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The rapid delayed rectifier current carried by the
human Ether-à-go-go-Related Gene (hERG) channel
is susceptible to drug-induced reduction, which can
lead to an increased risk of cardiac arrhythmia.
Establishing the mechanism by which a specific
drug compound binds to hERG can help reduce
uncertainty when quantifying pro-arrhythmic risk.
In this study, we introduce a methodology for
optimizing experimental voltage protocols to produce
data that enable different proposed models for the
drug-binding mechanism to be distinguished. We
demonstrate the performance of this methodology via
a synthetic data study. If the underlying model of
hERG current is known exactly, then the optimized
protocols generated show noticeable improvements
in our ability to select the true model when compared
with a simple protocol used in previous studies.
However, if the model is not known exactly, and we
assume a discrepancy between the data-generating
hERG model and the hERG model used in fitting
the models, then the optimized protocols become less
effective in determining the ‘true’ binding dynamics.
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While the introduced methodology shows promise, we must be careful to ensure that, if
applied to a real data study, we have a well-calibrated model of hERG current gating.

This article is part of the theme issue ‘Uncertainty quantification for healthcare and
biological systems (Part 1)’.

1. Introduction
Ion channels are proteins in the cell membrane that form pores through which ions can
flow in and out of the cell. The resulting ion currents play an important role in several
biological functions including coordinating the contraction of muscle cells. A healthy heart
relies on regular, coordinated contractions of cardiomyocytes (heart muscle cells) to pump
blood from the heart around the body [1]. The Kv11.1 ion channel encoded by the human
Ether-à-go-go-Related Gene (hERG) is responsible for conducting the rapid delayed rectifier
potassium current, IKr, and plays a crucial role in cardiomyocytes recovering from excitation
[2]. However, the hERG channel is susceptible to unintended block by pharmaceutical small
molecules (referred to here as ‘compounds’ throughout); this can lead to a reduction in IKr,
lengthening the cardiac action potential, and, in some cases, increasing the risk of cardiac
arrhythmia [3–5].

Markov-style computational models of ion channels define transition rates between several
channel states (e.g. open, inactive and closed) and can be used to simulate channel current
in response to a membrane potential. To model the interactions of drug compounds with an
ion channel, additional states and rates can be introduced to an existing ion channel model
to simulate various binding mechanisms [6]. When it comes to the hERG channel, it has been
observed that the binding mechanism can be compound-specific [7–9]. One such example of
this is the propensity of a compound to become ‘trapped’ (unable to unbind) when the channel
closes. Some compounds, such as bepridil and dofetilide, are known to become trapped inside
the central hERG cavity, remaining bound, while others, such as cisapride and verapamil,
unbind when the channel closes [10–12]. It has also been theorized that some drugs bind
preferentially to certain channel states over others, or in the extreme case, bind to a particular
state only [13–17]. These compound-specific binding mechanisms suggest that a one-size-fits-all
approach to modelling hERG-drug interactions is perhaps limiting [6]. To accurately model
how a certain compound binds to the hERG channel, it is, therefore, important to determine the
specific mechanisms at play.

The transmembrane current of a cell can be measured in response to the membrane potential
via a voltage-clamp experiment, where a piecewise function defining the transmembrane
voltage, V , dependent on time, t, is applied. We refer to this function, V(t), as a voltage protocol.
In a recent study, Lei et al. [18] considered fitting a set of 15 pharmacological models represent-
ing possible drug-binding mechanisms (trapping/non-trapping, state binding preference, etc.)
to previously collected voltage-clamp data under a relatively simple protocol. After fitting
the set of models, it was suggested that more information-rich experiments may be needed
to distinguish between model outputs and assist in determining compound-specific binding
mechanisms. Previous studies on drug-binding dynamics have considered ‘manual’ experimen-
tal design techniques to increase the information extracted from voltage-clamp experiments
[19–23]. This often involves some degree of expert knowledge to design protocols that are
expected to emphasize particular compound-specific behaviours. In this work, we instead
consider ‘automated’ optimal experimental design (OED) techniques.

OED methods consider how the design of a data-collecting experiment can be optimized
with respect to some statistical criterion, effectively maximizing the information provided by
the experiment (subject to constraints). These methods have been used recently in the field
of cardiac modelling with some success [24]. In this paper, we consider OED methods to
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design voltage protocols that can be used in voltage-clamp experiments to better distinguish
between different models of drug-binding mechanism. We detail a synthetic data methodology
for generating an optimized protocol and fitting models to data collected under this protocol.
Our results demonstrate how the optimized designs can assist in establishing the true binding
dynamics at play across a range of simulated drug compounds exhibiting differing dynamics.
However, we find that introducing a discrepancy between the hidden ‘true’ data-generating
model and the proposed model we work with to fit the data reduces the effectiveness of this
method and suggests that further work may be needed to account for these inevitable model
discrepancies when working with real data.

