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A B S T R A C T   

The drive towards device miniaturisation in fields such as microfluidics or microelectronics has established a 
need for non-intrusive, in situ temperature sensing, which is difficult to implement and manufacture in devices. 
Inkjet printing is a non-contact, maskless deposition method which is compatible with a wide range of materials 
and may enable the economical design and production of such devices. However, current inkjet-printed thermal 
sensors are predominantly based on resistance across printed circuits and do not meet the requirements for 
miniaturised devices. In this paper, an inkjet-printable material for luminescence-based temperature sensing is 
presented. Two-part reactive inks are developed using CdSe/ZnS quantum dots immobilised in an addition cure 
silicone matrix. Further platinum catalyst is added to resolve issues with catalyst poisoning by labile QD ligands, 
with the effect of catalyst loading on the degree of conversion and QD emission probed using Raman microscopy 
and well-plate reading, respectively. A mechanism for platinum-induced quenching is proposed. The inkjet 
printing of a bulk QD-silicone composite is successfully demonstrated for the first time, enabling a new route for 
devices with embedded luminescence thermometry. Confocal laser scanning microscopy is used to characterise 
the temperature response of the material, demonstrating sensing with a thermal coefficient of emission intensity 
of − 0.68 to − 0.93 % ◦C− 1 between 30 and 60 ◦C. We anticipate that this material has application for in situ 
thermal analysis and calibration within the fields of microfluidics.   

1. Introduction 

The drive towards device miniaturisation in electronics, optronics, 
and chemical and bio-analysis [1,2] raises a corresponding need for 
non-invasive, in situ thermal sensing for accurate calibration and anal-
ysis during device operation. For instance, within the fields of micro-
fluidics and organ-on-a-chip, integrated sensors eliminate the need for 
manual sample collection, which is time-consuming, requires large 
working volumes, and can disturb the system [3]. However, direct 
sensor integration is challenging via conventional manufacturing: de-
vice fabrication is greatly complicated by multi-step processes, heat 
treatments, and material compatibility. Inkjet printing (IJP) is a 
non-contact deposition method which is suitable for biological appli-
cations as it prevents cross-contamination from the surface being printed 
on. Inkjet printing can produce electrodes and sensors on a range of 
substrates at low temperatures and has become an attractive 
manufacturing process for end-use products (including electronics [4,5], 

chemisensors, [6] and microfluidics [7]) due to its capacity for 
multi-material deposition and the geometric freedom inherent to addi-
tive manufacturing techniques [8,9]. The drive for IJP of microfluidics 
has been broadly discussed by Waheed et al. [7]; moreover, it delivers 
small droplets (typically 20–50 µm) [10] and enables drop-on-demand 
material deposition compatible with microdevices with temperature 
sensitive substrates. It has been shown that inkjet printing is a viable 
technique for integrating various sensors to assess the metabolic activity 
of cells, one of the major challenges in maximising the potential of 
Organ-On-Chip systems. Moya et al. proposed an approach that in-
tegrates multiple sensors into the very thin, porous, sensitive membrane 
of a liver-on-chip device. Three electrochemical dissolved oxygen (DO) 
sensors were printed via inkjet along the microfluidic channel, enabling 
local online monitoring of oxygen concentration [3]. Printed DO sensors 
showed a linear response over a wide range of oxygen concentrations 
and showed very good performance with low detection limits. 

Current inkjet-printable temperature sensors are well-suited for 
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wearable sensors; however, although IJP is capable of material deposi-
tion with 20–50 µm resolution [10], these sensors are typically on the 
order of cm [2] in size and sensing areas tens of mm [2], which limits 
spatial resolution and capacity for planar or 3D imaging. [11,12] The 
vast majority of IJP temperature sensors reported are resistance tem-
perature detectors (RTDs) or thermistors, both of which measure elec-
trical resistance as a function of temperature. Resistance-based sensing 
materials for inkjet typically require post-processing heat treatments at 
around 150 ◦C and include silver [13–17], nickel oxide [18], carbon 
nanomaterials [19–21], and PEDOT:PSS polymers [19–21]. However, 
while RTDs have the advantages of being easy to manufacture, sensitive, 
and stable, RTDs are not suitable for measurement of sub-millimetre 
areas or transient temperatures due to their large sensing areas. They 
are also active devices with milliamp scale power, which may alter 
measurement due to heat generation. The thermal coefficient of resis-
tance of inkjet-printed materials is currently limited to 0.1–0.3 % C− 1, 
the one exception being the thermistor-like sensor reported by Trudeau 
et al. which has six degrees of magnitude change in resistance but its 
17–36 ◦C sensing range is below body temperature [17]. In summary, 
IJP resistance-based thermal sensors have limited spatial resolution and 
do not achieve the sub-degree thermal resolution in the physiological 
range, which is a barrier to their use in microdevices and in cell culture 
and biomedical applications. 

