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Abstract: Given a smooth log Calabi–Yau pair (X, D), we use the intrinsic mirror
symmetry construction to define the mirror proper Landau–Ginzburg potential and show
that it is a generating function of two-point relative Gromov–Witten invariants of (X, D).
We compute certain relative invariants with several negative contact orders, and then
apply the relative mirror theorem of Fan et al. (Sel Math (NS) 25(4): Art. 54, 25, 2019.
https://doi.org/10.1007/s00029-019-0501-z) to compute two-point relative invariants.
When D is nef, we compute the proper Landau–Ginzburg potential and show that it
is the inverse of the relative mirror map. Specializing to the case of a toric variety X ,
this implies the conjecture of m Gräfnitz et al. (2022) that the proper Landau–Ginzburg
potential is the open mirror map. When X is a Fano variety, the proper potential is related
to the anti-derivative of the regularized quantum period.
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1. Introduction

Mirror symmetry is originally stated as a duality between Calabi–Yau manifolds. Mir-
ror symmetry predicts that the symplectic geometry (or the complex geometry) of a
Calabi–Yau manifold is equivalent to the complex geometry (or the symplectic ge-
ometry, respectively) of the mirror Calabi–Yau manifold. The mirror duality has been
generalized to Fano varieties, more generally, to log Calabi–Yau pairs. The mirror of
a smooth log Calabi–Yau pair (X, D) is a Landau–Ginzburg model, which is a variety
X∨ with a proper map, called the superpotential, W : X∨ → C. One further expects
that the generic fiber of the superpotential W is mirror to a smooth anticanonical divisor
D of X . We call the mirror duality between a smooth log Calabi–Yau pair (X, D) and
a proper Landau–Ginzburg model relative mirror symmetry. To construct the mirror of
the smooth log Calabi–Yau pair (X, D), one needs to construct the variety X∨ and the
proper Landau–Ginzburg potential W .

The variety X∨ is considered as the mirror of the complement X \ D. A general
construction of the variety X∨ is through intrinsic mirror symmetry [GS19] in the Gross–
Siebert program. One considers a maximally unipotent degeneration g : Y → S, where
S is an affine curve, of the pair (X, D). The mirror is constructed as the projective
spectrum of the degree zero part of the relative quantum cohomology Q H0

log(Y, D′) of

(Y, D′), where D′ is a certain divisor that contains g−1(0).
It remains to compute the proper Landau–Ginzburg potential W . Following the

Gross–Siebert program, the Landau–Ginzburg potentials are given by the theta func-
tions. The theta functions are usually difficult to compute.

Recently, [GRZ22] computed the proper Landau–Ginzburg potentials for toric del
Pezzo surfaces. They considered a toric degeneration of the smooth pair (X, D), then
applied the tropical view of the Landau–Ginzburg models [CPS22]. The theta functions
in [GRZ22] were defined tropically. By proving a tropical correspondence theorem in
[Gra22], they showed that the theta functions can be written as generating functions
of two-point relative invariants. The idea of computing two-point relative invariants
in [GRZ22] was to relate these two-point relative invariants with one-point relative
invariants of a blow-up X̃ . Then use the local-relative correspondence of [vGGR19]
to relate these invariants to local invariants of the Calabi–Yau threefold K X̃ . By the
open-closed duality of [LLW11], these local invariants are open invariants of the local
Calabi–Yau threefold K X which form the open mirror map. Therefore, [GRZ22] showed
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that, for toric del Pezzo surfaces, the proper Landau–Ginzburg potentials are the open
mirror maps.

In this paper, we study the Landau–Ginzburg model from the intrinsic mirror symme-
try construction in [GS19]. The goal of this paper is to generalize the result of [GRZ22]
to all dimensions via a direct computation of two-point relative Gromov–Witten invari-
ants. The computation is based on the relative mirror theorem of [FTY19], where we
only need to assume that D is nef. The variety X is not necessarily toric or Fano.

1.1. Intrinsic mirror symmetry and theta functions. Besides the tropical view of the
Landau–Ginzburg model [CPS22], the proper Landau–Ginzburg model can also be con-
structed through intrinsic mirror symmetry. We learnt about the following construction
from Mark Gross.

Given a smooth log Calabi–Yau pair (X, D). We recall the maximally unipotent
degeneration g : Y → S and the pair (Y, D′) from the construction of X∨. Following the
mirror construction of [GS19, Construction 1.19], the theta functions in Q H0

log(Y, D′)
form a graded ring. The degree zero part of the ring agrees with Q H0

log(X, D). The

base of the Landau–Ginzburg mirror of (X, D) is Spec Q H0
log(X, D) = A

1 and the

superpotential is W = ϑ1, the unique primitive theta function of Q H0
log(X, D).

We claim that the theta functions of Q H0
log(X, D) are generating functions of two-

point relative Gromov–Witten invariants as follows.

Definition 1.1 (=Definition 3.6). For p ≥ 1, the theta function is

ϑp = x−p +
∞∑

n=1

nNn,ptn+pxn, (1)

where

Nn,p =
∑

β

〈[pt]n, [1]p〉(X,D)
0,2,β

is the sum of two-point relative Gromov–Witten invariants with the first marking having
contact order n along with a point constraint and the second marking having contact
order p.

By [GS19], theta functions should satisfy the following product rule

ϑp1 � ϑp2 =
∑

r≥0,β

Nβ
p1,p2,−rϑr , (2)

where the structure constants Nβ
p1,p2,−r are punctured invariants with two positive con-

tacts and one negative contact.
In Proposition 3.3, we show that the structure constants can be written in terms of

two-point relative invariants. For example, when r < p1, p2, we have

Nβ
p1,p2,−r = (p1 − r)〈[pt]p1−r , [1]p2〉(X,D)

0,2,β + (p2 − r)〈[pt]p2−r , [1]p1〉(X,D)
0,2,β .

In other words, we reduce relative invariants with two positive contacts and one neg-
ative contact to relative invariants with two positive contacts. We refer to Proposition 3.3
for the formula of Nβ

p1,p2,−r in other cases.
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Then we show that the theta functions in Definition 1 indeed satisfy the product rule
(2) with the correct structure constants Nβ

p1,p2,−r . In particular, in Proposition 3.7, we
prove an identity of two-point relative invariants generalizing [GRZ22, Lemma 5.3] and
show that it follows from the WDVV equation.

