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Abstract

Synaptic plasticity enables animals to adapt to their environment, but memory formation can

require a substantial amount of metabolic energy, potentially impairing survival. Hence, a

neuro-economic dilemma arises whether learning is a profitable investment or not, and the

brain must therefore judiciously regulate learning. Indeed, in experiments it was observed

that during starvation, Drosophila suppress formation of energy-intensive aversive memo-

ries. Here we include energy considerations in a reinforcement learning framework. Simu-

lated flies learned to avoid noxious stimuli through synaptic plasticity in either the energy

expensive long-term memory (LTM) pathway, or the decaying anesthesia-resistant memory

(ARM) pathway. The objective of the flies is to maximize their lifespan, which is calculated

with a hazard function. We find that strategies that switch between the LTM and ARM path-

ways, based on energy reserve and reward prediction error, prolong lifespan. Our study

highlights the significance of energy-regulation of memory pathways and dopaminergic con-

trol for adaptive learning and survival. It might also benefit engineering applications of rein-

forcement learning under resources constraints.

Author summary

There is increasing evidence that biological learning and in particular the creation of long

lasting forms of memory requires substantial amounts of energy. It has been observed that

as a result, animals such as drosophila might stop some forms of learning when they are

low on energy. In this modelling paper we analyze this learning vs starvation trade-off

using a hazard framework with as objective to maximize the lifetime of the animal. We

then explore the optimal algorithm to balance energy saving with learning. We find that it

is best to restrict the learning using expensive persistent memory to situations where the

animal’s energy reserve is high, and there is also a large deviation between expected and

actual reward. We speculate that there is evidence for similar energy adaptive mechanism

in mammalian learning. The findings might also be relevant for human behavior and arti-

ficial systems with resource limitations such as limited battery life.
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Introduction

Learning allows animals to adapt to their surroundings, evade dangers, and enhance survival

prospects. However, learning itself comes at a cost as it requires considerable amounts of meta-

bolic energy. For instance, experiments have shown that fruit flies that learn a classical condi-

tioning task perish 20% faster when subsequently starved compared to starved control flies [1].

When they are not starved, flies strongly increase their food intake after learning [2, 3].

In Drosophila memory is expressed in (at least) two distinct pathways, that are believed to

be mutually exclusive [4]. The Long Term Memory (LTM) pathway requires a lot of energy

but yields persistent memory. Conversely, the Anesthesia Resistant Memory (ARM) pathway

is thought to require negligible amounts of energy, as its expression does not significantly

affect lifetime [1]. However, ARM memory typically dissipates within four days [5]. Whether

ARM or LTM is expressed depends partly of the stimulus protocol, but also on the energy

reserve of the animal. While it is interesting to speculate that the dependence on protocol is

functional beneficial, e.g. [6], we solely focus on the role of energy reserve here. Notably, in

aversive conditioning protocols flies halt energy-demanding LTM formation when starved [7].

As learning comes at a cost, a neuro-economic dilemma arises whether learning is a profit-

able investment or not. Yet, the energy requirements of learning have thus far been mostly

overlooked in the computational community. The situation can be compared to the human

dilemma whether or not to spend money on education: typically investment in education will

pay off financially, but only if the life expectancy is long enough and bankruptcy can be

avoided.

Here we examine the energy cost-benefit of learning on expected survival, and compare

learning strategies that maximize survival during an aversive conditioning protocol. We intro-

duce a hazard framework to examine the trade-off between the energy expenditure required

learning and encountering hazardous stimuli. Learning to evade aversive stimuli decreases the

stimulus hazard, but the energy expenditure associated with learning increases the starvation

hazard. The objective for the flies is to maximize their lifetime by employing either the LTM or

the ARM memory pathways. We propose a strategy that switches between ARM and LTM

pathways depending on the current energy reserve and the reward prediction error. This strat-

egy robustly increases lifetime across a number of stimulus protocols.

Model: Hazard framework

Most biological reinforcement learning studies assume that animals seek to maximize total

reward and minimize punishment. The tacit assumption is that this improves biological fit-

ness. It is then common to compare behavior to reward maximizing policies, e.g. [8], often

without regards for metabolic cost of implementing and updating the policy. Here, however,

we directly assume that the optimal policy maximizes survival, i.e. the lifetime of the organism.

Because learning requires energy, the policy needs to balance avoidance of a hazardous stimu-

lus against expending of energy on learning.