Luminescence thermometry – temperature measurement based on 
changes in the fluorescence of a material – can address requirements for 
integrated sensing in microdevices [22,23]. This approach has high 
spatial and thermal resolution, which makes it suitable for in situ 
detection of localised “hot-spots” in microdevices and for the monitoring 
of complex systems. The spatial resolution of fluorescence-based sensing 
is determined by size of the emissive species and the data collection 
method [22]; microscale resolution is typical, using embedded optical 
fibres or waveguides for remote sensing and fluoresecence microscopy 
for planar or 3D sensing. The set up for fluorescence-based measure-
ments is more complex than that of IR thermography, requiring an 
excitation source and optical set up, and the method can introduce large 
systematic uncertainties as fluorescent parameters are compared to a 
reference image taken at room temperature, in addition to sensitivity to 
lighting conditions. However, the difference in emissivity between de-
vice materials and solvents can reduce the accuracy of IR measurements; 
furthermore, the technique uses wavelengths between 0.7 and 20 µm, 
while the solvents of biochemical reactions show strong absorption > 1 
µm, which limits its application for microfluidics. The spatial resolution 
achievable using IR is also diffraction-limited; fluorescence-based mea-
surements using standard fluorescence microscopes have resolutions 
down to 1 µm, while IR thermography examples in microfluidics liter-
ature are between 3 and 10 µm [24]. Choudhury et al. demonstrated 
sensing with 3.6 µm axial and 0.6 µm lateral resolutions within a 
microchannel using confocal laser scanning microscopy with a wave-
guide [25]. Overall, fluorescence sensors may be desired in applications 
where high spatial and thermal resolution are required, such as micro-
fluidics involving PCR and microreactors. An inkjet-printable lumines-
cence-based sensing material could enable the production of devices 
with integrated sensing geometries that are challenging or impossible to 
achieve by conventional means. 

Quantum dots (QDs) are fluorescent semiconductor nanoparticles 
with outstanding emission properties for luminescence thermometry, 
specifically high photostability, high quantum yields, small diameter, 
and a narrow, tuneable emission peak [26,27]. High-resolution tem-
perature sensing with QDs has been demonstrated using intensity 
[28–32], spectral [25,33–36], and/or lifetime [37] based measurement 
of fluorescence. As temperature increases, QD fluorescence undergoes 
characteristic changes: emission intensity decreases, the emission peak 
red-shifts and broadens, and the luminescence lifetime decreases [38, 
39]. Overall, QDs are excellent temperature nanoprobes: the spectral 
and lifetime thermal coefficients of QDs are high [37,40] and emission 
intensity decreases linearly with temperature in the reversible region, 

resulting in a constant thermal sensitivity and simple calibration. 
Quantum dots require a carrier medium to be processable by inkjet 

printing [10]. While QD-containing jetting inks are commonly formu-
lated using solvents alone [41–44], immobilisation of QDs in polymer 
matrices can improve QD dispersion and reduce quenching to improve 
the photoluminescent efficiency [45,46]. Immobilisation of emitters 
may further prevent changes in the fluorophores that are known to lead 
to reduced thermal accuracy in semi-invasive sensing, including changes 
in concentration, absorption on microchannel walls, and thermopho-
resis. [24] Silicone is an ideal polymer matrix for optical sensing ap-
plications due to its high optical transparency, refractive index, and 
thermal stability [47]; bulk QD-silicone nanocomposites have been 
investigated for use as conversion films for LEDs [48–54]. Additionally, 
polydimethylsiloxane (PDMS) is the most commonly used elastomer in 
the production of microfluidic devices and is suitable for a range of 
biomedical applications [55]. As silicones are thermoset polymers which 
cross-link through various mechanisms [47,56,57], reactive IJP is a 
feasible route to elastomers from low viscosity inks [58–62]. 

As typical commercial silicones for both LED encapsulants and 
microfluidic devices are addition cure, advantageous for their minimal 
by-products and shrinkage, [47,57] this mechanism has been explored 
in this work. However, hydrosilylation of addition cure silicones is 
hindered by QDs [63–65]. Labile stabilising ligands on the quantum dot 
surface – notably primary amines in CdSe-based QDs [66,67] – detach 
and poison the platinum catalyst. This prevents ambient cross-linking 
and therefore complicates device fabrication in terms of heat treat-
ments and compatibility with potential materials or components. 

In this paper, increased platinum catalyst loadings are explored as a 
strategy to enable reactive inkjet printing of QD-silicone composites for 
integrated thermal sensing. The effects of platinum concentration on 
silicone curing and on QD fluorescence are investigated and suggested 
mechanisms are given. The temperature-dependent fluorescence of the 
material is assessed using well-plate reading and confocal microscopy, 
confirming that linear thermal coefficients are observed for both emis-
sion- and spectral-based luminescence sensing. Inkjet printing of a QD- 
silicone composite is demonstrated for the first time, enabling printed 
devices with integrated microscale sensing areas for luminescence 
thermometry, such as for monitoring inside microfluidic channels or for 
detection of hot-spots within microdevices. 

