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Abstract
Statistical inference for epidemic outbreaks is often complicated by only partial observation
of the epidemic process. Recently in Ball and Neal (Adv Appl Probab 55:895-926, 2023) the
distribution of the number of infectives (individuals alive) given only the times of removals
(death) in aMarkovianSIRepidemic (time-inhomogeneous birth–death process)was derived.
We show that this allows us to derive an explicit expression for the likelihood of the observed
inter-removal times of the epidemicwithout recourse to data augmentation techniques.More-
over, the time-inhomogeneous birth–death process provides a good approximation for the
SIR epidemic model for which we are able to obtain both, the exact likelihood of the inter-
arrival death times, and a fast to compute Gaussian-based approximation of the likelihood.
The explicit expressions for the likelihood enable us to reveal bi-modality in the likelihood
of the ongoing Markovian SIR epidemic model and to devise scaleable MCMC algorithms
which are applied to the emergence of the Covid-19 epidemic in Europe (March–May 2020).

Keywords Markovian SIR epidemic · Approximate likelihood · Scaleable MCMC ·
Bi-modaliy · Covid-19

1 Introduction

The Covid-19 pandemic has brought into sharp focus the strengths and weaknesses of cur-
rent approaches for modelling infectious disease spread, especially the emergence of a new
disease. In the early stages of a pandemic data are often sparse, Shadbolt et al. (2022), and
only available at a coarse, national or regional, level of granularity. Therefore, models are
often fairly simple to capture the key features of the emerging disease such as the growth
rate and reproduction number and to avoid spurious results caused by over-fitting.

One approach to modelling the time-course of an epidemic is to use ODEs (ordinary
differential equations), see, for example, Reed et al. (2021) for the emergence of Covid-
19. The use of ODE models for infectious diseases date back to the pioneering work of
Kermack and McKendrick, see Kermack and McKendrick (1927), and are a useful tool for
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capturing the dynamics of an epidemic, especially if there are a large number of individuals
in each compartment of the model. However, the initial stages of an epidemic are inherently
stochastic. This has led to the development of stochastic models for epidemics from the
1940’s onwards (Bartlett 1949), see Bailey (1975) for a summary of the early developments
of stochastic epidemic modelling. This paper focusses on parameter estimation for stochastic
models for emerging diseases.

Three key components to modelling the spread of an infectious disease are; the trans-
mission of the disease (from infectious individuals to susceptibles), the life history of
infected individuals (latent and infectious periods) and the detection of infected individu-
als (symptomatic and asymptomatic individuals). The simplest assumptions are that these
three components do not change over time and that all infected individuals are ultimately
detected, see, for example, O’Neill and Roberts (1999), Fearnhead andMeligkotsidou (2004)
and McKinley et al. (2014), for statistical inference methodology designed for such scenar-
ios. However, for an emerging disease the transmission dynamics will usually vary over time
owing to a variety of factors such as introduction of interventions, and the probability of
detection of cases will vary due to changes in awareness and survelliance of the disease,
see, for example (Schneble et al. 2021). Thus key summaries of the epidemic such as the
reproduction number will be varying over time and hence the development of methodologies,
for example, Wallinga and Teunis (2004) and Cori et al. (2013), to estimate the reproduction
number.

Consider an SEIR epidemic model, where individuals start off susceptible (S) before
potentially becoming infected, and transitioning sequentially through the exposed (E) state,
where the individual is infected but not yet infectious, the infectious (I) state, where the
individual is able to infect other individuals, and finishing in the removed (R) state, where the
individual is no longer infectious and plays no further part in the epidemic. The SIR epidemic
model is the special case where there is no exposed state and individuals transition directly
from being susceptible to infectious. A major complication with statistical inference for
SIR and SEIR epidemic models is that typically only partial information about the epidemic
process is available. A common assumption is that the data consists of (partial) observation of
the removal (I → R) process, see, for example, O’Neill and Roberts (1999), Fearnhead and
Meligkotsidou (2004) andMcKinley et al. (2014). Partial observation of other transitions are
considered in the literature such as E → I in Nguyen-Van-Yen et al. (2021) and incidence
data (S → E) in Fintzi et al. (2021). The presence of asymptomatic individuals implies that
there are individuals who play a role in the spread of the epidemic that we never observe.
Furthermore, the data are usually aggregated count data of the number of observations over a
given time period (day or week) and the length of reporting time periods may vary over time.
However, for continuous time models we ideally require the exact transition times. All of the
above has meant that data augmentation Markov chain Monte Carlo (MCMC) algorithms,
for example, O’Neill and Roberts (1999), have frequently been applied to infer parameters
for epidemic models.

Data augmentation MCMC generally works well for small epidemics but struggles with
larger epidemic outbreaks due to the computational cost of large scale data augmentation,
Ho et al. (2018). The posterior dependence between the augmented data and parameters of
interest leads to poor mixing of MCMC algorithms. This is particularly pertinent to ongoing
epidemics where the number of infectious individuals is unknown, necessitating the use of
reversible jump MCMC, see, for example (Jewell et al. 2009). These problems are further
exacerbated when there are asymptomatic cases so the number of removed cases is also
unknown. There have been efforts to circumvent the computational burden through approx-
imations of the likelihood, such as the pair-based likelihood approximation (Stockdale et al.
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2021) and diffusion-based approximations (Cauchemez and Ferguson 2008; Fintzi et al.
2021). Diffusion-based approximations use a continuous approximation of the discrete state-
space and are less appropriate when there are a small number of infectives, Ho et al. (2018).
This provides motivation for the current work, a likelihood-based method for inference for
epidemics which is applicable when there are few, and possibly asymptomatic, infectives in
the population but is also scalable to major epidemic outbreaks.

In Ball and Neal (2023), Theorem 3.3, it was shown that for a time-inhomogeneous
MarkovianSIRepidemicmodel (with piecewise-constant, timevarying infection and removal
rates) it is possible to derive the distribution of the number of infectives at time t given
only the times of removals (I → R transitions) up to and including time t . A by-product
of Ball and Neal (2023), Theorem 3.3, is an explicit expression for the likelihood of the
observed inter-arrival of the removal times given in (1) in Sect. 3.1. The exact likelihood is
computationally intensive to compute as it involves multiplication of matrix exponentials
with the size of the matrices depending on the size of the population. In Ball and Neal
(2023), Theorem 3.1, the distribution of the number of individuals alive at time t in a time-
inhomogeneous birth–death process, given only the times of deaths up to and including time
t , is derived. This gives rise in Ball and Neal (2023), Corollary 3.1, to an explicit expression
for the likelihood of the observed inter-arrival times of deaths up to time t . This likelihood
involves matrix multiplication with the largest matrix being of size (K − 1) × K , where K
is the number of deaths up to time t . Hence, the computation of the likelihood for the birth–
death process is usually much faster than for the likelihood for the time-inhomogeneous
Markovian SIR epidemic model, supporting the use of a time-inhomogeneous birth–death
process approximation of the epidemicmodel. Birth–death process approximations, andmore
generally branching process approximations, of epidemics have a long history dating back
to the 1950s, see, for example, Whittle (1955). However, by allowing time varying birth
and death rate parameters in the birth–death process we can construct approximations of the
epidemic process which are useful beyond the initial stages of the epidemic, see Ball and
Neal (2023), Section 7, and Sect. 2 of this paper. By using (Ball and Neal 2023), Theorem
3.2, we are able in Sect. 3.2 below to extend computation of the likelihood of the time-
inhomogeneous birth–death process to the case where not all deaths are observed and to
allow for the probability that a death is observed to vary over time. In an epidemic context
individuals whose deaths are not observed correspond to asympotomatic individuals who
remain undetected throughout the course of the epidemic. By allowing the probability of
detection of removals to vary over time we allow for changes in surveillance due to changes
in monitoring and testing of the disease.

The derivation of the likelihood for the time-inhomogeneous Markovian SIR epidemic
model without requiring data augmentation of the infection times enables us to give fresh
insight into the likelihood for SIR epidemic models. In particular, in Sect. 4 we show that
the likelihood of an ongoing Markovian SIR epidemic outbreak can be bi-modal, a feature
which has not previously been noted in the literature. This supports using aBayesian approach
with an informative prior to estimate the parameters of an ongoing Markovian SIR epidemic
model as themaximum likelihood estimate of the parameters often corresponds to implausible
parameter values with excessively high infection rates and low removal rates.

The likelihood for the birth–death process derived in Sect. 3.2 has two important limi-
tations for its direct application to large epidemic outbreaks, which we address as follows.
Firstly, whilst computation of the likelihood for the time-inhomogeneous birth–death process
is much faster than for the SIR epidemic model it becomes more computationally demanding
to compute with every observed death and the time taken to compute the likelihood grows
approximately quadratically in the number of observed deaths. Therefore, in Sect. 3.3, we
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derive a Gaussian-based approximation to the likelihood given in Sect. 3.2 whose computa-
tion time grows linearly in the observed number of deaths. Secondly, the likelihood is based
on knowing the exact time of the the observed removals, whereas typically epidemic data
on removals will be in the form of the number of observed removals in a given time period.
Often such data will be collected regularly, say daily or weekly, and for the examples consid-
ered in this paper these data consist of daily aggregated counts of observed removals. Given
aggregated daily data we use the approximate birth–death likelihood within data augmenta-
tion MCMC algorithms where the exact removals times are imputed from the daily counts,
see Sects. 4.2 and 5.3. The data augmentation algorithms perform well with efficient mixing
over the parameter space. This is because the aggregated daily counts of removals are infor-
mative about when the removal times occur unlike imputing the unknown infection times
in, for example, O’Neill and Roberts (1999) or Jewell et al. (2009). Moreover, we do not
require reversible jump MCMC as we require only the exact removal times of the observed
individuals.