Remark 1.2. During the preparation of our paper, we learnt that Yu Wang[Wan22] also
obtained the same formula as in Proposition 3.3 but using the punctured invariants of
[ACGS20]. Some formulas for two-point relative invariants are also obtained in [Wan22]
via a different method.

1.2. Relative mirror maps and computing genus zero relative invariants.. The relative
mirror theorem of [FTY19] states that, under the assumption that D is nef and −K X − D
is nef, a genus zero generating function of relative Gromov–Witten invariants (the J -
function) can be identified with the relative periods (the I -function) via a change of
variables called the relative mirror map. This provides a powerful tool to compute genus
zero relative Gromov–Witten invariants.

Our computation of these two-point relative invariants is straightforward but compli-
cated. It is straightforward to see that these invariants can be extracted from the relative
J -function after taking derivatives. On the other hand, although such computation for
(one-point) absolute invariants is well-known, the computation of two-point relative
invariants is much more complicated due to the following reasons.

First of all, we need to compute two-point relative invariants instead of one-point in-
variants. For one-point relative invariants, one can also use the local-relative correspon-
dence of [vGGR19] (see also [TY23b]) to reduce the computation to local invariants
when the divisor D is nef. To compute these two-point invariants one need to consider the
so-called extended relative I -function, instead of the much easier non-extended relative
I -function.

Secondly, the relative mirror map has never been studied systematically. There have
been some explicit computations of relative invariants when the relative mirror maps are
trivial, see, for example, [TY23b]. When the relative mirror maps are not trivial, more
complicated invariants will appear. One of the important consequences of this paper is
to provide a systematic analysis of these invariants and set up the foundation of future
applications of the relative mirror theorem.

We would like to point out a related computation in [You20], where we computed one-
point relative invariants of some partial compactifications of toric Calabi–Yau orbifolds.
The computation is much easier in [You20] because of the two reasons that we just
mentioned. First of all, one can apply the local-relative correspondence to compute
these invariants, although we did not use it in [You20]. Secondly, although the mirror
map is not trivial, the mirror map is essentially coming from the absolute Gromov–Witten
theory of the partial compactifications. The relative theory in [You20] does not contribute
to the non-trivial mirror map. Therefore we were able to avoid all these complexities.
We would also like to point out that the computation in [You20] is restricted to the toric
case. In this paper, we work beyond the toric setting.

In order to apply the relative mirror theorem of [FTY19], we need to study the relative
mirror map carefully. Let X be a smooth projective variety and D be a smooth nef divisor,
we recall that the J -function for the pair (X, D) is defined as

J(X,D)(τ, z) = z + τ +
∑

(β,l) 	=(0,0),(0,1)
β∈NE(X)

∑

α

qβ

l!
〈

φα

z − ψ̄
, τ, . . . , τ

〉(X,D)

0,1+l,β
φα,
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and the (non-extended) I -function of the smooth pair (X, D) is

I(X,D)(y, z) =
∑

β∈NE(X)

JX,β(τ0,2, z)yβ

⎛

⎝
∏

0<a≤D·β−1

(D + az)

⎞

⎠ [1]−D·β.

We refer to Definitions 4.1 and 4.2 for the precise meaning of the notation. The extended
I -function I (y, x1, z) takes a more complicated form than the non-extended I -fnction
I (y, z). We refer to Definition 4.4 for the precise definition of the extended I -function.
We further assume that −K X − D is nef. The extended relative mirror map is given by
the z0-coefficient of the extended I -function:

τ(y, x1) =
r∑

i=1

pi log yi + x1[1]1 +
∑

β∈NE(X)
D·β≥2

〈[pt]ψ D·β−2〉X
0,1,β yβ(D · β − 1)![1]−D·β.

The (non-extended) relative mirror map is given by τ(y, 0), denoted by τ(y). The relative
mirror theorem of [FTY19] states that

J (τ (y, x1), z) = I (y, x1, z).

Therefore from the expression of τ(y, x1), we can see that relative invariants with
several negative contact orders will appear when the relative mirror map is not trivial.
We obtain the following identity which shows that the negative contact insertion [1]−k
is similar to the insertion of a divisor class [D]0.

Proposition 1.3 (=Proposition 4.6).

〈[1]−k1 , · · · , [1]−kl , [γ ]kl+1ψ̄
a〉(X,D)

0,l+1,β = 〈[D]0, · · · , [D]0, [γ ]D·βψ̄a〉(X,D)
0,l+1,β ,

where γ ∈ H∗(D), ki ’s are positive integers, and

D · β = kl+1 −
l∑

i=1

ki ≥ 0.

With these preparations, we are able to express invariants in J (τ (y, 0), z) in terms
of relative invariants without negative contact orders and the relative mirror map can be
written as the following change of variables

r∑

i=1

pi log qi =
r∑

i=1

pi log yi + g(y)D. (3)

Since we need to compute invariants with an insertion [1]1, we also need to compute
the following relative invariants with insertions of [1]1.

• Relative invariants with two positive contact orders and several negative contact
orders of the following form:

〈[1]1, [1]−k1 , · · · , [1]−kl , [γ ]kl+1〉(X,D)
0,l+2,β ,

D · β − 1 = kl+1 −
l∑

i=1

ki ≥ 0, and ki > 0.
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In Proposition 4.7, we show that these invariants equal to two point invariants

(D · β − 1)l〈[1]1, [γ ]D·β−1〉(X,D)
0,2,β .

For invariants with several insertions of [1]1, we refer to Proposition 4.8.
• Degree zero relative invariants with two positive contact orders and several negative

contact orders of the following form:

〈[1]1, [1]−k1 , · · · , [1]−kl , [pt]kl+1〉(X,D)
0,l+2,0.

By Proposition 4.9, these invariants equal to (−1)l−1.

Remark 1.4. We would like to point out that a key point of the computation of the proper
potential is to observe the subtle (but vital) difference between the above mentioned
formulas for invariants with two positive contacts and formulas for invariants with one
positive contact.

Remark 1.5. The proof of Proposition 4.6, Proposition 4.7, Proposition 4.8, and Propo-
sition 4.9 make essential use of the (both orbifold and graph sum) definitions of relative
Gromov–Witten invariants with negative contact orders in [FWY20]. Since these invari-
ants reduce to relative invariants with two positive contact orders, we do not need to
assume a general relation between the punctured invariants of [ACGS20,FWY20]. To
match with the intrinsic mirror symmetry in the Gross–Siebert program, we only need
to assume that punctured invariants of a smooth pair with one negative contact order
defined in [ACGS20] coincide with the ones in [FWY20]. A more general comparison
result is an upcoming work of [BNR22a], so we do not attempt to give a proof of this
special case.