2. Experimental 

2.1. Materials 

Inks were prepared from PlatSil® SiliGlass (Polytek), octyl acetate ≥
99 % and platinum (II) chloride 98 % (both Sigma Aldrich). CdSe/ZnS 
core-shell quantum dots (Ocean Nanotech, λmax 630 nm, Fig. S1) were 
supplied in powder form with octadecylamine stabilising ligands. Glass 
slides were coated in 1 H,1 H,2 H,2 H-perfluorooctyl-trichlorosilane 97 
% (Sigma Aldrich) to prepare sufficiently hydrophobic substrates for 
printing [59]. All chemicals were used as received without further 
treatment. 

2.2. Ink preparation 

Ink A and Ink B addition cure inks were prepared from SiliGlass with 
50 wt% octyl acetate solvent, formulated to have rheology within the 
range needed for stable drop formation using the Ohnesorge equation 
[10]. The emission spectrum of a 0.01 wt% QD-silicone composite was 
measured and compared to the manufacturer’s data for QDs (Fig. S1) 
[68]. The QD loading was selected as 0.005 wt% in Ink A (QD-Ink A) 
based on fluorescence detection limit experiments using fluorescence 
microscopy (Fig. S2) and the Einstein equation was used to predict the 
effect of QD loading on printability (Table 1) [69,70]. To enable com-
posite curing, Ink B was prepared with added PtCl2 with loadings of 0, 
0.00075, 0.00125, 0.0025, and 0.005 wt% (Pt-Ink B). Inks were 
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sonicated for 30 min prior to each use and cured in a 1:1 ratio of Ink A to 
Ink B. 

2.3. Assessment of the effect of platinum loading on conversion and 
fluorescence 

Raman spectroscopy was carried out with a Horiba LabRAM HR 
Raman microscope using a 785 nm laser (20 mW power), a 300 lines 
mm− 1 grating and a 100x (0.75 NA) objective; the wavelength was 
selected to avoid QD fluorescence. Cured samples were prepared by 
mixing 175 µL of each ink and heating at 60 ◦C for 15 min. Ten Raman 
spectra were taken from the surface of each sample and averaged. The 
degree of conversion (DoC) was calculated using mean intensity ratios in 
comparison to cured SiliGlass. This microscope was also used with 532 
nm excitation for XY fluorescence maps of samples containing quantum 
dots. 

Well-plate reading was carried out using a Flexstation 3 multi-mode 
microplate reader (Molecular Devices). A Corning 4580 flat bottom half- 
area black well-plate was sequentially washed with acetone and iso- 
propyl alcohol before loading to remove any possible surface treat-
ments. Curing was accelerated by heating with a heat gun for 15 min, 
followed by 2 h on a hotplate at 60 ◦C. 

Fluorescence intensity counts were taken from the centre of each 
well, reading from the bottom. Measurements were taken between 25 
and 40 ◦C at 2.5 ◦C intervals; 15–20 min were allowed between tem-
peratures for samples to attain thermal equilibrium. Five measurements 
were then taken at 1.5 min intervals using 561 nm excitation wave-
length and 630 nm emission wavelength for detection. 

2.4. Luminescent temperature sensing 

Confocal fluorescence microscopy was performed with a Zeiss LSM 
710 microscope using a 20 × (0.50 NA) objective without immersion. 
10 µL each of QD-Ink A (0.005 wt% QDs) and Pt-Ink B (0.00125 wt% 
PtCl2) were deposited drop-on-drop on glass coverslips, heated at 60 ◦C 
for 15 min, and left overnight. Samples were excited at 561 nm using a 
DPSS laser with a 561 nm long-pass filter and lambda scans were taken 
from approximately 600 to 650 nm with 9.65 nm intervals (1024 ×1024 
pixels, averaging of 4 frames); nominal wavelengths were 607 
(602.55–612.20), 617 (612.20–621.85), 627 (621.85–631.50), 636 
(631.50–641.15), and 646 (641.15–650.80) nm. 

A prototype VAHEAT unit (Interherence) was used to ensure rapid 
and accurate temperature control. Lambda scans were taken between 25 
and 60 ◦C at 2.5 ◦C intervals for three thermal cycles, allowing time for 
equilibration: 2 min for intervals of 2.5 ◦C and 15 min between thermal 
cycles. Scans were analysed using FIJI and ImageJ; while thermal drift 
was minimal, the Image Stabilizer plugin was used to align images. 
Background removal was carried out by applying a threshold to the 627 
nm slice at 25 ◦C to obtain a background mask, which was applied 
consistently across all slices and stacks of the same thermal cycle. 
Greyscale data was then obtained from pixels and the mean greyscale 
values were used to assess emission intensity. 