The remainder of the paper is structured as follows. In Sect. 2 we outline the epidemic
and birth–death process models. In particular, we discuss how a time-inhomogeneous birth–
death process can be used to approximate an epidemic throughout its entire course. In Sect. 3,
we start with explicit derivation of the likelihood of the inter-arrival times of removals for
the Markovian SIR epidemic. We then turn to the time-inhomogeneous birth–death process
for which we derive the likelihood of the inter-arrival times of deaths, both the exact like-
lihood and the Gaussian based approximation. In Sect. 4, we apply the likelihoods derived
in Sect. 3 to the much-studied Abakiliki smallpox data set, see Bailey (1975) and refer-
ences given in Sect. 4. The small size of the Abakiliki outbreak, 30 individuals infected out
of a population of 120 individuals, enables us to compare the approximations to the SIR
epidemic likelihood given by the time-inhomogeneous birth–death process likelihood and
approximate likelihood, and demonstrate their usefulness. The Abakiliki data also allow us to
illustrate the possible bi-modality of the likelihood of an ongoing Markovian SIR epidemic
outbreak. In Sect. 5, we analyse the emergenece of Covid-19 in Europe in March–May 2020
using an MCMC algorithm with the Gaussian-based approximate likelihood for the time-
inhomogeneous birth–death process. Finally in Sect. 6 we present some concluding remarks
and discuss extensions of the current work.

2 Epidemic and birth–death process models

In this section we present the time-inhomogeneous Markovian SIR (general stochastic) epi-
demic and birth–death process models which are considered in this paper. We focus mainly
on the case where the infection (birth) and removal (death) parameters are piecewise-constant
between removals (deaths).

We start with the time-inhomogeneous Markovian SIR epidemic model in a closed popu-
lation of size N . We assume that the epidemic is initiated by a single infective in an otherwise
susceptible population at time s0. We set time t = 0 to be the time of the first removal in the
epidemic process, so s0 < 0. Throughout we assume that s0 is unknown. For t ≥ s0, let S(t),
I (t) and R(t) = N − I (t)− S(t) denote the numbers of susceptibles, infectives and removed
individuals, respectively, in the population at time t . For t ≥ s0, let βt and γt be the rates at
which an individual, infectious at time t , makes infectious contacts and becomes removed,
respectively. (Note that βt is the overall rate that an infective makes infectious contacts, so
the individual-to-individual infection rate is N−1βt including possible self contacts.) Thus
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for all t ≥ s0 and h ≥ 0, we have that, for s, i = 0, 1, . . . , N with s + i ≤ N ,

P((S(t + h), I (t + h)) = (x, y) | (S(t), I (t)) = (s, i))

=

⎧
⎪⎪⎨

⎪⎪⎩

s
N βt ih + o(h) (x, y) = (s − 1, i + 1)
γt ih + o(h) (x, y) = (s, i − 1)
1 − { s

N βt + γt
}
ih + o(h) (x, y) = (s, i)

o(h) otherwise.

For t ≥ s0, let δt be the probability that a removal which occurs at time t is observed, with
removals being observed independently. Let V (t) denote the number of observed removed
individuals up to, and including, time t with V (t) ≤ R(t). Throughout this paper we assume
that there exists α = (α1, α2, . . . , αN ), μ = (μ1, μ2, . . . , μN ) and d = (d1, d2, . . . , dN )

such that βt = αV (t)+1, γt = μV (t)+1 and δt = dV (t)+1. That is, the infection and removal
rates, along with the probability that a removal is observed, are piecewise-constant between
observed removal times. This is for ease of exposition in developing the likelihood; the deriva-
tion of the likelihood is easily adapted to the parameters changing at alternative changepoints.
Note that if R(t) = N then the epidemic is over with everybody having been infected, so
α, μ and d are sufficient to define the epidemic process and its observation process. For
brevity, we drop the subscript and use α, μ and δ to denote the infection and removal rates
and detection probability in the time-homogeneous case.

We utilise time-inhomogeneous birth–death processes to approximate the epidemic pro-
cess. As with the epidemic process, we assume the birth–death process starts from a single
individual at time s0 < 0 (unknown) with the first observed death occuring at time t = 0. We
allow for the possibility that not all deaths are observed. Then for t ≥ s0, let B(t) and K (t)
denote the number of individuals alive at time t and the number of observed deaths up to and
including time t , respectively. For t ≥ s0, let β̃t and γ̃t be the rates at which an individual,
alive at time t , gives birth and dies, respectively. Thus, for all t ≥ s0 and h ≥ 0, we have
that, for i = 0, 1, . . .,

P(B(t + h) = x | B(t) = i) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

β̃t ih + o(h) x = i + 1
γ̃t ih + o(h) x = i − 1

1 −
{
β̃t + γ̃t

}
ih + o(h) x = i

o(h) otherwise.

For t ≥ s0, let δ̃t be the probability that a death which occurs at time t is observed, with
deaths being observed independently. We assume that there exists α̃ = (α̃1, α̃2, . . .), μ̃ =
(μ̃1, μ̃2, . . .) and d̃ = (d̃1, d̃2, . . .) such that β̃t = α̃K (t)+1, γ̃t = μ̃K (t)+1 and δ̃t = d̃K (t)+1.
That is, the birth and death rates, along with the probability that a death is observed, are
piecewise-constant between observed death times mirroring the epidemic process.

We assume that the only data which are observed are the observed removal times in the
epidemic model and the observed death times in the birth–death process. For notational
convenience, we use the inter-arrival times of observed removals (deaths). For k = 2, 3, . . .,
let Tk (T̃k) denote the distribution of the inter-arrival time from the (k−1)st observed removal
(death) until the kth observed removal (death), with tk (t̃k) denoting a realisation of Tk (T̃k).
For T ≥ 0, let tT = (t2, t3, . . . tV (T )) (t̃T = (t̃2, t̃3, . . . t̃K (T ))) denote the set of inter-arrival
times of observed removals (deaths) up to and including time T , with τT = T − tV (T )

(τ̃T = T − t̃K (T )) denoting the time since the last observed removal (death) prior to time T .
We construct the time-inhomogeneous birth–death process as an approximation for the

epidemic process with for T > 0, t̃T = tT , (observed deaths in the birth–death process
corresponding to observed removals in the epidemic process). It is well-known, see for
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example (Whittle 1955), that the time-homogeneous SIR epidemic model with βt = α and
γt = μ can be approximated in its initial stages by a time-homogeneous birth–death process
with β̃t = α and γ̃t = μ. More explicitly, infections and removals in the epidemic process
can be coupled to births and deaths in the birth–death process such that I (t) = B(t) up
until there is an attempt in the epidemic process to infect a non-susceptible individual. For
large N , with high probability, this will not occur until O(

√
N ) of the population have been

infected, see Ball and Donnelly (1995). If we know S(t), then setting β̃t = βt × S(t)/N in
the birth–death process would result in a process that has a birth rate which exactly matches
the infection rate in the epidemic process. However, given only removal (death) times we do
not know S(t) but if we have a good approximation, S̃(t) say, for the number of susceptibles
at time t , then we can approximate the epidemic process with a birth–death process with
birth rate β̃t = βt × S̃(t)/N . Note that removals (deaths) only depend upon the number of
infectives (individuals alive), so we set γ̃t = μ.

We estimate S̃(t) as follows. We set S̃(t) to be constant between removal times, which
results in the approximating birth–death process having piecewise constant parameters
between death times. For t > s0, let D(t) denote the total number of deaths up to, and includ-
ing time t , and note that if all deaths are detected D(t) = K (t). At time sk = ∑k

i=2 ti (= s̃k),
the time of the kth observed removal we calculate E[B(sk) | T̃2:k = t̃2:k] and E[D(sk) |
T̃2:k = t̃2:k], the expected number of individuals alive at time sk and the expected number of
deaths up to time sk , respectively, in the birth–death process. Since whether or not a death
(removal) is detected is independent of all other deaths (removals) and the probability of a
death (removal) being detected is constant between observed deaths, it follows, by properties
of the geometric distribution, that

E[D(sk) | T̃2:k = t̃2:k] =
k∑

i=1

1

di
.

Note that if all deaths (removals) are detected then E[D(sk) | T̃2:k = t̃2:k] = k. We approx-
imate I (sk) and R(sk) by E[B(sk) | T̃2:k = t̃2:k] and E[D(sk) | T̃2:k = t̃2:k], respectively.
Then, for t ∈ [sk, sk+1) we set

S̃(t) = max{0, N − E[D(sk) | T̃2:k = t̃2:k] − E[B(sk) | T̃2:k = t̃2:k]}.
That is, we estimate the number of susceptibles in the population by the total population size
minus the (expected) number of births in the approximating birth–death process up to time
sk , with the restriction that if the estimated number of individuals born (alive or dead) in
the birth-death process up to time t exceeds N , we set the estimated number of susceptibles
equal to 0. This approximation is reasonable if the number of susceptible individuals does
not change dramatically between removal times.