2. Mathematical models
(a) hERG physiological models
In this paper, we consider two physiological models of hERG; one simple four-state model that
is used throughout and a slightly more complex five-state model exhibiting differing behaviour
that is used when we introduce hERG model discrepancy. These models describe the voltage-
dependent gating behaviour of IKr at physiological temperature when no drug compound is
present. Figure 1 shows Markov diagrams of the two hERG models we consider. Figure 1a
shows the four-state model, with transition rates k1–k4, which is equivalent to physiological
model B in Lei et al. [18]. The four states in this model are IC (inactive closed), C (closed), I
(inactive) and O (open), where each variable represents the proportion of channels in that state.
Figure 1b shows the five-state model from Lu et al. [25], with transition rates aa0, ba0, kf, kb,aa1, ba1, aci, bci, ai and bi. This model has three closed states (C1, C2 and C3), and no states
that are both inactive and closed. All transition rates in both models (apart from kf and kb) are
dependent on transmembrane voltage, V ; they are defined by the general equation piexp(pjV)
where pi and pj are physiological model parameters taken from the literature. In both models,
the rate of change of each state over time, t, is defined by a differential equation. For example,
for the model in figure 1a, the rate of change of open proportion is defined by

(2.1)dOdt = k1C + k4I − (k2 + k3)O.

The measured current, IKr, is then calculated for both models via the following equation

(2.2)IKr = gKr ⋅ O ⋅ (V − EK),

where gKr is conductance, O is the open state proportion and EK is the Nernst potential
(membrane potential at which there is no net flux).

(b) Pharmacological binding models for hERG
We can extend the Markov models of hERG described in the previous section to model
drug-binding dynamics in hERG. We consider a set of 15 models that characterize different
proposed candidate mechanisms for drug-binding as illustrated in Lei et al. ([18]; figure 2) and
included in our electronic supplementary material, fig. S1. Figure 1c shows a Markov diagram
of drug-binding Model 7 as an example of one of these 15 models. In this example model,
we have two additional states: ID (inactive drug-bound) and OD (open drug-bound). Binding
rates are described by the parameters kon,I, koff,I, kon,O and koff,O, and the rate of on-binding
is dependent on the drug concentration [D] and the Hill coefficient n. This example model
represents non-trapping binding behaviour as the channel cannot enter a closed state without
the drug first unbinding (returning from an ID or OD state to an I or O state). In contrast,
some of the 15 binding models represent trapping dynamics. The trapping component either
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involves a ‘mirror image’ of the physiological hERG model, which allows for a channel to close
and prevent unbinding from ICD or CD states (corresponding to IC and C in the drug-bound
channel) or is represented by additional trapped states. In electronic supplementary material,
fig. S1, Models 4, 5, 5i, 6, 9 and 10 illustrate the ‘mirror image’ trapping, while Models 11, 12
and 13 include additional trapped states.

3. Introducing the OED methodology
(a) Initial synthetic data
To measure the effect of drug block on the hERG channel, we can collect two sets of voltage-
clamp time-series data; the control current, y(t), before the drug compound is introduced and
the current in the presence of the drug compound, xc(t) (often at several different concentrationsc ∈ C). We begin by generating synthetic ion channel drug-binding data in a form resembling
what we would expect to collect in a voltage-clamp experiment under a simple modified Milnes
voltage protocol as used in the Comprehensive in vitro Proarrhythmia Assay initiative [19,26].
With these synthetic data, we fit the set of 15 drug-binding models from electronic supplemen-
tary material, fig. S1 and illustrate a need for a more complex protocol to differentiate between
these models. The process by which these synthetic data is generated is described as follows.
All electrophysiology simulations are performed in Myokit [27].

