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Mathematical models of ion channel gating describe
the changes in ion channel configurations due to the
electrical activity of the cell membrane. Experimental
findings suggest that ion channels behave randomly,
and therefore stochastic models of ion channel
gating should be more realistic than deterministic
counterparts. Whole-cell voltage-clamp data allow us
to calibrate the parameters of ion channel models.
However, standard methods for deterministic models
do not distinguish between stochastic channel gating
and measurement error noise, resulting in biased
estimates, whereas conventional approaches for
stochastic models are computationally demanding.
We propose a state-space model of ion channel
gating based on stochastic reaction networks, and a
maximum likelihood inference procedure to estimate
the unknown parameters. Simulation studies show
that: (i) our proposed method infers the unknown
parameters with low uncertainty and outperforms
standard approaches whilst being computationally
efficient, and (ii) considering stochastic mechanisms
of flickering between conducting and non-conducting
open states improves the estimates in the total
number of ion channels. Finally, the application
of our method to experimental data correctly
distinguished the 50-Hz measurement error from
noise due to stochastic gating. This method improves
data-driven models of ion channel dynamics, by
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accounting for stochastic gating and measurement errors during inference.
This article is part of the theme issue ‘Uncertainty quantification for healthcare and

biological systems (Part 1)’.

1. Introduction
The electrical activity of cells is regulated by proteins residing in their membrane, such as
ion channels, exchangers and pumps [1]. Small disparities between the net charge of solutions
either side of the membrane result in a potential difference, called the transmembrane or
membrane potential [2]. The membrane potential changes as different ionic currents flow into
and out of the cell. Many of these currents are carried by a specialized family of proteins called
voltage-gated ion channels that form a pore in the membrane, allowing the passage of certain
types of ions. Voltage-gated means that changes in membrane potential cause conformational
changes of these ion channel proteins, which allow ions to cross the membrane if they are
in an open conformation, while preventing flow when they are closed [1]. This mechanism
is graphically represented in figure 1c for the case where an ion channel has only two possi-
ble configurations, open (O) or closed (C). Single-channel experiments based on patch-clamp
techniques showed that independent trial replicates of steps to the same voltages produced
different random patterns of ion channel gating [3]. This stochasticity results in fluctuations
of individual ionic conductances [4] and can have important effects on the electrical dynamics
of the whole cell [5,6]. For example, in neuronal cells, the stochastic behaviour of ion channel
gating can affect some electrical properties of the cell, such as the firing threshold [7] and spike
timings [8]. Furthermore, in cardiac myocytes simulations of random channel gating induced
variability in the duration of consecutive APs [9,10], termed beat-to-beat variability.

These findings inspired the development of stochastic models to describe the mechanisms
underlying ion channel gating [11]. Despite their differences, each formulation describes the
transitions of channels between a finite set of possible configurations (states), that happen at
rates which depend on the membrane potential [12]. The probability that an ion channel is in a
particular state at a certain time tk is assumed to depend only on the previous state at time tk − 1.
Thus, for a collection of channels of size η, the dynamics of transition between their configura-
tions can be described by a discrete-state continuous-time Markov chain [13]. This memoryless
process has a probability distribution P that follows a partial differential equation (PDE) called
the chemical master equation (CME), which is the standard formalism to describe stochastic
reaction networks [14]. In general, the CME has no explicit solution, but different realizations
of the stochastic process can be simulated using the Gillespie algorithm [14]. However, this
algorithm is computationally expensive because at each iteration one has to wait for the time
when the next reaction is triggered, and thus many modifications exist, such as the tau-leaping
algorithm [15].

These computational limitations have led to the increasing popularity of using stochastic
differential equations (SDEs) to approximate the distribution of state occupancies for the true
discrete-state continuous-time Markov chain describing ion channel gating. For example, a first
attempt was made by Fox & Lu [16], who extended the deterministic Hodgkin–Huxley model
by incorporating a noise term into the equations describing stochastic gating. Although this
approach computationally outperforms the traditional Markov-chain formulation in several
model settings [17], it has been shown that the solutions of this type of SDE deviates from
the true discrete-state Markov chain model [17–19], and therefore several modifications have
been proposed to overcome this limitation. For example, Goldwyn et al. have empirically shown
that an SDE model describing the biochemical kinetics of the channel better approximates the
stochastic behaviour of the true discrete-state Markov chain model, compared with a Hodg-
kin–Huxley SDE formulation [20]. Taken together, these results motivated us to use stochastic
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reaction networks as a framework to describe the temporal evolution of the proportions of ion
channels being in a set of possible configurations.

Given the increasing demand of stochastic models for describing ion channel gating, there
is a need for inference approaches to estimate gating parameters. Despite many methods being
available to estimate the parameters of deterministic models of ion channel gating [12,21–25],
only a few have been developed for the stochastic case. For example, several methods have
been proposed to estimate the total number of channels η from macroscopic voltage-clamp data
(i.e. collected from whole-cell recordings with many channels) [26,27], while estimating the
kinetics parameters. Estimating the total number of channels η in addition to the dynamic
parameters can help identify the total maximal conductance g, when we model it as the productg = gsη between the single-channel conductance gs and the number of ion channels η. These
existing methods are typically based on the assumption that the number of channels η follows
a binomial distribution, while the dynamics of ion channel gating is described by deterministic
models. However, it has been shown that classical estimators based on a binomial assump-
tion of the number of open channels have some limitations and may result in misleading
conclusions [28,29]. Besides, these methods might not be able to distinguish between noise due
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Figure 1. (a): a cell in solution with its membrane voltage Vm clamped to a voltage protocol Vcmd that may change over
time (b, top). As Vm varies, the channels change their conformation xx, e.g. Closed (C) – Open (O) (b, middle), thus increasing
or decreasing the flow of ions through them. The ionic current yy = Iion (b, bottom) is measured with a voltage-clamp
amplifier acting as a membrane current ammeter. The stochastic model of ion channel gating is written in a state-space
formulation (d), where the dynamics are described by stochastic reaction networks, as shown in plot panel (c) for the
simplistic case of a C–O model. The unknown parameters are estimated by optimizing the log-likelihood (d), and the
resulting first two moments of xx and yy are returned, as displayed in plot panel (e) for a C–O model. The second moment of
xx and yy is shown as 95% confidence interval (upper and lower lines) around the mean (middle line).
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to stochastic gating and noise due to measurement errors in the data, as suggested by our
simulation studies of §3e. Thus how to best infer the relationship between the noise observed in
the ionic measurements and the total number of channels in the cell membrane contributing to
gating is still unclear.

A first attempt was made by employing a Bayesian filter, MacroR, to calibrate the parameters
of ligand-gated ion channel models to fit macroscopic voltage-clamp data [30]. The authors
proved that their method provides better estimates than approaches that do not consider
statistical dependence of successive measurements [31]. A similar approach was also employed
by [32], who developed a method that outperformed both a classical Kalman filter [33] and a
rate equation approach [34–36] when applied to patch-clamp data with realistic open-channel
noise. Their framework also enables inclusion of orthogonal fluorescence data, increasing the
level of identifiability of the unknown parameters, and the accuracy of their estimates. These
methods can be extended to the case of voltage-gated ion channels. However, approaches
that are based on filtering techniques are computationally expensive because an integration
step of the differential moment equations (DMEs), and the corresponding updates in the
correction step, are computed between every consecutive time points where the measurements
are collected [37,38]. This complexity becomes extremely important in the case of long time
series, like the ionic current traces obtained from voltage-clamp experiments, typically having a
sampling frequency on the order of 10 kHz.

To overcome the limitations of the existing approaches, in this work we developed an
inference procedure to estimate the parameters of stochastic models of voltage-gated channels
to fit macroscopic voltage-clamp data, which avoids the computational complexity of the filtering
approach by focusing on the time evolution of the first two moments of the stochastic process,
rather than the process itself. To this end, we first write the stochastic model of ion channel
gating in a state-space formulation, where the dynamic model consists of a stochastic reaction
network describing ion channel gating. The measurement model links the measured ionic
current traces to the ion channel open state configuration via an Ohmic equation [1]. This
state-space formulation allows us to distinguish between measurement error and noise due
to the number of channels η in the cell membrane that are contributing to stochastic gating.
Finally, our proposed inference scheme is based on a maximum likelihood (ML) approach that
uses the DMEs to describe the changes over time of the mean mm(t) and covariance PP (t) of
the state xxt of the system, thus avoiding the well-known high computational complexity that
characterizes filtering techniques [37,38], as we show in §3g with a direct comparison of our
proposed method with a Kalman filter approach. After testing our method with simulation
studies, including a comparison with standard methods, we apply it to estimate the parameters
of a novel five-state ion channel model, to fit data recorded from whole-cell voltage-clamp
experiments.

2. Methods
A graphical representation of our proposed framework is displayed in figure 1. Data consist
of whole-cell patch-clamp recordings, including information on the total current yy flowing
through the ion channels, observed over time under a particular voltage-clamp protocol Vcmd

which acts as a forcing function. The dynamics of channel gating is modelled with a stochastic
reaction network formulation, describing the changes in channel configuration as a result of the
variation in the cell membrane voltage. The possible channel configurations/states are unknown
and cannot be measured, except for a linear transformation of the open probability, which
is obtained via a measurement model based on an Ohmic formulation. Figure 2b shows the
five-state ion channel model used in this study to analyse the experimental data. Inference is
done via a maximum likelihood approach, that optimizes both dynamic and measurement
parameters. The likelihood is based on the differential equations describing the first two
moments mm and PP  of the stochastic process xx, following a system of Itô-type SDEs. The system
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of SDEs is derived from the Fokker–Planck equation describing a channel’s reaction network.
Our proposed statistical framework returns the optimal parameters describing the ion channel
network, and the first two moments of the stochastic process xx and the current yy. This section
includes the experimental design (§2a), our model formulation of ion channel gating based
on stochastic reaction networks (§2b), its state-space formulation (§2c), a method to simulate
synthetic data (§2d), the inference procedure (§2e), the definition of the five-state ion channel
model (§2f), and a method used to compute box-constraints on the single-channel conductance
as a function of the extracellular potassium concentration [K]o observed experimentally (§2g).

(a) Experimental assay and voltage-clamp protocol
The data analysed in this work are collected from whole-cell voltage-clamp experiments
performed on Chinese hamster ovary (CHO) cells overexpressing hERG1a (Kv11.1) [12]. Figure
1a shows an idealized model of a whole-cell voltage-clamp experiment, whereby a cell is
placed into a solution, its membrane voltage Vm is clamped (i.e. fixed) to a value Vcmd with
an electrically charged pipette, while the patch-clamp amplifier calculates, applies and reports
the current Iout necessary to maintain this voltage value across the cell membrane. In this ideal
model, we assume that the command voltage Vcmd equals the membrane voltage Vm, and so
we refer simply to V  below, while the measured current Iout matches the total current flowing
through the ion channels in the cell membrane. Some recent works do propose a relaxation of
these assumptions which would introduce extra equations to account for patch-clamp artefacts
[25,39,40]. After an experiment starts, the membrane voltage is clamped over time according toVcmd (figure 1b, top), inducing changes in the channels’ configurations (figure 1b, middle), and
the total ionic current is observed (figure 1b, bottom). The current flowing through the channels
is the only measurable quantity, whereas the channel configurations (e.g. open, closed, etc.) are
unknown and cannot be measured directly.