3 Likelihood

In this section, we discuss calculation of the likelihood for the epidemic and birth–death
processmodels introduced in Sect. 2. Themain reason for introducing the birth–death process
approximation of the epidemic process is that it is much faster to calculate the birth–death
process likelihood of observing t̃T rather than the epidemic likelihood of observing tT . We
calculate the likelihood for the epidemic and birth–death process models in Sects. 3.1 and 3.2,
respectively. However, calculation of the likelihood of the birth–death process grows at least
quadratically in the number of observed deaths. Therefore, in Sect. 3.3 we present a Gaussian
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approximation of the likelihood of the birth–death process, the calculation of which grows
linearly in the number of observed deaths.

3.1 Epidemic likelihood

We derive the epidemic likelihood in the case that all removals are detected, δt = 1, (t >

s0). This is because the calculation of the likelihood become a lot more computationally
burdensome with partial detection of the removal process, as we discuss further at the end of
this section.

For k = 1, 2, . . . , N , let �k = {θ1, θ2, . . . , θk}, where θ j = (α j , μ j ), the parameters of
the epidemic process up to and including the kth removal. For T ≥ 0, �R(T )+1 represents
the parameters of the epidemic up to and including time T .

The likelihood for the epidemic process is constructed by considering the progress of the
epidemic between and at removal times by following (Ball and Neal 2023), Section 3.5. For
k = 0, 1, . . . , N − 1, let

�k = {(N − k − i, i) : i = 1, 2, . . . , N − k}
be the set of states of {(S(t), I (t))} in which the epidemic is still going (i.e. there is at
least one infective) and precisely k removals have occurred. Give the states in �k the labels
k1, k2, . . . , kN−k , where the state (N − k − i, i) has label ki (i = 1, 2, . . . , N − k). Then
for k = 0, 1, . . . , N − 1, let Qk,k = [qki ,k j ] be the (N − k) × (N − k) sub-stochastic
transition-rate matrix with entries,

qki ,k j =

⎧
⎪⎨

⎪⎩

− (αk+1
N (N − k − i)i + μk+1i

)
if j = i,

αk+1
N (N − k − i)i if j = i + 1,

0 otherwise,

see Ball and Neal (2023), (3.30), governing the transition in the number of infectives in
the population between the kth and (k + 1)st removal. The sub-stochasticity is due to the
possibility of removal. For k = 0, 1, . . . , N − 2, let Qk,k+1 = [qki ,(k+1) j ] be the (N − k) ×
(N − k − 1) transition-rate matrix with entries,

qki ,(k+1) j =
{
iμk+1 if i ∈ {2, 3, . . . , N − k} and j = i − 1,

0 otherwise,

governing the transition from �k to �k+1 (a removal). Note that if a removal occurs in state
k1 = (N −k−1, 1) then the epidemic terminates and there is no transition to�k+1. Let Q̃k,k

be the (N −k+1)× (N −k+1) transition-rate matrix constructed fromQk,k by the addition
of an initial row and column of 0 s. Finally, let Q̃k,k+1 be the diagonal (N − k) × (N − k)
matrix with successive diagonal elements μk+1, 2μk+1, . . . , (N − k)μk+1.

Let L(tT ;�R(T )+1) denote the likelihood of observing the inter-arrival removal times tT
given the parameters �R(T )+1. Then L(tT ;�R(T )+1) is given by

L(tT ;�R(T )+1) = −u1Q
−1
0,0

⎛

⎝
R(T )−1∏

i=1

Qi−1,i exp(Qi,i ti+1)

⎞

⎠

× Q̃R(T )−1,R(T ) exp(Q̃R(T ),R(T )τT ) · 1�
N+1−R(T ), (1)

where u1 is the row vector of length N whose first element is 1 and all other elements are
0 (the initial state) and 1�

N+1−R(T ) is the column vector of 1 s of length N + 1 − R(T ) (the
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likelihood is summed over all possible number of infectives in the population at time T ). (The
product is set equal to 1 if R(T ) = 1.) The matrix −Q−1

0,0 describes the transitions before the
first removal (unknown time from initial infection to first removal), whilst the product term
captures the transitions in states between the successive removals. Finally, the matrices after
× in (1) describe the transitions after the final removal before time T . The right-hand side of
(1) is defined as ck(T ) in Ball and Neal (2023), (3.32) with k in place of R(T ).

In the event of a completed epidemic, i.e. no more infectives in the epidemic process, we
can set T = ∞, and hence, τT = ∞. The final terms in (1) after × can be replaced by

×μR(∞) exp

(

−tR(∞)

{

αR(∞)

N − R(∞)

N
+ μR(∞)

})

ū�
1 ,

where ū�
1 is the column vector of length N + 1 − R(∞) whose first element is 1 and all

other elements are 0. The computation of the likelihood of the completed epidemic can be
speeded up by noting that the minimum number of susceptible individuals at any point in
time is N − R(∞). Hence the dimensionality of the matrices in (1) can be reduced to cover
only the states with at least N − R(∞) susceptibles since the contribution to the likelihood
of other states is 0.

In the case where all removals are detected we know R(t) for all t ∈ R. Hence, if we
additionally know I (t), then, since the population is closed with N = S(t) + I (t) + R(t),
we know the state of the epidemic process at time t . However, if the removal process is only
partially observed we only know that R(t) ≥ V (t). Hence, we require both R(t) and I (t) to
know the state of the epidemic. This means keeping track of possible (I (t), R(t)) states and
we need to extend the matrices Qk,k to be (N − k)(N + 1− k)/2× (N − k)(N + 1− k)/2,
where (N − k)(N +1− k)/2 is the total number of possible states for (I (t), R(t)) given that
I (t) ≥ 1 and R(t) ≥ k. Similar changes are required for Q̃k,k and Q̃k,k+1.

3.2 Birth–death process likelihood

We turn to calculation of the likelihood for the time-inhomogeneous birth–death process.
The likelihood for the time-inhomogeneous birth–death process in the case where all deaths
are observed is given in Ball and Neal (2023), Corollary 3.1. In Lemma 1 we present the
likelihood allowing for partial observation of the death process, and present the likelihood
in a form which is amenable for the derivation of the Gaussian approximation presented in
Sect. 3.3.

For k = 1, 2, . . ., let �̃k = {θ̃1, θ̃2, . . . , θ̃k}, where θ̃ j = (α̃ j , μ̃ j , d̃ j ), the parameters of
the birth–death process up to and including the kth observed death. For T ≥ 0, �̃K (T )+1
represents the parameters of the birth–death process up to and including time T . We factorise
the likelihood to express it as

L(t̃T ; �̃K (T )+1) = fT̃2(t̃2 | �̃2)

⎧
⎨

⎩

K (T )∏

k=3

fT̃k (t̃k | T̃2:(k−1) = t̃2:(k−1), �̃k)

⎫
⎬

⎭

× P

(
T̃K (T )+1 > τT | T̃2:K (T ) = t̃2:K (T ), �̃K (T )+1)

)
. (2)

That is, we consider sequentially the distribution of the time between successive detected
deaths conditional upon the previous times between detected deaths.

The key tool to deriving an explicit expression for (2), given in Lemma 1, is the distribution
of the number of individuals alive in the birth–death process immediately following the kth
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observed death, X̃k . For k = 1, 2, . . ., let G̃k denote a geometric random variable with
probability mass function P(G̃k = x) = (1 − π̃k)

x π̃k (x = 0, 1, . . .), where 0 < π̃k < 1 is
defined in (5) below. In Ball and Neal (2023), Theorem 3.2, it is shown that, X̃1 ∼ G̃1, and
for k = 2, 3, . . .,

{
X̃k | T̃2:k = t̃2:k

}
=

R̃k∑

j=1

Gk, j (3)

where R̃k is a random variable having support {2, 3, . . . , k}, and the Gk, j ’s are independent
and identically distributed according to G̃k .

It follows from (3) that, for k ≥ 2, X̃k is a mixture of negative binomial distributions
of the form {NegBin(l, π̃k); l = 2, 3, . . . , k}, where the mixing weights are determined
by R̃k . Therefore in deriving L(t̃T ; �̃K (T )+1) it suffices to focus on R̃k . Specifically, we
follow (Ball and Neal 2023) in stating that after the (k − 1)th detected death, the population
consists of R̃k−1 family groups, where each family group has an independent and identically
distributed number of members according to G̃k−1. Note that a family group can consist of no
individuals. Conditional upon R̃k−1 = l, for some l = 2, 3, . . . , k − 1, the interarrival time
until the kth detected death will be distributed according to the minimum of l independent
and identically distributed random variables each distributed according to Yk , say. Then Yk
is the distribution of the time until the next detected death in a time-homogeneous birth–
death process which at time 0 consists of G̃k−1 individuals and has parameters θ̃k . Note that
P(Yk = ∞) ≥ P(G̃k−1 = 0) = π̃k−1. We continue by giving the notation required to derive
the distribution of Yk , and hence, fT̃k (t̃k | T̃2:(k−1) = t̃2:(k−1), �̃k).

