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Mathematical models are increasingly being relied
upon to provide quantitatively accurate predictions
of cardiac electrophysiology. Many such models
concern the behaviour of particular subcellular
components (namely, ion channels) which, together,
allow the propagation of electrical signals through
heart-muscle tissue; that is, the firing of action
potentials. In particular, IKr, a voltage-sensitive
potassium ion-channel current, is of interest owing
to the central pore of its primary protein having a
propensity to blockage by various small molecules.
We use newly collected data obtained from an
ensemble of voltage-clamp experiment designs
(protocols) to validate the predictive accuracy of
various dynamical models of IKr. To do this, we fit
models to each protocol individually and quantify
the error in the resultant model predictions for other
protocols. This allows the comparison of predictive
accuracy for IKr models under a diverse collection
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of previously unexplored dynamics. Our results highlight heterogeneity between parameter
estimates obtained from different cells, suggesting the presence of latent effects not yet
accounted for in our models. This heterogeneity has a significant effect on our parameter
estimates and suggests routes for model improvement.

This article is part of the theme issue ‘Uncertainty quantification for healthcare and
biological systems (Part 1)’.

1. Introduction
Present throughout the human body, ion channels are protein structures embedded in the
cell membrane, which play an important role in the transmission and reception of electrical
signals. This is especially true of the production of cellular action potentials in heart-muscle
cells (cardiomyocytes) [1]. Ion channels mediate the flow of specific species of ions into and out
of the cell. The focus of this paper, KV 11.1, is a potassium ion channel that opens and closes in
response to voltage signals (that is, a voltage-sensitive potassium ion channel). In heart-muscle
cells (cardiomyocytes) there are a large number of KV 11.1 channels, through which a combined
current flows (known as the rapid delayed rectifier potassium current and denoted by IKr [2]). The
blocking of this current by small molecules is associated with dangerous changes to the heart’s
rhythm (arrhythmia) [3]. Consequently, KV 11.1 is a key focus of drug safety assays [4]. For this
purpose, accurate mathematical models of the baseline behaviour of IKr (among other ion-chan-
nel currents) are desirable, allowing the effect of drug-channel interactions to be quantified and
used to classify proarrhythmic risk [5,6]. Whilst our work here is focused on hERG1a cell lines
rather than cardiomyocytes, we use IKr as a shorthand for the recorded currents. We expect
some differences between these hERG1a currents and those recorded from real cardiomyoctes,
as it is known that channels in cardiomyoctes may be formed from combinations of hERG1a
and hERG1b, which results in morphological changes to the recorded currents [7]. Neverthe-
less, hERG1a cell lines are used as surrogate models in drug safety studies [8]. Moreover,
the methods described herein are presented such that they may be applied broadly to other
macroscopic, voltage-gated ion-channel currents.

Typically, models of macroscopic ion-channel currents are built, fitted and validated using
data collected from patch-clamp electrophysiology experiments [9,10]. We adopt this approach in
this paper, performing room-temperature, whole-cell voltage-clamp experiments on a high-
throughput, automated patch-clamp platform. These experiments allow IKr to be measured
whilst the transmembrane potential, Vm, is manipulated. Such experiments can produce a
wealth of information-rich data [11], which may be used to fit mathematical models of
macroscopic ion-channel currents [12–14]. A diagram of such an experiment is shown together
with an equivalent electrical circuit in figure 1. We use the resulting data to train and validate
IKr models, as described below.

While mathematical models are increasingly being used to quantify the effect that drugs
have on IKr and other ion-channel currents [6], many conflicting, yet plausible, mathematical
models are suggested in the literature [16,17]. Typically, these models are Markov models [12],
including different numbers of parameters and differences in the number of states and how
they are connected (the model structure). Regarding the choice of model structure, Mangold
et al. enumerated many thousands of possible model structures for Markov models of the
fast sodium current, INa and the fast-transient outward potassium current [18]. Many of
these structures may also yield plausible models of IKr [11], albeit with significantly different
parameter values. Note that other models, such as the so-called Hodgkin–Huxley models, may
be expressed as Markov models, even if they were not originally presented this way [12,19,20].
However, it is not clear which model (or models) provides the most accurate description of IKr
[11], or which is the most suitable for use in drug-binding assays or inclusion in whole-cell
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action-potential models [20,21]. By simulating the dynamics of these models under various
protocols, and performing extensive validation of predictive accuracy, we aim to select the most
suitable model structures and, as a result, obtain more accurate predictive models of IKr.

Though probabilistic models may be used to study ion channels [22] (especially for models
of single channels [23]), Markov models of IKr are typically implemented deterministically as
systems of ordinary differential equations (ODEs) [12]. In all the models we consider, only a
single ‘open’ conformation allows current to flow through the channel, and so the IKr current
is proportional to the fraction of channels in this conformation. Numerous such models of IKr
are suggested in the literature, with various contradicting model structures; they disagree on
the number of conformational states, which transitions between states are possible, and certain
symmetries between the rates at which transitions occur [16]. Therefore, we aim to develop the
methodology necessary to select the most accurate from a pool of candidate models.

Using synthetically generated data, we have previously shown that we are able to identify
a correct model structure from a pool of candidates, and accurately infer model parameters,
resulting in improved predictive accuracy [24]. Here, we adapt and apply this methodology
to newly collected experimental data using a wider range of experimental designs. In partic-
ular, we apply a diverse range of voltage-clamp protocols (that is, the user-defined voltage
signals that comprise our experimental design) to a selection of cells and record the resulting
currents simultaneously. However, the extension of this work to real data introduces additional
complications—not least of which is the fact that our approximate mathematical models are
incapable of fully recapitulating the underlying data-generating process [25]. Nevertheless, these
newly collected data allow us to compare the predictive accuracy of a collection of literature IKr
models.