Figure 3a displays the 8 s experimental voltage-clamp protocol, used in this work to
characterize the current and train the stochastic ion channel models. This protocol features
simple steps and a main sinusoidal section, defined as the sum of three sine waves of different
amplitudes and frequencies. This protocol was originally designed to rapidly explore hERG
channel kinetics with deterministic ion channel models [12,23]. The full protocol comprises
a 250 ms phase at holding potential of −80 mV, followed by a 50 ms leak detection step to
−120 mV, and then 200 ms back at −80 mV. This is followed by a 1 s activation step to 40 mV; a
closing 500 ms step to −120 mV; and a return to −80 mV for 1 s. The 3.5 s sinusoidal portion of
the protocol then follows, before a closing 500 ms step to −120 mV, and a return to −80 mV for
1 s. The main sinusoidal portion of the protocol is defined as

(2.1)V(t) = − 30 + ∑j = 1

3 ajsin(ωj(t − t0)) ,

where a1 = 54 mV, a2 = 26 mV, a3 = 10 mV, ω1 = 0.007 ms−1, ω2 = 0.037 ms−1, ω3 = 0.19 ms−1 and t is
the time in milliseconds. Since the activation steps to +40 and −120 mV occur first, a time offset
of t0 = 2500 ms ensures the sine waves begin in phase. By design, this protocol allows us to
explore both the physiological voltage- and time-dependence of hERG gating. The amplitudesAjs of the sine waves were selected to keep the protocol within the physiological voltage range
(−120, +60) mV; and the protocol frequencies ωjs were designed to investigate the characteristic
physiological time scales of IKr gating, ranging from 10 ms to 1 s [41,42]. More details on the
protocol and experimental setup can be found in the original study [12].
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Figure 2. (a): Graphical representation of the four-state ion channel gating model from Beattie et al. [12] with the
configurations: open conducting O′, inactive I, closed C, and inactive-closed IC. (b): The five-state gating model used in
this study and detailed in §2f. It extends the four-state model by splitting the open state O′into open conducting O and
open non-conducting (flickering) F states. In both models, arrows represent transitions between ion channel configurations
whose rates are voltage-dependent, except for the flickering parameters γ and δ of the five-state model.
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Figure 3. (a): The voltage-clamp protocol used in this study and detailed in §2a. It consists of the command voltage (y-axis)
over time (x-axis). (b): Synthetic stochastic trajectories (thin lines) over time, for each ion channel configuration (colours),
simulated from the five-state model by using the simulation scheme from §2d. The first two moments of the state vector xx
are obtained from the differential moment equations (2.18), where the variance is displayed as a 95% confidence interval
(shaded area) around the mean (line). The model parameters were set consistent with §3a, with a total number of channels
equal to η = 100. (c): Synthetic ionic current traces (grey) corresponding to the ion channel configurations of plot panel
(b), and simulated from the measurement model of equation (2.11), with a measurement noise variance set to σ2 = 0 nA2.
The first two moments of the ionic current are obtained from equation (2.23), where the variance is displayed as a 95%
confidence interval (blue-shaded area) around the mean (blue line).
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(b) A stochastic reaction model of ion channel gating
Consistent with our definition of a stochastic reaction network (electronic supplementary
material, section A), we consider a Markov process

(2.2)xxt = (xt1, …,xtn)′ , 0 ⩽ xti ⩽ 1 , ∑i = 1

n xti = 1 ,

describing the occupancy probabilities of n distinct ion channel configurations that evolve, in a
time interval (t, t + Δt), according to a set of forward and backward biochemical reactions

(2.3)i →λij j , j →λji i , i ≠ j ,

where i and j are two different ion channel configurations. The corresponding reaction rates are
defined as

(2.4)λij = θ1exp(θ2vt) , λji = θ3exp( − θ4vt) ,

where vt is the value of the voltage protocol at time t, and θj (j = 1, …, 4) are positive scalar
parameters. The negative sign inside the second reaction relates to the voltage-dependent terms
being assumed proportional to the net charge movement along the trans-membrane electric
field during the protein’s conformational change (i.e. movement of the imagined ‘charged
particle’ in figure 1c up/down the electric field across the membrane for forward/backward
reactions); see Jack et al. [43, p. 242].

Each reaction r = 1, …,R
(2.5)r: l →λlm m ,

describing the transition of ion channels from a configuration l to a configuration m with a rateλlm, has a net-effect vector vvr and a hazard function ℎr(xt, θ) defined as

(2.6)vvr = (⋯−1l ⋯1m⋯)′ , ℎr(xxt,θθ) = xtlλlm ,

where θθ is the vector of all the dynamic parameters involved in the system. Finally, we define
the net-effect matrix and the hazard vector as

(2.7)

VV = vv1 ⋯ vvR ∈ { − 1, 1}n × R ,
hh(xxt, θθ) = (ℎ1(xxt,θθ), …,ℎR(xxt,θθ))′ ∈ ℝR × 1 ,

and we consider the Fokker–Planck approximation of the Master equation to obtain the
Kolmogorov forward system (details in electronic supplementary material, sections B and C)

(2.8)∂P(xx, t)
∂t = −∇xx μμ(xx,θθ)P(xx, t) + 1

2∇xx
2 ββ(xx, θθ, η)P(xx, t) ,

as a probabilistic assumption for the stochastic process xx, where

(2.9)
μμ(xx, θθ) = VV hh(xx, θθ), ββ(xx,θθ, η) = 1ηVV

ℎ1(xx,θθ) ⋱ ℎR(xx, θθ)
VV ′

are the mean-drift and diffusion operators, and η is the total number of channels residing in the
cell membrane.
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(c) State-space formulation of ion channel dynamics
Since the aim of this work is to estimate the parameters of the continuous-time stochastic model
defined by equations (2.2)–(2.9) from whole-cell patch-clamp data that have been recorded
at discrete-time points, we use a continuous-discrete state-space formulation that links the
discrete-time measurements to the continuous-time stochastic process [44]. In particular, we
consider a state-space formulation including a dynamic model defined as the system of Itô-type
stochastic differential equations

(2.10)
dx = μ(x, θ)dt + β(x, θ, η)dW ,

dW ∼ N n(0, dtIn) ,

where μμ(xx,θθ) and ββ(xx, θθ, η) are defined by equation (2.9), coupled with a measurement model
defined by the Ohmic equation

(2.11)

yt = gsηO(vt − E) + ε ,yt = gsη(vt − E) 0⋯0 1 0⋯0
O

Gt
xt + ε , ε ∼ N (0,σ2) ,

where GGt is a 1 × n matrix having zero entries, except for the column(s) corresponding to the
open conducting state(s), including the scaling factor

(2.12)gsη(vt − E) ,

where gs is the single-channel conductance, η is the total number of channels, vt is the voltage
at time t, E is the Nernst potential and σ2 is the variance of the iid measurement error ε. Our
proposed state-space formulation defined by equations (2.10) and (2.11) can be interpreted as a
hidden Markov model where all the configurations in the state vector xx are latent, and only the
occupancy probability for the open state O, scaled by the Ohmic term (2.12), can be observed
through the measurement model of equation (2.11).

(d) Simulating stochastic reaction networks of ion channel gating
Here we describe our proposed method to simulate trajectories that are solutions of equation
(2.10), having a mean drift and diffusion operators consistent with equation (2.9). The solutions
{xxt}t of this system are n-dimensional vectors describing the time-evolution in the proportion of
channels that are in the n configurations, and therefore must remain non-negative and sum to 1,
in order to be biologically meaningful. To this end, instead of simulating the trajectories of the
original process {xxt}t, we use the Euler–Maruyama method [45] to simulate the trajectories of the
transformed process

(2.13)

ξξt = ξt1, …, ξtn ′ ,

ξti = g(xti) = log xti
1 − xti , i = 1, …,n ,

which is obtained by applying the Itô lemma D.1 from electronic supplementary material,
section D, to each component of the process xxt and the transformation g. Then, the original
process is obtained via the inverse transform of g as

(2.14)

xxt = xt1, …,xtn ′ ,xti = g−1(ξti) = 1
1 + exp(ξti) , i = 1, …,n .

The inverse transform g−1 ensures that xti ∈ (0, 1), i = 1, …,n, and, therefore, our proposed
simulation approach does not need any special reflection boundaries like those proposed by
[46], and the original set of SDEs describing the biochemical formulation of ion channel gating

8

royalsocietypublishing.org/journal/rsta 
Phil. Trans. R. Soc. A 383: 20240224

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

18
 M

ar
ch

 2
02

5 



is preserved. Finally, to make sure the states sum to 1, we simulate the trajectories of the firstn − 1 states, and the last one is defined as

(2.15)xtn = 1 − ∑i = 1

n − 1xti ,
for each time t. The pseudo-code of the Euler–Maruyama simulation scheme is reported in
algorithm 1 of electronic supplementary material, Section D1.

(e) Inference procedure
Consider the state-space model defined by equations (2.10) and (2.11). Let yy1:τ be the vector
of measurements collected at times t = t1, …, tτ, and xx1:k the process states from time t1 up
to tk, where k = 1, …, τ. Assuming that the Markov properties from electronic supplementary
material, section E, hold for the distributions involved in the dynamic and measurement models
of equations (2.10) and (2.11), then, consistent with electronic supplementary material, section F,
the first two moments

(2.16)mm = E[xx] , PP = V(xx) ,

of a solution xx to the system of Itô-type SDEs (2.10), and their partial derivatives,

(2.17)∂mm
∂ψj , ∂PP

∂ψj ,

follow the differential moment equations (DMEs) defined as

(2.18)

dmm
dt = JJμμ,xxmm , mm(0) = mm∞ ,

dPP
dt = JJμμ,xxPP + PPJJμμ,xx′ + ββ(mm, θθ, η) , PP (0) = PP∞ ,

coupled with their sensitivities defined as

(2.19)

d
dt ∂mm∂ψj = d

dψj JJμμ,xxmm , ∂mm
∂ψj (0) = ∂mm∞

∂ψj ,

d
dψj ∂PP∂ψj = d

dψj JJμμ,xxPP + PPJJμμ,xx′ + ββ(mm, θθ, η) , ∂PP
∂ψj (0) = ∂PP∞∂ψj ,

where μμ(xx,θθ) and ββ(xx, θθ, η) are defined by equation (2.9), JJμμ,xx is the Jacobian matrix of μμ(xx,θθ)
with respect to xx and evaluated at mm, and

(2.20)ψψ = (θθ, η, gs,σ2)′

is the vector of all unknown parameters (see electronic supplementary material, equation G3).
Furthermore, due to the patch-clamp experimental conditions, we know that the system is at
steady state at t = 0, and therefore mm∞ and PP∞ are defined as the state vectors satisfying the
steady conditions

(2.21)dmm
dt = 00 , dP

dt = 00 ,

which, in our case, have an explicit formulation. Furthermore, by applying the properties of
linear transformation of a multivariate Gaussian distribution to the measurement model of
equation (2.11), the log-likelihood is given by

(2.22)ℓ(ψψ |yy1:τ) = − ∑k = 1

τ
log sk − ∑k = 1

τ 1sk (yk − yk)2 ,

where
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(2.23)

yk = Ogsη(vk − E) = GGkmmk ,sk = GGkPP kGGk′ + σ2 .