Relative mirror theorem was established in [FTY19], however, it was not clear how
to apply the relative mirror theorem to compute relative invariants when the mirror map
is not trivial. Understanding these invariants with several negative contact orders are
essential for the application of the relative mirror theorem to compute relative invariants
when the mirror map is not trivial. Our approach provides a powerful tool to compute
genus zero relative invariants. It is not limited to two-point invariants, it can be gen-
eralized to compute genus zero relative invariants with several relative markings with
contact orders ki ≥ 1.

1.3. The proper Landau–Ginzburg potential. The main result of the paper is to relate the
proper Landau–Ginzburg potential with the relative mirror map. Note that the generating
function ϑ1 in Definition 1.1 is not simply a coefficient of the J -function. Instead, it is a
derivative of a coefficient of the J -function. By extracting a coefficient of the J -function
and the I -function, applying the computation of relative invariants with several negative
contact orders in Proposition 4.7 and Proposition 4.9, and taking derivatives, we have
the following statement.

Theorem 1.6 (=Theorem 5.1). Let X be a smooth projective variety with a smooth nef
anticanonical divisor D. Let W := ϑ1 be the mirror proper Landau–Ginzburg potential.
Set qβ = t D·β x D·β . Then

W = x−1 exp (g(y(q))) ,
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where

g(y) =
∑

β∈NE(X)
D·β≥2

〈[pt]ψ D·β−2〉X
0,1,β yβ(D · β − 1)!

and y = y(q) is the inverse of the relative mirror map (3).

Remark 1.7. This is a natural expectation from the point of view of relative mirror sym-
metry. Recall that the proper Landau–Ginzburg model (X∨, W ) is mirror to the smooth
log Calabi–Yau pair (X, D). The proper Landau–Ginzburg potential W should encode
the instanton corrections. On the other hand, the relative mirror theorem relates relative
Gromov–Witten invariants with relative periods (relative I -functions) via the relative
mirror map. In order to have a mirror construction with a trivial mirror map, the instan-
ton corrections should be the inverse relative mirror map. This provides an enumerative
meaning of the relative mirror map.

Remark 1.8. In [CJL21,CJL20], Collins–Jacob–Lin constructed the SYZ fibration and
the dual fibration with respect to the Ricci-flat metric for del Pezzo surfaces and rational
elliptic surfaces. It would be interesting to see how to extract quantum corrections from
their construction, then compare with the computation from the Gross–Siebert program.
There are some related computation in [Lin20,LLL22,BECHL21].

Remark 1.9. Applications of mirror theorems (e.g. [CCLT16,CLT13,CLLT17] and
[You20]) are usually for toric targets. Theorem 1.6 holds for general targets based on
highly non-trivial computations.

In [GRZ22], the authors conjectured that the proper Landau–Ginzburg potential is
the open mirror map. We also have a natural explanation for it. The open mirror map of
[GRZ22] is given by open Gromov–Witten invariants of the local Calabi–Yau OX (−D).
These open invariants encode the instanton corrections and are expected to be the inverse
mirror map of the local Gromov–Witten theory ofOX (−D). We observe that the relative
mirror map (3) and the local mirror map coincide up to a sign. So we claim that the proper
Landau–Ginzburg potential is also the open mirror map. When X is a toric variety, we
proved the conjecture of [GRZ22].

Theorem 1.10. (=Theorem 6.1). Let (X, D) be a smooth log Calabi–Yau pair, such that
X is toric and D is nef. The proper Landau–Ginzburg potential of (X, D) is the open
mirror map of the local Calabi–Yau manifold OX (−D).

In general, Theorem 1.10 is true as long as the open-closed duality (e.g. [CLT13,
CCLT16]) between open Gromov–Witten invariants K X and closed Gromov–Witten
invariants P(OX (−D) ⊕ O) is true. Therefore, we have the following.

Corollary 1.11. The open-closed duality implies the proper Landau–Ginzburg potential
is the open mirror map.

Remark 1.12. The reason that the relative mirror map is the same as the local mirror
map can also be seen from the local-relative correspondence of [vGGR19,TY23b]. It
has already been observed in [TY23b] that the local and (non-extended) relative I -
functions can be identified. And this identification has been used to prove the local-
relative correspondence for some invariants in [TY23b].
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Remark 1.13. We consider Theorem 1.6 provides a complete story from algebro-geometric
point of view. It provides a connection between the Gross–Siebert mirror construction
[GS19] and the relative version of the enumerative mirror symmetry in [FTY19]. For the
SYZ mirror symmetry, one may naturally expect that the proper potential is a generating
function of genus zero open Gromov–Witten invariants of X\D [Aur07]. Open Gromov–
Witten invariants of OX (−D) appear in Theorem 1.10 maybe because there exists an
identity between open Gromov–Witten invariants of OX (−D) and the open Gromov–
Witten invariants of X \ D, similar to the local-relative correspondence [vGGR19] for
closed Gromov–Witten invariants. However, we do not know if such an identity will be
true in general. We refer to [Lin20] for some discussions about open Gromov–Witten
invariants of X \ D.

Theorem 1.6 provides explicit formulas for the proper potentials whenever the rele-
vant genus zero absolute Gromov–Witten invariants of X are computable. These absolute
invariants can be extracted from the J -function of the absolute Gromov–Witten theory
of X . Therefore, we have explicit formulas of the proper Landau–Ginzburg potentials
whenever a Givental style mirror theorem holds. Givental style mirror theorem has been
proved for many cases beyond the toric setting (e.g. [CFKS08] for non-abelian quotients
via the abelian/non-abelian correspondence). Therefore, we have explicit formulas for
the proper Landau–Ginzburg potentials for large classes of examples. Note that there
may be non-trivial mirror maps for absolute Gromov–Witten theory of X . If we re-
place the absolute invariants in g(y) by the corresponding coefficients of the absolute
I -function, we also need to plug-in the inverse of the absolute mirror map. This can be
seen in the case of toric varieties in Sect. 6.2.

For Fano varieties, the invariants in g(y) are usually easier. We observed that g(y) is
closely related to the regularized quantum periods in the Fano search program [CCG13].

Theorem 1.14. The function g(y) coincides with the anti-derivative of the regularized
quantum period.