For k = 1, 2, . . ., let q̃k = μ̃k/(α̃k + μ̃k), the probability that an event is a death with
parameters θ̃k , and let p̃k = 1 − q̃k . Then, recapping (Ball and Neal 2023), (3.24), let

uk =
√

1 − 4 p̃k q̃k(1 − d̃k), λk = 1+uk−2 p̃k
1+uk

,

νk = 1−uk
2 p̃k

, φ̃k(τ ) = exp(−[α̃k + μ̃k]ukτ),

ψ̃k(τ ) = (1−λk )(1−φ̃k (τ ))

1−νk (1−λk )φ̃k (τ )
.

(4)

We define the sequence of probabilities {π̃k} iteratively using (4). Let π̃1 = λ1 and for
k = 2, 3, . . ., let

π̃k = λk[1 − νk(1 − π̃k−1)] − (1 − νk)[λk − π̃k−1]φ̃k(t̃k)

1 − νk(1 − π̃k−1) + νk[λk − π̃k−1]φ̃k(t̃k)
. (5)

In general, the terms in (4) do not have an intuitive explanation for their importance. However,
wemake the following observations regarding the quantities defined in (4) and {π̃k}. Firstly, if
the parameters are time-homogeneous then for all k = 1, 2, . . ., π̃k = λ1. Secondly if dk = 1,
i.e. all deaths are detected, uk = 1, νk = 0 and λk = q̃k with φ̃k(τ ) being the probability an
individual neither gives birth or dies in an interval of length τ and (5) simplifying to

π̃k = λk[1 − φ̃k(t̃k)] + π̃k−1φ̃k(t̃k),

a weighted average between λk(= q̃k) and π̃k−1.
For t ≥ 0, we have that

P(Yk > t) =
π̃k−1

[
λk + (1 − λk)(1 − νk)φ̃k(t)

]

λk[1 − νk(1 − π̃k−1)] − (1 − νk)(λk − π̃k−1)φ̃k(t)
= r̃k(t), say,
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see, for example, Ball and Neal (2023), Theorem 3.2 or (5.10). Therefore if R̃k−1 = l, we
have, for τ > 0, that

P(T̃k > τ | R̃k−1 = l, T̃2:k−1 = t̃2:k−1, �̃k) = r̃k(τ )l .

For k = 2, 3, . . . and t ≥ 0, let

g̃k(t) = − d

dt
r̃k(t)

= π̃k−1λk(1 − νk) {(λk − π̃k−1) + (1 − λk)[1 − νk(1 − π̃k−1)]} (α̃k + μ̃k)uk φ̃k(t)
{
λk[1 − νk(1 − π̃k−1)] − (1 − νk)[λk − π̃k−1]φ̃k(t)

}2 .

Then it follows that, if R̃k−1 = l,

fT̃k (τ | R̃k−1 = l, T̃2:k−1 = t̃2:(k−1), �̃k) = g̃k(τ )lr̃k(τ )l−1. (6)

We summarise the calculation of L(t̃T ; �̃K (T )+1) in Lemma 1.

Lemma 1 For T > 0, given inter-death times t̃T and parameters �̃K (T )+1, the likelihood
satisfies

L(t̃T ; �̃K (T )+1) = g̃2(t̃2)

⎧
⎨

⎩

K (T )∏

k=3

g̃k(t̃k)E
[
R̃k−1r̃k(t̃k)

R̃k−1−1
]
⎫
⎬

⎭
E

[
r̃K (T )+1(τ̃T )R̃K (T )

]
.

(7)

The probability mass functions of R̃k (k = 2, 3, . . . , K (T )) are defined iteratively as
follows. For k = 2, 3, . . . and j = 2, 3, . . . , k, let B̃k, j = P(R̃k = j | T̃2:k = t̃2:k, �̃2:k).
For k = 2, 3, . . ., let B̃k = (B̃k,2, B̃k,3, . . . , B̃k,k), with B̃2 = (1) and, for k = 3, 4, . . ., B̃k

satisfying

B̃k =
{
B̃k−1M̃k−1

(
t̃k
) · 1�

k−1

}−1
B̃k−1M̃k−1

(
t̃k
)
, (8)

where 1�
k−1 denotes a column vector of 1s of length k − 1 and for τ ≥ 0, M̃k−1 (τ ) is the

(k − 2) × (k − 1) matrix with (i, j)th element

[
M̃k−1(τ )

]

i, j
=
{

(i + 1)
( i
j−1

)
hk(τ ) j−1[1 − hk(τ )]i+1− j r̃k(τ )i for j ≤ i + 1,

0 otherwise,

where

hk(τ ) = 1 − π̃k − ψ̃k(τ )

[1 − π̃k][1 − ψ̃k(τ )] . (9)

Proof An immediate consequence of (6) is that

fT̃k (t̃k | T̃2:k−1 = t̃2:k−1, �̃k) = g̃k(t̃k)E
[
R̃k−1r̃k(t̃k)

R̃k−1−1
]
.

Since R̃1 ≡ 1, it follows that fT̃2(t̃2 | �̃2) = g̃2(t̃2). Since the probability of no death

between times tK (T ) and T is E
[
r̃K (T )+1(τ̃T )R̃K (T )

]
, (7) follows. The lemma is completed

by noting that the probability mass function of R̃k (k = 2, 3, . . . , K (T )) is given by Ball
and Neal (2023), Theorem 3.2. ��
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It is straightforward using (8) to iterate back from k to 2 to obtain the expression for B̃k

given in Ball and Neal (2023), (3.26). There are three advantages though of using (8) and
computing B̃2, B̃3, . . . , B̃K (T ) iteratively. Firstly, B̃2, B̃3, . . . , B̃K (T ) are required to calculate
L(t̃T ; �̃K (T )+1). Secondly, using (8) repeatedly is more numerically stable than using (Ball
and Neal 2023), (3.26) as the probability mass function is normalised at each step. Finally,
and most importantly, (8) forms the basis for a fast approximation of the likelihood presented
in Sect. 3.3.

3.3 Approximation of birth–death process likelihood

In Lemma 1 the calculation of B̃k from B̃k−1 involves the multiplication of a vector of
length k − 2 by a (k − 2) × (k − 1) matrix, see (8). Hence, the calculation of the likelihood
given in Lemma 1 at time T is at least O(K (T )2), and simulation studies suggest that the
computation time of the likelihood grows at a rate between quadratic and cubic in the observed
number of deaths. The exact likelihood becomes prohibitively slow to use in algorithmswhich
require repeated calculation of the likelihood, such as MCMC, as the number of deaths
observed enters the thousands. Therefore, we consider a fast-to-compute approximation of
the likelihood, based upon a Gaussian approximation of R̃k , and, in particular, a Gaussian
approximation of the moment generating function of R̃k and its first three derivatives.

We define the necessary notation to present the approximate likelihood in Lemma 2. Let
(η2, σ

2
2 ) = (2, 0). For k = 3, 4, . . ., define (ηk, σ

2
k ) in terms of (ηk−1, σ

2
k−1), h(t̃k) and

ϕk = log(r̃k(t̃k)) with

ηk = 2 + hk(t̃k)

[

ηk−1 + ϕkσ
2
k−1 + σ 2

k−1

ηk−1 + ϕkσ
2
k−1

− 1

]

(10)

and

σ 2
k = hk(t̃k){1 − hk(t̃k)}

[

ηk−1 + ϕkσ
2
k−1 + σ 2

k−1

ηk−1 + ϕkσ
2
k−1

− 1

]

+ hk(t̃k)
2σ 2

k−1

[

1 − σ 2
k−1

[ηk−1 + ϕkσ
2
k−1]2

]

. (11)

For k = 2, 3, . . . and ρ ∈ R, let

ξk(ρ) = exp

(

ρηk−1 + ρ2

2
σ 2
k−1

)

. (12)

Lemma 2 For T > 0, given inter-death times t̃T and parameters �̃K (T )+1, the approximate
likelihood satisfies

L̂(t̃T ; �̃K (T )+1) = g̃2(t̃2)

⎧
⎨

⎩

K (T )∏

k=3

g̃k(t̃k)
[ηk−1 + ϕkσ

2
k−1]ξk(ϕk)

r̃k(t̃k)

⎫
⎬

⎭
ξK (T )+1(log{r̃K (T )+1(τ̃T )}).

(13)

Proof The mean and variance of R̃k can be expressed in terms of the moment generating
function of R̃k−1, its first three derivatives and hk(t̃k). For n = 0, 1, 2, 3 and k = 2, 3, . . .,
let

χn
k = E

[
R̃n
k−1r̃k(t̃k)

R̃k−1
]

= E

[
R̃n
k−1 exp

(
ϕk R̃k−1

)]
.

123



    5 Page 12 of 25 Statistical Inference for Stochastic Processes             (2025) 28:5 

Then

E

[
R̃k

]
= 2 + hk(t̃k)

[
χ2
k

χ1
k

− 1

]

= η̃k, say, (14)

and

var
(
R̃k

)
= hk(t̃k){1 − hk(t̃k)}

[
χ2
k

χ1
k

− 1

]

+ hk(t̃k)
2

⎡

⎣
χ3
k

χ1
k

−
(

χ2
k

χ1
k

)2
⎤

⎦ = σ̃ 2
k , say.