The gradient ∇ψψℓ(ψψ |yy1:τ) of the log-likelihood with respect to each component of ψψ is reported
in electronic supplementary material, section H. The transformed vector parameter

(2.24)ϕϕ = (log θθ, log(η − 1), log gs, logσ2)′

of the log-likelihood is estimated by solving the optimization problem

(2.25)ϕϕ = argminϕϕ − ℓ(ϕϕ|yy1:τ) ,

by using the L-BFGS algorithm, to which we provide the log-likelihood and its gradient.
At each step of the optimization, to evaluate the log-likelihood ℓ(ψψ |yy1:τ), and its gradient∇ψψℓ(ψψ |yy1:τ), we numerically solve the differential moment equations (2.18), and their sensitiv-
ities defined by equation (2.19), using the method from electronic supplementary material,
section G.

(f) A 5-state model of ion channel gating
We extended the 4-state ion channel model of hERG gating proposed by Beattie et al. [12],
displayed in figure 2a, by following Bett et al. [47] in introducing an additional Markov stateF describing a non-conducting ‘flickering’ open configuration, leading to the 5-state model
which is displayed in figure 2b. This choice is motivated by the experimental results suggesting
that after depolarization, single channels open, but ‘flicker’ rapidly between conducting O and
non-conducting F states [48]. The flickering provides a rapid opening and closing, that does
not depend on the voltage-dependent processes of activation or inactivation, but may represent
unrelated physical changes such as fluctuations in the selectivity filter or blocking by divalent
ions, and can account for the apparent contradictions between macroscopic data and single
channel measurements [47].

The voltage-dependent reaction rates are defined as

(2.26)

λ1 = θ1eθ2v , λ3 = θ5eθ6v ,λ2 = θ3e−θ4v , λ4 = θ7e−θ8v ,

as per equation (2.4). The new flickering mechanism is described by the voltage-independent
reaction rates γ and δ between the O and F states. The values of the flickering reaction rates are
fixed to γ = 1/6.7 ms and δ = 1/2.5 ms, corresponding to the open and intermediate closed dwell
times measured experimentally at +100 mV [48]. Finally, to preserve microscopic reversibility,
the reactions that bring an ion channel configuration into either the open conducting state O, or
the flicker (open non-conducting) state F are scaled, respectively, by

(2.27)π1 = γγ + δ , π2 = 1 − π1 .

Thus, our proposed five-state model is obtained from the four-state model [12], after splitting
the open configuration O′ into the open conducting O and flickering non-conducting F states.

(g) Constraints on single-channel conductance
Here, we detail a method to construct box-constraints, i.e. upper and lower bounds, on
the single-channel conductance gs, as a function of the experimentally observed extracellular
potassium concentration [K]o. A work on hERG cRNA injected into Xenopus oocytes, with
currents measured from single channels, suggests that single-channel conductance gs depends
on the extracellular potassium concentration [K]o [49]. The authors observed a single-channel
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conductance of 7.0, 10.1 and 13.7 pS at 50, 100 and 300 mM [K]o, respectively. Consistent with
the original study, we fitted a Michaelis–Menten function

(2.28)log  gs([K]o) = log gs, max

1 + [K]50%
[K]o

,

to the data, where gs, max and [K]50% are the single-channel conductance saturation level and
the extracellular potassium concentration at half maximal conductance, respectively. The log
function in equation (2.28) ensures that the response (a conductance) is always positive. These
parameters are unknown and have to be inferred from the data. The parameters gs, max and
[K]50% are inferred from the single-channel/potassium concentration data of Kiehn et al. [49],
by using a nonlinear least-squares approach, where the sum of squared residuals between data
and predictions, given by the model of equation (2.28), is minimized. Then, the box-constraints
for the single-channel conductance gs are defined as the 1 − α confidence interval with lower and
upper bounds given by

(2.29)gs,lb = exp log gs([K]obs) − z1 − α/2τ , gs,ub = exp log gs([K]obs) + z1 − α/2τ ,

where [K]obs is the extracellular potassium concentration observed experimentally (4 mM in
our case), gs([K]obs) is the corresponding model prediction, z1 − α/2 is the (1 − α/2)-quantile of
a standard Gaussian distribution, with level set to α = 0.01, and τ2 is the corrected sample
variance estimator. Parameter estimates, model fit, and the box-constraints inferred from the
single-channel/potassium concentration data of Kiehn et al. [49] are reported in §3i. This method
is used in §3i, before fitting the five-state model to the whole-cell voltage-clamp data, to make
sure that the single-channel conductance gs takes only physiologically plausible/sensible values,
consistent with the experimental findings of [49].

3. Results
We tested our proposed inference method in several simulation studies in terms of: (i) uncer-
tainty quantification for the inferred parameters, (ii) ability to distinguish between measure-
ment error and stochastic noise, including a comparison with a previously published method,
(iii) scalability to complex gating scenarios, (iv) computational complexity, including a direct
comparison with a Kalman filter approach, and (v) misspecification of the flickering mecha-
nism. After validating our method, we applied it to analyse whole-cell voltage-clamp data
collected from nine CHO cells under a recently designed sinusoidal voltage-clamp protocol
[12]. The details and results of the specific analyses are reported in the next subsections.

(a) Simulation setting
In each simulation either the five-state ion channel reaction network of §2f or the eight-state
ion channel model of §3f has been used as the true data-generating process, depending on
the particular goal. Each model is written as the stochastic reaction network formulation of
equations (2.2)–(2.9) from §2b, and its Itô-type formulation of equation (2.10). For the five-state
model, the voltage-dependent reaction rates of equation (2.4) reduce to those defined by
equation (2.26) from §2f. The 8-dimensional dynamic vector parameter

(3.1)θθ = (θ1, θ2, θ3, θ4, θ5, θ6, θ7, θ8)′ ,

for the five-state model, has the values reported in table 1, whereas for the 16-dimensional
dynamic vector parameter of the eight-state model we used the values reported in table 2.
For both the five- and eight-state ion channel models, the reaction rates of the flickering
mechanism were set to γ = 1/6.7 ms and δ = 1/2.5 ms, and the rates of the reactions that bring
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an ion channel configuration into either the open conducting state O or the flicker state F
were scaled, respectively, by π1 and π2, according to equation (2.27) of §2f. Then, we used the
Euler–Maruyama simulation scheme from §2d to generate synthetic stochastic traces of the ion
channel configurations, combined with the measurement model of equation (2.11) to obtain the
corresponding synthetic ionic current traces. For the measurement model of equation (2.11), the
total cell conductance

(3.2)g = gsη ,

was fixed to the values reported in tables 1 and 2 for the five- and eight-state models respec-
tively, in each simulation study, whereas η and the measurement noise variance σ2 are tuned
across the different simulation studies, so as to mimic a diverse set of scenarios of stochastic
noise and measurement error. The true single-channel conductance gs is then derived from
equation (3.2). For the simulations, in both the dynamic model and the measurement model,
the input v for the voltage was set to the sinusoidal voltage-clamp protocol developed by [12]
and reported in figure 3a. A detailed description of the sinusoidal voltage protocol can be found
in §2a, and in the original study [12]. Figure 3b,c shows an example of a synthetic trace of ion
channel configurations, together with the corresponding current trace, that have been generated
from the five-state ion channel reaction network of figure 2b, under this setting, by using our
proposed simulation scheme of §2d, where the number of channels and the measurement error
noise variance were set to η = 100 and σ2 = 0 nA2, respectively. For a comparison, in figure 3b,
we also display the first two moments of the process obtained by using the differential moment
equations (2.18), whereas in figure 3c, we report the first two moments of the ionic current,
by using equation (2.23). In both cases, the second moment is displayed as a 95% confidence
interval around the mean trace.

Table 1. Values of the 8-dimensional dynamic vector parameter θθ, and the whole cell hERG conductance g , used in
equations (2.10) and (2.11) to generate the synthetic stochastic traces from the five-state model of §2f for the validation
studies.

θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 g
2.23e−4

ms−1

7.01e−2

mV−1

3.41e−5

ms−1

5.45e−2

mV−1

8.71e−2

ms−1

8.26e−3

mV−1

5.40e−3

ms−1

3.24e−2

mV−1

1.46e−1μS

Table 2. Values of the 16-dimensional dynamic vector parameter θθ , the whole cell hERG conductance g , and the
measurement error variance σ2 , used in equations (2.10) and (2.11) to generate the synthetic stochastic traces from the
eight-state model of §3f for the validation studies.

θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9

1.11e−1

ms−1

1.69e−3

mV−1

4.61e−3

ms−1

2.01e−2

mV−1

1.04e−1

ms−1

9.70e−3

mV−1

5.27e−3

ms−1

3.12e−2

mV−1

2.61e−2

ms−1

θ10 θ11 θ12 θ13 θ14 θ15 θ16 g σ2

2.08e−3

mV−1

5.74e−4

ms−1

4.34e−2

mV−1

3.10e−4

ms−1

6.55e−2

mV−1

2.63e−2

ms−1

3.55e−2

mV−1

1.73e−1μS

1.00e−5

nA2
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(b) Uncertainty quantification across independent stochastic traces
We used the simulation scheme of §2d to generate N = 20 synthetic current traces of η channels
from the true generative data process of figure 2b, under the simulation setting of §3a. Synthetic
data were generated under η = 100, 1000 or 10 000; and measurement error variance σ2 = 10−6,
10−5 or 10−4 nA2; to mimic a diverse set of scenarios for stochastic noise versus measurement
error. The values for the dynamic parameters θθ, the total membrane conductance g and the
rates γ and δ of the flickering mechanism used for the simulations are reported in §3a. Then
we used our proposed inference method of §2e to recover all the parameters, independently
from each generated synthetic trace. During inference, all the parameters are assumed to be
unconstrained.

Results are displayed in figure 4, suggesting that our inference method is able to recover
the true parameters under any combination of measurement error and stochastic noise. The last
two can be distinguished by our method, as can be seen from the bottom-left and top-right
corners of figure 4c, where the parameter estimates always lie close to the diagonal grey line.
Furthermore, our proposed inference method is robust across the independent stochastic traces.
Indeed, for each combination of measurement error and stochastic noise the correspondingN = 20 independent parameter estimates show low variation around the true values identified
by the grey diagonal line.