In figure 2, we plot the Milnes protocol, i.e. controlled voltage time-series (left), synthetic
current data (top middle) and synthetic open proportion data (bottom middle). In the synthetic
current plot, the control current in black, y(t), is generated under the Lei Markov model
described in figure 1a with parameters for physiological temperatures taken from Lei et al.
[28]. We run 10 sweeps (repeats in series) of the Milnes protocol and plot the 10 s of each
sweep corresponding to the 0 mV pulse in the protocol. We generate equivalent currents in
the presence of four concentrations of verapamil (xc(t), c ∈ C = {30, 100, 300, 1000}), and these are
plotted in blue (30 nM), orange (100 nM), green (300 nM) and red (1000 nM). Gaussian random
noise is added to all sweeps with a standard deviation of 10 pA. We use a step size of 0.5 ms
between data points, and we can define T as the set of all times for the plotted traces. The
plotted proportion of channels open, zc(t), in the bottom middle of figure 2 is calculated by
dividing the drug current sweeps, xc(t), by the control sweep, y(t), and this is the normalized
quantity we use to fit the drug-binding models, as in [26,29].

As an example for many of the figures in this paper, for our true data-generating model
of drug-binding dynamics, we have used the drug-binding Model 7 described in Lei et al.
[18] with parameters estimated from verapamil voltage-clamp data collected at physiological

Figure 1. Markov diagrams of physiological hERG models (a,b) and a pharmacological binding model (c). The model in (a) is
a four-state symmetric hERG model as used by Lei et al. [18]. The four states are IC (inactive closed), C (closed), I (inactive)
and O (open). The model in (b) is a five-state model equivalent to that derived by Lu et al. [25]. This model has three closed
states (C1, C2 and C3) as well as O (open) and I (inactive) states. The pharmacological drug-binding in (c) is Model 7 from Lei
et al. [18]. The I and O states represent the inactive and open states in the underlying physiological hERG models (this model
could be attached to the right-hand side of either physiological model shown in (a) or (b)). The binding model additionally
has two drug-bound states ID (inactive drug-bound) and OD (open drug-bound), in which no current flows.
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temperatures by Li et al. [26,29]. Lei et al. [18] found that this model gave ‘plausible’ fits to the Li
et al. data and agrees with the literature that verapamil does not tend to become trapped. This
non-trapping behaviour involves having no bound closed state in the binding model; the drug
can only be bound and block the channel when the channel is in an OD or ID state. In §4, we go
on to examine findings if any other binding model was the true data-generating model for other
drugs as well.

(b) Initial model fitting
Next, we fit each of the 15 drug-binding models to the synthetic ‘proportion open’ data, zc(t).
As a first pass, we assume that the underlying Lei hERG model is known exactly (i.e. there is
no hERG model discrepancy and the model parameters are known) and we wish to fit only the
parameters of the drug-binding models. The data, zc(t), are generated by dividing two current
traces which both have normally distributed iid noise, i.e. the data are a ratio of two normally
distributed random variables. If X ∼ N (μX,σX2 ) and Y ∼ N (μY ,σY2 ) are two independent normal
random variables, then the ratio Z = X/Y  has probability density function (PDF) given by [30]

(3.1)(9)fZ(z; β, ρ, δ) = ρ
π(1 + ρ2z2)

exp − ρ2β2 + 1
2δ2 + q π

2 erf q
2

exp − ρ2(z − β)2

2δ2(1 + ρ2z2)
,

where β =
μXμY , ρ = σYσX , δ = σYμY  and

(3.2)q = 1 + βρ2zδ 1 + ρ2z2
.

For our synthetic zc(t) data, μX(t, c, θ) is the modelled current at time t in the presence of a drug
compound of concentration c under some drug-binding parameterization θ, while μY(t) is the
control current at time t and does not depend on θ or c. We simplify things by assuming that

Figure 2. Synthetic verapamil data under drug-binding Model 7 generated under a Milnes protocol with the Lei 37°C hERG
model. On the left, we plot a single sweep of the Milnes protocol. In the top middle, we plot the control (in black) and
drug currents (blue, orange, green and red corresponding to four different drug concentrations) for 10 sweeps of the Milnes
protocol. We only plot the currents that occur during the 10 s pulse at 0 mV for each sweep. In the bottom middle, we
plot the corresponding proportion open for each drug concentration, which is calculated by dividing each drug sweep by
the control current. On the right-hand side, we include a zoomed-in look at the first 1

5  (2 s) of the first pulse for both
currents and proportion open. This illustrates the currents starting at approximately 0 pA and the open proportion starting
at approximately 1. The noise in the initial low currents contributes to the increased noise at the beginning of the open
proportion sweeps. This motivates using a noise model for the ratio of two normally distributed variables when fitting
drug-binding models to this data.
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σX and σY , the standard deviations of the measurement error on the drug and control currents,
respectively, are equal (σX = σY = σ) resulting in ρ = 1. We can then use the PDF in equation
(3.1) to derive a log-likelihood function for some drug-binding model parameterization θ and
standard deviation σ given a dataset z

(3.3)L(θ,σ |z) = ∑c ∈ C ∑t ∈ T logfZ zc(t); β(t, c, θ), 1, δ(t,σ) .