(15)

The derivations of (14) and (15) are presented in the Supplementary Material.
The likelihood given in Lemma 1, (7), can be expressed in terms of χ0

k and χ1
k with

L(t̃T ; �̃K (T )+1) = g̃2(t̃2)

⎧
⎨

⎩

K (T )∏

k=3

g̃k(t̃k)
χ1
k

rk(t̃k)

⎫
⎬

⎭
χ0
K (T )+1. (16)

Let Wk denote the Gaussian approximation of R̃k based upon matching the mean and
variance of Wk to those of R̃k . For k = 2, 3, . . ., we set Wk ∼ N (ηk, σ

2
k ), where ηk and σk

satisfy (10) and (11). Thus ξk(ρ) = E[exp(ρWk−1)], given in (12), is the moment generating
function of Wk−1.

For n = 1, 2, 3, let ξ
(n)
k (ρ) = E[Wn

k−1 exp(ρWk−1)], the nth derivative of ξk(ρ) with

respect to ρ. Therefore, if Wk−1 is an approximation for R̃k−1, we have that ξ
(n)
k (ϕk) ≈ χn

k
(n = 0, 1, 2, 3). Given that

ξ
(2)
k (ϕk)

ξ
(1)
k (ϕk)

= ηk−1 + ϕkσ
2
k−1 + σ 2

k−1

ηk−1 + ϕkσ
2
k−1

ξ
(3)
k (ϕk)

ξ
(1)
k (ϕk)

= 3σ 2
k−1 + [

ηk−1 + ϕkσ
2
k−1

]2
,

it follows that if Wk−1 ≈ R̃k−1, then ηk ≈ η̃k and σ 2
k ≈ σ̃ 2

k . Therefore replacing χ1
k and

χK (T )+1 in (16) by ξ
(1)
k (ϕk) = [ηk−1 + ϕkσ

2
k−1]ξk(ϕk) and ξK (T )+1(log{r̃K (T )+1(τ̃T )}), we

obtain (13). ��
We discuss the approximate likelihood L̂(t̃T ; �̃K (T )+1) given by Lemma 2. Since the

likelihood is constructed iteratively we can define a hybrid likelihoodwhere, for the first H(≥
3) detected deaths, the exact likelihood is used before turning to the Gaussian approximation.
For H ≥ 3 and k = 1, 2, . . ., let η̂H ,k and σ̂ 2

H ,k denote the (estimated) mean and variance for

the hybrid likelihood with for k ≤ H , η̂H ,k = E[R̃k] and σ̂ 2
H ,k = var(R̃k), and for k > H ,

η̂H ,k and σ̂ 2
H ,k computed from (η̂H ,k−1, σ̂

2
H ,k−1) using (10) and (11). We then have

L̂ H (t̃T ; �̃K (T )+1) = g̃2(t̃2)

⎧
⎨

⎩

H∏

k=3

g̃k(t̃k)
χ1
k

r̃k(t̃k)

K (T )∏

k=H+1

g̃k(t̃k)
ξ̂

(1)
H ,k(ϕk)

r̃k(t̃k)

⎫
⎬

⎭

× ξ̂H ,K (T+1)(log{r̃K (T )+1(τ̃T )}, (17)

with ξ̂H ,k(ϕk) and ξ̂
(1)
H ,k(ϕk) defined in the obvious fashion. The computational time required

to compute L̂ H (t̃T ; �̃K (T )+1) is increasing in H , but practical to use, for example, within an
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MCMC algorithm provided that H is not too large. This will give an improved approximation
of L(t̃T ; �̃K (T )+1), which is useful if for small k, ξ (1)

k (ϕk) is a poor approximation for χ1
k .

We observe in practice that, even for small k, ξ (1)
k (ϕk) provides a good approximation for

χ1
k , and in the cases k = 4, 5, we provide explicit bounds in the Supplementary Material for

the time-homogeneous model. (Note that for k = 3, R̃k−1 ≡ 2 with ηk−1 = 2 and σ 2
k−1 = 0

giving χ1
k = ξ

(1)
k (ϕk). ) Also in the Supplementary Material we present a simulation study

which shows that the gains in accuracy from using a hybrid likelihood are small and hence
in the analysis in Sects. 4 and 5, we focus solely on using (13) as the gains in accuracy from
using a hybrid likelihood are outweighed by the additional computational time.

Wewill often be interested in supercritical birth–death processes, or birth–death processes
which are at least initially supercritical. Therefore we will have that η̃k−1 is typically increas-
ing with k and we explore the impact of η̃k−1 � 1 on the approximating likelihood. For large
j and τ ≈ 0, we have using a Maclaurin expansion of r̃(·), that

P(T̃k > τ |R̃k−1 = j, T̃2:k−1 = t̃2:k−1, �̃k) = r̃k(τ ) j

≈ [1 + r̃ ′
k(0)τ ] j ≈ exp( jτ r̃ ′

k(0))

For η̃k−1 � 1 with σ̃ 2
k−1 = O(η̃k−1), we have, for τ = O(η̃−1

k−1), using a Taylor series

expansion and E[R̃k−1] = η̃k−1, that

P(T̃k > τ |T̃2:k−1 = t̃2:k−1, �̃k)

≈ E

[
exp

(
τ r̃ ′

k(0)R̃k−1

)]

= exp
(
τ r̃ ′

k(0)η̃k−1
)
{

1 + r̃ ′
k(0)

2τ 2

2
σ̃ 2
k−1 + O(τ 3)E

[(
R̃k−1 − η̃k−1

)3
]}

. (18)

For τ = O(η̃−1
k−1), the right-hand side of (18) is equal to exp

(
τ r̃ ′

k(0)η̃k−1
) {1 + O(η̃−1

k−1)}.
Therefore it follows that η̃k−1T̃k is approximately exponentially distributed with rate−r̃ ′

k(0),
and hence, t̃k is O(η̃−1

k−1). It is then straightforward to show that ϕk = log rk(t̃k) = O(η̃−1
k−1).

Lemma 3 Suppose that η̃k−1 � 1 with t̃k = O(η̃−1
k−1), σ̃ 2

k−1 = O(η̃k−1), E[(R̃k−1 −
η̃k−1)

3] = O(η̃k−1) and E[(R̃k−1 − η̃k−1)
4] = O(η̃2k−1). Then for m = 1, 2, 3,

log(χm
k /ξ̃

(m)
k (ϕk)) = O(η̃−2

k−1),

where ξ̃k(ρ) = exp(ρη̃k−1 + ρ2σ̃ 2
k−1/2), the moment generating function of W̃k−1 ∼

N (η̃k−1, σ̃
2
k−1).

The proof of Lemma 3 is provided in the Supplementary material. Then provided
(ηk, σ

2
k ) given by (10) and (11) are close to (η̃k, σ̃

2
k ), we can control the difference between

log(χm
k /ξ

(m)
k (ϕk)).

4 Abakiliki data

In this section, we study properties of the SIR epidemic likelihood and the approximations
of the likelihood given by the birth–death process. We use the Abakiliki smallpox data set,
see Bailey (1975), page 125, and O’Neill and Roberts (1999), Section 3.2, to illustrate the
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findings. This data set assumes all removals are detected and has been used bymany authors to
illustrate new statistical methodology for epidemicmodels, for example, a forward-backward
filtering algorithm, Fearnhead and Meligkotsidou (2004), a non-centered MCMC algorithm,
Neal and Roberts (2005) and an importance sampling algorithm, McKinley et al. (2014),
have all been applied to the Abakiliki data set to fit a general stochastic epidemic model. For
comparison purposes we note that we use α to denote the overall rate of infectious contacts
made by an infective whereas the cited references typically report α/N the individual-to-
individual infection rate.

TheAbakiliki data comprises 30 cases of smallpox in a population of size 120with removal
times taking place over a 76 day period. Therefore there are 29 inter-removal times which
are reported in O’Neill and Roberts (1999), Section 3.2, and repeated below:

t2:30 = (13, 7, 2, 3, 0, 0, 1, 4, 5, 3, 2, 0, 2, 0, 5, 3, 1, 4, 0, 1, 1, 1, 2, 0, 1, 5, 0, 5, 5). (19)

The Abakiliki data presented in (19) are given on a discrete, daily timescale and can alterna-
tively be represented as aggregated daily counts.We begin by following (O’Neill and Roberts
1999) and Neal and Roberts (2005) in analysing the Abakiliki data as if they were continuous
allowing time 0 between successive removals on the same day. This enables us to explore
the behaviour of the likelihood without recourse to data augmentation and to provide fresh
insight in the form of bimodality of the likelihood. For comparison purposes we also follow
(McKinley et al. 2014) in treating the Abakiliki data as daily aggregated counts of removals
with imputation of the exact removal times. As we observe in Sect. 4.2 there is very little
difference estimation in the parameters between the two approaches.

We primarily analyse the data set as an ongoing epidemic focussing attention on T =
46.99, just before the 16th removal, and T = 90, 2 weeks after the last removal. We also
considered T = 47 (just after the 16th removal) and T = 80, 100 (4 and 24 days, respectively,
after the last removal), along with the completed epidemic, T = ∞. The absence of data
augmentation in computing the likelihood gives substantial flexibility in the analysis which
can be undertaken. We can easily compute the likelihood over a grid (c.f. Fearnhead and
Meligkotsidou (2004)) to estimate the maximum likelihood estimator, or by computing the
normalising constant, the posterior distribution. The likelihood can be utilised within an
MCMC algorithm or a rejection sampling algorithm c.f. Clancy and O’Neill (2007).