(c) Practical parameter identifiability
Structural non-identifiability is the result of functionally related model parameters, where it
is impossible for given model output(s) (e.g. in this context, recording only current) to give
independent information on all the model parameters no matter what experiment is performed
[50]. Global sensitivity analysis could also be used to explore structural non-identifiability
of mathematical models [51]. However, even with structural identifiability in place, practical
non-identifiability can still arise when we have poor parameter estimates due to limited
amounts or quality of data [52].

More formally, given a log-likelihood ℓ(ψψ |yy), the jth component ψj of ψψ is structurally
non-identifiable if its variation can be completely compensated by calibrating the remaining
parameters ψψi ≠ j, thus having no impact on the likelihood. This means that the data yy cannot
provide any information about ψj. However, if ψj is structurally identifiable but there is an high
level of uncertainty on the corresponding estimate ψj due to limited amount and quality of
experimental data yy, then we will have a high degree of uncertainty in our estimate of ψj and
it is said to be practically non-identifiable [52]. These scenarios of non-identifiability are well
reflected by the shape of the profile likelihood, as described in the electronic supplementary
material, section J. Here, we assess practical identifiability by attempting to (re)fit parameters
that we used to generate some data, noting that good practical identifiability guarantees (at
least locally) structural identifiability.

Using the five-state model, we have performed an additional simulation study, based on the
profile likelihood approach, in order to check practical identifiability of the vector parameter ψψ
defined by equation (2.20), characterizing the log-likelihood of equation (2.22). In particular, we
used the simulation scheme of §2d to generate one synthetic current trace of η channels from
the true generative data process of figure 2b, under the simulation setting of §3a. Synthetic data
were generated under η = 1000 and σ2 = 10−5nA2. The values for the dynamic parameters θθ, the
total membrane conductance g, and the rates γ and δ of the flickering mechanism used for the
simulations are listed in §3a.

We applied the profile likelihood approach [52], detailed in electronic supplementary
material, section J, to the simulated data. To build the profile likelihood defined in electronic
supplementary material, equation (J1), each parameter ψj was varied by ±10% from the absolute
value of its maximum likelihood estimator ψj, whereas the remaining nuisance parameters
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ψψi ≠ j were optimized by using our proposed inference scheme from §2e. During inference, all
the parameters are assumed to be unconstrained. Results are displayed in figure 5, suggesting
that each parameter is identifiable, as their profile negative log-likelihoods are not flat and
increase when the parameter of interest deviates from its ML estimator. In particular, each
profile negative log-likelihood rapidly exceeds the threshold,

(3.3)−l(ψψ) + 1/2χ1 − α, 1
2 ,

defining a (1 − α) confidence interval for ψψ, displayed as red horizontal lines in figure 5 forα = 0.05, where ψψ is the maximum likelihood estimator of ψψ (see electronic supplementary
material, section J, for details).

Similar findings are obtained with Fisher Information-based parabolas, which we computed
for each parameter according to electronic supplementary material, section I and displayed
in figure 5, together with the profile negative log-likelihood. The comparison of the results
obtained by both methods suggests that the peaked FIM-based parabolas makes the profile
likelihood approach more parsimonious in evaluating the identifiability of the model parame-
ters, as the confidence intervals defined by the profile negative log-likelihoods are always wider
than the FIM counterparts at any level α, except for the measurement noise parameter σ2.

Furthermore, in order to make sure that our inference method, based on the local optimizer
L-BFGS, is able to recover the profile likelihood accurately, we empirically show that the
log-likelihood defined by equation (2.22) is locally well approximated by a quadratic function of
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Figure 4. (a): A synthetic current trace (grey) generated under η = 1000 and σ2 = 10−5 nA2, along with the first two
moments of the model fit, defined by equation (2.23) and obtained with our proposed inference method from §2e, where
the variance is displayed as a 95% confidence interval (blue-shaded area) around the mean (blue line). (b): A zoom of plot
panel (a) on a portion of the sinusoidal part of the voltage-clamp protocol. (c): Scatter plot of the estimated against true
parameters ψψ, on a log–log scale, under different combinations of total number of channels η (colours) and variance σ2 of
the measurement error (symbols). Each replicate correspond to a particular synthetic trace. The diagonal grey line identifies
the true values.
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the parameters in the interval defined as ±10% the absolute values of the maximum likelihood
estimator around ψψ, that is

(3.4)Iψψ, ± 10% = [ψψ − |ψψ | /10,ψψ + |ψψ | /10] ,

the range over which we estimated the profile likelihood in figure 5. To this end, we applied
our inference method to estimate the parameters from the same simulated trace previously
used to estimate the profile likelihood, and the inference is repeated by using N = 100 different
starting guesses for the vector parameter ψψ, uniformly sampled in Iψψ, ± 10%. Inference results are
displayed in electronic supplementary material, figure S1, showing that the parameter estimates
obtained by our method from each starting guess are close to the true values. This result
suggests that the estimated values of the profile likelihood from figure 5 are accurate, at least
regionally in the interval Iψψ, ± 10%. Note that the parameter region defined by equation (3.4),
where the log-likelihood behaves as a quadratic function of the parameters, largely covers the
(1 − α) confidence interval for ψψ, with α = 0.05, as displayed in figure 5. However, to explore
possible multimodal behaviours that might arise beyond the region Iψψ, ± 10%, our inference
method can be easily extended by replacing the local optimizer L-BFGS with a global counter-
part.

(d) Uncertainty due to sampling frequency
We assessed our proposed inference method in terms of robustness against parameter
uncertainty due to sampling ω, defined as the fraction of data observed out of the complete
set of measurements. To generate the stochastic traces, consistent with §3b, we first used the
simulation scheme of §2d to generate N = 100 independent synthetic current traces of η channels
from the five-state model under the simulation setting of §3a. Synthetic data were generated
under η = 1000 total number of ion channels, with a variance for the measurement error set toσ2 = 10−5 nA2. Subsequently, a sampling ω ∈ {90,80,70,60,50,40,30,20,15,10,5}% has been applied

−9.0 −8.5 −8.0

−7
6

−7
4

−7
2

* −2.9 −2.7 −2.5* −11.0 −10.0* −3.2 −3.0 −2.8 −2.6*

−2.7 −2.5 −2.3

−7
6

−7
4

−7
2

* −5.2 −4.8 −4.4* −5.8 −5.4 −5.0* −3.7 −3.5 −3.3 −3.1*

−9.5 −9.0 −8.5 −8.0

−7
6

−7
4

−7
2

* −12.5 −11.5 −10.5* 6.2 6.6 7.0 7.4*

!!
×
1#
4

!"

"#

!$

!%

#$

!&

$

!'

!(

!)

FIM
PL

* MLE
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2 , representing a 95% confidence interval.
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to each synthetic trace to obtain reduced traces of various levels of information from the entire
trace. The sampling process has been applied uniformly across time.

We then used our proposed inference method of §2e to recover all the parameters, independ-
ently from each generated synthetic trace under each level of sampling ω. During inference, all
the parameters are assumed to be unconstrained. Results are displayed in figure 6, suggesting
that our inference method is able to recover the true parameters under any level of sampling
frequency ω, even for the extreme scenarios where we only analyse ω = 5% of the entire trace,
as shown by figure 6a. Consistent with §3b, our proposed inference method is robust across
the independent stochastic traces, as shown by the low variation of the N = 100 independent
parameter estimates around the true values identified by the grey diagonal line, for each level
of sampling ω. In particular, the relative error between the estimated and true parameters only
increases slightly as the sampling ω decreases, as suggested by the box plots of figure 6b,
confirming that our proposed inference method is robust with any source of uncertainty given
by unobserved measurements due to experimental sampling limits. Results are confirmed in
terms of model fit, for which we show in figure 6c,d, the predictions of the first two moments
of a single synthetic current trace obtained from the full trace with a sampling of ω = 5%. The
model fits for the entire trace (ω = 100%) and under different values of sampling frequencies ω
are displayed in figure 4a and electronic supplementary material, figure S2, respectively.

(e) Number of channels and measurement noise
With an additional simulation study, we checked whether our proposed method is able to
recover the true total number of channels (η) and the measurement error variance (σ2), and
to distinguish between the corresponding sources of noise. In this regard, we compared the
performance of our method with the standard approach [27]. As per §3b, we used the simu-
lation scheme of §2d to generate N = 100 ionic current traces following the five-state model
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Figure 6. (a): Scatter plot of estimated (y-axis) against true (x-axis) parameters, on a log-log scale, under each level of
sampling frequency ω (colours), with a total number of channels η = 1000 and measurement error variance σ2 = 10−5nA2.
The corresponding relative error between the estimated and true parameters are displayed in panel (b), where ‖ ⋅ ‖2 is the
Euclidean norm. (c): One synthetic current trace obtained from the full trace with a sampling frequency of ω = 5% (grey),
and the corresponding model fit, obtained with our inference method, in terms of the first two moments defined by equation
(2.23), where the variance is displayed as a 95% confidence interval (blue-shaded area) around the mean (blue line). Model
fits under different values of sampling frequencies are displayed in electronic supplementary material, figure S2. (d): A zoom
of plot panel (c) on a portion of the sinusoidal part of the voltage-clamp protocol.
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under the simulation setting of §3a. Each synthetic current trace was simulated with a different
value of η, ranging in the interval [102, 104]. The values for the dynamic parameters θθ, the
total membrane conductance g, and the rates γ and δ of the flickering mechanism used in
the state-space model of equations (2.10) and (2.11) for the simulations are listed in §3a. The
simulations have been repeated under three different values of the measurement noise varianceσ2 (10−6, 10−5, 10−4nA2). Consistent with the state-space model formulation of equations (2.10)
and (2.11), this simulation study has been designed so that an increase in η leads to a decrease
in the stochastic noise, whereas an increase in σ2 leads to an increase in the measurement error.

We then applied our proposed inference method from §2e and the competitor method [27]
on the simulated data. During inference all the parameters are assumed to be unconstrained.
Results are reported in figure 7, suggesting that our proposed method is able to recover both
the true number of channels η and the measurement noise variance σ2 in each case. Indeed
the scatter plots of figure 7a show that the estimates of η provided by our method overlap the
diagonal red line, which identifies the true values. Whereas, the number of channels inferred
by the standard method [27] deviates consistently from the true values, as suggested by the
parameter estimates. Furthermore, the histograms of figure 7b suggest that our method also

5 6 7 8 9

5
6

7
8

9

lo
g
η̂

Gray et al.

our method

true

12 10 8

0
1
0

2
0

3
0

4
0

13.88 13.84 13.80

5 6 7 8 9

5
6

7
8

9

lo
g
η̂

11.5 10.0 8.5

0
1
0

2
0

3
0

4
0

11.53 11.51

5 6 7 8 9

5
6

7
8

9

log η

lo
g
η̂

9.2 8.6 8.0

0
2
0

4
0

6
0

8
0

9.23 9.21 9.19

Figure 7. (a): Scatter plot of the estimated against true number of channels η, on a log-log scale, obtained by our proposed
method (black) and the standard approach (blue). The 45° diagonal red line indicates the true values. (b): Histogram of the
estimated measurement noise variance σ2, on a log scale, provided by either our proposed method (red) and the standard
approach (blue). Results displayed in both left and right panels are obtained from the analyses of the synthetic ionic current
traces generated under a measurement noise variance σ2 set to 10−6 (top), 10−5 (middle) and 10−4 nA2 (bottom).
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outperforms this existing approach in estimating σ2, and that our method better distinguishes
between the sources of stochastic noise and measurement error.