To examine this trade-off we use a hazard function approach. Hazard functions were origi-

nally developed in life insurance to calculate the probability that policy holders would die; they

are also used in failure analysis and healthcare, e.g. [9, 10]. In computational neuroscience haz-

ard functions have been used to model the probability that a neuron fires a spike [11]. Despite

being a natural approach, a hazard framework has to our knowledge not been used before for

reinforcement learning problems.

Using a discrete time formulation, the hazard function h(t) (0� h(t)� 1) specifies at any

time the probability to die within a time unit. The probability to have a lifetime t is given by

the probability of surviving all previous time-steps and perishing at time t, see Fig 1a. For a
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constant hazard h(t) = h> 0, one finds that P(t) = (1 − h)t−1h. The lifetime distribution is in

this case exponential with mean lifetime hti ¼
P1

t¼0
tPðtÞ ¼ 1=h � 1. For time-varying haz-

ards, the probability to have a lifetime t is P(t) = S(t) − S(t + 1), where SðtÞ ¼
Qt� 1

t0¼0
½1 � hðt0Þ�

is the survival function to survive until time t. The mean lifetime follows as

hti ¼
X1

t¼0

SðtÞ � 1: ð1Þ

In the following we measure time in days, and so the hazards have units ‘per day’.

The total hazard can include factors such as the internal state of the animal, as well as exter-

nal stimuli and environmental factors. We consider two hazards: First is the hazard from star-

vation, which increases when the metabolic energy reserve M(t) diminishes. We assume that

the energy reserve M(t) is positive and saturates at 1, corresponding to about 1 Joule [12].

Although it would be straightforward to determine dependence of hazard on energy reserve

experimentally, we are not aware of such experiments. Therefore we assume a steep increase at

low energy levels, Fig 1b,

hMðtÞ ¼ exp½� cMðtÞ� ð2Þ

We calibrate c by using that well-fed flies (M = 1) have a lifespan of some 50 days [13], i.e.

c = 3.9. Note that the hazard formulation includes the case where flies only die when the energy

reaches zero. Hereto one would set the hazard hM(t) to a small background value whenever

M> 0, and to one otherwise. The effect of such a hazard is shown in Fig A in S1 Text.

Second, there is a hazard associated to approaching the aversive stimulus. Although labora-

tory experiments generally involve non-lethal shock stimuli, in a natural environment such

shocks could potentially forebode a life threatening event, for instance the presence of a preda-

tor. We denote this as the stimulus hazard h0
s . With learning however, the animal will start to

avoid the hazard. The resulting hazard is denoted hs(t) and is either h0
s or 0 (when avoided).

Being probabilities, hazards from different sources add up as hS(t) = 1 − [1 − hs(t)][1 −
hM(t)]. (In the limit of small hi or, equivalently, the continuum limit, this reduces to a regular

sum.)

Fig 1. Hazard framework. A: Illustration of hazard formulation. At each day the fly has a probability h(t) to die, or to survive to the next day. The hazard is determined

by the fly’s metabolic energy reserve and the stimuli it encounters. The hazard has two components: starvation hazard and hazard from approaching the noxious

stimulus. B: Assumed relation between the normalized energy reserve of the fly and its starvation hazard. The hazard increases exponentially at low energy. Note that

even at maximal energy, there is a background hazard C: Hazard framework leads to discounting. The reduction in lifetime due to an additional hazard versus the time

of this extra hazard. Future hazards are exponentially less important than immediate ones. When the expected lifetime is shorter (red curve), the discounting is stronger,

i.e. decay is faster. Baseline hazard: 0.1 (black), and 0.2 (red); hazard of stimulus in both cases 0.05. [fly image derived from https://commons.wikimedia.org/wiki/File:

Hoxgenesoffruitfly.png. Bstlee, Public domain, via Wikimedia Commons].

https://doi.org/10.1371/journal.pcbi.1012554.g001
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Interestingly, the hazard framework automatically leads to reward discounting—a core fea-

ture added by hand to many reinforcement learning (RL) models to express that immediate

rewards are preferable to future rewards. In the hazard formulation rewards and hazards that

are far in the future will hardly impact the lifetime. Instead it is important to minimize hazards

early on. To illustrate discounting in a simple scenario, assume a constant permanent hazard

and that at a certain time an additional hazard is introduced, active during one time-step only.