4.1 Abakiliki data: exact likelihood

In Fig. 1 we present contour plots of the epidemic likelihood on day T = 46.99 and T =
90 on the range 0.025 ≤ α ≤ 0.25 and 0.0005 ≤ μ ≤ 0.2 using (1). The likelihood
has been calculated at 10,000 points corresponding to each combination of α = 0.0025i
(i = 1, 2, . . . , 100) and μ = 0.0005i (i = 1, 2, . . . , 25); μ = 0.0025(i − 20) (i =
26, 27, . . . , 100). For T = 90, the contour plot reveals two modes in the likelihood at
approximately (α, μ) = (0.09, 0.0775) and (α, μ) = (0.16, 0.004) with the latter being
the maximum likelihood estimate (MLE). For T = 46.99, the likelihood has a single mode
(MLE) at (α, μ) = (0.155, 0.004) very close to the MLE for T = 90, but the likelihood
drops off slowly along a ridge which approximately goes from (α, μ) = (0.07, 0.02) to
(α, μ) = (0.11, 0.085).

We study the case T = 90 in detail with more refined searches of the two modes. The
mode at (α, μ) = (0.0889, 0.0761) with log-likelihood −60.019 yields R0 = 1.168 and
has parameter values close to the posterior means (appropriately rescaled for α) reported in
Fearnhead and Meligkotsidou (2004), Neal and Roberts (2005) and McKinley et al. (2014)
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Fig. 1 Contour plots of the likelihood for Abakiliki data analsyed at day T = 46.99 (left) and T = 90 (right)
on the range 0 ≤ α ≤ 0.25 and 0 ≤ μ ≤ 0.2

for the completed Abakiliki epidemic. The absence of a removal in the previous 2 weeks is
consistent with the epidemic being over, or possibly a small number of infectives remain-
ing. The second mode at (α, μ) = (0.1628, 0.00382) with log-likelihood −59.014 yields
R0 = 42.618. This is consistent with a severe epidemic which infects the whole popula-
tion some considerable time before T = 90 and individuals having long (mean) infectious
periods so it is not surprising to see no removals in a 2 week period. Once everybody in
the population becomes infected, the likelihood is driven solely by the inter-removal times
of the infectives. The mode at (α, μ) = (0.1628, 0.00382) is the maximum likelihood esti-
mate of the parameters but the mode at (α, μ) = (0.0889, 0.0761) represents more plausible
epidemic parameters even if we do not know for certain that the epidemic is over.

We consider how the likelihood behaves as the infection rate α → ∞. Unlessμ → ∞, we
have, with probability tending to 1, that all individuals are infected before the first removal.
Suppose that all N = 120 individuals become infected before the first removal. Then the
distribution of the waiting time between the (k −1)st and kth removals will be exponentially
distributed with rate [N + 1 − k]μ. Therefore, if there have been K removals, up to and
including time T , with inter-removal times e2:K = (e2, e3, . . . , eK ), then

f (e2:K , T | μ) = exp(−[N − K ]μ[T − eK ])
K∏

k=2

[(N + 1 − k)μ] exp(−[N + 1 − k]μek).

For the Abakiliki data on day 90, we have for α ≈ ∞, μ̂ = 0.00308 with log( f (e2:K , T |
μ̂)) = −61.82. Thus the likelihood at (α, μ) = (∞, 0.00308) is approximately 0.060
times the maximum value of the likelihood and approximately 0.165 times the value of
the likelihood at the second mode.

There are a few points to drawout from the above analysis. For an ongoing general stochas-
tic epidemic, the maximum likelihood estimate (MLE) of the parameters often corresponds
to an unrealistically high R0 scenario with a high infection rate and a low removal rate. We
only see the mode about (α, μ) = (0.0889, 0.0761) becoming the MLE at day T = 94.
This provides support for using a Bayesian approach for analysing ongoing epidemics with
an informative prior. For a Bayesian analysis, owing to the behaviour of the likelihood as
α → ∞, we require a proper prior on α for an ongoing general stochastic epidemic, as oth-
erwise we will obtain an improper posterior distribution. Previous analyses of the Abakiliki
data, or more generally the general stochastic epidemic model, have not identified/reported
the bimodality of the likelihood. There are several reasons for this. Firstly, the bimodality
does not exist for completed epidemics. Secondly, an informative prior as used in O’Neill

123



    5 Page 16 of 25 Statistical Inference for Stochastic Processes             (2025) 28:5 

Fig. 2 Contour plot of likelihood for Abakiliki data analsyed at day T = 90 on 0 ≤ α ≤ 0.25 and 0 ≤ μ ≤ 0.2
using the birth–death likelihood (left) and the approximate birth–death likelihood (right)

and Roberts (1999), Fearnhead and Meligkotsidou (2004) and McKinley et al. (2014) leads
to a unimodal posterior distribution. Thirdly, data-augmentation MCMC algorithms initi-
ated close to (α, μ) = (0.09, 0.0775) are extremely unlikely to move to the mode close to
(α, μ) = (0.155, 0.004) owing to the strong dependence between the augmented data and
parameter values.

4.2 Abakiliki data: approximate likelihood

It took approximately 45min to produce the 100× 100 likelihood grid for T = 90 using the
exact likelihood. (All computations throughout the paper were performed on a desktop PC
with Intel(R) Core(TM) i5-12400 Six core 2.50 GHz processor.) Reproducing the likelihood
grid using the birth–death process likelihood (7), and the approximate birth–death process
likelihood (13), took 35s and 3s, respectively, with the birth rate changing at removal times
as outlined at the end of Sect. 2. In Fig. 2 we present contour plots of the estimated epidemic
likelihood on day T = 90 on the range 0.025 ≤ α ≤ 0.25 and 0.0005 ≤ μ ≤ 0.2 using (7)
and (13). The scale on the contour plots is the same as in Fig. 1 for T = 90, and we note that
the contour plots are qualitatively similar with correct identification of the two modal regions
andmodes at approximately (0.14, 0.0045) and (0.095, 0.0775). Amore refined search found
the modes at (0.1406, 0.00454) and (0.0947, 0.0779) with corresponding R0 estimates of
30.969 and 1.216, respectively. There is underestimation of the likelihood about the mode at
(0.1406, 0.00454) but this is to be expected as the birth–death process approximation is not
designed for the highly infectious scenario. There is much better estimation of the likelihood
about the mode at (0.0947, 0.0779).

Given that the birth–death and the approximate birth–death likelihoods are approxi-
mately 75 and 900 times faster than the exact general stochastic epidemic likelihood in
the case T = 90, we considered how using the approximate likelihoods within an MCMC
algorithm affected estimates of the posterior distribution of the parameters. We use the
same informative, independent gamma prior distributions for α ∼ Gamma(10, 500/6) and
μ ∼ Gamma(10, 100) as used in O’Neill and Roberts (1999), Fearnhead and Meligkotsidou
(2004) andMcKinley et al. (2014). Note that the prior on α corresponds to a Gamma(10, 104)
prior on α/N , the individual-to-individual infection rate.

We used a random walk Metropolis algorithm with a Gaussian proposal distribution to
obtain samples from the joint posterior distribution of (α, μ) and ran the algorithm for
mB RB + R iterations. The first mB RB iterations were used as burn-in and the final R iter-
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Table 1 Estimates of the posterior means and standard deviations of α, μ and R0 at T = 46.99 using
the MCMC algorithms with the approximate birth–death, the birth–death and the exact general stochastic
epidemic likelihoods treating the data both as exact removal times and aggregated daily removal counts.
Numerical integration of the posterior quantities using the grid of likelihood values computed for Fig. 1 is also
included

Likelihood ᾱ μ̄ R̄0 sd α sd μ sd R0 cor(α, μ)

Approximate 0.1150 0.0846 1.4667 0.0276 0.0252 0.5370 0.2511

Birth–death 0.1143 0.0837 1.4682 0.0265 0.0243 0.5229 0.2425

Exact 0.1107 0.0841 1.4166 0.0258 0.0247 0.4997 0.2640

Numerical integration 0.1103 0.0839 1.4114 0.0257 0.0245 0.4874 0.2701

Approximate (Aggregate) 0.1122 0.0840 1.4403 0.0266 0.0249 0.5261 0.2374

Birth–death (Aggregate) 0.1126 0.0840 1.4468 0.0267 0.0246 0.5296 0.2300

Exact (Aggregate) 0.1108 0.0836 1.4230 0.0261 0.0248 0.4918 0.2836

ations were kept as samples from the posterior distribution. Throughout the burn-in period,
�, the variance-covariance matrix for the proposal in the random walk algorithm is automat-
ically tuned to produce an efficient MCMC algorithm. Ideally, we would choose � = l2�∗,
where �∗ is the variance-covariance matrix of the posterior of the parameters and l is an
appropriate scalar, see Roberts and Rosenthal (2001), Section 7.3. Optimal scaling of the
random walk Metropolis algorithm would suggest l = 2.4/

√
2 (see Roberts et al. 2009).

During the burn-in, after each RB iterations, we calculate S and V, the variance-covariance
matrix of the parameters and a diagonal matrix with the variance of the parameters on the
diagonal, respectively, using the last RB iterations of the MCMC algorithm. Then we set

� = 2.42

2
[0.95S + 0.05V] . (20)

Thus we approximate �∗ by 0.95S + 0.05V rather than by S, c.f. Sherlock et al. (2010),
Algorithm 6, to avoid issues with over-estimation of the correlation between the parameters.
Note that � is updated mB times during the burn-in. Throughout we take mB = 3, RB =
5, 000 and R = 50, 000, so that 65,000 iterations (likelihood calculations) are used per
MCMC run.