By mirror symmetry, it is expected that regularized quantum periods of Fano varieties
coincide with the classical periods of their mirror Laurent polynomials. Therefore, as
long as one knows the mirror Laurent polynomials, one can compute the proper Landau–
Ginzburg potentials. For example, the proper Landau–Ginzburg potentials for all Fano
threefolds can be explicitly computed using [CCGK16]. More generally, Theorem 1.14
allows one to use the large databases [CK22] of quantum periods for Fano manifolds to
compute the proper Landau–Ginzburg potentials.

Interestingly, the Laurent polynomials are considered as the mirror of Fano varieties
with maximal boundaries (or as the potential for the weak, non-proper, Landau–Ginzburg
models of [Prz07,Prz13]). Therefore, we have an explicit relation between the proper
and non-proper Landau–Ginzburg potentials.

2. Relative Gromov–Witten Invariants with Negative Contact Orders

2.1. General theory. We follow the presentation of [FWY20] for the definition of genus
zero relative Gromov–Witten theory with negative contact orders.

Let X be a smooth projective variety and D ⊂ X be a smooth divisor. We consider
a topological type (also called an admissible graph)


 = (0, n, β, ρ,µ)
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with

µ = (μ1, . . . , μρ) ∈ (Z∗)ρ

and
ρ∑

i=1

μi =
∫

β

D.

Definition 2.1 [FWY20, Definition 2.4]. A rubber graph 
′ is an admissible graph whose
roots have two different types. There are

(1) 0-roots (whose weights will be denoted by μ0
1, . . . , μ

0
ρ0

), and
(2) ∞-roots (whose weights will be denoted by μ∞

1 , . . . , μ∞
ρ∞ ).

The map b maps V (
) to H2(D,Z).

Definition 2.2 [FWY20, Definition 4.1]. A (connected) graph of type 0 is a weighted
graph 
0 consisting of a single vertex, no edges, and the following.

(1) 0-roots,
(2) ∞-roots of node type,
(3) ∞-roots of marking type,
(4) Legs.

0-roots are weighted by positive integers, and ∞-roots are weighted by negative integers.
The vertex is associated with a tuple (g, β) where g ≥ 0 and β ∈ H2(D,Z).

A graph 
∞ of type ∞ is an admissible graph such that the roots are distinguished
by node type and marking type.

Definition 2.3 [FWY20, Definition 4.8] An admissible bipartite graph G is a tuple
(S0, 


∞, I, E, g, b), where

(1) S0 = {
0
i } is a set of graphs of type 0; 
∞ is a (possibly disconnected) graph of

type ∞.
(2) E is a set of edges.
(3) I is the set of markings.
(4) g and b represent the genus and the degree respectively.

Moreover, the admissible bipartite graph must satisfy some conditions described in
[FWY20, Definition 4.8]. We refer to [FWY20] for more details.

Let B
 be a connected admissible bipartite graph of topological type 
. Given a
bipartite graph G ∈ B
 , we consider

MG =
∏


0
i ∈S0

M∼

0

i
(D) ×D|E | M•


∞(X, D),

where

• M∼

0

i
(D) is the moduli space of relative stable maps to rubber target over D of type


0
i ;

• M•

∞(X, D) is the moduli space of relative stable maps of type 
∞;

• ×D|E | is the fiber product identifying evaluation maps according to edges.



79 Page 10 of 44 F. You

We have the following diagram.

MG
��

ι

��

D|E |




��∏


0
i ∈S0

M∼

0

i
(D) × M•


∞(X, D) �� D|E | × D|E |.

(4)

There is a natural virtual class

[MG]vir = 
![
∏


0
i ∈S0

M∼

0

i
(D) × M•


∞(X, D)]vir

where 
! is the Gysin map.
For each M∼


0
i
(D), we have a stabilization map M∼


0
i
(D) → M0,ni +ρi (D, βi ) where

ni is the number of legs, ρi is the number of 0-roots plus the number of ∞-roots of
marking type, and βi is the curve class of 
0

i . Hence, we have a map

MG =
∏


0
i ∈S0

M∼

0

i
(D) ×D|E | M•


∞(X, D) →
∏


0
i ∈S0

M0,ni +ρi (D, βi )

×D|E |M•

∞(X, D).

Composing with the boundary map
∏


0
i ∈S0

M0,ni +ρi (D, βi ) ×D|E | M•

∞(X, D) → M0,n+ρ(X, β) ×Xρ Dρ,

we obtain a map

tG : MG → M0,n+ρ(X, β) ×Xρ Dρ.

Following the definition in [FWY20], we need to introduce the relative Gromov–
Witten cycle of the pair (X, D) of topological type 
.

Let t be a formal parameter. Given a 
∞, we define

C
∞(t) = t

t + �
∈ A∗(M•


∞(X, D))[t−1]. (5)

Then we consider 
0
i . Define

c(l) = �l∞ − �l−1∞ σ1 + . . . + (−1)lσl ,

where �∞ is the divisor corresponding to the cotangent line bundle determined by the
relative divisor on the ∞ side. We then define

σk =
∑

{e1,...,ek }⊂HEm,n(
0
i )

k∏

j=1

(de j ψ̄e j − ev∗
e j

D),

where de j is the absolute value of the weight at the root e j .



The Proper Landau–Ginzburg Potential Page 11 of 44 79

For each 
0
i , define

C
0
i
(t) =

∑
l≥0 c(l)tρ∞(i)−1−l

∏

e∈HEn(
0
i )

( t+ev∗
e D

de
− ψ̄e

) ∈ A∗(M∼

0

i
(D))[t, t−1], (6)

where ρ∞(i) is the number of ∞-roots (of both types) associated with 
0
i .

For each G, we write

CG =
⎡

⎢⎣p∗

∞C
∞(t)

∏


0
i ∈S0

p∗

0

i
C
0

i
(t)

⎤

⎥⎦

t0

, (7)

where [·]t0 means taking the constant term, and p
∞ , p
0
i

are projections from
∏


0
i ∈S0

M∼

0

i
(D) × M•


∞(X, D) to the corresponding factors. Recall that

ι : MG →
∏


0
i ∈S0

M∼

0

i
(D) × M•


∞(X, D)

is the closed immersion from diagram (4).