The lifetime is reduced most if the hazard occurs immediately, whereas stimuli far in the future

have no effect on the lifetime, Fig 1c. For a constant background hazard, the discounting can

be shown to be exponential. Furthermore, when the energy reserve is low and the expected life-

time shorter, the discounting is stronger, Fig 1c (red curve). Thus discounting emerges auto-

matically and unlike traditional RL does not require an additional parameter.

Hazard typically increases with age, however we assume that the experiments are so drastic

that age dependence of the hazard can be ignored (“biologically immortality”) or averages out.

In more detailed models such effects could be included, and should find that expensive LTM

learning is less beneficial for aged animals with little expected lifetime left, but would benefit

young flies.

Model: Network design

We implemented a network reflecting the Drosophila brain’s anatomical structure, and a com-

plementary feedback network associated with reinforcement, Fig 2. In Drosophila aversive

conditioning experiments, an odor (conditioned stimulus, CS) is paired with a shock (uncon-

ditioned stimulus, US). By repeating exposure to the CS-US pairs a few times, the flies learn to

avoid the odor, as can be subsequently tested in a T-maze. We model the case where an odor is

presented each day, which when approached, leads to a noxious stimulus and hence is to be

avoided.

The underlying circuitry, involving sensory encoding Kenyon Cells (KCs) and action-driv-

ing Mushroom Body Output Neurons (MBONs), is relatively well understood [5, 14, 15]. The

network comprises a population of sensory KCs that represent the odor signal, which

Fig 2. Schematic of the learning network rooted in the Drosophila brain anatomy. The left panel demonstrates the feed-forward Decision-making network. The x
indicates the input activity from the Kenyon cells, w the synaptic weights, and Bs are the MBON activities. The network is complemented by the right panel showing the

adaptive learning mechanism, steered by reinforcement signals. The weight change, denoted by Δw, is modulated by the reinforcement. The synaptic weight changes are

expressed in either the ARM or the LTM pathway. The subscript represents the action of the current trial, either approach (+) or avoid (−).

https://doi.org/10.1371/journal.pcbi.1012554.g002
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subsequently drive the Mushroom Body Output Neurons (MBONs) that determine behavior,

Fig 2 left. The firing rate of the KC population is denoted x.

The activities of the MBONs are split up in the ARM and LTM pathways (see below). Each

pathway is modeled as a linear neuron. Denoting their activities as B, we have BLTM
�
¼ wLTM

�
x,

and BARM
�
¼ wARM

�
x, where ± indicates approach (+) and avoidance (−) behaviors, and the

parameters wLTM
�

and wARM
�

denote the synaptic strengths from the KCs to the MBONs. Given

the additive nature of MBON signals [16], we posit that total neuronal activity driving the

approach and avoidance behaviors results from the sum of the ARM and LTM components.

Hence

B� ¼ ðwARM
�
þ wLTM

�
Þx ð3Þ

The total weight for approach and avoidance behaviors is w� ¼ wARM
�
þ wLTM

�
.

Winner-Take-All competition between the two MBON neuron populations determines the

fly’s action. The competition process is not explicitly modeled, but could reflect lateral inhibi-

tion and attractor dynamics. We assume that the neural processing and resulting decision

making is noisy. (Otherwise, even the smallest imbalance would fully determine the decision).

This randomness also means that the organism does not fully commit to avoiding even the

smallest hazard, but keeps exploring as well. Assuming independent Poisson spike-time vari-

ability, the input to the decision making neurons has a variance equal to the mean input. At

sufficient high rates this is well approximated by normal distribution with a variance equal to

the mean. The probability to avoid P− is a sigmoidal function of the difference in activities B+

and B−

P� ¼ PðB� > BþÞ

¼
1

2
þ

1

2
erf

ffiffiffi
m
p w� � wþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w2
�
þ w2

þ

p

 !
ð4Þ

The mean μ of x can be extracted from the observation that when learning is saturated the per-

formance corresponds to about P− = 0.925 [5]. Using w− = 1 and w+ = 1/2 (see below), this

yields μ = 10.3. The μ is the average number of spikes the MBON neuron receives from the sen-

sory neurons within one integration period (e.g. counting spike of a 103Hz train during

100ms); encouragingly it is similar to the value used in [15].