The variability in parameter estimates obtained by fitting models to real, experimental data
from different cells has been explored previously in the literature [26]. It is unclear to what
extent this is the result of underlying biological variability or other non-biological factors
affecting the recorded current (experimental artefacts). As in [26], the data discussed herein
were collected from an automated patch-clamp set-up where a series of voltage-clamp protocols
are performed (in parallel) on 384 separate wells, each of which, in an ideal scenario, records
the resultant current in a single cell. After fitting our models to these data, we consider the
variability of our parameter estimates (each taken from a given well and protocol) in §6. Here,
we show that our parameter estimates depend, not only on the voltage protocol used, but on
the particular cell/well from which the data were obtained. This provides insight into the nature
of the discrepancy between our mathematical models and the data-generating process. This

Cell

× 384
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A-P

High throughput patch-clamp 

wellplate

r
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Figure 1. A diagram of a patch-clamp experiment performed on a high-throughput, automated patch-clamp platform. A
seal is formed between the plate and the cell. Automatically applied pressure is then used to puncture the cell membrane
such that an electrical current flows from the inside of the cell, through the membrane, to the amplifier where it is recorded.
Each of the squares on the wellplate (left) represents a well in which the current from a single cell is recorded. Figure
modified from [15].

3

royalsocietypublishing.org/journal/rsta 
Phil. Trans. R. Soc. A 383: 20240211

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

18
 M

ar
ch

 2
02

5 



analysis suggests the presence of latent well-dependent effects, which are not yet accounted for
in our mathematical models.

2. Mathematical models of IKr
Each of the four Markov models we consider is an ODE-based model with a governing equation,

(2.1)d
dtx = Q(Vm)⊤x,

where x is a state-variables vector which describes the portion of channels in each of the model’s
conformational states, Q is a voltage-dependent transition rate matrix [27] such that the elementQi, j is the transition rate between the model’s ith and jth states and Vm is the transmembrane
potential, that is, the potential difference between the inside and outside of the cell membrane.
These states are mapped to our observables, via an observation function of the form

(2.2)IKr(t) = gxO(t)(Vm(t) − EKr),

where EKr is the reversal potential, g is the maximal conductance and xO is the state in the vectorx representing the open channel conformation.
Typically, the model’s reversal potential, EKr, is set to the Nernst potential which may be

calculated as

(2.3)ENernst = RTF ln [Kout]
[Kin] ,

where [Kout] denotes the extracellular potassium concentration, [Kin] denotes the intracellular
potassium concentration, R is the gas constant, F is Faraday’s constant and T = 298.15 K = 25∘C
is the temperature at which our experiments were performed [28]. This is the transmembrane
potential at which, according to the model, there is no force driving K+ ions through the
channel (see equation (2.2)). Using the known potassium concentrations of our intracellular and
extracellular solutions, (132 mM and 4 mM, respectively), we find ENernst ≈ −90 mV.

We assume that the initial state vector, x(0), lies at the governing equation’s unique global
equilibrium point. Such an equilibrium point is guaranteed to exist for our choice of models
[12,29]. The assumption is that the model is at equilibrium when t = 0 is made because the cell is
left to equilibrate before each protocol (that is, before each sweep is recorded). During this time,
the command voltage, Vcmd is held at the holding potential, −80 mV, and we can compute the
resulting steady state, which depends on the model parameters, θ [12].

Various Markov models, each characterized by a different choice of Q can be used here.
Note that the number of states in the model, N, may also vary, meaning that the length of the
state-variable vector, x ∈ ℝN, may differ between models. For each model, transition rates, Qi, j
are dictated by our model parameters. Typically, we have rates of the form Qi, j = A exp {±bV}
where A and b are model parameters (such as p1 and p2 in the Beattie model [11]). The Wang
model [30], however, contains two voltage-independent transition rates, kf and kb, which are,
themselves, scalar model parameters. Also, for each model, the maximal conductance, g, is
fitted as an additional model parameter, acting as a scaling factor, see equation (2.2).

We consider the four models shown in figure 2: the Beattie model [11]; the Kemp model
[31]; the Wang model [30] and a simple, three-state model which we refer to as the closed-open-
inactive (C-O-I) model. These models differ in the number of states (that is, N) and parameters
(those which determine transition rates), and in the existence of a path between the inactivated
state (I) and the closed states (C/C1/C2/C3) that avoids the open state, O. Of these models, the
Wang model has the most model parameters (15 including the maximal conductance parameter,g) whereas the C-O-I and Beattie models have the fewest (nine parameters in total). However,
each model shares the same form, satisfying equations (2.1) and (2.2). While the reversal
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potential is treated as a known constant, the maximal conductance, g, like our transition-rate
parameters, is fitted independently for each individual sweep.

To fit a given model, we assume the data were generated using the given model structure
with some unknown parameter set, θ. Then, we assume that our observations, zi, are subject to
additive, independent and identically distributed (IID) Gaussian errors, εi such that

(2.4)zi = yi(θ) + εi,
where yi(θ) is the observable corresponding to the ith observation, which depends on the model
parameters, θ. Then, we compute the maximum likelihood estimate (MLE), θ , by finding the
parameter set which minimises ∑i = 1

n (yi − zi)2, where n is the number of observations. For this
model, MLE is equivalent to nonlinear least-squares regression.

The command voltage, Vcmd(t) , is a time-dependent waveform which the experimenter is
free to choose to apply as a voltage clamp. In this article we apply 12 protocols, d1 to d12, as ourVcmd(t) as shown in figure 3, with their designs discussed in §4. After computing a parameter
estimate for each sweep of the protocols for each model, we use these parameter estimates to
compute predictions for the remaining protocols.

We assume that our data arise from an ideal patch-clamp set-up. That is, we assume that
at any time, t, the membrane voltage is exactly the command voltage, albeit with a possibly
non-zero systematic voltage error, that is

(2.5)Vcmd(t) = Vm(t) + Voff.