Definition 2.4 [FWY20, Definition 5.3]. The relative Gromov–Witten cycle of the pair
(X, D) of topological type 
 is defined to be

c
(X/D) =
∑

G∈B


1

| Aut(G)| (tG)∗(ι∗CG ∩ [MG]vir) ∈ A∗(M0,n+ρ(X, β) ×Xρ Dρ),

where ι is the vertical arrow in Diagram (4).

Proposition 2.5 (=[FWY20], Proposition 3.4).

c
(X/D) ∈ Ad(M0,n+ρ(X, β) ×Xρ Dρ),

where

d = dimCX − 3 +
∫

β

c1(TX (−logD)) + n + ρ+,

where ρ+ is the number of relative markings with positive contact.

Let

αi ∈ H∗(X), and ai ∈ Z≥0 for i ∈ {1, . . . , n};
ε j ∈ H∗(D), and b j ∈ Z≥0 for j ∈ {1, . . . , ρ}.

We have evaluation maps

evX,i : M0,n+ρ(X, β) ×Xρ Dρ → X, for i ∈ {1, . . . , n};
evD, j : M0,n+ρ(X, β) ×Xρ Dρ → D for j ∈ {1, . . . , ρ}.
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Definition 2.6 [FWY20, Definition 5.7]. The relative Gromov–Witten invariant of topo-
logical type 
 is

〈
n∏

i=1

τai (αi )|
ρ∏

j=1

τb j (ε j )〉(X,D)

 =

∫

c
(X/D)

ρ∏

j=1

ψ̄
b j
D, j ev∗

D, j ε j

n∏

i=1

ψ̄
ai
X,i ev∗

X,i αi ,

where ψ̄D, j , ψ̄X,i are pullback of psi-classes from M0,n+ρ(X, β) to M0,n+ρ(X, β)×Xρ

Dρ corresponding to markings.

Remark 2.7. In [FWY20], relative Gromov–Witten invariants of (X, D) with negative
contact order are also defined as a limit of the corresponding orbifold Gromov–Witten
invariants of the r -th root stack X D,r with large ages

〈
n+ρ∏

i=1

τai (γi )〉(X,D)
0,n+ρ,β := rρ−〈

n+ρ∏

i=1

τai (γi )〉X D,r
0,n+ρ,β,

where r is sufficiently large; ρ− is the number of orbifold markings with large ages
(=relative markings with negative contact orders); γi are cohomology classes of X or
D depending on the markings being interior or orbifold/relative. We refer to [FWY20,
Section 3] for more details.

We recall the topological recursion relation and the WDVV equation which will be
used later in our paper.

Proposition 2.8 [FWY20, Proposition 7.4]. Relative Gromov–Witten theory satisfies the
topological recursion relation:

〈ψ̄a1+1[α1]i1, . . . , ψ̄
an [αn]in 〉(X,D)

0,β,n

=
∑

〈ψ̄a1 [α1]i1 ,
∏

j∈S1

ψ̄a j [α j ]i j , T̃i,k〉(X,D)
0,β1,1+|S1|〈T̃ k

−i , ψ̄
a2 [α2]i2 , ψ̄

a3 [α3]i3 ,

∏

j∈S2

ψ̄a j [α j ]i j 〉(X,D)
0,β2,2+|S2|,

where the sum is over all β1 + β2 = β, all indices i, k of basis, and S1, S2 disjoint sets
with S1 ∪ S2 = {4, . . . , n}.
Proposition 2.9 [FWY20, Proposition 7.5]. Relative Gromov–Witten theory satisfies the
WDVV equation:

∑
〈ψ̄a1[α1]i1 , ψ̄

a2 [α2]i2 ,
∏

j∈S1

ψ̄a j [α j ]i j , T̃i,k〉(X,D)
0,β1,2+|S1|

· 〈T̃ k
−i , ψ̄

a3 [α3]i3 , ψ̄
a4 [α4]i4 ,

∏

j∈S2

ψ̄a j [α j ]i j 〉(X,D)
0,β2,2+|S2|

=
∑

〈ψ̄a1 [α1]i1, ψ̄
a3 [α3]i3 ,

∏

j∈S1

ψ̄a j [α j ]i j , T̃i,k〉(X,D)
0,β1,2+|S1|

· 〈T̃ k
−i , ψ̄

a2 [α2]i2 , ψ̄
a4 [α4]i4 ,

∏

j∈S2

ψ̄a j [α j ]i j 〉(X,D)
0,β2,2+|S2|,

where each sum is over all β1 + β2 = β, all indices i, k of basis, and S1, S2 disjoint sets
with S1 ∪ S2 = {5, . . . , n}.
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2.2. A special case. As explained in [FWY20, Example 5.5], relative Gromov–Witten
invariants with one negative contact order can be written down in a simpler form. In this
case, we only have the graphs G such that {
0

i } consists of only one element (denoted by

0). Denote such a set of graphs byB′


 . The relative Gromov–Witten cycle of topological
type 
 is simply

c
(X/D) =
∑

G∈B′



∏
e∈HEn(
0) de

| Aut(G)| (tG)∗
([MG]vir).

Note that

[MG]vir = 
![M∼

0(D) × M•


∞(X, D)]vir.

Let

αi ∈ H∗(X), and ai ∈ Z≥0 for i ∈ {1, . . . , n};
ε j ∈ H∗(D), and b j ∈ Z≥0 for j ∈ {1, . . . , ρ}.

Without loss of generality, we assume that ε1 is the insertion that corresponds to the
unique negative contact marking. Then the relative invariant with one negative contact
order can be written as

〈
n∏

i=1

τai (αi )|
ρ∏

j=1

τb j (ε j )〉(X,D)



=
∑

G∈B′



∏
e∈E de

| Aut(E)|
∑

〈
∏

j∈Sε,1

τb j (ε j )|
∏

i∈Sα,1

τai (αi )|η, τb1(ε1)〉∼
0

〈η̌,
∏

j∈Sε,2

τb j (ε j )|
∏

i∈Sα,2

τai (αi )〉•,(X,D)

∞ ,

where Aut(E) is the permutation group of the set {d1, . . . , d|E |}; η̌ is defined by taking
the Poincaré dual of the cohomology weights of the cohomology weighted partition η;
the second sum is over all splittings of

{1, . . . , n} = Sα,1 � Sα,2, {2, . . . , ρ} = Sε,1 � Sε,2

and all intermediate cohomology weighted partitions η.
The following comparison theorem between punctured invariants of [ACGS20] and

relative invariants with one negative contact order of [FWY20] for smooth pairs is an
upcoming work of [BNR22b].