Reward driven plasticity

The reward when approaching (+) the aversive stimulus is negative and denoted R+, without

loss of generality we set hs = −R+. That is, the punishment is expressed as its hazard. The

reward for avoiding the stimulus, R−, is set to 0. In the MB of Drosophila, reinforcement-

related signals are encoded by dopamine neurons (DANs) [17, 18], and these DAN signals

modulate the plasticity of the synapse connecting KCs to MBONs [15, 19–21]. The synaptic

strength associated with the selected behavior is updated based on the discrepancy between the

reward from the current trial R±(t) and the expected reward �R�, also known as the reward pre-

diction error. The synaptic weight modification is

Dw� ¼ Z½R�ðtÞ � �R�ðt � 1Þ�x; ð5Þ

where η is the learning rate. In line with experiments [21], the learning according to Eq 5,

occurs through depression of the approach action, rather than a strengthening of the avoid

action.
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The learning rate was calibrated by using that in [5] after a single cycle of learning, avoid-

ance performance was P− = 0.85, which corresponds to w− = 0.8. Using hs = 0.1 we find η =

0.6. As in these experiments the performance early after learning through LTM and ARM is

similar, the same learning rate was used for both ARM and LTM learning. A lower ARM learn-

ing rate, reduces the benefit of ARM. Under the M1 energy model (see below) a reduction of

LTM learning rate leads to weaker learning, but energy expenditure is less. As a result, a

reduced LTM learning rate somewhat increases lifetime at low energy reserves but decreases it

at high reserves, Fig B in S1 Text.

The �R� in Eq 5 is the running average of the reward of either action. The expected rewards

are initialized at zero at the beginning of the simulation. The expected reward is updated when

that action is chosen, otherwise it decays to zero

�R�ðtÞ ¼ ð1 � aÞ�R�ðtÞ if not choosen ð6Þ

¼ ð1 � aÞ�R�ðtÞ þ aRðtÞ if choosen ð7Þ

where a ¼ 1 � e� 1=tR , and the decay time constant of the average, τR, is set equal to the ARM

decay (below). In our simulations the value of R− and �R � (the reward for avoiding) remain

zero throughout and could in fact be omitted all together, but are included for generality.

When extending to multiple odor associations, each stimulus would carry it’s own expected

reward. Finally, it would also be of interest to study other decay dynamics, or an implementa-

tion via network interactions [15].

Synaptic plasticity pathways

Experiments show that ARM and LTM memory formation are mutual exclusive [4]. Hence

the synaptic weight changes given by Eq 5 are expressed in either LTM or ARM weights.

Updating the weight in the ARM pathway (wARM
�

) comes at negligible metabolic cost [1, 2].

However, the ARM weights decay over time, so that the update equation reads

wARM
�
ðtÞ ¼ gARMwARM

�
ðt � 1Þ þ Dw� ð8Þ

Here γARM is the ARM decay rate. To estimate its value, we use the data in [5], where flies

where exposed to massed training and the memory decay was measured. In four days the

probability for the correct action decayed from P− = 0.925 to P− = 0.525 (in terms of the perfor-

mance index used there, from 85% to 5%). In the model the memory extinction is found by

substitution of Eq 8 in Eq 4. A fit yields γARM = 0.34.

When, in contrast, LTM is expressed, the weight updates do not decay

wLTM
�
ðtÞ ¼ wLTM

�
ðt � 1Þ þ Dw� ð9Þ

However, LTM is metabolically costly [1]. We examine two abstract energy models. The first

assumes that the metabolic energy cost of LTM formation decreases the energy reserve by an

amount proportional to the weight change [22]

M1ðtÞ ¼ M1ðt � 1Þ � cLTMðjDwLTM
þ
j þ jDwLTM

�
jÞ ð10Þ

The parameter cLTM denotes the energy cost of LTM. In experiments LTM before starvation

reduced the survival time in female flies from 26 to 22 hrs [1], this approximately corresponds

to cLTM = 0.27, see [12] for details. A larger value would lead to more costly LTM and would

shift the hazard at which LTM becomes beneficial to larger values.
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At the start of the simulation the combined weight needs to be different from zero. Further-

more, for computational convenience, the ARM decays to zero. As a results the ARM weights

were initialized at 0; the LTM weights at 0.5.

An alternative energy model, termed M0, assumes that energy is used whenever LTM plas-

ticity occurs, but the amount is independent of the amount of synaptic strength change,

M0ðtÞ ¼ M0ðt � 1Þ � dLTM if jDwLTM
�
j 6¼ 0:

Simulation of the single exposure experiments, yields a calibration dLTM = 0.1. Mathematically,

the energy models corresponds to the L1 and L0 norms of the weight updates [23]. The sub-

script distinguishes between the two variants for the energy used by LTM. To summarize

M1-energy: Energy equals the total amount of LTM synaptic weight change, e.g. number of

receptors inserted and removed.