(f) Scalability to more complex gating
We assessed our proposed inference method under modelling scenarios that are more chal-
lenging compared with the five-state model discussed above. To this end we considered the
eight-state ion channel gating model of figure 8a, which we coded in the state-space model
formulation of equations (2.10) and (2.11) using the stochastic reaction network formulation
of equations (2.2)–(2.7) and the Fokker–Planck approximation of equations (2.8) and (2.9).
Effectively, the eight-state model extends the five-state model by splitting the closed configu-
ration into three separate states C, C′, C″, and by splitting the inactive-closed configuration into
two separate states IC and IC′. This extended configuration led to a system of 7 ODEs describing
the changes in time of the mean mm of the process xx, 28 ODEs describing the changes in time of
the lower-diagonal part of the covariance matrix PP  of the process xx, and 560 sensitivity ODEs
describing the changes in time of the partial derivatives of the differential moment equations
(2.18) with respect to the dynamic parameters. This gives a complete system of 595 ODEs
having a dimension much higher than the full system of 126 ODEs characterizing the simpler
five-state model. Therefore, we consider this exercise a good benchmark to assess the scalability
of our method for calibrating more complex gating models.

We simulated N = 100 independent stochastic traces from the eight-state model, under
the sinusoidal voltage protocol, by using the Euler–Maruyama algorithm 1 of electronic
supplementary material, section D1. The values for the dynamic parameters θθ, the total
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Figure 8. (a): Graphical representation (left) and reaction rates (right) of the eight-state ion channel gating model used in
this study. It extends the five-state model of figure 2b by splitting the closed configuration into three separate states C, C′,C″, and the inactive-closed configuration into two separate states IC and IC′. (b): Scatter plot of estimated (y-axis) against
true (x-axis) parameters, on a log–log scale, obtained by applying our inference method of §2e to calibrate the eight-state
ion channel gating model of plot panel (a) to fit the N = 100 synthetic traces, independently. (c): One synthetic stochastic
current trace (grey) simulated with the Euler–Maruyama electronic supplementary algorithm 1 from the eight-state ion
channel gating network of plot panel (a) with the dynamic parameters set to the values reported in table 2 and a total
number of ion channels set to η = 10000, together with the corresponding model fit, in terms of the first two moments
defined by equation (2.23), where the variance is displayed as a 95% confidence interval (blue-shaded area) around the
mean (blue line).
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membrane conductance g and the rates γ and δ of the flickering mechanism used in the
state-space model of equations (2.10) and (2.11) for the simulations are reported in table 2, and
we set the total number of ion channels to η = 10 000. We then applied our proposed inference
method from §2e on the simulated data. During inference all the parameters are assumed to
be unconstrained. Results are reported in figure 8b,c, suggesting that our proposed method is
able to recover the true parameters of the complex eight-state model. Indeed the scatter plot of
figure 8b shows that the estimated parameters are close to the true values identified by the grey
diagonal line. Furthermore, results are confirmed in terms of model fit of figure 8c, showing a
high level of predictions of the first two moments of the synthetic current trace.

(g) Comparison with Kalman filter approaches
We compared our proposed inference method with standard methods for stochastic models
based on Kalman filter approaches [30,32]. Given that the currently available Kalman filter
frameworks of ion channel gating are tailored to describe ligand-gated (but not voltage-gated)
dynamics, we developed and implemented an extended Kalman filter (EKF) formulation of
stochastic models of voltage-gated ion channel dynamics. Details of our Kalman filter frame-
work are reported in electronic supplementary material, section K. We compared the two
methods with a simulation study. In particular, we used the simulation scheme of §2d to
generate N = 100 synthetic current traces of η channels from the true generative data process of
the five-state model under the simulation setting of §3a. Synthetic data were generated under a
total number of ion channels equal to η = 1000 and a measurement error variance σ2 = 10−5 nA2.
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Figure 9. (a): A synthetic current trace (grey line) simulated from the true generative data process of the five-state model
under the simulation setting of §3a using the dynamic parameters of table 1, under a total number of ion channelsη = 1000 and a measurement error variance σ2 = 10−5 nA2, together with the corresponding model fit, in terms of the first
two moments defined by equation (2.23), obtained with either our proposed inference method based on the DMEs (blue)
from §2e, or its Kalman filter counterpart from electronic supplementary material, section K (red). In both cases, the variance
is displayed as a 95% confidence interval (shaded area) around the mean (line). (b): A zoom of plot panel (a) on a portion of
the sinusoidal part of the voltage-clamp protocol. (c): Scatter plot of the estimated (y-axis) against true (x-axis) parameters,
on a log–log scale, obtained with the DME-based (blue) and the EKF-based (red) approaches, independently from theN = 100 simulated stochastic traces. (d): Box plots of the relative error between the estimated and true parameters, across
the N = 100 simulated stochastic traces, obtained with the DME-based and the EKF-based approaches, where ‖ ⋅ ‖2 is the
Euclidean norm. (e): Box plots of the runtime (hours) that the DME-based and the EKF-based approaches took to obtain the
optimal parameters, across the N = 100 independent simulations.
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The values for the dynamic parameters θθ, the total membrane conductance g, and the rates γ
and δ of the flickering mechanism used for the simulations are listed in §3a.

Then we used our proposed inference method of §2e, and its Kalman filter version of
electronic supplementary material, section K, to recover all the parameters, independently
from each generated synthetic trace. During inference, all the parameters are assumed to be
unconstrained. Results are displayed in figure 9, suggesting that both our inference method
of §2e, and its Kalman filter counterpart from electronic supplementary material, section K,
are able to recover the true first two-order moments of the process and the corresponding
parameters, as suggested by figure 9a–c. However, the parameter estimates provided by our
method based on the differential moment equations have a lower relative error from the true
vector parameter compared with the estimates obtained by the EKF-based method, as indicated
by the box plots of figure 9d. Finally, our proposed method based on the DMEs outperforms
its Kalman filter counterpart in terms of computing time. Indeed, on average across N = 100
synthetic traces, the DME-based method only required ≈ 0.5 h to reach the optimal parameters,
against ≈ 36 h for the Kalman filter method, as displayed by the box plots of figure 9e. The
reason for such extreme difference in computational complexity between the two approaches
resides in the fact that our inference method does not require us to update the initial conditions
of the differential moment equations (2.18) over time, whereas continuous-discrete Kalman
filters integrate the differential moment equations between all consecutive time points, tk − 1 andtk, where the measurements are collected, in order to update the initial conditions of the DMEs,
and their sensitivities, using the Kalman gain matrix KKk and its partial derivatives ∂KKk

∂ψj  at each
update step defined by the electronic supplementary material, equations (K8) and (K9), of the
extended Kalman filter algorithm 2 detailed in electronic supplementary material, section K.
Note that alternative Kalman filter approaches such as Unscented Kalman Filters (see e.g. [53])
may improve inference but would have the same computational complexity as EKFs [54].

(h) Neglecting the flickering mechanism
We investigated how the parameter estimates are affected when the flickering mechanism is
neglected. We simulated synthetic data from the five-state model of figure 2b and calibrated
both the true generative five-state model and the four-state model of figure 2a to the simula-
ted traces. We used the Euler–Maruyama method (algorithm 1 of electronic supplementary
material, section D1) to simulate stochastic traces xx, obeying the five-state model under the
sinusoidal voltage protocol (figure 3a). The values for the dynamic parameters θθ, the total
membrane conductance g, and the rates γ and δ of the flickering mechanism used in the
state-space model of equations (2.10) and (2.11) for the simulations are listed in §3a, and we
set the total number of ion channels to η = 1000. Then, we used the measurement model of
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Figure 10. (a): Log–log scatter plot of the estimated against true parameters, obtained after fitting the five-state model
(empty dots) and the four-state model (stars) using the proposed inference method. The estimates for the total number of
ion channels are highlighted in red. (b): Synthetic ionic current trace (black), and the first two moments of the model fit,
defined by equation (2.23), obtained with the four-state (red) and the five-state (blue) formulations, where the variance is
displayed as a 95% confidence interval (blue- and red-shaded areas) around the mean (blue and red lines).
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equation (2.11) to simulate the corresponding ionic current trace yy, with σ2 = 10−5 nA2. Finally,
we used our proposed inference procedure from §2e to estimate the parameters of both the true
generative five-state model and the four-state lumped (O′ = O + F) model, to fit the synthetic
ionic current trace yy. During inference all the parameters are assumed to be unconstrained.
Results are displayed in figure 10. In particular, figure 10b shows that the fits obtained by
calibrating both the four-state and five-state models are very similar, and they almost overlap
in terms of mean and variance. Figure 10a shows that if we fit the lumped four-state model to
data generated from the true five-state flickering model then η is an underestimate, but other
parameters are inferred well.

To understand this, consider that the four-state model which is over-estimating the true open
probability (by calling the lumped O′ = O + F state ‘open’) will have to under-estimate the true
number of channels accordingly to get a similar overall current. If flickering is faster than other
gating processes, we expect a quasi-steady equilibrium approximation of the five-state model’s
open state to the four-state model’s lumped state to appear, that is

(3.5)OO′ ≈
OO + F ≈ γγ + δ = π1 = 0.2717... ,

at all times. The computational results confirm that the inferred number of channels scales by
approximately the same amount:
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Figure 11. (a): Ionic current trace recorded from cell 5 (black line) and the first two moments, defined by equation (2.23),
obtained by fitting the five-state model, where the variance is displayed as a 95% confidence interval (blue-shaded area)
around the mean (blue line). Data of the remaining cells and the corresponding model fits are displayed in figure 12.
(b): Estimated logarithmic parameters for each cell (colours), whose values are reported in table 3. (c): Data (grey stars) of
single-channel conductance (y-axis) observed at three levels of extracellular potassium concentration (x-axis), consistent
with [49], and the corresponding fit of the Michaelis–Menten model defined by equation (2.28), including a zoom around
the observed extracellular potassium concentration (bottom-right corner). The grey full dots indicate the estimated lower
and upper bounds of the single-channel conductance, obtained with equation (2.29) from §2g.
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(3.6)ηηtrue
=

1 + expϕ9
1 + expϕtrue, 9

= 261.8557
1000 = 0.2619... ,

where ψψtrue is the vector of the true parameters. So in general, neglecting fast flickering
mechanisms will result in underestimating the true total number of ion channels, due to
lumped state models overestimating the true open probability, and in turn underestimating
the total maximal conductance g = gsη by a factor approximately equal to π1 .