Theorem 2.10. Given a smooth projective variety X and a smooth divisor D ⊂ X,
the punctured Gromov–Witten invariants of (X, D) and the relative Gromov–Witten
invariants of (X, D) with one negative contact order coincide.

Remark 2.11. [BNR22b] studies the comparison between punctured invariants of [ACGS20]
and relative invariants with several negative contact orders. For the purpose of this paper,
we only need the case with one negative contact order. In this case, the comparison is
significantly simpler because we have simple graphs as described above and the class
c
(X/D) is trivial. Since the general comparison is obtained in [BNR22b], we do not
attempt to give a proof for this special case.
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Theorem 2.10 is sufficient for us to fit our result into the Gross–Siebert program as
theta functions and structure constants in [GS19,GS22] only involve punctured invariants
with one punctured marking. Note that relative invariants with several negative contact
orders will also appear in this paper. However, the general comparison theorem is not
necessary because we will reduce relevant invariants with several negative contact orders
to invariants without negative contact order.

3. The Proper Landau–Ginzburg Potential from Intrinsic Mirror Symmetry

3.1. The Landau–Ginzburg potential. A tropical view of the Landau–Ginzburg potential
is given in [CPS22] using the toric degeneration approach to mirror symmetry. We
consider the intrinsic mirror symmetry construction instead and focus on the case when
the Landau–Ginzburg potential is proper.

Following intrinsic mirror symmetry [GS19], one considers a maximally unipotent
degeneration g : Y → S of the smooth pair (X, D). The mirror of X \ D is constructed
as the projective spectrum of the degree zero part of the relative quantum cohomology
of (Y, D′), where D′ is certain divisor of Y that includes g−1(0).

Let (B ′,P, ϕ) be the dual intersection complex or the fan picture of the degeneration.
Recall that B ′ is an integral affine manifold with finite polyhedral decomposition P and
a multi-valued strictly convex piecewise linear function ϕ. An asymptotic direction is an
integral tangent vector of a one-dimensional unbounded cell in (B ′,P, ϕ) that points
in the unbounded direction.

Definition 3.1. The dual intersection complex (B ′,P) is asymptotically cylindrical if

• B ′ is non-compact.
• For every polyhedron σ in P , all of the unbounded one-faces of σ are parallel with
respect to the affine structure on σ .

We consider the case when D is smooth. Hence, (B ′,P) is asymptotically cylindrical
and B ′ has one unbounded direction mout. We choose φ such that φ(mout) = 1 on all
unbounded cells.

For the smooth pair (X, D), one can also consider its relative quantum cohomology.
Let Q H0

log(X, D) be the degree zero subalgebra of the relative quantum cohomology
ring QH∗

log(X, D) of a pair (X, D). Let S be the dual intersection complex of D. Let B
be the cone over S and B(Z) be the set of integer points of B. Since D is smooth, B(Z)

is the set of nonnegative integers. The set

{ϑp}, p ∈ B(Z)

of theta functions form a canonical basis of QH0
log(X, D). Moreover, theta functions

satisfy the following multiplication rule

ϑp1 � ϑp2 =
∑

r≥0,β

Nβ
p1,p2,−rϑr . (8)

Recall that the structure constants Nβ
p1,p2,−r are defined as the invariants of (X, D)

with two “inputs” with positive contact orders given by p1, p2 ∈ B(Z), one “output”
with negative contact order given by −r such that r ∈ B(Z), and a point constraint for
the punctured point. Namely,

Nβ
p1,p2,−r = 〈[1]p1 , [1]p2 , [pt]−r 〉(X,D)

0,3,β . (9)
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We learnt about the following intrinsic mirror symmetry construction of the proper
Landau–Ginzburg potential from Mark Gross (see [GS19, Construction 1.19]).

Construction 3.2. We recall the maximally unipotent degeneration g : Y → S and
the pair (Y, D′) from the intrinsic mirror construction of the mirror X∨. Following the
mirror construction of [GS19, Construction 1.19], the degree zero part of the graded
ring of theta functions in Q H 0

log(Y, D′) agrees with Q H0
log(X, D). The base of the

Landau–Ginzburg mirror of (X, D) is Spec Q H0
log(X, D) = A

1 and the superpotential

is W = ϑ1, the unique primitive theta function of Q H 0
log(X, D).

Under this construction, to compute the proper Landau–Ginzburg potential, we just
need to compute the theta function ϑ1. We would like to compute the structure constants
Nβ

p1,p2,−r and then provide a definition of the theta functions, in terms of two-point
relative invariants of (X, D), which satisfy the multiplication rule (8). The notion of
broken lines will not be mentioned here. Recall that, by Theorem 2.10, the structure
constants considered here are the same as Gross–Sibert’s structure constant for smooth
log Calabi–Yau pairs which are also computed in [Wan22]. Indeed, there is only one type
of broken lines in this case, and the theta functions defined via the logarithmic broken
line types in [GS22] are the same as the theta functions that we consider here.

3.2. Structure constants. We first express the structure constants in terms of two-point
relative invariants.

Proposition 3.3. Let (X, D) be a smooth log Calabi–Yau pair. Without loss of generality,
we assume that p1 ≤ p2. Then the structure constants Nβ

p1,p2,−r can be written as two-
point relative invariants (without negative contact):

Nβ
p1,p2,−r

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(p1 − r)〈[pt]p1−r , [1]p2 〉(X,D)
0,2,β + (p2 − r)〈[pt]p2−r , [1]p1 〉(X,D)

0,2,β if 0 ≤ r < p1;
(p2 − r)〈[pt]p2−r , [1]p1 〉(X,D)

0,2,β if p1 ≤ r < p2;
0 if r ≥ p2, r 	= p1 + p2;
1 if r = p1 + p2.

(10)

Proof. We divide the proof into different cases.

(1) 0 < r < p1 :
We use the definition of relative Gromov–Witten invariants with negative contact
orders in [FWY20]. Recall that Nβ

p1,p2,−r (9) is a relative invariant with one negative
contact order. It can be written as

∑

G∈B


∏
e∈E de

| Aut(E)|
∑

〈
∏

j∈S1

ε j , | |[pt]r , η〉∼

0〈η̌,

∏

j∈S2

ε j 〉•,(X,D)

∞ , (11)

where S1 � S2 = {1, 2}, {ε j } j=1,2 = {[1]p1, [1]p2}; the sum is over the cohomology
weighted partition η and the splitting S1 � S2 = {1, 2}.