M0-energy: Energy equals the total number of LTM events.

We are not aware of experiments that decide between these energy models; future experi-

ments hopefully will. Note that interactions between ARM and LTM pathways as well as inter-

actions across time, that could in principle increase or reduce energy requirements, are also

ignored. Furthermore, the dynamics of the synaptic weights are modeled as first order equa-

tions, hence phenomena like delayed expression of LTM [24] are not included. Finally, the

model is agnostic about other forms of memory, such as STM; in that sense ARM stands here

for any metabolically inexpensive, decaying form of memory.

Stimulus protocol

In the simulation an odor is presented each day, which when approached, leads to a hazard of

killing the fly and hence is to be avoided. In detail, on every day: the fly chooses stochastically

to approach or avoid the stimulus (Eq 4); the reward and reward expectation are updated (Eq

7); the synapses are updated (Eq 5); the energy reserve is updated; the hazards are calculated;

and finally the expected reward and ARM weights are decayed. The protocol is given to 10000

flies and repeated 50 days. This is much longer than the average lifetime and ensures that one

can be certain that all flies will have died by then.

The simulation contains in principle two stochastic elements: first, the decision to avoid the

stimulus stochastic (Eq 4) and, second, the hazard is a probability to be evaluated every day for

every fly, Fig 1. As a technicality, by calculating the population average expected lifetime from

the hazards (Eq 1), we remove this second source of variability in the simulation and reduce

variability that would otherwise require larger simulated populations. Code for the paper can

be found at github.com/vanrossumlab/neuroeconomicRL.

Results

ARM versus LTM learning

We first illustrate the model by assuming that flies exclusively use either the ARM or the LTM

pathway. We simulate a population of flies that is subject to the following experiment: Each

day an odor is presented, which when approached, leads to a hazard of killing the fly and

hence is to be avoided. In addition there is a hazard to die from starvation, Eq 2. We initially

assume that apart from the energy required for LTM learning, there is no change in the energy

reserve in the flies.

We track the evolution of the hazard, synaptic weights, energy reserve, and performance as

measured by avoidance of the stimulus, Fig 3a. With ARM-pathway learning (left panels),
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performance improves over the days but does not exceed 70%, as the flies forget between the

exposures. As a result the hazard from stimulus exposure (the product of the hazard itself and

the chance of encountering it) remains substantial. However, the energy reserve stays high and

starvation hazard low. The synaptic weights (and as a result behavior) oscillate slightly before

settling down due to the updates in the expected reward.

Fig 4. Effect of ARM and LTM learning on lifetime. A: Lifetime as a function of the energy reserve at day 0. ARM learning (red curve) is always better than no

learning (black line). LTM (blue curve) is only beneficial when the energy reserve is high and the energy use is proportional to update size. (Stimulus hazard hs = 0.1).

B: Both the initial energy and hazard level influence whether LTM learning increases lifetime over ARM learning. When the hazard is high, is better to invoke LTM at

lower energy reserves (M1 energy model).

https://doi.org/10.1371/journal.pcbi.1012554.g004

Fig 3. ARM vs LTM learning during the simulated aversive conditioning protocol. A: Evolution of performance, weights, energy reserve, and hazard. Left panel:

ARM only learning. Right: LTM learning under the M0 and M1 energy model. B: Lifetime histogram of 10000 flies under either pathway. Because the total hazard

variations are relatively small, the distributions are close to exponential. However, for the M0 energy model, lifetimes are much shorter. (Parameters: stimulus hazard hs
= 0.2, initial energy reserve 0.5).

https://doi.org/10.1371/journal.pcbi.1012554.g003
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In contrast, in LTM learning performance becomes close to perfect after some 4 days,

always avoiding the stimulus hazard, Fig 3a right panels. The population performance grows

smoothly, because on the first trial only half the flies will randomly approach the stimulus and

will learn, and so on.

While the hazard will be avoided, the expenditure of energy needed for LTM learning

increases the starvation hazard. This effect is mild if the energy used by LTM is proportional to

the size of the weight update (M1 energy). In this case the difference between the reward and

its expectation and hence the amount of weight change diminishes as learning progresses.