2.5. Inkjet printing 

Printing trials were carried out using a Fujifilm Dimatix printer 
(DMP-2830) to confirm that composites for sensing could be deposited 
and cured with controlled patterning. QD-Ink A (0.005 wt%) and Pt-Ink 

B (0.00125 wt% PtCl2) were printed using surface microstructuring to 
aid ink pinning: [59,71] a pinned grid consisting of one layer each of Ink 
A and Ink B was deposited and allowed to cure before depositing further 
material. QD-Ink A (0.005 wt% QDs) and Pt-Ink B (0.00125 wt% PtCl2) 
were loaded into LCP cartridges and jetted at 30 V with 35 ◦C nozzle 
temperature and 60 ◦C substrate temperature to maximise cure rate. 
Surface microstructuring was used to overcome depinning on fluo-
rosilanised glass slides [59,71]. Pinned grids were deposited by printing 
one layer of QD-Ink A followed by one layer of Pt-Ink B - or 1a1b - and 
were allowed to cure for 5 min. Subsequent material was then deposited 
to produce a film. Both grid and subsequent layers were deposited at 60 
µm spacing to minimise realignment steps. Prints were imaged using a 
Nikon Eclipse LV100 ND optical microscope and analysed using ImageJ. 

3. Results and discussion 

3.1. Effect of the QD loading on ink viscosity 

Ink A and Ink B addition cure inks were formulated from PolyTek 
SiliGlass, 50 wt% in octyl acetate solvent, similar to the reactive inks 
used by Sturgess et al. [59] Core shell CdSe/ZnS quantum dots with 
emission peak 630 nm were incorporated in Ink A with 0.005 wt% QD 
loading, henceforth referred to as QD-Ink A, based on fluorescence 
measurements (Fig. S2) and predicted viscosity (Table 1). 

The effect of the QD loading on ink viscosity was estimated using the 
Einstein equation (Eq. 1): [69]. 

μr = 1+ 2.5ϕ (1)  

where µr is relative viscosity and φ is the volume fraction of hard sphere 
particles. The estimated volume and mass of the supplied CdSe/ZnS QDs 
are shown in Table 1, as calculated using the density of wurtzite crystal 
structures. 

Using the values above to calculate the QD volume fraction for 
0.005 wt% QD-Ink A, the predicted relative viscosity for 0.005 wt% QDs 
in Ink A was found to be 1.00003 µr, meaning that the addition of 
0.005 wt% QDs has no measurable effect on viscosity. Thus, the ex-
pected rheological parameters and printability of Ink A and Ink B are as 
shown in Table 2. The values for Ink A and 0.005 wt% QD-Ink A are 
expected to be identical to each other. Using the Ohnesorge equation to 
determine the printability parameter Z, it was found that both inks were 
within the range of stable droplet formation (1 < Z < 10) at 1.71 and 
1.51, for Ink A and Ink B respectively [10]. 

Adequate silicone curing in the presence of QDs was not achieved for 
printing with 40–60 ◦C substrate heating. It has been reported that labile 
amine stabilising ligands can poison the platinum catalyst in QD silicone 
composites [63–65]. To overcome catalyst poisoning by the octadecyl-
amine ligands, platinum (II) chloride was added to Ink B, henceforth 
referred to as Pt-Ink B. Loading was varied in order to test the effect of 
additional catalyst on curing and QD fluorescence. 

Table 1 
QD volume and mass, as determined from the manufacturer’s specifications and 
crystallographic data for wurtzite CdSe and ZnS.  

CdSe core 
diameter / nm 

ZnS shell 
thickness / nm 

Volume of a single 
QD / cm[3] 

Estimated mass of a 
single QD / g 

5.5 2.0 4.489 × 10− 19 1.946 × 10− 18  

Table 2 
Printability of 50 wt% silicone inks in octyl acetate at 25 ◦C based on measured 
rheological parameters. Values of shear viscosity, density, surface tension, and 
the printability parameter Z are given for each ink.   

Viscosity η 
/ mPa s 

Density ρ 
/ g cm− 3 

Surface 
tension σ / 
mN m− 1 

Diameter L 
/ μm 

Z 

50 wt% SiliGlass 
A in octyl 
acetate 
(Ink A, 
crosslinker) 

12.71 
(±0.01) 

0.92 
(±0.01) 

23.94 
(±0.01)  

21.5  1.71 

50 wt% SiliGlass B 
in octyl acetate 
(Ink B, catalyst) 

14.38 
(±0.01) 

0.95 
(±0.01) 

23.04 
(±0.04)  

21.5  1.51  
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3.2. Effect of platinum loading on conversion 