This voltage-offset is included to explain the discrepancy between ENernst and Eobs as discussed
in the electronic supplementary material, section D. Next, we assume that the current we
observe during the experiment is exactly a combination of IKr and our linear-leak current,

(2.6)Iout = IL + IKr,

where IL is the leak current satisfying

(2.7)IL = gL(Vcmd − EL),

where gL is the leak conductance and EL is the reversal potential of the leak current. These two
parameters are fitted during postprocessing (before our Markov-model parameters are fitted) as
described in §5.

3. Experimental methods
(a) Cell culture and harvesting
For cell harvesting, we used the same methods described in [32,33]; hERG channels stably
expressed in Chinese hamster ovary (CHO) cells were purchased from the American Type
Culture Collection (ATTC reference PTA−6812). The CHO cells were maintained in Hams
Nutrient mix media (ThermoFisher Scientific, Waltham, USA) supplemented with 5% fetal
bovine serum (Merck Life Science, Melbourne, VIC, Australia). Cells were housed in a 37°C
humidified incubator at 5% CO2. Cells were passaged every 2−3 days and harvested for
experiments 48−72 h after passaging. Prior to harvesting, cells were grown in t150 or t175 tissue
culture flasks to a confluency of 60–80%. Confluent cells were washed twice with phosphate-
buffered saline (PBS, Mg/Ca2+ free, ThermoFisher Scientific, Waltham, USA) and incubated
with Accumax (Merck Life Science) at 37°C for 4−5 min to enable cell detachment. Cells were
incubated for an additional 5 min at 4°C following the addition of cold SyncroPatch recording
solution (see below) to allow for membrane recovery prior to manual agitation and removal
of cells from the flask. Cells were centrifuged for 5 min at 250 g, the supernatant removed
and resuspended in divalent free SyncroPatch solution (see below) to a density of 250−500 000
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cells/ml. The cellular suspension was incubated for an additional 30−60 min at 4°C and finally
transferred to the shaking SyncroPatch cell platform, which was maintained at 10°C throughout
the experiment.

C-O-I model

Wang model

Kemp modelca

d Beattie modelb

O

OO

OC C2

I 2CI 1CI

C1

I

III

2C 1CC3

IC1

C1

I

k1k1

k2

k3 k4 k3 k4 k3 k4 k3 k4

k1

k2

k1

k2

k5

k6

k5

k6

k3 k4 k3 k4

k1

k2

k1

k2

k3 k4

k1

k2

kf

kb

k5

k6

Figure 2. a-d indicate the four model structures used. Transition rates are parameterised by two parameters: all
rates with even indices have rates of the form, k2i = Aexp { − bVm} and all odd numbered rates are of the form,k2i + 1 = Aexp {bVm}, except kf and kb in the C1 to C2 transition in the Wang model which are both constant rates [30].

Figure 3. The protocols used in our experiment, shown in the order that they are applied. Common features present at
the start and end of each protocol are used for postprocessing. All protocols are repeated exactly once except d1, Lei et al.
staircase protocol. All protocols are used for model validation except d6, which is used only for validation.
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(b) High throughput patch-clamp set-up and solutions
To get the highest quality recordings, it is important to note that we used fluoride-free plates
and solutions [34], as in the first attempts in fluoride-containing pilot experiments, we saw
larger nonlinear time-dependent leak currents that were difficult to isolate and remove [15].

Patch-clamp experiments were performed on the SyncroPatch 384PE (Nanion, Munich,
Germany). Nanion, 1 hole, medR FF (fluoride free, 4−4.5 MΩ) SyncroPatch plates were used
to run 384 whole-cell, patch-clamp recordings in parallel. Cell catching, sealing, whole-cell
breakthrough and capacitance compensation procedures were automated by the SyncroPatch.
According to Nanion’s fluoride-free chip procedures, fluoride-free experimental plates were
pre-treated with 0.5 mM NaOH, and washed three times with water and divalent free solution
as part of the automated programme. In addition, to improve the success rate with respect
to series resistance, the membrane perforator, Escin (15 μM, Merck Life Science) was added
to the internal solution and washed out with Escin-free internal solution following the whole-
cell pressure pulse step. Experiments were performed at ambient temperature (25 ±1°C for
our SyncroPatch at stable operating temperature [28]). Ambient temperature recordings were
performed here to improve the success rate of the experiment. The resultant models were
adjustable post hoc (e.g. with Q10 scalings) for use at physiological temperatures; however,
refitting the kinetic parameters to higher temperature data may be a more suitable approach
[35].

The fluoride-free internal solution [15] contained, 120 K gluconate, 10 mM KCl, 10 nM
NaCl, 10 mM HEPES and 5 mM EGTA, and adjusted to pH 7.2 with KOH. The divalent free
solution used for the cell suspension and initial filling of the SyncroPatch plates contained, 140
mM NaCl, 4 mM KCl, 5 mM glucose and 10 mM HEPES for all experiments. Seal-enhancing
solutions employed to improve cell-to-plate seal performance contained, 140 mM NMDG-Cl, 4
mM KCl, 4 mM CaCl2, 1 mM MgCl2, 5 mM glucose and 10 mM HEPES. The recording solution
contained, 80 mM NaCl, 60 mM NMDG-Cl, 4 mM KCl, 2 mM CaCl2, 1 mM MgCl2, 5 mM
glucose and 10 mM HEPES. All solutions, except for internal, were adjusted to pH 7.4 with
NaOH. All chemicals, unless otherwise stated, were purchased from Merck Life Science. Liquid
junction potential was calculated and adjusted in SyncroPatch protocols accordingly.