Only the first few learning events are costly (blue curves). However, when the cost is indepen-

dent of the amount of weight update (M0, cyan curves), the energy is quickly depleted and the

starvation hazard rises rapidly.

In this example ARM learning yields the longest lifetime of 5.6 days, LTM learning yields

4.4 days using the M1 energy model; their lifetime distributions are close to exponential. Using

the M0 energy model the lifetime is only 2.4 days, Fig 3b.

These simulations raise the question which memory pathway generally yields to longest life-

time for a given hazard and initial energy reserve. We varied the initial energy reserve of the

flies, and determine the lifetime with ARM and LTM learning and in the absence of learning,

Fig 4a. Because in the model ARM learning (red curve) comes at no cost, it is always better to

learn with ARM than not learning at all (black curve). Under the M0 energy model, LTM

learning never extends lifetimes (the cyan curve lies under all others). Under the M1 energy

model (blue curve), there is a transition point. When initial energy is low, avoiding starvation

is more important than avoiding the hazard, hence ARM yields longer lifetimes than LTM. In

contrast, with a large energy reserve, the investment in avoiding the hazard is worthwhile and

LTM yields a longer lifetime. The point at which LTM is better, depends on the stimulus

strength. The higher the hazard, the lower the transition point, Fig 4b. In the Appendix (Suppl.

Material) we derive an equation that gives insight in the break-even point, however, a full ana-

lytical treatment seems out of reach, because learning does not only affect the next decision,

but all future (discounted) decisions. In the remainder we therefor rely on simulations.

The role of the stimulus interval is subtle, Fig C in S1 Text. ARM memory decays more

when the interval is longer, but also the overal stimulus hazard decreases (in the extreme case

that a stimulus never repeats, LTM is only detrimental). As a result, both ARM and LTM are

less beneficial.

Threshold models

In the above simulations the memory pathway was set once and for all at the start of the simu-

lation. While this is useful to gain understanding, it makes more sense to choose the pathway

depending on the current energy reserve M(t). We assume that the expensive LTM pathway

was used whenever the energy reserve exceeded a threshold, otherwise the ARM pathway was

updated. To show the benefit of this algorithm we consider a population of flies with different

initial energies, drawn uniformly between 0 and the maximum and measured the average life-

time as the threshold was varied, Fig 5. Note that, as expected, when the threshold is 0 (1), the

lifetime equals that of LTM-only (ARM-only). When the threshold parameter is tuned (x-

axis), the lifetime can exceed that of exclusively using either LTM (blue) or ARM (red). The

peak of the curve shifts left as the stimulus hazard increases. That is, the larger the stimulus

hazard, the lower the threshold that maximizes lifetime. Under the M0 energy model, adaptive

learning is only beneficial for large stimulus hazards, Fig 5 bottom row.
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General threshold models

In the above adaptive switching model, LTM will be employed when the energy reserve is suffi-

cient, even if the reward prediction error and hence weight changes are small. This means that

energy might be spend for only a small change in avoidance behavior. Therefore, we made the

threshold both dependent on the current energy reserve M(t), and the difference between

expected and actual reward, DR ¼ jRðtÞ � �Rðt � 1Þj. We parameterized the switch so that the

LTM pathway was employed whenever

cMM þ cR DR > 1

The parameters cM and cR define a line in the M, ΔR-plane. When cR is set to zero, we retrieve

the energy threshold model: M has to be larger than 1/cM for LTM to occur, Fig 6a. Likewise,

when cM = 0 the decision solely depends on ΔR. Provided that cM> 0, a large reward predic-

tion error ΔR will lower the threshold for LTM memory.

We varied the stimulus hazard and optimized the cM and cR parameters of the threshold.

The lifetime is maximal around cM = 1.01 and cR = 1.76, Fig 6b. If a threshold on just the

energy were optimal, the optimal threshold would be lying on the cR = 0 axis. And similarly,

when just a threshold on ΔR would suffice, the optimal solution would lie on on the cM = 0

axis. As the optimum lies away from both axes, a joint threshold yields the longest lifetimes.

The lifetime using optimized parameters exceeds that of exclusively using the ARM or LTM

pathway across stimulus hazards, Fig 6 right. The adaptive threshold model picks the ‘best of

both worlds’.