Note that the vast majority of deterministic ion channel models ignore flickering by lumping
(O + F) states. This is perfectly safe for deterministic fits and predictions where the number
of discrete channels and single-channel conductance do not feature, because the product of
maximal conductances and open probabilities used in overall conductance calculations will
be identical, as in the example above, with maximal conductances scaled by π1 and open
probabilities scaled by 1/π1. So if using macroscopic data to estimate the number of channels
(using η = g/gs, the estimated maximal conductance divided by an independently measured
single-channel conductance, as done in e.g. [9,55]), one will have an underestimate in the
channel number unless explicitly considering or correcting for the presence of any known
flickering states. For hERG, we expect this approach could lead to estimating only π1 ≈ 27% of
the true number of channels. Modellers should therefore always explicitly consider flickering
when: (i) examining noise due to stochastic gating; (ii) interpreting the maximal conductance in
a model or experiment as the product of the number of channels and single channel conduc-
tance; or (iii) interpreting lumped macroscopic open probability as the literal probability of any
single channel being open. Points (ii) and (iii) will only be reasonable assumptions when any
known flickering behaviour is either included or corrected for.

(i) Analysing experimental whole-cell voltage-clamp data
We analysed whole-cell voltage-clamp data recorded from nine CHO cells, stably expressing

hERG1a (Kv11.1) at room temperature, under the sinusoidal voltage protocol described in §2a.
The recorded ionic current traces are displayed in figures 11a and 12. Full details including cell
culture, solutions and equipment settings can be found in the original study [12]. We applied

Table 3. Estimates for each parameter (rows) on a log-scale, obtained after fitting the five-state model to the ionic current
traces recorded from each cell (columns). Last row shows the total conductance g = ηgs .

Cell # 1 2 3 4 5 6 7 8 9

log θ1 −8.52 −8.07 −7.55 −7.35 −8.39 −7.38 −7.50 −8.01 −7.48

log θ2 −2.83 −2.71 −2.76 −2.85 −2.66 −2.73 −3.04 −3.10 −3.14

log θ3 −9.54 −9.45 −9.86 −9.74 −10.26 −8.96 −9.62 −9.87 −8.98

log θ4 −3.01 −3.00 −2.95 −2.96 −2.91 −3.27 −3.09 −3.02 −3.12

log θ5 −2.27 −2.52 −2.00 −2.42 −2.45 −2.52 −2.77 −2.63 −2.72

log θ6 −4.28 −5.90 −4.67 −5.15 −4.71 −4.10 −4.74 −5.05 −5.86

log θ7 −5.58 −5.32 −5.56 −5.15 −5.28 −4.70 −5.23 −5.12 −5.62

log θ8 −3.32 −3.43 −3.28 −3.43 −3.46 −3.68 −3.45 −3.42 −3.37

log(gs × 10−6) −13.90 −13.91 −13.91 −13.91 −13.91 −13.91 −13.91 −13.90 −13.91

log σ2 −7.36 −7.40 −6.79 −6.79 −6.91 −8.45 −5.12 −6.40 −7.50

log (η − 1) 13.21 12.81 12.92 12.61 13.33 11.39 13.35 12.91 12.24g 0.50 0.33 0.37 0.27 0.56 0.08 0.57 0.37 0.19
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our inference method of §2e to estimate the vector parameter of equation (2.20) of the five-state
model to fit each cell current trace separately. The reaction rates of the flickering mechanism
were assumed to be known from single-channel experiments and were set to γ = 1/6.7 ms
and δ = 1/2.5 ms, consistent with §2f. Single-channel conductance gs was subject to the box-con-
straints of equation (2.29), where the single-channel conductance saturation level gs, max and
the extracellular potassium concentration at half maximal conductance [K]50% were estimated
from the Kiehn et al. experimental data [49], by applying the inference procedure described in
§2g. We used these box-constraints to make sure that the single-channel conductance gs took
only physiologically plausible values, suggested by the experimentally observed extracellular
potassium concentration [K]o = 4 mM.

Results of the model fitted to the current traces for each cell are displayed in figures 11a
and 12, and the corresponding inferred parameters are reported in figure 11b and table 3. The
fitted Michaelis–Menten curve of equation (2.28), and the data provided by [49] are displayed
in figure 11c. The fitted single-channel conductance saturation level and the extracellular
potassium concentration at half maximal conductance are given by

(3.7)gs, max = 17.02 pS , [K]1/2 = 70.72 mM ,

respectively. The corresponding lower and upper bounds for the single-channel conductance gs
were computed accordingly, following equation (2.29) of §2g, as

(3.8)gs, lb = 0.886 pS , gs, ub = 0.938 pS .

0 2 4 6 8−2
.0

−1
.0

0.
0

time (s)

cu
rre

nt
 (n

A)

cell 8

0 2 4 6 8−1
.0

−0
.6

−0
.2

0.
2

time (s)

cu
rre

nt
 (n

A)
cell 9

−0
.4

0.
0

0.
2

0.
4

time (s)

cu
rre

nt
 (n

A)

cell 6

−3
−2

−1
0

1
2

time (s)
cu

rre
nt

 (n
A)

cell 7

−2
.0

−1
.0

0.
0

time (s)

cu
rre

nt
 (n

A)

cell 3

−1
.5

−0
.5

0.
5

time (s)

cu
rre

nt
 (n

A)

cell 4

−2
.5

−1
.5

−0
.5

0.
5

time (s)

cu
rre

nt
 (n

A)

measured current
model fit

cell 1

−1
.5

−0
.5

0.
5

time (s)

cu
rre

nt
 (n

A)

cell 2

cu
rr

en
t (

nA
)

time (s)

Figure 12. Each plot panel shows the ionic current trace recorded from each cell, and the first two moments, defined by
equation (2.23), obtained by fitting the five-state model, where the variance is displayed as a 95% confidence interval
(blue-shaded area) around the mean (blue line). Parameter estimates for each cell are displayed in figure 11b and reported in
table 3. Data of cell 5 and the corresponding model fit are displayed in figure 11a.
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Figure 11b and table 3 suggest that the values of the estimated dynamic parameters θθ and the
single-channel conductance gs are similar across different cells, and the corresponding model
predictions accurately describe the first two moments of the ionic currents, as shown in figures
11a and 12. Our proposed state-space model formulation of ion-channel gating of equations
(2.10) and (2.11) and the inference procedure of §2e allowed us to distinguish between noise due
to either measurement error or stochastic gating, reflected by the variability in the estimated
variance of the measurement noise (σ2) and the total number of channels (η) across the cells,
as suggested by the values reported in figure 11b and table 3. Finally, our measurement model
formulation of equation (2.11) allowed us to identify the source of variability in the total cell
conductance g = ηgs across the cells, as a result of the high variability in the total number
of channels η in the cell membrane, and the low variability in the estimated single-channel
conductance gs.

4. Discussion
We have proposed a method to calibrate stochastic models of ion channel gating to whole-
cell voltage-clamp macroscopic data. To this end, we first introduced a state-space model,
whose dynamic component is a stochastic reaction network describing the time-changes in the
proportion of channels xx being in a particular configuration. The measured ionic current yy is
linked to the underlying ion channel configurations xx via an Ohmic expression, having an iid
measurement error. Then, we extended a four-state ion channel model of hERG gating [12]
by introducing an additional Markov state describing a non-conducting open configuration,
motivated by experimental findings [48]. Subsequently, we proposed a method to simulate
synthetic data from a given stochastic reaction network of ion channel gating. Finally, we
introduced an inference method to estimate the parameters of a stochastic ion channel model
written in our proposed state-space formulation. The inference scheme is based on a maxi-
mum likelihood approach, aimed at minimizing the negative log-likelihood, having a Gaus-
sian distribution whose mean and variance are obtained by solving the differential moment
equations of the stochastic process xx. This means that the likelihood that has to be optimized
only depends on the first two moments of the process xx, but not on the process itself, for which
computationally expensive filtering techniques would be required instead [33,37,38].

Simulation studies suggest that our proposed inference method is able to recover the true
parameters of a stochastic reaction model of ion channel gating with low uncertainty, and
better distinguishes between measurement error and stochastic noise, compared with inference
approaches that are based on deterministic models of ion channel gating. Furthermore, results
from simulations indicate that our proposed inference method: (i) is robust against uncertainty
induced by sampling frequency issues that may be related to unobserved measurements due to
experimental limits; (ii) scales well to complex structures of ion channel gating; (iii) outperforms
inference methods based on Kalman filters. Our inference method does not only provide more
accurate parameter estimates, but it is also computationally efficient, being approximately 72×
faster, in our simulation setting, than the extended Kalman filter approach. This difference
in computational complexity between the two approaches can be easily attributed to the fact
that our proposed inference method does not require the updating formulas of electronic
supplementary material, equations (K8) and (K9), for correcting the initial conditions of the
DMEs, that characterize Kalman filter approaches. In particular, for a p-dimensional vector
parameter, such equations feature (4 + p × 8) matrix sums, (8 + p × 17) matrix multiplications and
one matrix inversion, that must be computed between every pair of consecutive time pointstk − 1, tk, (k = 1, …, τ), where the measurements were collected. Therefore, approaches that are
based on Kalman filters become impractical for the analysis of ionic current traces obtained
from voltage-clamp experiments, typically having a sampling frequency on the order of 10 kHz.

Also, an additional simulation study where we used our proposed five-state model of ion
channel gating as a true generative process, and the four-state model as a candidate model,
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suggested that across all the unknown parameters the total number of channels η is the most
affected by the misspecification of the flickering mechanism, even if both models provided
similar goodness of fit. This means that modellers should consider the flickering mechanism
when calibrating models of ion channel gating to fit whole-cell voltage-clamp data, in order
to obtain unbiased estimates for η and, in turn, for the total conductance g = gsη of the cell
membrane. Finally, the application of our inference method to whole-cell voltage-clamp data
collected from nine CHO cells showed that the five-state model is able to describe the dynamics
of ion channel gating from the experimentally observed ionic current measurements, and that
the parameter estimates are comparable across cells. Also, our proposed inference method
allowed us to unveil the heterogeneity in the maximal conductance g across cells, as a func-
tion of the total number of channels η in the cell membrane, as suggested by the parameter
estimates.

Note that there is a small amount of 50 Hz ‘mains hum’ visible in figure 12 on some of the
experimental data (particularly cells #4, 6, 8, 9). We were initially concerned that this would be
interpreted as stochastic gating, but the wider confidence regions for these cells where current
is approximately zero (at the beginning and end of the protocol) show that it is instead being
incorporated into the measurement error (ε in equation 2.11). This behaviour is thought to
be due to 50 Hz measurement noise being consistent throughout the trace, as ε is, and so its
presence is not adversely impacting inferences based on additional variance due to stochastic
gating.