The estimated posterior means and standard deviations for α and μ, along with the cor-
relation between α and μ, using each of the three likelihoods are reported in Tables 1 and 2
for T = 46.99 and T = 90, respectively. (Similar results were obtained for T = 47, 80, 100
and T = ∞.) In Tables 1 and 2, we also give calculation of the posterior quantities using
numerical integration over the grid of likelihood values computed for Fig. 1 and posterior
estimates of the parameters from running the MCMC algorithm using the three likelihoods
and taking theAbakiliki data as aggregated daily removal counts (c.f.McKinley et al. (2014)).
All MCMC algorithms resulted in acceptance rates for the parameters of between 30% and
40% and effective sample sizes for the parameters of approximately 6,000.

For the aggregated daily removal counts we include an additional step in the MCMC
algorithm which involves updating 5 randomly selected removal times. The removal times
to be updated are chosen uniformly at random from the set of all removal times and for
each selected removal time, a new time for the removal is proposed on the day on which the
removal occurs. This step has an acceptance rate of approximately 97% across all MCMC
runs demonstrating that the parameter estimates are largely insensitive to the exact removal
times within a given day.
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Table 2 Estimates of the posterior means and standard deviations of α, μ and R0 at T = 90 using the
MCMCalgorithmswith the approximate birth–death, the birth–death and the exact general stochastic epidemic
likelihoods treating the data both as exact removal times and aggregated daily removal counts. Numerical
integration of the posterior quantities using the grid of likelihood values computed for Fig. 1 is also included

Likelihood ᾱ μ̄ R̄0 sd α sd μ sd R0 cor(α, μ)

Approximate 0.1105 0.0918 1.2453 0.0243 0.0214 0.3114 0.4198

Birth–death 0.1106 0.0927 1.2320 0.0239 0.0211 0.3025 0.4148

Exact 0.1072 0.0924 1.1955 0.0234 0.0210 0.2827 0.4559

Numerical integration 0.1072 0.0924 1.1943 0.0231 0.0208 0.2784 0.4542

Approximate (Aggregate) 0.1108 0.0920 1.2449 0.0241 0.0210 0.3158 0.3924

Birth–death (Aggregate) 0.1103 0.0920 1.2383 0.0240 0.0208 0.3075 0.4093

Exact (Aggregate) 0.1073 0.0924 1.1948 0.0230 0.0206 0.2755 0.4554

The estimation of μ is very similar across the three likelihoods, which is unsurprising,
since the infectious period/lifetime distribution, governed byμ, does not change between the
epidemic model and the birth–death process model. The birth–death process approximation
uses the estimated mean number of individuals alive immediately after a removal (death)
to estimate the number of susceptibles until the next removal (death). The distribution of
the number of individuals alive in the birth–death process approximation has continuously
decreasing mean between death times with an upward jump at each death time, see Ball and
Neal (2023), Fig. 2 for an illustration. This suggests that in the birth–death approximation the
piecewise-constant approximation of the number of susceptibles (infectives) under-estimates
(over-estimates) the true distribution of the number of susceptibles, and hence, a slightly
higher value of α is found to compensate.

5 Covid-19 data

5.1 Introduction

The main reason for deriving the birth–death process likelihood and its approximation in
Sects. 3.2 and 3.3 was to introduce approximations of the epidemic likelihood which are
scalable to large epidemic outbreaks, such as the emergence of the Covid-19 pandemic. We
use a time-inhomogeneous birth–death process to model the early spread of Covid-19, up
to and including the 4th May 2020, in 11 European countries (Austria, Belgium, Denmark,
France, Germany, Italy, Norway, Spain, Sweden, Switzerland and United Kingdom) and to
evaluate the effect of non-pharmaceutical interventions (NPIs) on the spread of Covid-19. A
similar approach was taken in Flaxman et al. (2020). There were a total of 128,141 Covid-19
deaths across the 11 countries up to and including 4thMay 2020, with four countries (France,
Italy, Spain and theUnitedKingdom) each experiencingover 24,000deaths. The large number
of Covid-19 deaths renders using the exact likelihood derived in Sect. 3.2 impractical, so we
focus on the approximate likelihood given in Sect. 3.3. We use the reported numbers of
deaths rather than case counts as the former are likely to be far more reliable than case
counts, Flaxman et al. (2020), especially early in the pandemic. Therefore, the observed
data, Covid-19 deaths, is a subset of the removal data which includes symptomatic cases
which did not lead to death and asymptomatic cases.
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Control measures in the form of NPIs varied between the 11 European countries but can
be classified into 5 categories. The NPIs were mandatory case-based self-isolation, social
distancing measures introduced, public event bans, school closures ordered and lockdown
implemented. With the exception of no lockdown being implemented in Sweden, all inter-
ventions were implemented across the countries during March 2020 and remained in place
at least until the 4th May 2020 when lockdown restrictions were eased in Italy and Spain.

The remainder of the section is structured as follows. In Sect. 5.2 we introduce the Covid-
19 model. Details of the MCMC algorithm are given in Sect. 5.3. In Sect. 5.4, we analyse the
initial spread of Covid-19 in Europe. This is supported by a simulation study presented in the
Supplementary Material, which investigates, and confirms, the identifiability of the model.

5.2 Covid-19model

The model for Covid-19 has similarities to the model used in Flaxman et al. (2020) in that
the time-varying transmission rates depend on a country’s baseline R0 and the NPIs in place.
A key difference is that we use a Markovian SI R epidemic model rather than a discrete-time
renewal process model, see Cori et al. (2013), for the progression of Covid-19. Given we
are modelling the early stages of the pandemic, we make the assumption that there is no
significant depletion of susceptible individuals in the countries up to and including the 4th
May 2020, and hence we use a time-inhomogeneous birth–death process to model the spread
of Covid-19. As previously, we utilise the birth–death process to model the infection (birth)
and removal (death) of individuals. To avoid confusion with death of individuals fromCovid-
19 we use infection and removal rates in place of birth and death rates when describing the
time-inhomogeneous birth–death process model for Covid-19.

We assume that after the initial seeding of Covid-19 in a country, which we take to be
a single introductory case, the evolution of Covid-19 within each country is independent.
Given the restrictions placed on movement between countries during the early stages of the
Covid-19 pandemic after the initial seeding of the disease, transmissionwas driven by internal
spread. We briefly discuss the possibility of including trans-country transmission in Sect. 6.

For i = 1, 2, . . . , 11, let αi denote the baseline infection (birth) rate in country i with
the countries numbered according to alphabetic order, 1 = Austria through to 11 = United
Kingdom. The removal rate, denotedμ, is assumed to be constant across the 11 countries and
constant over time, so throughout we have that the infectious period distribution is Exp(μ).
In addition to the five NPIs stated, for each country we consider two functions of the NPIs,
the dates on which the first and last NPI were introduced in that country. For j = 1, 2, . . . , 6,
let 0 ≤ ζ j ≤ 1 denote the effect of the j th NPI (1 =self isolation, 2 =social distancing,
3 =public event ban, 4 =school closure, 5 =lockdown, 6 =first NPI) on transmission of
Covid-19 with ζ j = 0 if the NPI completely eliminates transmission and ζ j = 1 if the NPI
has no effect on transmission. For i = 1, 2, . . . , 11, let ξi ∈ R denote the relative (log) effect
on the infection rate in country i once all the NPIs implemented during March 2020 have
been introduced. For i = 1, 2, . . . , 11, j = 1, 2, . . . , 7 and t ∈ Z, let ωi, j (t) = 1 if the j th
NPI is in force on day t in country i and ωi, j (t) = 0 otherwise, with j = 7 corresponding
to the last NPI being implemented. Then the infection rate βi (t) (i = 1, 2, . . . , 11; t ∈ Z) in
country i on day t is given by

βi (t) = αi ×
6∏

j=1

ζ
ωi, j (t)
j × exp(−ξiωi,7(t)).
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We equate removal of individuals with the end of their effective infectious period which
can be taken to be the time during which they are active in the population and able to infect
other individuals. Thiswill typically correspond to the emergence of Covid-19 symptoms.We
assume that death owing to Covid-19 occurs some time after the removal of the individual and
let D denote the distribution for the time from onset of symptoms to death.We setE[D] = 18
which is in line with Flaxman et al. (2020) and focus on the case where P(D ≡ 18) = 1,
death is assumed to occur 18 days after removal.

Let δi (t) denote the probability that a Covid-19 case in country i which is removed on day
t results in death. Since not all cases of Covid-19 lead to death, δi (t) < 1. It is reasonable
to assume that, during the early stages of the pandemic, within a country the probability of
death is approximately constant over time, δi (t) = d . As noted in the SupplementaryMaterial
the model is largely insensitive to the choice of d . Therefore for a parsimonious model we
fix δi (t) = 0.1 throughout. This is consistent with approximately one death for every eight
observed cases in the European data and approximately 30% of cases being asymptomatic,
see, for example, Alene et al. (2021).