Fig 5. Adaptive switching between ARM and LTM can improve lifetime. Population lifetime vs threshold for two

stimulus hazard levels. LTM was employed whenever the energy exceeded a certain threshold (x-axis). Left: low (0.05)

and high stimulus hazard (0.2). Using the M1 energy, the adaptive model (green) increases average population lifetime

compared to either LTM or ARM exclusively. For the M0 energy model, adaptive learning is only beneficial at large

hazards. The optimal threshold that gives the longest lifetime depends on stimulus hazard.

https://doi.org/10.1371/journal.pcbi.1012554.g005
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Ideally, the optimal threshold should be such that a change in stimulus hazard should not

require a re-tuning of the threshold parameters. We calculated the lifetime for the parameters

that were best on average, and compared it to the lifetime optimized for each value of stimulus

hazard. The lifetimes using the fixed parameters were practically indistinguishable from the

individually tuned threshold parameters (overlapping top curves in Fig 6. Hence the threshold

model is robust against changes of the stimulus parameter.

We also tried a variant in which either energy reserve or reward error where above a thresh-

old, as well as a model in which both energy reserve and reward error needed to exceed a

threshold; after optimization these performed as well as the above model, at least on the given

task but not better, Fig D in S1 Text.

For the M0 energy model the results are very comparable (Fig E in S1 Text). As above,

under the M0 energy model the lifetime is severely shortened when always using the LTM

pathway, because every LTM plasticity is expensive even if the weight changes are small. But

again, adaptively switching to LTM under the right circumstances improves lifetime. The opti-

mal cM parameter is somewhat smaller (cM = 0.97, cR = 2.35), that is, the energy needs to be

larger to switch to LTM than for the M1 energy model, Fig E panel b in S1 Text.

We repeated this analysis for two other parameters of the stimulation protocol. First, we

fixed the stimulus hazard (0.1), but we assumed that approaching the stimulus only sometimes

lead to exposure to the hazard. The hazard probability was varied between 0 and 1, and deter-

mined on each trial independently whether the hazard was encountered or not. As expected, at

the zero stimulus probability, the lifetime was maximal and independent of any learning.

Again the adaptive threshold robustly improved lifetime, Fig 7 left.

Next, we modified that model so that in addition to the energy expenditure by LTM plastic-

ity, there was a fixed daily energy intake/expenditure. The lifetime has a sigmoidal shape as a

function of this amount, Fig 7 right. When there is a high expenditure (left part of graph), the

fly heads for perishing anyway, and investment in LTM learning only hastens that (blue curve

lies below red curve). But when there is a daily net intake, the investment in LTM memory

helps to escape the hazard, while future starvation is unlikely. The lifetimes using LTM mem-

ory now exceed those from ARM learning. Again the adaptive algorithm improves the lifetime,

outperforming either ARM or LTM exclusive learning. Also for the M0 energy model adaptive

learning improves lifetimes for both daily energy intake/expenditure and the probabilistic

stimulus, Fig F in S1 Text.

Fig 6. Adaptive plasticity model with dependence on both the current energy reserve and the reward prediction error. A: Schematic of the role of parameters cM and

cR. LTM was only used when cMM + cR|ΔR|� 1. B: lifetime as a function of the threshold parameters. lifetime was averaged across stimulus hazards. Inset show the

corresponding optimal threshold model. C: Lifetime as function of the stimulus hazard. The adaptive plasticity yields the longest lifetime. (M1 energy model).

https://doi.org/10.1371/journal.pcbi.1012554.g006
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Appetitive conditioning

While we designed the model for avoidance conditioning, a similar circuit is thought to under-

lie appetitive conditioning. The transient memory pathway is in this case STM instead of ARM

[24, 25]. We assume that like ARM, STM decays quickly and has a negligible metabolic cost.

We assumed that approaching the reward increased the energy reserve with half the maximum

reserve, i.e. 0.5 units (but the total reserve was still capped at one). In addition, the flies used a

fixed amount of energy every day. The only hazard that the fly encountered was from

starvation.

The lifetime under the ARM and LTM learning pathway is shown in Fig 8a as a function of

the daily energy use. The daily use is the main determinant of the lifetime. For high daily use,

lifetimes are short as the reward is not sufficient to prevent starvation, while for zero daily

change there is no benefit in learning. However, in the intermediate region, learning increase

lifetime. For daily stimulation (a. left panel), ARM learning is best. ARM learning performs

very well because, in contrast to the aversive protocol, the ARM memory is daily refreshed by

approaching the stimulus and boosted in appetitive conditioning. However, for longer inter-

vals the benefit of ARM diminishes due to its decay(a. right panel).