(c) Pharmacological isolation of IKr current
After applying each voltage protocol to our cells, we add dofetilide at 1 μM (a concentration
known to almost fully block IKr) and repeat each protocol in the same order as shown in figure
4. By performing leak correction and subtracting the post-drug leak-corrected trace from the
pre-drug leak-corrected trace, we are able to isolate IKr with minimal contamination from any
endogenous or other currents. These postprocessing methods are explained in §5.

Dofetilide (Merck Life Science) was prepared as 10 mM stocks in 100% DMSO. Drug stocks
were used immediately or stored at −20°C in glass opaque vials, in small aliquots for single
use only (Merck Life Science). In the latter case, stocks were thawed immediately prior to
experiments, vortexed and prepared in recording solution to the appropriate concentrations in
glass vials. Drug solutions were then transferred to Teflon SyncroPatch plates for automated
addition to the SyncroPatch plate following the recording of hERG channel currents in drug-
free recording solutions.

4. Design of voltage-clamp protocols
A range of information-rich voltage protocols were applied sequentially to each well (figure 3).
The differences lie in the specified ‘command voltage’, Vcmd, that is, the voltage the amplifier is
instructed to clamp the membrane potential to at each time point during the experiment. These
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protocols were developed using a range of techniques, as detailed in Lei et al. [36]. We briefly
describe the rationales for their designs again here.

Of particular importance is the staircase protocol [14], d1, of which we perform four repeats.
These repetitions allow us to ensure that the cell’s response to Vcmd(t) remains constant over
the course of the experiment (see electronic supplementary material, section B). The remaining
protocols are performed once each.

Some protocols were designed via numerical optimization with respect to various objective
functions. In particular: protocols d3,d8 and d9 were found using the space-filling curves approach
described in [37]; protocols d10 and d12 were found using Sobol sensitivities [38] of the Wang
and Beattie models, respectively; protocols d4 and d5 were found using a brute-force approach
to maximize the sensitivity of model output to changes in parameters for the Beattie and
Wang models, respectively; protocol d7 was found by considering 3-step blocks, randomizing
the durations of each step and optimizing the voltages; whereas, protocol d11 was found by
randomizing the voltages and optimizing the durations.

The remaining three protocols (d1,d2 and d6) were designed manually, without the use of an
algorithm. The Lei et al. staircase protocol, d1 was shown to permit the estimation of transition-
rate parameters in models of IKr [14]. A similar protocol, d2 is included because it includes
a new central section in which there are more short-duration segments. We expect that this
protocol highlights more IKr short-timescale behaviour (namely its inactivation/recovery-from-
inactivation processes, which occurs very rapidly). Finally, d6 is performed without the intention
of providing useful parameter estimates—in fact, our models are practically unidentifiable underd6 [12]. Nevertheless, this protocol consists of a sequence of action-potential voltage traces and,
hence, provides physiologically relevant data for model validation.

The protocols described above were performed sequentially before and after the addition
of dofetilide, a drug considered to block IKr specifically at this concentration [39]. For quality
control (QC), we perform four repeats of the staircase protocol, d1; twice at the beginning of the
experiment and twice after all other protocols. This allows us to discard data from wells that
do not remain stable over the course of the experiment (see electronic supplementary material,
section B). All other protocols were performed exactly once before, and once after, the addition
of dofetilide. This procedure is illustrated by the schematic in figure 4.

Each protocol contains some common elements which are included to aid postprocessing,
as described in the following section. In particular, each protocol includes an identical section
at the beginning of the protocol (the leak ramp). These sections allow for the estimation of
leak-model parameters, and to infer the reversal potential, EKr. Each protocol begins at the holding
potential, Vcmd(0) = − 80 mV, before Vcmd steps down to −120 mV before gradually increasing
back to −80 mV. Because IKr is small in this range of voltages ([−120, −80]), this allows the

d1 d1 d1 d1

d1 d1 d1

Post-drug 

traces

Pre-drug 

traces

Apply dofetilide (IKr blocker)

d2 d12
...

d2 d12
...d 1d

Figure 4. The order in which the protocols were performed. First two sweeps of d1 (the staircase protocol) are performed,
then a single sweep of each of the other protocols are performed before two final sweeps of d1. Then, after the addition of
1μM dofetilide (which should provide a specific IKr block), this sequence of protocols is repeated once more. This allows the
subtraction of post-drug traces from pre-drug traces, which mitigates the presence of endogenous (non-IKr) currents and any
other artefacts.
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determination of the leak current, equation (2.7). A subsequent segment where Vcmd is held at
+40 mV permits validation of this leak model by checking that IKr = Iobs − IL is positive during
this step (as we would expect [11]). Similarly, a reversal ramp section is included at the end of
each protocol, the apparent reversal potential of the channel, (that is, EKr in equation (2.2)) to
be observed. This section begins with a +40 mV preconditioning step, before Vcmd is rapidly
reduced from −70 mV to −110 mV. The postprocessing methods applied to the leak-ramp and
reversal-ramp sections of our protocols are described in the following section.

5. Fitting mathematical models to patch-clamp data
(a) Postprocessing

(i) Leak-model fitting

The leak ramp at the beginning of each voltage protocol, and the reversal ramp at the end
of each voltage protocol, aids our postprocessing. We use the leak ramp to fit a linear leak-
current model to the data, allowing us to subtract leak current and observe the remaining
current (which is dominated by IKr). Details of this leak-correction procedure are provided in
the electronic supplementary material, section A. As mentioned in §3, we also perform drug
subtraction, whereby our protocols are repeated after the addition of dofetilide, a known IKr
blocker (after which we assume the maximal conductance, g = 0 and so IKr = 0). This should
minimize the presence of any endogenous (that is, non-IKr) currents in our postprocessed
traces. We use this leak-corrected and drug-subtracted data for model fitting and validation

The results of our leak-correction, drug subtraction and reversal potential inference are also
used for QC. The QC criteria we use to select wells largely follow those of [28], which are,
where possible, applied to all protocols. Though, we also include QC criteria involving Eobs and
the relative sizes of the post-drug leak-corrected trace and the pre-drug leak-corrected traces.
These criteria result in the removal of most wells from consideration, but those remaining
exhibit clean signals (low noise) and great consistency over the course of the experiment (both
in terms of the current recorded during the staircase protocol, and during the reversal ramps
of each protocol). As a result of these criteria, we consider only the data from eight of the 384
wells present. Full details regarding our postprocessing and QC procedures are provided in the
electronic supplementary material, sections A and B.