Raman spectroscopy was used to compare the degree of conversion 
(DoC) in the cured inks by quantifying the unreacted silane moieties.  
Fig. 1 shows the Raman spectra of the cured inks normalised to the in-
tensity of the Si-O-Si vibration at 490 cm− 1, and the inset shows the peak 
centred at 2150 cm− 1 which corresponds to the Si-H stretching mode 
[72]. The Si-H peak intensity decreases as the reaction proceeds: the 
normalised intensity was 0.012 for the control inks (no QDs or addi-
tional catalyst) and 0.0066, 0.0065, and 0.0091 for the 0.00125, 0.0025, 
and 0.005 wt% Pt-Ink B with QD-Ink A, respectively. The control inks 
had the greatest residual silane, approximately twice that of moderate 
PtCl2 loadings (0.00125 and 0.0025 wt%). 

The intensity ratio between the Si-H (at 2150 cm− 1) and Si-O-Si 
peaks (at 490 cm− 1) was used to calculate the degree of conversion 
relative to cured SiliGlass, as described by Equation 2 (R = ISi-H/ISi-O-Si) 
[72,73]. Raman shifts, intensities, and the DoC for each sample is shown 
in Table. The relative DoC was 38 % for the control inks and 69 %, 70 %, 
and 49 % for 0.00125, 0.0025, and 0.005 wt% Pt-Ink B mixed with 
QD-Ink A, respectively. The addition of solvent increased the conversion 
relative to SiliGlass in all cases, despite increasing the cure time; the 
decrease in viscosity may benefit overall conversion by promoting 
mixing. 

Additional platinum catalyst resulted in higher relative DoC than the 
control inks at all loadings, despite the presence of quantum dots. As the 
curing is diffusion rate-limited [74], higher catalyst concentration leads 
to faster and more homogenous cross-linking as the average distance 
between reaction centres is shortened. However, a 30 % decrease in DoC 
was observed between moderate and high PtCl2 loading, suggesting that 
sufficiently high catalytic loading hinders conversion despite high initial 
cure rate. 

DoC (%) =

(

1 −
Rsample

Rcontrol

)

∗ 100 (2)  

3.3. Effect of platinum loading on fluorescence 

Fluorescence maps of the cured QD-silicone samples were obtained 
in addition to Raman spectra to assess the effect of catalyst loading on 
emission, as shown in Fig. 2. Significant quenching was observed with 
additional catalyst: the average intensity at the fluorescence peak 

maximum was 1650, 500, and 145 for 0.00125, 0.0025, and 0.005 wt% 
Pt-Ink B, respectively, which corresponds to a 70 % decrease in emission 
intensity as PtCl2 concentration doubles. This suggests that the platinum 
may induce quenching. 

It is well-known that metal ions can quench the fluorescence of 
quantum dots, as utilised for optical sensing. [75] One such mechanism 
is metal-induced agglomeration, which occurs where metals have high 
affinity for the QD stabilising ligands, stripping ligands from the quan-
tum dot surface and leading to exposure of surface defects and to ag-
gregation [76]. The fluorescence of CdSe-based QDs is enhanced by 
primary amines, for which the platinum catalyst has strong affinity, and 
such enhancement would also be removed upon loss of ligand [66,67]. A 
metal-induced agglomeration mechanism could rationalise the observed 
reductions in emission intensity and DoC: higher PtCl2 concentration 
leads to high initial cure rate but induces greater aggregation, leading to 
greater liberation of ligands from joined QD surfaces which then poison 
the catalyst. Further spectroscopic analysis is needed to confirm the 
mechanism. 

Well-plate reading was used to quantify the effect of additional 
platinum catalyst on the emission of cured QD-silicone composites and 
to identify the optimal loading for sensing. Emission intensity data for 
the cured QD-silicone composites (prepared from 0, 0.00075, 0.00125, 
0.0025, and 0.005 wt% Pt-Ink B) is shown in Fig. 3; data collected 
during thermal cycles at each PtCl2 loading is shown in Fig. 3(a-e) and 
Table S3. Increasing catalyst concentration was associated with a 
decrease in emission intensity from 1.0 to 0.11 AU for 0 and 0.005 wt% 
Pt-Ink B, respectively. However, a large difference in intensity was seen 
between low loadings (approximately 0.96 AU for 0.00075 and 
0.00125 wt% Pt-Ink B) and high loadings (approximately 0.12 AU for 
0.0025 and 0.005 wt% Pt-Ink B). This is in contrast with uncured inks, 
where emission intensity decreased at a relatively uniform rate with 
increasing catalyst concentration. This suggests a trade-off between Pt- 
induced quenching and the improved passivation arising from the 
accelerated curing of the matrix. Therefore, it is recommended that 
loading does not exceed 0.00125 wt% Pt-Ink B as quenching becomes 
significant and signal-to-noise ratio decreases. 