It is known that flies also switch between LTM and short term memory pathways in appeti-

tive conditioning. However, in contrast to aversive conditioning, the LTM pathway is only

activated when the animals are starved prior to conditioning [25]. Unlike the experimental

findings, we find that LTM is more beneficial at high energy than at low energy reserves, Fig

8b. When the animal has enough reserve there is no reason not to express LTM. However, it

might be that LTM requires other resources that are scarce, or that LTM learning carries other

detrimental consequences. Instead, in the model, the expenditure rate rather than the reserve

is the critical factor. After all, LTM has less benefit when the expenditure is high, so that it is

unlikely that the LTM can ever be assessed, nor when the expenditure is very small, so that

there is no chance of starvation anyway.

Discussion

Inspired by experimental findings that LTM memory formation is metabolically costly, and

that flies stop aversive LTM learning under starvation, we have explored how such adaptive

Fig 7. Role of stimulus parameters. Left: The lifetimes for a probabilistic stimulus against the probability of

encountering the stimulus when approached. Right: Lifetime when there is additional daily energy intake or loss

(stimulus probability is one). In both cases the adaptive algorithm robustly outperforms fixed strategies (Stimulus

hazard 0.1; M1 energy model).

https://doi.org/10.1371/journal.pcbi.1012554.g007
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learning can increase evolutionary fitness and how the switch between LTM and ARM should

be set. Using the hazard framework, a switch to LTM when the energy reserve is high and the

reward prediction error is high, improves population lifetime.

Necessarily, simulations need to assume a certain hazard exposure protocol. The optimal

parameters that set the switch point will be dependent on this. But some generalizations are

immediately obvious. For instance, when the stimulus interval is increased, the ARM memory

will decay more between events, and ARM becomes less effective. As a result the fly should

switch to LTM sooner. As another extreme example, if the stimulus were only presented once,

learning would be useless and should be turned off. The biological parameters have presum-

ably been optimized for performance across the ensemble of naturally encountered environ-

ments and hence the parameters values found here are not expected to be exactly those found

in experiments. Future studies could aim to close this gap and study more realistic and richer

environments, including those with temporal correlations. The adaptive algorithm might be

adjusted to include stimulus repetition and spacing effects [6].

It would also be of interest to include more complex memory dynamics that for instance

include the slow rise of LTM expression [24], or ‘hetero-synaptic’ effects on the CS- pathway

[26].

Another extension would be the learning of multiple associations. The current model

assumes that each odor activates a distinct KC population, so that each association would cost

extra energy. However, it would be straightforward to learn multiple associations that include

overlapping activations.

We have relied on mean population lifetime as fitness measure, however true fitness is the

ability to pass genetic material to offspring. A more involved model could use a fitness measure

that reflects that. For instance, for a population it might be better to have a wide spread in the

lifetime distribution, so that some individuals would survive periods of famine.

While the current work focused on Drosophila anatomy and physiology, there are indica-

tions that similar principles might be at work in mammals. In contrast to the fruit-fly’s ARM

Fig 8. Appetitive conditioning. a) Lifetime as a function of daily energy use. Upon approaching the stimulus, the animals gain half a unit of energy. Right: as

left panel but with 2 days between the stimuli. In this case LTM is better. The adaptive algorithm fully overlaps with the maximum of these curves (not shown

for clarity). b) Lifetime as a function of initial energy reserve, in case of a 2-day stimulus interval and -0.1 daily energy change. Lifetime gains with LTM are

highest when the reserve is high.

https://doi.org/10.1371/journal.pcbi.1012554.g008
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and LTM pathways, transient and persistent forms of mammalian long term potentiation

(LTP) appear to be expressed at the same synapse. However, also in mammals there is physio-

logical evidence for down-regulation of persistent LTP under energy scarcity via the AMPK

pathway [27], and there is behavioral evidence for a correlation between blood glucose level

and memory formation [28, 29]. Likewise, a dopamine reward signal, typically interpreted as

signaling the reward prediction error, lowers the threshold for late-phase LTP [30–32].

Finally, reinforcement learning has many engineering and software applications. The

results found here could potentially enhance the performance of RL algorithms, especially in

resource-limited settings or tasks requiring multi-objective optimization. The energy require-

ments in these applications could be associated to computing the weight updates. Moreover

also for computer hardware, memory storage is energetically expensive.
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