5.3 Covid-19MCMC

The MCMC algorithm for analysing the European Covid-19 data (Sect. 5.4) is similar to the
MCMCalgorithmdescribed in Sect. 4.2.We include a data augmentation step into theMCMC
algorithm to impute the detection (arrival) times of cases, and hence, derive the inter-arrival
times of cases. We initiate the augmented data by assigning to each detected case, a detection
time which is drawn uniformly at random from the day on which they were detected. We
updated the detection times of cases in one country at a time given the current parameter
values. Since the spread of Covid-19 is assumed to be independent in different countries,
this meant that the only likelihood which changed was in the country where the detection
times of cases were updated. For each country we proposed to update the detection times of
a uniform random sample of 10% of those infected in a single update with the new detection
times for the selected individuals drawn uniformly at random from the day on which they
were detected. This typically resulted in acceptance rates per country of between 30% and
85% for the independence sampler, which are sufficiently in line with optimal scaling results
for the independence sampler given in Lee and Neal (2018) to preclude the need for further
tuning. We employed a random walk Metropolis step to update the parameters of the model
given the inter-arrival times of the detected cases as in Sect. 4.2. Pilot runs of the MCMC
algorithm, typically 20,000 iterations, were used to identify the approximate posterior mode
of the parameters with a proposal variance being a scaled multiple of the identity matrix. The
randomwalkMetropolis was then tuned through a further burn-in period of 30,000 iterations,
divided into 3 batches of 10,000 iterations, using (20) to derive the proposal covariance
matrix, before fixing the covariance matrix to draw a sample of size 50,000 iterations from
the posterior distribution of the parameters.

5.4 Covid-19 data Europe

In this section we apply the time-inhomogeneous birth–death process model to the early
stages of the Covid-19 model with a delay of 18 days from removal to death of individuals.
The time inhomogeneous birth–death process model is not fully appropriate for modelling
Covid-19, with the absence of a latent period and the assumption of an exponential infectious
period. Unlike the simulation study, presented in the Supplementary Material, attempts to
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Fig. 3 Boxplots of the MCMC estimates of R0 (left), prior to, and Rt (right), post, the implementation of
NPIs in 11 European countries with μ = 0.1

estimate the removal rate μ of the infectious period along with the other parameters were
problematic with the MCMC algorithm returning infeasibly high values of μ. Therefore, we
fixed the removal rate μ in the MCMC algorithm and explored the sensitivity of the results
by considering a range of plausible values for μ. This approach is in line with Flaxman et al.
(2020), who also focus their attention on estimation of the transmission rates and the effects
of NPIs.

Each run of the MCMC algorithm was initiated with αi = 3μ, ξi = 0 (i = 1, 2, . . . , 11)
and ζ j = 0.8 ( j = 1, 2, . . . , 6), corresponding to an initial R0 = 3 in each country, no
country level variation in the effect of the implementation of the final NPI and each NPI
reducing infectivity by 20%. The priors on αi (i = 1, 2, . . . , 11) were Gamma(10, 25),
corresponding to a prior mean on the basic reproduction number, Ri

0 = αi/μ, of 4. The
priors on ξi (i = 1, 2, . . . , 11) were N (0, 0.12). Finally, Beta(1, 1) (uniform) priors were
chosen for ζ j ( j = 1, 2, . . . , 6).

In Fig. 3, boxplots of the estimates of the reproduction number R0 (prior to the imple-
mentation of NPIs) and Rt (after the implementation of NPIs) for the 11 European countries
from the final 50,000 iterations of the MCMC algorithm with μ = 0.1 and a fixed 18 day
delay from removal to death. We observe that in all countries the outbreak of Covid-19 goes
from being super-critical, before the implementation of NPIs, to sub-critical, after the imple-
mentation of NPIs. Unsurprisingly we observe less variability in the estimation of R0 and Rt

in countries with larger outbreaks than those with countries with fewer deaths. The posterior
means ζ = (0.9859, 0.7286, 0.9984, 0.9950, 0.3481, 0.8059) show that self-isolation, pub-
lic event bans and school closure had very little effect on reducing transmission of Covid-19
beyond the cases where these were the first NPI. The implementation of the first NPI reduced
transmission by approximately 20%with social distancing reducing transmission by approx-
imately 27%. The most effective NPI was lockdown which reduced transmission by almost
two-thirds.

In Fig. 4, we give comparisons of the estimates of the growth rate of the epidemic pre-and
post-intervention in the United Kingdom for μ = 1/8, 1/10 and 1/12 corresponding to
mean infectious periods of 8, 10 and 12 days, respectively. We note that the estimates of the
growth rates are consistent across the choice of μ in line with the comment at the end of
Sect. 5.2 and Parag et al. (2022). Similar plots are obtained for the other European countries.
The estimations of the country parameters αi and ξi do not experience significant changes
with the change in μ. The relative effects of the NPIs do not change but for smaller μ we
observe a greater change in transmission because for a smaller value of μ a bigger change in

123



    5 Page 22 of 25 Statistical Inference for Stochastic Processes             (2025) 28:5 

Fig. 4 Boxplots of the MCMC estimates of the growth rate of Covid-19 in the United Kingdom (UK), pre-and
post-intervention with μ = 1/8, μ = 1/10 and μ = 1/12

the reproduction rate is required to obtain the same change in the growth rate. For example,
the posterior mean estimates of ζ5, the lockdown effect, are 0.4360 (μ = 1/8) and 0.2735
(μ = 1/12).

The conclusions of the analysis are in broad agreement with the findings of Flaxman et al.
(2020), in that lockdown is the dominant control measure with similar overall reductions
in Rt owing to NPIs. There are also differences, primarily owing to modelling differences,
with the estimates of R0 generally slightly higher in Flaxman et al. (2020) than those given
above. Also in Flaxman et al. (2020) the estimated mean effects of all non-lockdown NPIs
are similar.

6 Concluding remarks

We have presented an approximate likelihood for the Markovian SIR epidemic which does
not require data augmentation for infection times and is scalable to large epidemic outbreaks.
The only data augmentation used within the MCMC algorithms constructed is the removal
times of detected cases through the day of detection and this approach can easily be extended
to cases where the aggregation of data is not on a regular, daily timescale. In cases where the
aggregation of counts is over a longer period of timemore sophisticated updating schemes are
likely to be needed to take account of whether the epidemic outbreak is growing or shrinking.

Both the exact and approximate likelihoods could be used to update parameters using a
sequential Monte Carlo algorithm with daily aggregated data. The Markovian nature of the
modelmeans that the likelihood of a specific set of removal times on a given day only depends
upon the time of the last removal prior to that day and themodel parameters. Therefore within
a particle filter it is straightforward to update the weights of particles on a daily basis. The
updating of the posterior of the parameters can then be done either using an approximate
onlinemethod which reweight the parameters such as Liu and West (2001) or using an exact
method such as SMC2, see Chopin et al. (2013), which targets the posterior distribution using
MCMC rejuvenation steps.

There are limitations to the epidemic model presented above. The birth–death process
approximation implies in the homogeneous case an exponential infectious period, and more
generally that the recovery rate does not depend on how long an individual has been infec-
tious. In Ball and Neal (2025) we extend Theorems 3.1 and 3.2 of Ball and Neal (2023)
to phase-type lifetime distributions. However, the distribution of the number of individuals
alive (infectious) immediately following the kth detected death (removal) is a mixture of
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(k − 1)! distributions, so rapidly becomes impractical to use. An approximation of the distri-
bution of the number of individuals alive (infectious) immediately following the kth detected
death (removal) consisting of a mixture of k negative binomial distributions is presented in
Ball and Neal (2025) and through numerical examples shown to perform well for Erlang
lifetime (infectious period) distributions. This provides a promising approach for deriving
an approximate likelihood in the spirit of Sect. 3.3 for Erlang lifetime (infectious period)
distributions. An alternative approach to dealing with a general infectious period (lifetime)
distribution is to use a time varying removal rate in the birth–death process to capture the
changing infectious age profile of individuals over time. Specifically, suppose that individu-
als have independent and identically distributed lifetimes according to a random variable L
with probability density function fL(·) and cumulative distribution function FL(·). We can
approximate the number of individuals infectious at time t by

∫ t

−∞
β̃sE[B(s)|T̃2:K (s) = t̃2:K (s)]{1 − FL(t − s)} ds,

and hence, set

γ̃t =
∫ t
−∞ β̃sE[B(s)|T̃2:K (s) = t̃2:K (s)] fL(t − s) ds

∫ t
−∞ β̃sE[B(s)|T̃2:K (s) = t̃2:K (s)]{1 − FL(t − s)} ds .

Finally, we have assumed independence of the spread of Covid-19 between countries.
However, if we havem communities we can approximate the interactions between communi-
ties using an inhomogeneous birth–death process as follows. Suppose that αi j (1 ≤ i, j ≤ m)

is the rate at which an individual in community i makes contact with individuals in commu-
nity j and, for simplicity, assume that there is a common removal rate γ . Let Si (t) and Ii (t)
denote the number of susceptibles and infectives in community i at time t , respectively, with
Ni denoting the number of individuals in community i . Then the birth rate of new infectives
in community i at time t will be approximately

βi (t) = E[Si (t)]
Ni

N∑

j=1

α j i
E[I j (t)]
E[Ii (t)] ,

where for j = 1, 2, . . . , N , E[S j (t)] and E[I j (t)] are the estimated mean numbers of sus-
ceptibles and infectives in community j at time t .
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