(ii) Reversal potential inference

We infer EKr from the data using the reversal-ramp segment [28] at the end of each protocol.
Following leak correction and drug subtraction, we estimate the reversal potential by fitting
an order−4 polynomial to the current and use this to identify the time, t* at which IKr(t*) = 0.
We let Eobs = Vcmd(t*) denote the observed reversal potential. To account for discrepancy betweenENernst and Eobs, we assume that any difference in these values is due to some voltage offset, that
is, Voff = ENernst − Eobs. This discrepancy and some alternative approaches are discussed in the
electronic supplementary material, section D.

(b) Computational methods for model fitting

(i) Forward simulation of Markov models

As introduced in §2, each of the four Markov models we employ may be seen as systems of
ODEs. When Vm is held constant, our governing equation is a linear system of ODEs, for which
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there exists a range of computational methods [40]. However, the same is not true during the
leak ramp and reversal ramp, where the solution cannot be expressed as a matrix exponential,
and we instead resort to numerical integration methods. In particular, we use LSODA [41], an
algorithm designed for the solution of stiff ODE systems. Here, we set both the relative and
absolute tolerances to 10−8 to ensure the accuracy of our solutions.

(ii) Optimization

We fit our models to time-series data by computing MLEs under the assumption that our
observations are subject to IID, additive Gaussian noise. That is, for a given protocol, d, we
compute

(5.1)θd = argminθ ∑i = 1

nd yi(θ;d) − zi 2 ,

where nd is the number of observations in protocol d, our ith observation is denoted by zi and
the model output (for the ith observation) for a given parameter vector θ is denoted by yi(θ; d).
To fit our models, we seek a solution to this optimization problem, equation (5.1). A general
closed-form solution is not available, so we must resort to numerical optimization methods.
We have shown previously that such a model (and computational methods) permit accurate
parameter estimation [24].

To fit our models, we use CMA-ES [42], a stochastic optimization method which proposes
improved parameter estimates according to some continually updated sampling distribution,
providing a chance to escape from local optima. Moreover, we repeat our optimization 30 times
from different initial sampling distributions, which allows us to explore more of the model’s
parameter space and, provided we reliably recover the same parameter estimate, demonstrates
that we are able to identify the true global optimum (that is, we can reliably compute equation
(5.1)). For all models except the Wang model, we select the population size (that is, the number
of parameter vectors sampled for each generation) by computing the integer

(5.2)npop := 4 + 3 ln (np) ,

where np is the number of model parameters, using the heuristic suggested by the PINTS
package [43]. In the case of the Wang model, we instead increase the population size to 50.
Open source code is publicly available, please see ‘Data accessibility’ at the end of the manu-
script.

(iii) Sampling of initial guesses

Following [24], we perform each optimization multiple times using different initial guesses.
Here, we use 30 initial guesses for each sweep of each protocol. As in [24], our initial guesses
for our ‘A’ and ‘b’ parameters in Qi, j = A exp {±bV} rates are sampled from a log-uniform
distribution. In particular, for each transition-rate parameter, p (A or b parameters), we say
its logarithm is uniformly distributed such that log10 (p) ∼ U(−7, 1). Similarly, initial guesses of
the maximal conductance parameter, g, are generated using the same log-uniform distribution.
If a parameter set fails to satisfy the above transition-rate constraints, it is discarded and we
resample.

(iv) Parameter space boundaries

We constrain our parameter space to mitigate the stiffness of our model’s governing equation
(equation (2.1)). In particular, following [13], we ensure that the maximum value obtained by
each transition rate Qi, j = A exp {±bV} (for voltages in the range [−120 mV, + 60 mV]) satisfies
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(5.3)1.67 × 10−5 ms−1 ⩽ kmax ⩽ 1 × 105 ms−1 .

We also apply lenient bounds on the maximal conductance, g, using the maximum current
observed during the −120 mV step at the beginning of each protocol. Further details regard-
ing sampling of initial guesses and boundaries are provided in the electronic supplementary
material, section C.

(c) Results of model fitting and validation

(i) Optimization results

To be confident that we have successfully identified the optimal parameter set, we should
expect that we obtain similar results from repeated runs of our optimization procedure (which
both starts from a randomized initial guess, and is inherently stochastic). Figure 5 shows the
results of one particular optimization task with 30 repeats. Here, we can see that among our
best runs, the resulting parameter set varies only slightly—those results which correspond to
a less than a 1% increase in root-mean-square error (RMSE) when compared to the best found
parameter set. In this case, these parameter sets occupy a small region of parameter space,
suggesting (though not guaranteeing) that our optimization methods are able to reliably find
the global optimum.

(ii) Quantifying predictive accuracy

Not only do our models provide a good fit to the data (as exemplified in figure 5), but the same
parameter estimates perform well when predicting recordings under other protocols. This is
largely true across each of our model structures, as demonstrated for predictions of protocold6 currents in figure 6 (panel e). Additionally, there is notable variability in the parameter
estimates obtained from different wells (using the same fitting protocol). This is shown in figure
6 (panels c and f) where we see differences in (normalized current) fits and predictions across
different wells.