Each of our 15 drug-binding models can then be fitted to zc(t) by maximizing this log-likelihood
function with respect to θ and σ.

We use the covariance matrix adaptation evolution strategy (CMA-ES) optimization
algorithm [31] via the probabilistic inference on noisy time-series framework [32] to perform
this maximization. We repeat the CMA-ES optimization 10 times, with each repeat starting
from a different parameter initialization sampled from wide boundaries as described in [18],
and take the largest obtained log-likelihood. The choice of 10 repeats is motivated by a desire
to balance computation time with accuracy; on average, 8 of the 10 repeats give very similar
maximized likelihoods and corresponding parameter estimates. In figure 3, we plot the fits
obtained via this method for each of the 15 drug-binding models. It is difficult to visually
distinguish between the quality of these fits and, at a glance, it appears that all models fit the
data relatively well.

In the left-hand plot of figure 4, we plot the maximized log-likelihood values obtained when
fitting each model under the Milnes protocol. The true data-generating model (Model 7) and
one with a very similar structure (Model 11) have the largest maximized log-likelihoods, while
all other models fall within a range of 105 below this value. We note that we are fitting each
model to very high-resolution data (8 × 104 data points), which gives rise to large log-likelihood
values. A traditional model selection method such as the likelihood ratio test or the Akaike
information criterion (AIC) may suggest, based on the differences in log-likelihoods, that the
data-generating model is chosen over the other models. However, in a real data scenario, we
generally have less confidence in the veracity of the model of observed hERG current owing
to experimental artefacts [33], so we avoid using likelihood ratio testing or AIC in this context.
Ultimately, we arrive at the same conclusion drawn by Lei et al. [18]; this protocol is not
information-rich enough to distinguish between drug-binding models, which motivates our use
of OED methods.

(c) Optimizing the experimental design
Our next step is to develop an improved experimental design that emphasizes differences
between drug-binding models. We do this by employing OED techniques. Let us assume that
we have some experimental design, D, that is a function of some parameter set ϕ. We then
need to establish some optimality criterion, g, that is a function of the design, and determine
a ϕ that maximizes g. We begin by considering g; what do we want to optimize? Practically
speaking, we want a protocol that accentuates the differences between the models for a specific
drug compound. This motivates the following optimality criterion.

(i) Optimality criterion

Assume we have our fitted models from figure 3 and these are represented by βm(t, c, θm, ϕ)
for m ∈ M where M is the set of 15 drug-binding models and θm is the maximum likelihood
estimate (MLE) parameter set for model m. Note we have included ϕ as an input to βm here,
as βm is dependent on the experimental design. We can then calculate the pairwise squared
difference between each of the m model outputs, which we label dij, where
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(3.4)dij(ϕ) = ∑c ∈ C ∑t ∈ T βi(t, c, θ i, ϕ) − βj(t, c, θ j, ϕ)
2

.

We can then propose that our optimality criterion seeks to maximize the median value of dij(ϕ)
across all i, j ∈ M, i ≠ j, which we call dmed(ϕ)

(3.5)ϕ = max
ϕ

dmed(ϕ).

There are many choices of design criteria to optimize. A conventional option is the T-optimality
criterion introduced by Atkinson & Fedorov [34], which involves maximizing the minimum
pairwise difference. However, in our case with some pairs of very similar models, initial
experimentation with a T-optimality approach often resulted in the two most similar models
being separated slightly, while the optimizer would ignore the pairwise differences between the

Figure 3. Fits of the 15 binding models to the Milnes protocol proportion-open synthetic data shown in figure 2. Note that
it is difficult to visually distinguish between the quality of the model fits for this protocol. The fitted models are shown with
solid lines, and we plot the data shaded behind these fits.
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other 13 models. Here we favour the median to ensure that the objective will seek to increase the
pairwise differences between at least half of the 15 models.