[(I) |S1| = ∅:]
Then by the virtual dimension constraint on 〈 | |[pt]r , η〉∼


0 , the insertions in η

must contain at least one element with insertion [1]k , for some integer k > 0.
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Let π : P := PD(OD ⊕ ND) → D be the projection map and D0 and D∞ be the
zero and infinity divisors of P . Let

p : M∼

0(P, D0 ∪ D∞) → M0,m(D, π∗(β1))

be the natural projection of the rubber map to X and contracting the resulting
unstable components. By [JPPZ20, Theorem 2], we have

p∗[M∼

0(P, D0 ∪ D∞)]vir = [M0,m(D, π∗(β1))]vir.

The marking [1]k becomes the identity class 1 ∈ H∗(D). Applying the string
equation implies that the rubber invariant 〈 | |[pt]r , η〉∼


0 vanishes unless π∗(β1) =
0 and m = 3. However, π∗(β1) = 0 implies that D0 · β1 = D∞ · β1. On the other
hand, there is no relative marking at D0. Therefore D0 · β1 = 0. We also know
that D∞ · β1 > 0 because η is not empty. This is a contradiction. Therefore, we
can not have |S1| = ∅.
[(II) |S1| 	= ∅:]
In this case, for 〈∏ j∈S1

ε j , | |[pt]r , η〉∼

0 , the relative insertion

∏
j∈S1

ε j at D0 is
not empty. That is, it must contain at least one of [1]p1, [1]p2 .
Again, we consider the natural projection

p : M∼

0(P, D0 ∪ D∞) → M0,m(D, π∗(β1)).

Since
∏

j∈S1
ε j must contain at least one of [1]p1 , [1]p2 , by the projection formula

and the string equation,

〈
∏

j∈S1

ε j , | |[pt]r , η〉∼

0

vanishes unless π∗(β1) = 0 and m = 3. Note that π∗(β1) = 0 implies D0 · β =
D∞ · β, for any effective curve class β of P . We recall that we assume that
r < p1 ≤ p2, therefore η must contain at least one markings with positive contact
order. Then

∏
j∈S1

ε j must contain exactly one of [1]p1, [1]p2 when r < p1.
Therefore, η contains exactly one element [1]p1−r or [1]p2−r respectively. Hence,
(11) is the sum of the following two invariants

(p1 − r)〈[pt]p1−r , [1]p2〉(X,D)
0,2,β , and (p2 − r)〈[pt]p2−r , [1]p1〉(X,D)

0,2,β ,

which are exactly the invariants that appear on the RHS of (10) when r < p1.
(2) r = 0:

In this case, there are no negative contacts. We can require the marking with the
point insertion [pt]0 maps to D. Consider the degeneration to the normal cone of D
and apply the degeneration formula. After applying the rigidification lemma [MP06,
Lemma 2], we also obtain the formula (11) with r = 0. Then the rest of the proof is
the same as the case when 0 < r < p1.

(3) p1 ≤ r < p2:
We again have the formula (11) as in the first case. The difference is that we can
not have

∏
j∈S1

ε j = [1]p1 because this will imply that η contains the non-positive
contact order element [1]p1−r . Therefore, we have

(p2 − r)〈[pt]p2−r , [1]p1〉(X,D)
0,2,β .
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(4) r ≥ p2 and r 	= p1 + p2:
Similar to the previous case, we can not have

∏
j∈S1

ε j = [1]p1 or
∏

j∈S1
ε j = [1]p2 .

The invariant is 0.
05 p1 + p2 = r :

In this case, we can have η to be empty. Then there is no 
∞ and the curves entirely
lie in D. Therefore, there is only one rubber integral. The invariant is just 1. ��

Remark 3.4. A special case of Proposition 3.3 also appears in [Gra22, Theorem 2] for
del Pezzo surfaces via tropical correspondence. Our result here uses the definition of
[FWY20] for punctured invariants and it works for all dimensions and X is not necessarily
Fano.

Later, we will also need to consider invariants of the following form:

〈[1]p1 , [pt]p2 , [1]−r 〉(X,D)
0,3,β .

The proof of the following identity is similar to the proof of Proposition 3.3.

Proposition 3.5. Let (X, D) be a smooth log Calabi–Yau pair. If p1 ≤ p2, then

〈[1]p1 , [pt]p2 , [1]−r 〉(X,D)
0,3,β

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(p1 − r)〈[pt]p2 , [1]p1−r 〉(X,D)
0,2,β + (p2 − r)〈[pt]p2−r , [1]p1 〉(X,D)

0,2,β if 0 ≤ r < p1;
(p2 − r)〈[pt]p2−r , [1]p1 〉(X,D)

0,2,β if p1 ≤ r < p2;
0 if r ≥ p2, r 	= p1 + p2;
1 if r = p1 + p2.

If p2 ≤ p1, then

〈[1]p1 , [pt]p2 , [1]−r 〉(X,D)
0,3,β

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(p1 − r)〈[pt]p2 , [1]p1−r 〉(X,D)
0,2,β + (p2 − r)〈[pt]p2−r , [1]p1 〉(X,D)

0,2,β if 0 ≤ r < p2;
(p1 − r)〈[pt]p2 , [1]p1−r 〉(X,D)

0,2,β if p2 ≤ r < p1;
0 if r ≥ p1, r 	= p1 + p2;
1 if r = p1 + p2.

3.3. Theta functions. Now we define the theta functions in terms of two-point relative
Gromov–Witten invariants of (X, D).

Definition 3.6. Write x = z(−mout,−1) and t = z(0,1). For p ≥ 1, the theta function is

ϑp := x−p +
∞∑

n=1

nNn,ptn+pxn, (12)

where

Nn,p =
∑

β

〈[pt]n, [1]p〉(X,D)
0,2,β .
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We also write

Np1,p2,−r :=
∑

β

Nβ
p1,p2,−r .