Results from this work should improve data-driven models of ion channel gating by
accounting for stochastic noise and measurement error during inference [56]. Our proposed
framework could be used to explore the experimentally observed random patterns of ion
channel gating [3] and their effects on the electrophysiological dynamics of the whole cell
[5,6,10], such as, in cardiac myocytes, the behaviours of beat-to-beat variability, the forma-
tion of early after depolarizations (EADs), or potassium channel block [9,55,57]. However,
other sources of variability might affect the parameter estimates besides stochastic noise
and measurement error, such as experimental artefacts [25]. An extension of our state-space
formulation and the companion inference procedure accounting for this additional source
of error is the goal of our future research. Although our framework is tailored to analyse
whole-cell voltage-clamp data, a slight modification can allow us to analyse different types of
patch-clamp data, such as single-channel measurements. Applications in alternative contexts
of population dynamics besides ion channel gating, where partially observed time-inhomoge-
neous stochastic processes are affected by multiple sources of error, could also be explored with
this approach.

Data accessibility. Data and code to replicate this study is openly available at [58]. A permanently archived
version of the code is openly available at [59].

Supplementary material is available online [60].
Declaration of AI use. We have not used AI-assisted technologies in creating this article.
Authors’ contributions. L.D.C.: conceptualization, formal analysis, methodology, software, validation, writing—
original draft, writing—review and editing; G.R.M.: conceptualization, funding acquisition, methodology,
supervision, writing—original draft, writing—review and editing.

Both authors gave final approval for publication and agreed to be held accountable for the work
performed therein.
Conflict of interest declaration. We declare we have no competing interests.
Funding. This work was supported by the Wellcome Trust [grant number 212203/Z/18/Z].
Acknowledgements. LDC & GRM acknowledge support from the Wellcome Trust via a Wellcome Trust Senior
Research Fellowship to GRM.

25

royalsocietypublishing.org/journal/rsta 
Phil. Trans. R. Soc. A 383: 20240224

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

18
 M

ar
ch

 2
02

5 



References
1. Kew J, Davies C. 2009 Ion channels: from structure to function. New York, NY: Oxford

University Press.
2. Barral YSH, Shuttleworth JG, Clerx M, Whittaker DG, Wang K, Polonchuk L, Gavaghan DJ,

Mirams GR. 2022 A Parameter Representing Missing Charge Should Be Considered when
Calibrating Action Potential Models. Front. Physiol. 13, 879035. (doi:10.3389/fphys.2022.
879035)

3. Sakmann BJ, Neher E, Aldrich RW, Almers W. 1983 Single-channel recording. New York,
NY: Springer. (doi:10.1007/978-1-4615-7858-1_2)

4. Hille B. 1978 Ionic channels in excitable membranes. Current problems and biophysical
approaches. Biophys. J. 22, 283–294. (doi:10.1016/s0006-3495(78)85489-7)

5. White JA, Rubinstein JT, Kay AR. 2000 Channel noise in neurons. Trends Neurosci. 23, 131–
137. (doi:10.1016/s0166-2236(99)01521-0)

6. De vries G, Sherman A. 2000 Channel Sharing in Pancreatic β -Cells Revisited: Enhancement
of Emergent Bursting by Noise. J. Theor. Biol. 207, 513–530. (doi:10.1006/jtbi.2000.2193)

7. Clay JR, DeFelice LJ. 1983 Relationship between membrane excitability and single channel
open-close kinetics. Biophys. J. 42, 151–157. (doi:10.1016/s0006-3495(83)84381-1)

8. Schneidman E, Freedman B, Segev I. 1998 Ion Channel Stochasticity May Be Critical in
Determining the Reliability and Precision of Spike Timing. Neural Comput. 10, 1679–1703.
(doi:10.1162/089976698300017089)

9. Heijman J, Zaza A, Johnson DM, Rudy Y, Peeters RL, Volders PG, Westra RL. 2013
Determinants of Beat-to-Beat Variability of Repolarization Duration in the Canine
Ventricular Myocyte: A Computational Analysis. PLoS Comput. Biol. 9, e1003202. (doi:10.
1371/journal.pcbi.1003202)

10. Lemay M, de Lange E, Kucera JP. 2011 Effects of stochastic channel gating and distribution
on the cardiac action potential. J. Theor. Biol. 281, 84–96. (doi:10.1016/j.jtbi.2011.04.019)

11. Dangerfield CE, Kay D, Burrage K. 2010 Stochastic models and simulation of ion channel
dynamics. Procedia Comput. Sci. 1, 1587–1596. (doi:10.1016/j.procs.2010.04.178)

12. Beattie KA, Hill AP, Bardenet R, Cui Y, Vandenberg JI, Gavaghan DJ, de Boer TP, Mirams
GR. 2018 Sinusoidal Voltage Protocols for Rapid Characterisation of Ion Channel Kinetics.
Biophys. J. 114, 293a–294a. (doi:10.1016/j.bpj.2017.11.1677)

13. Groff JR, DeRemigio H, Smith GD. 2009 Markov Chain Models of Ion Channels and
Calcium Release Sites. In Stochastic methods in neuroscience, pp. 29–64. New York, NY:
Oxford University Press. (doi:10.1093/acprof:oso/9780199235070.003.0002)

14. Gillespie DT. 1977 Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem.
81, 2340–2361. (doi:10.1021/j100540a008)

15. Del Core L, Pellin D, Wit EC, Grzegorczyk MA. 2023 A mixed-effects stochastic model
reveals clonal dominance in gene therapy safety studies. BMC Bioinform. 24, 228. (doi:10.
1186/s12859-023-05269-1)

16. Fox RF, Lu Y nan. 1994 Emergent collective behavior in large numbers of globally coupled
independently stochastic ion channels. Phys. Rev. E 49, 3421–3431. (doi:10.1103/PhysRevE.
49.3421)

17. Mino H, Rubinstein JT, White JA. 2002 Comparison of Algorithms for the Simulation of
Action Potentials with Stochastic Sodium Channels. Ann. Biomed. Eng. 30, 578–587. (doi:10.
1114/1.1475343)

18. Bruce IC. 2009 Evaluation of Stochastic Differential Equation Approximation of Ion Channel
Gating Models. Ann. Biomed. Eng. 37, 824–838. (doi:10.1007/s10439-009-9635-z)

19. Sengupta B, Laughlin SB, Niven JE. 2010 Comparison of Langevin and Markov channel
noise models for neuronal signal generation. Phys. Rev. E 81, 011918. (doi:10.1103/physreve.
81.011918)

20. Goldwyn JH, Imennov NS, Famulare M, Shea-Brown E. 2011 Stochastic differential equation
models for ion channel noise in Hodgkin-Huxley neurons. Phys. Rev. E 83, 041908. (doi:10.
1103/physreve.83.041908)

21. Loewe A, Wilhelms M, Schmid J, Krause MJ, Fischer F, Thomas D, Scholz EP, Dössel O,
Seemann G. 2016 Parameter Estimation of Ion Current Formulations Requires Hybrid

26

royalsocietypublishing.org/journal/rsta 
Phil. Trans. R. Soc. A 383: 20240224

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

18
 M

ar
ch

 2
02

5 

http://dx.doi.org/10.3389/fphys.2022.879035
http://dx.doi.org/10.3389/fphys.2022.879035
http://dx.doi.org/10.1007/978-1-4615-7858-1_2
http://dx.doi.org/10.1016/s0006-3495(78)85489-7
http://dx.doi.org/10.1016/s0166-2236(99)01521-0
http://dx.doi.org/10.1006/jtbi.2000.2193
http://dx.doi.org/10.1016/s0006-3495(83)84381-1
http://dx.doi.org/10.1162/089976698300017089
http://dx.doi.org/10.1371/journal.pcbi.1003202
http://dx.doi.org/10.1371/journal.pcbi.1003202
http://dx.doi.org/10.1016/j.jtbi.2011.04.019
http://dx.doi.org/10.1016/j.procs.2010.04.178
http://dx.doi.org/10.1016/j.bpj.2017.11.1677
http://dx.doi.org/10.1093/acprof:oso/9780199235070.003.0002
http://dx.doi.org/10.1021/j100540a008
http://dx.doi.org/10.1186/s12859-023-05269-1
http://dx.doi.org/10.1186/s12859-023-05269-1
http://dx.doi.org/10.1103/PhysRevE.49.3421
http://dx.doi.org/10.1103/PhysRevE.49.3421
http://dx.doi.org/10.1114/1.1475343
http://dx.doi.org/10.1114/1.1475343
http://dx.doi.org/10.1007/s10439-009-9635-z
http://dx.doi.org/10.1103/physreve.81.011918
http://dx.doi.org/10.1103/physreve.81.011918
http://dx.doi.org/10.1103/physreve.83.041908
http://dx.doi.org/10.1103/physreve.83.041908


Optimization Approach to Be Both Accurate and Reliable. Front. Bioeng. Biotechnol. 3, 209.
(doi:10.3389/fbioe.2015.00209)

22. Teed ZR, Silva JR. 2016 A computationally efficient algorithm for fitting ion channel
parameters. MethodsX 3, 577–588. (doi:10.1016/j.mex.2016.11.001)

23. Clerx M, Beattie KA, Gavaghan DJ, Mirams GR. 2019 Four Ways to Fit an Ion Channel
Model. Biophys. J. 117, 2420–2437. (doi:10.1016/j.bpj.2019.08.001)

24. Lei CL, Clerx M, Gavaghan DJ, Polonchuk L, Mirams GR, Wang K. 2019 Rapid
Characterization of hERG Channel Kinetics I: Using an Automated High-Throughput
System. Biophys. J. 117, 2438–2454. (doi:10.1016/j.bpj.2019.07.029)

25. Lei CL, Clerx M, Whittaker DG, Gavaghan DJ, de Boer TP, Mirams GR. 2020 Accounting for
variability in ion current recordings using a mathematical model of artefacts in voltage-
clamp experiments. Phil. Trans. R. Soc. A 378, 20190348. (doi:10.1098/rsta.2019.0348)

26. Heinemann SH, Conti F. 1992 Nonstationary noise analysis and application to patch clamp
recordings. In Ion channels, vol. 207 of methods in enzymology, pp. 131–148. Cambridge,
MA: Academic Press. (doi:10.1016/0076-6879(92)07009-D)

27. Gray PT. 1994 Analysis of whole cell currents to estimate the kinetics and amplitude of
underlying unitary events: relaxation and ‘noise’ analysis. In Microelectrodes techniques,
the plymouth workshop handbook (ed D Ogden), pp. 189–207, Second Edition. Cambridge,
MA: Company of Biologists.