(ii) Optimizing the protocol

We now turn our attention to D(ϕ). With consideration of experimental practicality, we can
establish a design space that we want to optimize the max-med criterion over. We begin by
splitting the 10 s 0 mV pulse used in the Milnes protocol into three separate steps (of length
3340, 3330 and 3330 ms) each of which can be set to a voltage in the range of −50 to +40 mV.
To increase the design space, we include two 10 s pulses per sweep and allow both pulses to
each have three different voltage steps. Further to this, we allow the times between pulses at the
holding potential of −80 mV to vary; the time following the first pulse and second pulse can be
set to be anywhere between 1050 and 21 000 ms. In total, we then have eight degrees of freedom
for optimizing the max-med criterion; six voltage step values and two interpulse durations. Let
us then define ϕ = [V11,V12,V13,V21,V22,V23, t1, t2] where V ij is the jth voltage step (in mV) in theith pulse in the protocol and ti is the time (in ms) following the ith pulse in the protocol. We
can then optimize the max-med criterion with respect to ϕ via CMA-ES to determine an optimal
protocol D(ϕ). To initialize the CMA-ES optimization, we take 100 random samples from within
the voltage and time-step bounds defined above ([−50, +40] and [1050, 21 000], respectively),
and then use the ϕ that gives the largest value of the max-med criterion as our initialization for
the optimizer. We note here that finding the global optimum does not necessarily matter, our
goal here is simply to find an improved design.

(d) Fitting models to synthetic data generated with an optimized protocol
With an optimized protocol, we can then generate a new set of synthetic data using the
methodology described in §3a. Our new protocol is comprised of two multistep 10 s pulses
of interest, whereas the Milnes protocol has just one single-step 10 s pulse. We, therefore,
generate data for only five sweeps (cf. 10) of our new protocol to ensure that the synthetic data
under the optimized protocol have the same number of data points as the Milnes synthetic
data. In figure 5, we plot this new synthetic current and proportion open data (right top and
bottom, respectively) alongside the optimized protocol (left). We can then fit the 15 drug-bind-
ing models to this new synthetic data using the same method described in §3b; the fits are
shown in figure 6. We see that, when compared with figure 3, we now have a number of models

Figure 4. Maximized log-likelihoods for model fits to synthetic data generated under the modified Milnes protocol (left) and
an optimized protocol (right). In each plot, we include a green dashed line at 104 below the largest maximized log-likelihood
and a red dashed line at 105 below the largest maximized log-likelihood. We note that these lines act simply as visual aids to
emphasize the increased spread in the quality of model fits under the optimized protocol. We also shade, in grey, around the
true data-generating binding model.
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that do not appear to fit the data very well. This is backed up by the right-hand plot in figure
4, where we see a greater spread in maximized log-likelihood values in the optimized protocol
case compared with the Milnes case, making it easier to distinguish between models. Model
7, the true data-generating model, has the largest maximized log-likelihood; while no other
models have maximized log-likelihoods within 105 of Model 7. In the electronic supplementary
material, fig. S2, we include a plot comparing the model parameters fitted to the Milnes data
and the model parameters fitted to the optimized protocol data.

(e) A discrepant hERG model
So far, we have been working under the assumption that the structure and parameterization of
the underlying data-generating hERG model are known exactly. Bernardo & Smith [35] describe
this as an M-closed model space, where the true data-generating model is included in the set
of models considered for model selection. We can never guarantee this practically, so we now
introduce an example where the assumed hERG model used in the model fitting and protocol
optimization steps is different from the hERG model used during the data-generating process.
We are now operating in an M-open model space where the true data-generating model is not
within our set of candidate models.

To generate synthetic data, we now use the Lu model as illustrated in figure 1b. In figure
7, we plot a comparison between control currents under the Lu model and the 37°C Lei model
previously used to generate synthetic data. We set the conductances (gKr) for both models to be
equal. We note that the difference in dynamics between these two models appears to be quite
significant; for example, there is an approximately 350 ms difference in the time constants of
activation, τa (measured during the Milnes protocol step to 0 mV). Sanguinetti & Jurkiewicz
[36] approximated hERG τa as 50 ms based on experimental data collected under approximately
similar experimental conditions (a voltage step to 0 mV at 35°C). Comparing this experimental
estimate with the τa approximated for the Lei and Lu models, we get differences of 400 and
50 ms, respectively. The difference between our model dynamics (at least regarding activation
times) falls within this range of differences between models and real data. While this model

Figure 5. Synthetic data for drug-binding Model 7 generated under an optimized protocol with the Lei 37°C hERG model. On
the left-hand side, we plot our optimized protocol with two 10 s pulses, each with three optimized voltage steps. Top right
shows the control and drug currents for five sweeps of the optimized protocol. We only plot the currents that occur during
the two 10 s pulses per protocol sweep. The bottom right-hand plot shows the corresponding proportion open for each drug
concentration which is calculated by dividing each drug sweep by the control current.
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difference is potentially on the larger end of what we would want from a well-calibrated
model of hERG when compared with real data, we consider this a stress test of how our OED
methodology performs when there is a relatively large model discrepancy.