From each of our parameter sets (each obtained from a different sweep of the data), we
obtain an ensemble of parameter estimates. When used as an input to our mathematical models,
these parameter estimates give rise to an ensemble of predictions. In figure 7, we show which
sections of our voltage protocols prove particularly difficult to fit by computing a weighted
average of the residuals of our fitted models at each time point. This average is weighted
according to the size of our noise estimate, that is, we compute, yi − ziσ , and average this quantity
across wells. The resultant, shown in figure 7, highlights the sections of our protocols for which
the Beattie model consistently over or underestimates IKr. Here, we see that the Beattie model
is unable to fully recapitulate the data where our model fitting leads to the current being
consistently overestimated in the central, rapidly stepping portion of d2, for example. The other
model structures demonstrate similar inadequacies, as shown in the electronic supplementary
material, section E.

Similarly, figure 8 shows sections of our validation protocols where the Beattie model (when
fitted using the full range of training protocols) consistently over- or under-predicts IKr. Here,
we quantify the tendency of a model’s predictions to be consistently discrepant at each time-
point, ti, by calculating

(5.4)T =
y‾i − ziσ +

std(yi)Npredictions

,

where y‾i and std(yi) are the mean and standard deviation, respectively, of our Nprediction

model predictions at time ti. When T ≫ 0 or T ≪ 0, this statistic shows that our ensemble of
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Figure 5. The Beattie model is fitted to time-series data (taken from Well B20 using protocol d1) using 30 repeated runs of
a stochastic optimization method (CMA-ES) from randomized starting points. (a) The protocol used for data collection (d1,
the staircase protocol). (b) The occupancy of each state of the Beattie model over the course of the protocol according to the
fitted parameter set. (c) The current recorded under this protocol (red) and best model fit (blue). (d) The values found for
two transition-rate parameters, p1 and p2, from multiple optimization runs. The blue markers shown in the inset correspond
to those results where the RMSE is at most 101% of the minimum value found. (e) The RMSE error for each parameter set.
(f) A cross-section through the likelihood surface, starting at our best estimate of the parameters (λ = 0, yellow square)
and finishing (when λ = 1) at a parameter set with identical maximal conductance (g), but where the transition-rate
parameters are taken from the model's original publication (Cell 5) [11].

12

royalsocietypublishing.org/journal/rsta 
Phil. Trans. R. Soc. A 383: 20240211

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

18
 M

ar
ch

 2
02

5 



predictions consistently makes inaccurate predictions. Moreover, the sign of T indicates where
models tend to over or underestimate IKr. Here, we only include predictions and not model fits
—that is, we discard parameter estimates obtained from the protocol under consideration. In
contrast to figure 7, we see that the Beattie model (under various fitted parameter sets) seems to
consistently over or underpredict the current during certain protocols—during protocols d2, d8

and d10, for example, we see a consistent overestimation of the current. This is indicative of the
protocol-to-protocol variability we expect to find when fitting discrepant models [24]. Similar
figures demonstrating the tendency for each model structure to produce over or underpredic-
tions for certain sections of each protocol are shown in the electronic supplementary material,
section E.

To compare accuracy of model predictions across different cells we use the normalized RMSE
(NRMSE),

Figure 6. The dependence of model predictions on the particular model structure and wells used for model fitting. All panels
on the left relate to sweep 1 of the staircase protocol, d1

(1): (a), d1 protocol; (b), fits obtained using each of our models for
one particular well, C12; and (c), fits obtained using the Beattie Model for each well. Similarly, all panels on the right relate
to our validation protocol d6: (d), the d6 protocol; (e), predictions made using parameter estimates obtained from the fits
shown in (b), using each model structure, for the same well, C12; and (f) Beattie model predictions of d6 using parameter
sets obtained from multiple wells (fits shown in (c)). The model output shown in (c) and (f) is normalized such that the RMSE
of each trace is 1.
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(5.5)NRMSE(y, z) :=RMSE(y, z)‖z‖ =
∑i = 1
Nobs (zi − yi)2‖z‖ ,

where RMSE denotes the (non-normalized) root mean square error. As the maximal conductan-
ces of different cells may vary, NRMSE is a way to normalise for current magnitude, to compare
and average predictive performance across wells fairly. It also allows us to compare protocols
with different numbers of observations.

To compare the average fitting and predictive accuracy of these models (across all wells and
protocols), we introduce

(5.6)Epredict = 1
(Nd − 1)2 ∑d ∈ D ∖ {d6}

∑d~ ∈ D ∖ {d}

NRMSE IKr(θd; d~), zd~ ,

Figure 7. Residuals obtained when fitting the Beattie model to each training protocol (averaged across wells). The values
plotted for 1σ (yi − zi) have been clipped to lie between −100 and +100. Protocol d6, which is used only for validation and
not fitting, is shown in grey.
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where D is our full collection of Nd protocols, θd is the parameter estimate obtained from
protocol d, the vector, IKr(θd; d~) is the model output under protocol d~ obtained using the
parameter estimate θd, and zd~ are the data obtained under protocol d~. The first sum excludes
the action potentials protocol (d6) which was not used for fitting, due to low identifiability
of parameters. The second sum excludes terms where the fitting and validation protocol are
identical (terms for which d = d~). As such, because of the diverse nature of our set of protocols,
this sum describes the performance accuracy of the model in as-yet-unseen situations. Addi-
tionally, we compute

(5.7)Efit = 1Nd − 1 ∑d ∈ D ∖ {d6}
NRMSE IKr(θd; d), zd .

Figure 8. The average behaviour of the Beattie model when producing predictions for unseen protocols, averaged across
wells. Sections of the protocols highlighted in red show where the model consistently overestimates IKr, as quantified by T
equation (5.4). Whereas, sections highlighted in blue show consistent underestimation. The T  values are clipped between
−100 and +100.
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Equation (5.7) is an average over the RMSE between our fits and the data (down-weighted by
the magnitude of the recorded trace). Where there are multiple repeats of a protocol (as for our
four repeats of d1), we treat these values as separate protocols in equations (5.6) and (5.7).