A linear decrease in emission intensity with increasing temperature 
was seen in all well-plate reader samples for both thermal cycles of 
30–40 ◦C (Fig. 3(a)-(e)), as expected of CdSe-based QDs immobilised in 
a polymer matrix [32,38,77]. Thermal coefficients were obtained from 
lines of best fit (summarised in Table S1); all samples with added 

Fig. 1. Mean Raman spectra of the cured inks (N = 10); inset shows the Si-H stretching vibration at 2150 cm− 1. The blue line corresponds to the control sample, Ink 
A and Ink B. Other samples contain QD-Ink A and Pt-Ink B: orange, grey, and yellow lines show data for 0.00125 wt%, 0.0025 wt%, and 0.005 wt% Pt-Ink B. Spectra 
have been normalised to the intensity of the Si-O-Si mode at 490 cm− 1 and offset on the y-axis for visual clarity. 
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catalyst showed decreased thermal sensitivity on the subsequent ther-
mal cycle, where the magnitude of the decrease was greater in samples 
with greater emission intensity (Fig. 3(f)). Approximately 13.5 and 24.8 
% decreases in thermal coefficient were observed between thermal 

cycles for 0.00075 and 0.00125 wt% PtCl2, respectively. 
Percentage emission intensity thermal coefficients increased with 

higher catalyst concentration and lower emission intensity, as platinum- 
induced quenching led to weaker signal strength. However, sensitivity 

Fig. 2. Fluorescent maps of 0.005 wt% QD-silicone composites synthesised with additional platinum catalyst in Ink B. From left to right: samples made using (a) 
0.00125, (b) 0.0025, and (c) 0.005 wt% Pt-Ink B. The intensity scale corresponds to the intensity of the emission maximum (in counts). Scale bar 10 µm. 

Fig. 3. Emission of cured QD-silicone composites. Bars display the range of values. Emission as a function of temperature for each loading of additional catalyst ((a)- 
(e)). Emission as a function of additional platinum catalyst at 30 ◦C (f). 
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as a function of intensity count was highest for low PtCl2 loadings 
(0.00075 and 0.00125 wt% PtCl2 Ink B), followed by the sample without 
added catalyst. Therefore, although high loadings of catalyst led to 
higher apparent sensitivity, low loadings are recommended for higher 
signal-to-noise ratios and to minimise platinum-induced quenching. 

3.4. Fluorescence temperature sensing 

Based on the well-plate reading data, 0.00125 wt% PtCl2 was 
selected as the loading for Pt-Ink B to maximise curing without 
compromising fluorescence. Confocal laser scanning microscopy (cLSM) 
was used to further assess the printable formulation via imaging to 
obtain data on QD aggregate size and dispersion in the silicone matrix 
and to characterise the thermal sensitivity of the material. 

A micrograph of the QD-silicone sample prepared using 0.00125 wt 
% PtCl2-Ink B is shown in Fig. S3. Clusters observed had approximately 
4.5 µm mean Feret diameter, 3.9 µm modal, and 1.5–7.5 µm range. QD 
aggregates of varied size observed in the samples are similar to the 
unclonable patterns observed by Elliott et al. [70] Three thermal cycles 
of 25–60 ◦C were performed and lambda scans were taken at 2.5 ◦C 
intervals for 607–646 nm nominal emission wavelength. Intensity data 
was collected from greyscale values of individual pixels in images 
following background removal. 

In quantum dots, emission intensity decreases with increasing tem-
perature as a result of thermally-activated crossover [22,38]. The 
change in intensity of QDs is linear and reversible in the ambient tem-
perature range (approximately 5–60 ◦C), resulting in a constant thermal 
sensitivity desirable for sensing. Fig. 4 shows the emission intensity (i.e. 
mean greyscale value) as a function of temperature, expressed as a 
percentage of the value for 627 nm emission at 30 ◦C. Emission intensity 
at wavelengths ≤ 627 nm decrease linearly between 30 and 60 ◦C, as 
expected [32,38,77]. Emission intensity at wavelengths above 627 nm 
show greater curvature: intensity initially increases with temperature as 
red-shift occurs but begins to decrease at higher temperatures as thermal 
quenching increases [38,39]. 

The temperature range investigated in this work is mainly suitable 
for bio-application. For applications where higher temperatures are 
required, it may be possible to use a similar approach with alternate 
QDs. Bulk QD-polymers have been observed to have linear emission up 
to 100 ◦C and reversible emission up to 150 ◦C [77], while Gu et al. 
achieved sensing on GaN LED chips with PbSe QDs sealed in silicone for 
a temperature range of 30–120 ◦C [34]. 

Percentage intensity thermal coefficients for three thermal cycles 
were obtained from lines of best fit (Table S2). The average percentage 

intensity thermal coefficient obtained for the emission peak at 627 nm 
(− 0.8 % ◦C− 1) is much greater than typical inkjet-printed sensors 
(0.1–0.3 % ◦C− 1) [11,12] and is within range of those reported for 
intensity-based sensing using CdSe/ZnS core-shell QDs, as shown in  
Table 3. 