We can then repeat the procedure described in §3a–d, but this time using the Lu hERG model
when generating any synthetic data (Model 7 is still used as the data-generating drug-bind-
ing model). In figure 8, we plot the log-likelihoods obtained using the Lu model as the true
data-generating hERG model but (incorrectly) assuming that the 37°C Lei model is the correct
hERG model when fitting the drug-binding models to the data.

We appear to get quite similar results to the non-discrepant case, with the optimized
protocol once again spreading out the values of the log-likelihoods and pointing towards Model
7 as the data-generating model. However, as we see in §4, we find these methods are less
effective for other data-generating drug-binding models when discrepancies are introduced.
In the electronic supplementary material, we include equivalent plots to figures 2, 3, 5 and
6 in electronic supplementary material, figs. S3–S6, respectively. In electronic supplementary

Figure 6. Fits of the binding models to the optimized protocol proportion open synthetic data shown in figure 5, in the same
style as figure 3. Note how many fits are now visually distinguishable, we can immediately see that many models provide a
worse fit to these data than others.
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material, fig. S7, we also include a plot comparing the model parameters fitted to the Milnes
data and the model parameters fitted to the optimized protocol data.

4. Applying the OED methodology
In §3, we saw how our methodology performed for synthetic data generated under one
drug-binding model (Model 7) parameterized for one drug compound. We now repeat these
methods across a range of models and drugs to demonstrate how the procedure performs in
differing circumstances.

(a) Verapamil: non-trapping dynamics
We begin by considering verapamil again, but this time we generate synthetic data for each of
the 15 drug-binding models (initially using the Lei model in figure 1a as our underlying hERG

Figure 7. A comparison of control currents between the Lei model (figure 1a) parameterized for 37°C and the Lu model
(figure 1b). To the left, we plot the currents in response to one sweep of the Milnes protocol, and to the right in response to
one sweep of the optimized protocol from figure 5. Conductances have been set to 33.3 nS for both models.

Figure 8. Maximized log-likelihoods for model fits to synthetic data generated under the modified Milnes protocol (left) and
an optimized protocol (right). This is for the discrepant hERG model case; the data-generating hERG model is the Lu model,
while the Lei 37°C is used for model fitting. In each plot, we include a green dashed line at 104 below the largest maximized
log-likelihood and a red dashed line at 105 below the largest maximized log-likelihood. We also shade, in grey, around the
data-generating binding model.

11

royalsocietypublishing.org/journal/rsta 
Phil. Trans. R. Soc. A 383: 20240227

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

18
 M

ar
ch

 2
02

5 



model). Starting with the previous fits to real verapamil data from [18] to generate the synthetic
data, in the top half of figure 9, we plot heatmaps of the log-likelihoods obtained via the §3
methodology. This is for the case with no hERG model discrepancy. The y-axis represents which
drug-binding model is used to generate the synthetic data, and we then get a corresponding
log-likelihood for each fitted drug-binding model on the x-axis. We plot both the log-likelihoods
obtained for the Milnes protocol data fits (top left), and for the optimized protocol data fits
(top right). For each row, we highlight (with green squares) the fitted models within 104 of the
largest log-likelihood in that row. We then also highlight (with red squares) the fitted models
that are within 105 of the largest log-likelihood (that are not already highlighted in green).
Black dots are plotted down the diagonal indicating where the fitted model corresponds to
the data-generating model. The first notable observation from this plot is that the number of
models within the 104 and 105 thresholds is significantly reduced in the optimized protocol case
compared with the Milnes case. We also note that in both cases, the full diagonal is within