28. Baumgartner W, Hohenthanner K, Höfer GF, Groschner K, Romanin C. 1997 Estimating the
number of channels in patch-clamp recordings: application to kinetic analysis of
multichannel data from voltage-operated channels. Biophys. J. 72, 1143–1152. (doi:10.1016/
s0006-3495(97)78763-0)

29. Olkin I, Petkau AJ, Zidek JV. 1981 A Comparison of n Estimators for the Binomial
Distribution. J. Am. Stat. Assoc. 76, 637–642. (doi:10.1080/01621459.1981.10477697)

30. Moffatt L. 2007 Estimation of Ion Channel Kinetics from Fluctuations of Macroscopic
Currents. Biophys. J. 93, 74–91. (doi:10.1529/biophysj.106.101212)

31. Milescu LS, Akk G, Sachs F. 2005 Maximum Likelihood Estimation of Ion Channel Kinetics
from Macroscopic Currents. Biophys. J. 88, 2494–2515. (doi:10.1529/biophysj.104.053256)

32. Münch JL, Paul F, Schmauder R, Benndorf K. 2022 Bayesian inference of kinetic schemes for
ion channels by Kalman filtering. Elife 11, e62714. (doi:10.7554/eLife.62714)

33. Kalman RE. 1960 A New Approach to Linear Filtering and Prediction Problems. J. Basic Eng.
82, 35–45. (doi:10.1115/1.3662552)

34. Kurtz TG. 1972 The Relationship between Stochastic and Deterministic Models for Chemical
Reactions. J. Chem. Phys. 57, 2976–2978. (doi:10.1063/1.1678692)

35. Van kampen NG. 1992 Stochastic processes in physics and chemistry. vol. 1. Amsterdam,
The Netherlands: Elsevier. (doi:10.1016/B978-044452965-7/50006-4)

36. Jahnke T, Huisinga W. 2007 Solving the chemical master equation for monomolecular
reaction systems analytically. J. Math. Biol. 54, 1–26. (doi:10.1007/s00285-006-0034-x)

37. Closas P, Vilà-Valls J, Fernández-Prades C. 2015 Computational complexity reduction
techniques for quadrature Kalman filters. In 2015 IEEE 6th International Workshop on
Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), Cancun,
Mexico, pp. 485–488. EEE. (doi:10.1109/CAMSAP.2015.7383842)

38. Kaniewski P. 2020 Extended Kalman Filter with Reduced Computational Demands for
Systems with Non-Linear Measurement Models. Sensors 20, 1584. (doi:10.3390/s20061584)

39. Abrasheva VO, Kovalenko SG, Slotvitsky M, Romanova SА, Aitova AA, Frolova S, Tsvelaya
V, Syunyaev RA. 2024 Human sodium current voltage‐dependence at physiological
temperature measured by coupling a patch‐clamp experiment to a mathematical model. J.
Physiol. 602, 633–661. (doi:10.1113/jp285162)

40. Lei CL, Clark AP, Clerx M, Wei S, Bloothooft M, de Boer TP, Christini DJ, Krogh-Madsen T,
Mirams GR. 2024 Resolving artefacts in voltage-clamp experiments with computational
modelling: an application to fast sodium current recordings. bioRxiv(doi:10.1101/2024.07.23.
604780)

41. Wang S, Liu S, Morales MJ, Strauss HC, Rasmusson RL. 1997 A quantitative analysis of the
activation and inactivation kinetics of HERG expressed in Xenopus oocytes. J. Physiol. 502,
45–60. (doi:10.1111/j.1469-7793.1997.045bl.x)

27

royalsocietypublishing.org/journal/rsta 
Phil. Trans. R. Soc. A 383: 20240224

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

18
 M

ar
ch

 2
02

5 

http://dx.doi.org/10.3389/fbioe.2015.00209
http://dx.doi.org/10.1016/j.mex.2016.11.001
http://dx.doi.org/10.1016/j.bpj.2019.08.001
http://dx.doi.org/10.1016/j.bpj.2019.07.029
http://dx.doi.org/10.1098/rsta.2019.0348
http://dx.doi.org/10.1016/0076-6879(92)07009-D
http://dx.doi.org/10.1016/s0006-3495(97)78763-0
http://dx.doi.org/10.1016/s0006-3495(97)78763-0
http://dx.doi.org/10.1080/01621459.1981.10477697
http://dx.doi.org/10.1529/biophysj.106.101212
http://dx.doi.org/10.1529/biophysj.104.053256
http://dx.doi.org/10.7554/eLife.62714
http://dx.doi.org/10.1115/1.3662552
http://dx.doi.org/10.1063/1.1678692
http://dx.doi.org/10.1016/B978-044452965-7/50006-4
http://dx.doi.org/10.1007/s00285-006-0034-x
http://dx.doi.org/10.1109/CAMSAP.2015.7383842
http://dx.doi.org/10.3390/s20061584
http://dx.doi.org/10.1113/jp285162
http://dx.doi.org/10.1101/2024.07.23.604780
http://dx.doi.org/10.1101/2024.07.23.604780
http://dx.doi.org/10.1111/j.1469-7793.1997.045bl.x


42. Zhou Z, Gong Q, Ye B, Fan Z, Makielski JC, Robertson GA, January CT. 1998 Properties of
herg Channels Stably Expressed in hek 293 Cells Studied at Physiological Temperature.
Biophys. J. 74, 230–241. (doi:10.1016/s0006-3495(98)77782-3)

43. Jack JJB, Noble D, Tsien RW. 1975 Electric current flow in excitable cells. Oxford, UK:
Clarendon Press.

44. Del Core L, Pellin D, Wit EC, Grzegorczyk MA. 2023 Scalable inference of cell differentiation
networks in gene therapy clonal tracking studies of haematopoiesis. Bioinformatics 39, d605.
(doi:10.1093/bioinformatics/btad605)

45. Kloeden PE, Platen E. 2011 Numerical solution of stochastic differential equations. In
Stochastic modelling and applied probability. Berlin Heidelberg, Germany: Springer.

46. Dangerfield CE, Kay D, Burrage K. 2012 Modeling ion channel dynamics through reflected
stochastic differential equations. Phys. Rev. E 85, 051907. (doi:10.1103/physreve.85.051907)

47. Bett GCL, Zhou Q, Rasmusson RL. 2011 Models of HERG Gating. Biophys. J. 101, 631–642.
(doi:10.1016/j.bpj.2011.06.050)

48. Kiehn J, Lacerda AE, Brown AM. 1999 Pathways of herg inactivation. Am. J. Physiol. Heart
Circ. Physiol. 277, H199–H210. (doi:10.1152/ajpheart.1999.277.1.h199)

49. Kiehn J, Lacerda AE, Wible B, Brown AM. 1996 Molecular Physiology and Pharmacology of
herg. Circulation 94, 2572–2579. (doi:10.1161/01.cir.94.10.2572)

50. Chis OT, Banga JR, Balsa-Canto E. 2011 Structural Identifiability of Systems Biology Models:
A Critical Comparison of Methods. PLoS One 6, e27755. (doi:10.1371/journal.pone.0027755)

51. Lazarus A, Dalton D, Husmeier D, Gao H. 2022 Sensitivity analysis and inverse uncertainty
quantification for the left ventricular passive mechanics. Biomech. Model. Mechanobiol. 21,
953–982. (doi:10.1007/s10237-022-01571-8)

52. Raue A, Kreutz C, Maiwald T, Bachmann J, Schilling M, Klingmüller U, Timmer J. 2009
Structural and practical identifiability analysis of partially observed dynamical models by
exploiting the profile likelihood. Bioinformatics 25, 1923–1929. (doi:10.1093/bioinformatics/
btp358)

53. Sitz A, Schwarz U, Kurths J, Voss HU. 2002 Estimation of parameters and unobserved
components for nonlinear systems from noisy time series. Phys. Rev. E 66, 016210. (doi:10.
1103/physreve.66.016210)

54. Murphy KP. 2012 Machine learning: a probabilistic perspective. Cambridge, MA: The MIT
Press.

55. Pueyo E et al. 2016 Experimentally-Based Computational Investigation into Beat-To-Beat
Variability in Ventricular Repolarization and Its Response to Ionic Current Inhibition. PLoS
One 11, e0151461. (doi:10.1371/journal.pone.0151461)

56. Mirams GR, Pathmanathan P, Gray RA, Challenor P, Clayton RH. 2016 Uncertainty and
variability in computational and mathematical models of cardiac physiology. J. Physiol. 594,
6833–6847. (doi:10.1113/JP271671)

57. Varkevisser R, Wijers SC, van der Heyden MAG, Beekman JDM, Meine M, Vos MA. 2012
Beat-to-beat variability of repolarization as a new biomarker for proarrhythmia in vivo.
Heart Rhythm 9, 1718–1726. (doi:10.1016/j.hrthm.2012.05.016)

58. Del Core L, Mirams GR. 2024 stochastic-gating. GitHub. See https://github.com/
CardiacModelling/stochastic-gating.

59. Del Core L, Mirams GR. 2024 Code for: Parameter inference for stochastic reaction models
of ion channel gating from whole-cell voltage-clamp data (v1.0.0). Zenodo. (doi:10.5281/
zenodo.14181111)

60. Del Core L, Mirams GR. 2025 Supplementary material from: Parameter inference for
stochastic reaction models of ion channel gating from whole-cell voltage-clamp data.
Figshare. (doi:10.6084/m9.figshare.c.7618799)

28

royalsocietypublishing.org/journal/rsta 
Phil. Trans. R. Soc. A 383: 20240224

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

18
 M

ar
ch

 2
02

5 

http://dx.doi.org/10.1016/s0006-3495(98)77782-3
http://dx.doi.org/10.1093/bioinformatics/btad605
http://dx.doi.org/10.1103/physreve.85.051907
http://dx.doi.org/10.1016/j.bpj.2011.06.050
http://dx.doi.org/10.1152/ajpheart.1999.277.1.h199
http://dx.doi.org/10.1161/01.cir.94.10.2572
http://dx.doi.org/10.1371/journal.pone.0027755
http://dx.doi.org/10.1007/s10237-022-01571-8
http://dx.doi.org/10.1093/bioinformatics/btp358
http://dx.doi.org/10.1093/bioinformatics/btp358
http://dx.doi.org/10.1103/physreve.66.016210
http://dx.doi.org/10.1103/physreve.66.016210
http://dx.doi.org/10.1371/journal.pone.0151461
http://dx.doi.org/10.1113/JP271671
http://dx.doi.org/10.1016/j.hrthm.2012.05.016
https://github.com/CardiacModelling/stochastic-gating
https://github.com/CardiacModelling/stochastic-gating
http://dx.doi.org/10.5281/zenodo.14181111
http://dx.doi.org/10.5281/zenodo.14181111
http://dx.doi.org/10.6084/m9.figshare.c.7618799

	Parameter inference for stochastic reaction models of ion channel gating from whole-cell voltage-clamp data
	1. Introduction
	2. Methods
	(a) Experimental assay and voltage-clamp protocol
	(b) A stochastic reaction model of ion channel gating
	(c) State-space formulation of ion channel dynamics
	(d) Simulating stochastic reaction networks of ion channel gating
	(e) Inference procedure
	(f) A 5-state model of ion channel gating
	(g) Constraints on single-channel conductance

	3. Results
	(a) Simulation setting
	(b) Uncertainty quantification across independent stochastic traces
	(c) Practical parameter identifiability
	(d) Uncertainty due to sampling frequency
	(e) Number of channels and measurement noise
	(f) Scalability to more complex gating
	(g) Comparison with Kalman filter approaches
	(h) Neglecting the flickering mechanism
	(i) Analysing experimental whole-cell voltage-clamp data

	4. Discussion