As emission intensity is dependent on concentration and laser power 
[22], the mean emission wavelength was estimated to assess red-shift for 
spectral shift-based sensing, as an alternate strategy which is indepen-
dent of these factors. Quantum dots have characteristic spectral changes 
with temperature, namely emission peak red-shift and broadening [38, 
39]. The emission peak, λmax, reflects the average QD bandgap size: 
bandgap shrinkage occurs as temperature increases, as described by the 
Varshni equation, leading to red-shift [78]. However, the complete or-
igins of peak shift are complex as emission includes core and surface 
states, which may be accounted for by a semi-classical Marcus–Jortner 
electron transfer model [66]. 

The emission peak was estimated by finding the mean emission 
wavelength based on greyscale values, as the lambda scan collected a 
histogram of the emission spectra with 9.65 nm intervals (Fig. S4). The 
mean emission wavelength as a function of temperature was calculated 
according to Eq. S1 and is plotted in Fig. 5 and the estimated spectral 
shift thermal coefficients of thermal cycles are listed in Table 4. Average 
emission wavelength was seen to have a linear relationship with tem-
perature, as is expected for CdSe/ZnS quantum dot fluorescence across a 
small, ambient temperature range [39,79]. 

The average spectral shift thermal coefficient for the three thermal 
cycles was 0.0677 nm ◦C− 1. Values for mean emission wavelength at 
specific temperatures were similar between cycles, in contrast to emis-
sion intensity, and show a clear, linear temperature dependence. This 
may suggest that spectral-based sensing would remain reliable across 
thermal cycles at these temperatures, although further studies of ther-
mal cycles with higher spectral resolution are needed to confirm 
repeatability and investigate hysteresis (Table 5). 

The estimated thermal coefficient of spectral shift is within the lower 
range of values reported for CdSe/ZnS QDs: 0.07–0.10 nm ◦C− 1 [32,33, 
39,79]. This suggests that the material has suitable fluorescence for 
spectral-based thermometry, and potentially may even be implemented 
where data collection has limited spectral resolution. The coefficient 
provides the primary information about the material however charac-
terisation data under different conditions need to be considered for 
future device design, as implementation of sensing will introduce factors 
that alter how the sensor performs in practice. Method can introduce 
uncertainties as fluorescent parameters are compared to a reference 
image taken at room temperature, in addition to sensitivity to lighting 

Fig. 4. Emission intensity of 0.00125 wt% PtCl2 QD-silicone composite as a function of temperature at different emission wavelengths. Data shown is the average of 
the three thermal cycles; bars denote range of values. 
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conditions. Moreover, further assessment and optimisation of composite 
photostability is needed to establish long-term performance but is 
beyond the scope of this paper. 

3.5. Inkjet printing 

As seen in the photograph of the circular test print (Fig. 6, Fig. S5), 
the composite inks successfully cured with controlled geometry and 

visible fluorescence, demonstrating the first inkjet-printable QD-silicone 
composite. The surface texture was bumpy where ink conformed to the 
anchor points of the pinned grid; a more even surface texture may be 
achievable by depositing larger volumes of ink onto the pinned grid 
[59]. 

A pinned grid printed with 100 µm spacing (Fig. 6) highlights the 
accuracy of the surface microstructuring. The print pattern fits the 
pinned grid well, as shown by the overlay, and the final drop-on-drop 
Feret diameter is 37.5 µm ± 1.5 µm standard deviation. This is smaller 
than the smallest sessile drop diameters reported for silicone inkjet thus 
far: Sturgess et al. obtained 48 ± 2 µm drop diameters on a fluo-
rosilanised glass substrate [59] and Mikkonen et al. achieved a drop 
diameter of 45 µm on spincoated-PDMS [62]. The uniform array and 
small drop-on-drop diameter suggest that comparatively high resolution 
is achievable. 

Within individual drops, the quantum dots are not evenly distributed 

Table 3 
Raman shifts and intensities for Si-H and Si-O-Si modes obtained from cured samples and their relative DoC.  