Figure 9. Top: heatmaps of maximized log-likelihoods for fitted models to Milnes (left) and optimized protocol (right)
synthetic verapamil data. The fitted models within 104 of the largest log-likelihood (very good fits) in each row are
highlighted in green squares. The fitted models that are between 104 and 105 below the largest log-likelihood (reasonable
fits) in each row are highlighted in red squares. Black dots are plotted down the diagonal of each heatmap where the fitted
model corresponds to the data-generating model. Note that our optimal protocol results in a far bigger spread of maximized
log-likelihoods. Bottom: equivalent heatmaps of maximized log-likelihoods with discrepancy between the data-generating
hERG model and the hERG model used to fit the data. The introduced hERG model discrepancy makes identifying the true
data-generating drug-binding model difficult.
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the 104 threshold. Note that there is a large amount of model nesting between drug-binding
models, which we illustrate in figure 10. We consider some model, model A, to be nested
within another model, model B, if by fixing one or more of the parameters in model B, we
can reduce model B to model A. For this reason, we expect that (in this non-discrepant hERG
case) if model A is nested within model B, and model A is the true data-generating model, then
model B should also be able to fit the data at least equally well (perhaps even slightly better
given higher complexity and more parameters), so the maximized log-likelihoods for Model
A and B should be approximately equivalent. At the top of the tree diagram are the models
that are not nested within any others; models 7, 10, 11 and 12. If we consider the heatmap in
the top right-hand side of figure 9 corresponding to the optimized protocol, we see that for
synthetic data generated under models 7, 10 and 11, the only fitted model with a log-likelihood
within the 104 threshold is the true data-generating model. Model 12, the other model with
no nesting, only has one other model within this 104 threshold (model 13). Considering the
nested models in figure 10, we can explain some of the cases where multiple models sit within
the 104 threshold. In the optimized protocol case in the top right of figure 9, the 104 threshold
highlighted squares in the heatmap rows corresponding to models 2, 2i, 8 and 13 can all be
explained by model nesting. On the other hand, data generated under models 1, 3, 4, 5, 5i, 6 and
9 all have at least one model within the 104 threshold that cannot be explained by nesting.

We now switch to the discrepant hERG model case where synthetic data were generated
using the Lu physiological hERG model, but we use the Lei model for fitting. In the bottom half
of figure 9, we plot equivalent heatmaps to those at the top of the plot, but for the discrepant
case. The purpose of considering this case is to address the more realistic scenario where we do
not have a perfect model of hERG channel dynamics. We notice that the number of highlighted
104 and 105 threshold squares is once again significantly reduced in the optimized protocol case.
However, in most cases, the best-fitting binding model is no longer the one that generated the
data. As a result, the diagonal is highlighted significantly less than in the non-discrepant case,
with only eight models (2i, 4, 5, 5i, 7, 9, 12 and 13) sitting within the 104 threshold. Clearly, the
hERG model discrepancy is causing issues with identifying the true binding mechanisms.

(b) Bepridil: trapping dynamics
We can repeat the process described in the previous section for a different drug, this time
with observed trapping behaviour [10,11]. In the electronic supplementary material, fig. S8, we
include an example of model output for a drug with trapping behaviour, compared with one
with no trapping behaviour. In the top half of figure 11, we plot the heatmaps of maximized

Figure 10. Graph illustrating nesting between drug-binding models. An arrow pointing from Model A to Model B indicates
that Model B is nested within Model A.
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log-likelihoods for the non-discrepant case as previously. The optimized protocol heatmap is
very similar to that obtained with verapamil; the highlighted squares in the rows corresponding
to models 1, 2, 2i, 3 and 8 are identical, while there are only a couple of differences for each
of the other models. We can also again consider the discrepant hERG case, and we plot the
heatmaps for this in the bottom half of figure 11. Again, this shows relatively similar results
to those seen with verapamil; when we have discrepancy in the hERG model, it becomes
difficult to determine the true data-generating drug-binding model. In the electronic supple-
mentary material, fig. S9, we also include heatmaps for results obtained for chlorpromazine,
a fast-binding drug with a suspected open-binding preference (over inactive-binding). These
results appear similar to those obtained for verapamil and bepridil.

(c) Dofetilide: slow-binding dynamics
Bepridil and verapamil both have relatively fast binding dynamics, so we also consider the
slow-binding drug dofetilide [37]. In the electronic supplementary material, fig. S8, we include
an example of model output for a drug with slow dynamics, compared with one with fast
dynamics. Once again, we plot the heatmaps of maximized log-likelihoods as shown in figure
12, and we see that nearly all models can fit the Milnes data well. Unlike the fast dynamic

Figure 11. Top: heatmaps of maximized log-likelihoods for fitted models to Milnes and optimized protocol synthetic bepridil
data. Bottom: equivalent heatmaps of maximized log-likelihoods with discrepancy between the data-generating hERG
model and the hERG model used to fit the data. For discussion of highlighting see the caption of figure 9.
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drugs, with dofetilide, we get much less of a reduction in 104 and 105 threshold squares with
the optimized protocol (in both the non-discrepant and discrepant cases). It is not obvious
what causes this difference between fast and slow-binding drugs, and it may indicate that
our median optimization objective function is less effective in the slow-binding case. We also
include, in electronic supplementary material figs. S10–S13, heatmaps for each of the four
considered drugs for the case where all model fitting is done assuming the Lu model is the
true model of hERG dynamics (as opposed to the Lei model). These plots show similar overall
results and indicate that the results obtained in the main text are not exclusive to the Lei hERG
model.