The accuracy of these model predictions (indexed by the sweeps used for fitting and those
used for validation) may be summarized in a heatmap, as shown in figure 9. This shows the
accuracy of each member of our ensemble of predictions for two particular wells (Well D09 and
Well B20), and a particular choice of model structure (the Beattie model [11]). Then, we take the
average of these values and show (for each candidate model structure) the average predictive
accuracy under each pair of fitting and validation protocols. Here, the worst prediction shown
(in figure 9d) shows a consistent underestimation of the current during the application of
protocol d8. Here, the Beattie model parameters obtained to d1 (the staircase protocol) seem
unsuitable for predicting protocol d8 (and, in the case of Well B20, all protocols except d1

and d2). As this model seems to be practically identifiable under protocol d1 [24], this lack of
predictive accuracy when the model is fitted to protocol d1 (particularly in the case of Well B20)
suggests model discrepancy.

Figure 10 compares each model’s averaged, cross-validation heatmap. Here, we see that the
simpler model structures with fewer states and parameters (namely, the C-O-I model and the
Beattie model) seem to produce less accurate fits, but more accurate predictions when com-
pared to the more complex models (the Kemp and Wang models). It is noteworthy, however,
that the poor predictive accuracy of models fitted to protocol d1 is less apparent for the Wang
model than for other model structures.

6. Variability in parameter estimates
By fitting our data to each sweep in our dataset, we obtain a collection of parameter estimates
for each model structure, where each individual parameter-estimate vector, θ , pertains to a
particular sweep in our dataset. For each Markov model, and for each of the eight wells selected
by QC, there are 14 parameter-estimate vectors—each arising from each repeat of each fitting
protocol (a single repeat of each protocol except d6, and an additional three repeats of d1). In this
section, we discuss the variability of these parameter estimates using a simple, linear statistical
model.

Plots of our parameter estimates, shown in figure 11, suggest a relationship between
the estimate and the well-protocol combination it was obtained from; some protocols yield
consistently high estimates of p1 when compared to other protocols, for example. These plots
(figure 11) show only the model’s first two parameters (p1 and p2), which determine a single
transition rate, k1 = p1exp {p2V} in the Beattie model [11] and, as such, do not provide a complete
picture of the variability of parameter estimates.

To provide further insight, we fit a simple statistical linear regression model Mw,d for our
parameter estimates, including well (w) and protocol/design (d) effects. Where our models
contain transition rates of the form, k = A exp {±bV} = exp {a + bV}, we fit our linear model
using a and b. Only parameters related to the transition-rate matrix Q are included in this
analysis because we anticipate noticeable cell-cell variability in maximal conductances, whereas
we expect transition rates to be closely related to biophysical constants [12]. To quantify the
well- and protocol-dependence in our parameter estimates, we use log-likelihood differences
(LLDs). We do this by considering

(6.1)Mw,d: Y = μ + Xdβd + Xwβw + E,

where: Y is an Ntrace × Np matrix where Ntrace is the number of fitting traces and Np is the
number of parameters in our IKr model, such that each row is a parameter estimate obtained
from model fitting; Xw and Xd are well- and protocol-effect design matrices where each row
encodes the well/protocol used for a given parameter estimate; βw and βd are our parameter
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matrices, with each row representing a particular well or protocol effect (respectively), and with
each column corresponding to a different parameter in our IKr model; E is a matrix of random
errors, such that for each k ∈ {1, …,Np}, the errors in the kth column are IID Gaussian distribu-
tion random variables with expectation zero and unknown standard deviation σk. So that this

Figure 9. A cross-validation heatmap showing the predictive accuracy of the Beattie Model. (a) and (b) show a comparison
between the data (red) and the current fitted using the Beattie model from Well D09 (corresponding to the highlighted
square in (e). Similarly, (c) and (d) show the d8 protocol and the worst Beattie Model prediction from Well B20
(corresponding to the highlighted square in (f). (e) and (f) show cross-validation heatmaps for Wells D09 and B20,
respectively, which are the wells with the lowest and highest average NRMSE across all pairs of fitting and validation
protocols.
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model is identifiable, we insist that the protocol and well effects sum to zero, that is, βw
⊤1 = 0

and βd
⊤1 = 0. The remaining models, Mw, Md and M0 are set by the constraints, βw = 0, βd = 0

and βd = βw = 0, respectively. In this way, model Mw includes only the well-dependent effect and
assumes that the parameter estimates obtained are subject to IID Gaussian random errors, but
are independent of the particular protocol used to fit them. Similarly, model Md includes only
the protocol-dependent effect and not the well-dependent effect. Finally, model M0 assumes that
there is no well- or protocol-dependence, but that the variability in our parameter estimates
is solely due to IID Gaussian errors. The suitability of the full model, Mw, d is demonstrated
in figure 11, which shows the protocol-dependent effect corresponding to protocol d1. This
linear model suggests that the differences between parameter estimates obtained from different

Figure 10. A comparison of the predictive performance of our chosen model structures. Each heatmap shows the average
normalized RMSE when the given model is fitted and validated each pair of protocols. Here, the diagonals show the NRMSE
obtained during model fitting (Efit), which, in every case, is noticeably lower than the error in any of the corresponding
predictions (Epredict).
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wells and different protocols can be explained by simple translations in the parameter space
(that is, two translations which independently describe the protocol-dependent effect and the
well-dependent effect).