Sample Si-H peak position 
cm− 1 

Si-H peak intensity Si-O-Si peak position cm− 1 Si-O-Si peak intensity Intensity ratio R Relative DoC 
% 

SiliGlass A + SiliGlass B 
Undiluted 

2157.1 
(±3.4 SD) 

18,904.6 491.9 
(±0 SD) 

643,342.0 0.029 
(±0.001 SD) 

’’n/a’’ 

Ink A + Ink B 
50 wt% octyl acetate 

2156.3 
(±2.8 SD) 

9185.1 491.9 
(±0 SD) 

50,3068.0 0.018 
(±0.002 SD) 

[38] 

0.005 wt% QD-Ink A + 0.00125 wt% Pt-Ink B 2154.6 
(±5.6 SD) 

4815.0 492.2 
(±0.7 SD) 

520,240.2 0.009 
(±0.001 SD) 

[69] 

0.005 wt% QD-Ink A + 0.0025 wt% Pt-Ink B 2152.7 
(±7.4 SD) 

4638.3 492.1 
(±0.5 SD) 

531,164.2 0.009 (±0.001 SD) [70] 

0.005 wt% QD-Ink A + 0.005 wt% Pt-Ink B 2154.5 
(±4.9 SD) 

7626.0 492.2 
(±0.7 SD) 

513,275.6 0.015 (±0.001 SD) [49]  

Fig. 5. Mean emission wavelength of 0.00125 wt% PtCl2 QD-silicone composite as a function of temperature. Data shown is the average of the three thermal cycles; 
bars show the range of values obtained. 

Table 4 
Values reported for percentage intensity thermal coefficient for CdSe/ZnS 
quantum dots in literature. Papers where coefficients were not listed in text but 
could be obtained from the data presented are marked with an asterisk.  

Thermal 
coefficient 
% ◦C− 1 

Temperature 
range 
◦C 

QD emission 
wavelength 
nm 

Dispersion medium Author 

-0.3 24.4–43.6 655 PDMS polymer used 
to fix position of 
individual QDs 

Li et al.  
[33] * 

-0.4 
-0.7 

20–70 655 
620 

Aqueous solution 
Unspecified polymer 

Han et al. 
[30] * 

-0.7 
-1.6 

10–50 600 
520 

Unspecified, non- 
hydrolytic sol gel 

Jorge 
et al.  
[28] 

-1.0 
-1.3 

-23–42 
(250–315 K) 
5–40 
(278–313 K) 

600 PLMA polymer Walker 
et al.  
[38] 

-1.3 30–60  640 PS polymer Liu et al.  
[32]  

Table 5 
Estimated spectral shift thermal coefficients, calculated using mean emission 
wavelength from captured images of 0.00125 wt% PtCl2 QD-silicone composite 
for each thermal cycle.  

Thermal cycle 

1 2 3 

Thermal 
coefficient nm 
◦C− 1 

R2 

value 
Thermal 
coefficient nm 
◦C− 1 

R2 

value 
Thermal 
coefficient nm 
◦C− 1 

R2 

value 

0.0677 0.9918 0.0671 0.9916 0.0702 0.9900  
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and form clusters of different sizes, as shown in Fig. S6. The pattern of 
clusters deposited appears to be random: Elliot et al. observed similar 
random patterns when jetting CdSe QDs in VeroClear (acrylate-based 
photopolymer) [70] and such unclonable patterns have applications in 
anti-counterfeiting [70,80]. Dispersion and stability of quantum dots in 
polymer matrices is challenging and there are a range of strategies to 
enhance QD compatibility with the host [48,81,82] and improve future 
ink formulations. 

4. Conclusions 

In summary, we report the first inkjet-printable bulk quantum dot- 
silicone nanocomposite for luminescence-based temperature sensing. 
Addition cure silicone inks containing CdSe/ZnS quantum dots were 
developed and a platinum catalyst (0.00125 wt% PtCl2) was added to 
Ink B to overcome catalyst poisoning by QD ligands. Added catalyst 
enabled curing with almost double the degree of conversion compared 
to control inks, which contained neither QDs nor PtCl2. However, as 
PtCl2 loading was associated with decreased emission intensity, 
0.00125 wt% PtCl2 concentration was selected to ensure reliable 
printing with minimal loss of emission. Emission intensity of the print-
able composite showed a linear dependence on temperature from 30◦ to 
60◦C with a percentage intensity thermal coefficient of − 0.68 to − 0.93 
% ◦C− 1 using confocal laser scanning microscopy; decrease in coefficient 
between thermal cycles suggests limited reusability. In contrast, esti-
mations of spectral shift thermal coefficients were similar between 
sequential thermal cycles, which may indicate greater repeatability in 
addition to being independent of QD concentration and laser power. 
Further experiments and long-term photostability measurements are 

required to assess and calibrate materials for use in demonstrative de-
vices. Printing of films of QD-silicone nanocomposite with visible fluo-
rescence was successfully demonstrated with 37.5 µm resolution. 
Overall, although further work is desirable to enhance photostability, 
this is a promising sensing material for the temperature range of 
30–60 ◦C and its compatibility with inkjet printing can enable 
economical production of devices with minimally intrusive, in situ 
luminescence thermometry. We anticipate that this will be particularly 
beneficial for embedded sensing within microfluidic channels, espe-
cially where high spatial and thermal resolution are required. 
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(b) Composite optical micrograph of a microstructuring grid deposited at 100 µm spacing, with print file overlay (red). (c) Close view of droplets array. 
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