5. Discussion
In this study, we have outlined a methodology for generating optimized voltage protocol
designs to assist in distinguishing between models of drug-binding dynamics. By undertaking
a synthetic data study, we have seen the potential benefits of this methodology when the true
physiological model of hERG is known. Log-likelihoods of models fitted to data generated
under our optimized protocols indicate a divergence in the quality of fits when compared with
fits to data generated under a simple Milnes protocol. This suggests that this OED procedure

Figure 12. Top: heatmaps of maximized log-likelihoods for fitted models to Milnes and optimized protocol synthetic
dofetilide data. Bottom: equivalent heatmaps of maximized log-likelihoods with discrepancy between the data-generating
hERG model and the hERG model used to fit the data. For discussion of highlighting see the caption of figure 9.
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could assist in establishing the true binding dynamics of a compound. The method was less
effective when considering synthetic data emulating a slow-binding drug, dofetilide, when
compared with drugs with faster dynamics such as verapamil and bepridil.

We also considered how discrepancy in the hERG model used to fit the data (compared with
the data-generating hERG model) influenced the outcomes of our methodology. We found that
when we used the Lu hERG model to generate synthetic data and the Lei 37°C hERG model
to fit models to these data, log-likelihoods of model fits indicated that establishing the true
data-generating drug-binding model became more difficult. This suggests that the underlying
hERG model does play an important role when fitting drug-binding models to data and stresses
the importance of continuing to improve basic models of physiological channel behaviour. A
well-calibrated model of hERG current, that approximately matches the observed dynamics
in real experimental data, would reduce the influence of model discrepancy on the outcomes
of the OED procedure. In their 2019 paper, Clerx et al. [38] detail the benefits and limitations
of several methods for calibrating models of ion channels. Our proposed methodology could
perhaps be improved by considering fitting a hERG model to obtained control currents before
fitting the drug-binding models (or fitting both the hERG and drug-binding models simultane-
ously).

We note that our results depend on the initial drug-binding model parameterizations for
each of the three drug compounds, which come from model fits obtained by Lei et al. [18].
The quality of these model fits was quite variable from model to model and from compound
to compound. This represents a limitation of a synthetic data study and motivates trialling the
methodology on real data.

The methods used to fit the drug-binding models in this paper were developed to improve
on those used by Lei et al. [18] and others [12,18,26]. While we have similarly fitted our models
to the proportion of hERG in the open state, the log-likelihoods derived from the normal ratio
PDF described above differ from the simple weighted sum-of-squares method used previously.
This ratio likelihood fitting method provides a more realistic noise model for the data-gener-
ating process (in this synthetic scenario), avoiding problems associated with small control
currents leading to large noise on the proportion open trace. In Lei et al. [18], the weighted
sum-of-squares method required low currents at the start of each 10 s pulse to be cropped out to
prevent noisy open proportion data from biasing the fit, our method allows us to fit the binding
models to the full data sweep.

After some consideration and testing, the max-med optimality criterion was chosen over
other possible alternatives such as maximizing the mean or the minimum of the pairwise
sum-of-squares difference between model current traces. Using the mean or minimum, as
opposed to the median, tended to result in one or two model pairwise differences biasing
the objective function score and leaving many of the other current traces indistinguishable
from each other. It would be useful to perform more rigorous comparisons between optimality
criteria to see if there are scenarios where alternatives are more effective.

In the results above, we noted the presence of nesting between the binding models. This
nesting suggests that perhaps reducing our optimization problem to consider only pairwise
differences between the non-nested models (7, 10, 11 and 12) could be an alternative starting
point given all other nested models are simplified versions of these. Another avenue to explore
would be the use of multiple different protocols, each optimized to emphasize particular
drug-binding properties perhaps, and examining the way different models need to compromise
to fit data from each protocol has proved instructive in providing a lower bound on model
discrepancy [39].

To conclude, the proposed OED methodology shows promise in determining the true
binding dynamics, but care must be taken to ensure that we have a well-calibrated model
of control hERG current if applied to a real data study.
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