces and release the tray in a human-like
fashion. More specifically, our objective here is to examine the
system in a case where the workspace is limited and constrained
dual-arm manipulation is not trivial. The planning and control
parameters are the same as in the last experiment except for
the rotational admittance in SLAC which is kω=0.01. The
plots in Fig. 16 indicate that the joints of the left arm of
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time (s)

Fig. 14: Trajectory for a landing (p) with a sliding motion along the y axis,
and normal angle (ϕ) along z-axis, and external forces (f ) and torques (m)
according to (50). The landing takes place in the marked area of the plot –
starting with the contact detection and ending when the final goal is reached
by sliding the object over the table.
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Fig. 15: Data from real robot experiments: (a) Absolute and relative pose
errors for the trial explained in Sec. X-B. Both error norms decay to 0 in the
end. (b) Tray tilt (reference was set to 5°) during the entire task horizon.

the KoBo system remain within the safe bounds and Fig. 15
reports the error in the cooperative variables (absolute and
relative pose) and the evolution of the tray tilt during the task
horizon. The two peaks in for the absolute pose error reflect
the fact that the absolute distance to the trajectory task was
the second priority task at those points. Furthermore, the abs.
pose combines both Cartesian and orientation errors, and the
second peak matches the titl error due to the contact instant
with the table. Overall, the peaks are also in accordance with
the switching illustration of the different controllers in Fig. 7.
The tilt angle is commanded and maintained at 5° for feasible
task completion. Fig. 13 reinforces our claim of adaptive agent
switching between type 4 and type 3 as the robot avoids static
obstacles in the scene.

C. Analysis of the Safe Landing Capability

This experiment was conducted together with previous ones,
and highlights the scenario where the dual-arm system is
supposed to safely release the cup-tray system after reaching
the landing location. The goal here is to validate our SLAC

strategy. The final landing act is executed by sliding on the
surface of the table along the y-axis of the world frame after
which the system comes to a rest. When the contact is detected,
the controller switches between the tilt controller and instead
deploys the rotational admittance controller. As it lands by
sliding on the table (along the y-axis), the planner needs to
adapt its orientation, as it starts with an angle of 15° towards
the table. The entire duration of the event is 15 seconds, yet
the actual landing strategy happens around the marked area
and takes roughly 8 seconds. The control parameters used are
kω = 0.5, fo = 6 for the force, and fo = 1.5 for the torque.

Fig. 14 illustrates the behavior of the system during this
task. The top panel demonstrates the fact that the external
forces and moments (wrenches) adapt accordingly in order
to bring about a stable landing. As expected, the initial high
force of −40 N in the z direction during the contact phase
can be seen to decrease asymptotically as soon as the planner
switches priority and focuses on surface adaptation. Moments
on the other hand, stay approximately in the range of −4 to
4 Nm with the moment in the x direction reacting the most
to the sensed torques. The expected human-like alignment of
the tray to the table is demonstrated with the translation p and
normal angle ϕ data in the bottom panel. After the detection
of the contact, the tilt controller is swapped with the rotational
admittance controller.

XI. CONCLUSION, DISCUSSIONS, AND FUTURE OUTLOOK

This work introduces a novel real-time planner-controller
framework for coordinated dual-arm tasks in fast-changing
environments. Our vector-field-based planning strategy exploits
multi-agent exploration of the environment, thereby resulting
in robust global exploration proficiency with high reliability.
Further, our framework records and integrates environmental
wrenches which are fed back into the planner and also allows
us to achieve a common bimanual task like placing a tray
in a chosen location in a safe manner. The distinct modeling
strategy that we follow utilizes coupled analysis of the task
space and captures constraints with fewer degrees of freedom
compactly, thanks to our usage of unit dual quaternions. We
then systematically formalize geometric subsets of interest
(primitives) in the shared task space that we control flexibly
by implementing a switching scheme. The extra degrees of
freedom of the system are thoroughly used to design nullspace
projectors to accommodate these additional primitives and
ease task execution. Our approach can also be extended
to n manipulators given the CDTS abstraction [27]. The
modifications that would facilitate this are additional frames
in the CDTS, the corresponding new analytical Jacobians, and
the augmented joint space.

Although control strategies based on quadratic programming
(QP) bring in interesting perspectives in this regard [84]–
[86], they are not necessarily better. Our CoSTP framework
provides a closed-form solution to a highly constrained problem
and does not suffer from the exponential costs arising from
inequality constraints. The CFP combined with the CoSTP
form an anytime algorithm, resulting in better solutions with
time. Moreover, we have feedback at each step of the planning
and control cycle which is not possible with QP-based methods.
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Fig. 16: Commanded joint positions of the left arm (depicted in green) along with their limits (red) from the real robot experiments described in section X. Our
joint limit controller ensures that all the joints are always pushed toward the center of their ranges.

Comprehensive analyses demonstrate that our proposed
framework achieves better performance than current state-of-
the-art reactive planners in the context of dual-arm manipulation
in stationary and non-stationary settings. To this end, we fuse
the environment information through vision sensing, which
is later used for effective lightweight prediction computation.
The evasive maneuvers generated from the predictions help
us choose globally sub-optimal paths for reaching a specific
target location. Experiments also show that our multi-agent
strategy eliminates the need for constant parameter tuning
with the change in environments. Furthermore, the problem
of local minima is also addressed by the predictive switching
scheme. Lastly, through admittance control, we are able to
adapt to different landing surfaces and release objects intuitively.
Overall, the main contribution of the proposed framework is
the design of a reliable reactive planner for dual-arm and high-
DoF systems – in terms of timely finding feasible solutions in
different setups without any redesign or parameter tuning.

Some of the limitations of our approach include local
adaptation of the manipulability of the entire system through
artificial forces. In the future, we aim to alleviate this problem
by incorporating embodied manipulability maps which help
to pass global manipulability information to field planners, in
turn facilitating the analysis of geometric capability of the
robotic system at task-specific locations [87]. Also, a more
insightful analysis of the environment representation is expected
to handle complex coordinated maneuvers in a way that object
affordances are intrinsically encoded. The introduction of
obstacle detection uncertainty and testing planner robustness
is yet another avenue for extensions in the future, along with
supplements for handling complex uncoordinated tasks.

APPENDIX A
MATHEMATICAL PRELIMINARIES: DUAL QUATERNIONS

The dual quaternion algebra [88] describes rigid body
motion algebraically in a similar way that quaternions rep-
resent rotations in three-dimensional space. A unit quaternion
r = cos(φ/2) + sin(φ/2)n represents a rotation with angle
φ around the axis n [89]. The inverse operation is given by
the conjugate r∗ = cos(φ/2) − sin(φ/2)n. The one-to-one
mapping from the quaternion space to R4 is governed by the
vec 4 : H→ R4 operator. Essentially, the operator just takes the
coefficients of the quaternion and stacks them in a vector. The
algebra of dual quaternions is an algebra over R8 composed of
H⊗D where H represents the set of quaternions and D denotes
the set of dual numbers. In this paper, we used S to refer to
the set of unit dual quaternions which can be mathematically
defined as follows,

S , {x ∈ Spin(3)nR3 : ‖x‖ = 1} (58)
where elements of S furnished with the operation of mul-
tiplication represent elements of Spin(3) n R3. Analogous

to quaternion algebra [90], dual quaternions are also non-
commutative, that is, for two dual quaternions x and y,
xy 6= yx. Therefore, one way is to exploit the matrix form of
the algebra to commute terms when performing dual quaternion
multiplications (as in the case of Clifford algebra).
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