We list the maximum likelihood of each model, Mi, for each set of parameter estimates
(arising from our candidate IKr model structures) in table 1, as well as the resulting LLD

Figure 11. A linear statistical regression model including well- and protocol-dependent effects, Mw,d, largely fits and
recapitulates the well- and protocol-dependence in parameter estimates for the Beattie model. Each panel shows the same
two parameter estimates obtained from a given well, and highlights the parameter estimates obtained from the staircase
protocol (red crosses). The parameter estimates obtained from the same well, but from a different protocol, are shown by
the grey circles in each panel. The blue square shows the well-dependent effect according to Mw, our linear model with no
protocol-dependent effects (that is, only well-dependent effects), and the blue star shows the sum of the well and protocol
effects (for the given well and the d1staircase protocol) according to the Mw,d model. Note that p1 (the abscissae) has been
log-scaled, as it is in our linear model. Note that only two of the eight model kinetics parameters (p1 and p2) are shown as an
illustration, but the linear model is constructed for all eight.
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between the full model Mw,d and the model without well effects Md (LLD(-w)), and Mw,d and
the model without design/protocol effects Mw (LLD(-d)). Thus, LLD(-w) is a statistic quantify-
ing the size of the well-dependent effects, and LLD(-d) is a statistic quantifying the size of the
design/protocol-dependent effects. From the values listed in table 1, we can see that including
the well-dependent and protocol-dependent effects leads to a large increase in likelihood. This
indicates that there is significant protocol- and well-dependence in our parameter estimates.
The parameter estimates that we obtained are shown in figure 11. From these results, we can
see that there is noticeable variability between parameters obtained from different wells under
the same protocol, and also variability between the estimates taken from the same protocol, but
from different wells.

7. Discussion
We have collected new data using multiple information-rich experimental designs and used
these to thoroughly validate our models of IKr. The methods used to process these data,
including our fully automated QC procedure, are suitable for future work involving the
collection and analysis of multiprotocol patch-clamp experiments for IKr, and possibly other
ion-channel currents. Note that we apply far stricter QC than most uses of high-throughout
patch clamp (electronic supplementary material, section B). This is because we fit directly
to the postprocessed time series, rather than extracting peaks or time constants as is more
common in screening settings, and correspondingly the whole trace needs to be accurate. Note,
that while we observed a low success rate, the data retained after QC is of very high quality
and shows remarkable fidelity to our mathematical models. Even so, future improvements to
the experimental equipment and methodology may result in an increased success rate and,
perhaps, even cleaner data.

Because our data were collected from a diverse range of information-rich experiments, we
are able to thoroughly validate the predictive accuracy of a small selection of IKr models.
Overall, we have shown that each model is able to accurately recapitulate our IKr recordings.
This is particularly true in certain wells, such as Well D09, where our models not only provide
very accurate fits to the data, but are able to predict the current during unseen protocols to a
high degree of accuracy (see figure 10). Broadly speaking, models with more parameters (the
Kemp [31] and Wang [30] models) produced more accurate fits to our data, as quantified by
Efit, whereas the simpler models (the C-O-I and Beattie [11] models) produced slightly more
accurate model predictions for unseen protocols (see figure 10).

Table 1. Log-likelihoods and likelihood ratios (LLDs) for each of the linear regression models, applied to all of our biophysical
models (that is, the collection of parameter estimates obtained using each biophysical model). Here, we see that in each case,
and for each biophysical model, that both well- and protocol-effects are very significant. While LLD(-d), the log likelihood
difference between full model (with both protocol/design ‘d’ and well ‘w’ effects) and just well effects, suggests that there is
discrepancy between the recordings of IKr (taken from each well) and the dynamics of our biophysical models, and these are
highlighted by the different protocols. The large magnitude of LLD(-w) (across all model structures) suggests the presence of
latent, well-dependent effects. The larger of these two values is highlighted in bold for each row.

Model M0 Mw Md Mw,d LLD(-w) LLD(-d)

C-O-I 1465.6 1668.5 1724.4 2111.1 386.7 442.6
Beattie 1563.3 1817.0 1784.2 2247.2 462.9 430.2

Kemp 931.8 1099.8 1113.7 1356.3 242.6 256.5
Wang −2082.1 −1976.1 −1836.7 −1673.5 163.2 302.6
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Nevertheless, the difference between our competing model structures regarding Efit and
Epred are rather subtle. Perhaps our ideal patch assumptions equations (2.5) and (2.6) result
in models too discrepant to allow such differences in model structure to make a material
difference in these values. If these ideal patch assumptions are relaxed (for example, by the
inclusion of experimental artefacts [26]), the data herein should prove valuable for the training
and validation of further IKr models. Our work is ongoing in this regard.

While predictions for a single protocol have been used for model validation before [11],
our method provides a more thorough validation of model predictions under a wide range of
voltage-clamp protocols. This approach also incorporates the protocol-dependence of param-
eter estimates, whereby a discrepant model may produce accurate predictions when fitted
using a certain protocol, but inaccurate predictions when fitted using another, even when each
parameter estimate is practically identifiable. However, as in previous work [11], Markov chain
Monte Carlo methods may provide further insight into the role of parameter identifiability
[44,45].

Our statistical analysis of our ensembles of parameter estimates suggest that there are
strong well- and protocol-dependent effects acting upon our parameter estimates. As discussed
in Shuttleworth et al. [24], we expect to see these protocol dependent effects when there is
discrepancy between our mathematical models and the underlying biophysical mechanisms
that we observe. The strong well-dependent effects, however, suggest substantial experimental
variability, unaccounted for by the models presented here. As argued by Lei et al. [26], it is
possible that well-dependent experimental artefacts are the dominant cause of this well-to-well
variability. Perhaps the large well-to-well variability in our kinetic parameters is caused by the
overfitting of kinetic parameters when these effects are omitted. Further work will investi-
gate whether the inclusion of such artefact effects decreases this well-to-well variability, and
improves accuracy of our model predictions. If so, the inclusion of artefact effects may result
in yet more accurate predictive models of IKr and allow us to better discriminate between
competing model structures on the basis of predictive accuracy and the protocol-dependence of
parameter estimates.
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