To justify the definition of the theta functions, we need to show that this definition
satisfies the multiplication rule (8). Plug-in (12) to ϑp1 � ϑp2 , we have

ϑp1 � ϑp2 = (x−p1 +
∞∑

m=1

m Nm,p1 tm+p1 xm)(x−p2 +
∞∑

n=1

nNn,p2 tn+p2 xn)

= x−(p1+p2) +
∞∑

n=1

nNn,p2 tn+p2 xn−p1 +
∞∑

m=1

m Nm,p1 tm+p1 xm−p2

+
∞∑

m=1

∞∑

n=1

mnNm,p1 Nn,p2 tm+p1+n+p2 xm+n . (13)

On the other hand, we have
∑

r≥0,β

Nβ
p1,p2,−r tβϑr =

∑

r≥0

Np1,p2,−r t p1+p2−rϑr

=
∑

r≥0

Np1,p2,−r t p1+p2−r (x−r +
∞∑

k=1

k Nk,r tk+r xk), (14)

where the second line follows from (12). Note that Nk,r = 0 when r = 0 by the string
equation.

By Proposition 3.3, it is straightforward that the coefficients of xk , for k ≤ 0, of (13)
and (14) are the same: without loss of generality, we assume that p1 ≤ p2. Then, we
have the following cases.

• k ≤ −p2, and k 	= −p1 − p2: we see that the coefficient of ϑp1 �ϑp2 in (13) is zero.
The corresponding coefficient Np1,p2,k in (14) is also zero because of Proposition 3.3.

• k = −p1− p2: we see that the coefficient of ϑp1 �ϑp2 in (13) is 1. The corresponding
coefficient Np1,p2,k in (14) is also 1 because of Proposition 3.3.

• −p2 < k ≤ −p1: the coefficient of ϑp1 � ϑp2 in (13) is (p2 + k)Np2+k,p1 . By
Proposition 3.3, the corresponding coefficient Np1,p2,k in (14) is:

Np1,p2,k = (p2 + k)Np2+k,p1 .

• −p1 < k ≤ 0: the coefficient of ϑp1 � ϑp2 in (13) is

(p1 + k)Np1+k,p2 + (p2 + k)Np2+k,p1 .

This coincides with the corresponding coefficient Np1,p2,k by Proposition 3.3.

For the coefficients of xk , for k > 0, the coefficients also match because of the
following result.

Proposition 3.7. Let (X, D) be a smooth log Calabi–Yau pair. We have

(k+ p1)Nk+p1,p2 + (k + p2)Nk+p2,p1 +
∑

m,n>0,m+n=k

mnNm,p1 Nn,p2 =
∑

r>0

Np1,p2,−r k Nk,r .

(15)
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Proof. It can be proved using the WDVV equation of relative Gromov–Witten theory
in [FWY20, Proposition 7.5]. Set

[α1]i1 = [1]p1 , [α2]i2 = [1]p2 , [α3]i3 = [pt]k+p1+p2 , [α4]i4 = [1]−p1−p2 .

Then the WDVV equation states that
∑

〈[1]p2 , [pt]k+p1+p2 , [γ ]−i 〉(X,D)
0,β1,3

〈[γ ∨]i , [1]p1 , [1]−p1−p2〉(X,D)
0,β2,3

=
∑

〈[1]p1 , [1]p2 , [γ ]−i 〉(X,D)
0,β1,3

〈[γ ∨]i , [pt]k+p1+p2 , [1]−p1−p2〉(X,D)
0,β2,3, (16)

where each sum is over the curve class β such that D · β = p1 + p2 + k, all splittings of
β1 + β2 = β and the dual bases {[γ ]−i } and {[γ ∨]i } of H.

(I) We first consider the LHS of the WDVV equation (16):
∑

〈[1]p2 , [pt]k+p1+p2 , [γ ]−i 〉(X,D)
0,β1,3

〈[γ ∨]i , [1]p1 , [1]−p1−p2〉(X,D)
0,β2,3

. (17)

We analyze the invariant

〈[γ ∨]i , [1]p1 , [1]−p1−p2〉(X,D)
0,β2,3

in (17).
(i) i < 0: we claim that the invariant vanishes. By the virtual dimension constraint,

deg(γ ∨) = dimC X − 2.

We apply the definition of relative Gromov—Witten invariants with negative contact
orders in Sect. 2.1. The marking with negative contact order [1]−p1−p2 is distributed to
a rubber space. The marking becomes a relative marking at D∞ with insertion [1]p1+p2 .

We further divide it into two cases.

(Case 1): the first marking and the third marking are distributed to different rubber
spaces. Then the class c
 is trivial. We consider the rubber moduli space
M∼


0
v
(P, D0 ∪ D∞) where the third marking is distributed to and pushforward

this rubber moduli space to the moduli space M0,m(D, π∗βv) of stable maps
to D. The marking with [1]p1+p2 becomes the identity class 1 ∈ H∗(D).
Apply the string equation, we see that the rubber invariant vanishes unless
π∗(βv) = 0 and m = 3. However π∗(βv) = 0 implies that D0 ·βv = D∞ ·βv .
This is not possible because, based on the insertions of the markings, we must
have D∞ · βv ≥ p1 + p2 > D0 · βv .

(Case 2): the first marking and the third marking are distributed to the same rubber
space. The class c
 is a sum of descendant classes of degree one. By the virtual
dimension constraint, η must contain at least one element with insertion [1]k
for some positive integer k. Pushing forward to the moduli space of stable
maps to D and applying the string equation twice, we again conclude that the
invariant vanishes as in (Case 1).

(ii) i ≥ 0: The invariants in (17) are genus zero 3-point relative invariants of (X, D) with
one negative contact order. Therefore, the virtual dimensions of the moduli
spaces are (dimC X − 1). By the virtual dimension constraint, we must have

[γ ]−i = [1]−i , [γ ∨]i = [pt]i .

By Proposition 3.5, 〈[pt]i , [1]p1 , [1]−p1−p2〉(X,D)
0,β2,3 vanishes unless i > p1 + p2

or i = p2.



79 Page 20 of 44 F. You

– When i = p2, we have the term

〈[1]p2 , [pt]k+p1+p2 , [1]−i 〉(X,D)
0,β1,3

〈[pt]i , [1]p1 , [1]−p1−p2〉(X,D)
0,β2,3

= (k + p1)〈[pt]k+p1 , [1]p2〉(X,D)
0,β,2

in (17), by Proposition 3.5.
– When i > p1 + p2, we have

〈[pt]i , [1]p1 , [1]−p1−p2〉(X,D)
0,β2,3 = (i − p1 − p2)〈[pt]i−p1−p2 , [1]p1〉(X,D)

0,β2,2
,

by Proposition 3.5.

Similarly, by Proposition 3.5, 〈[1]p2 , [pt]k+p1+p2 , [1]−i 〉(X,D)
0,β1,3

vanishes unless i <

k + p1 + p2 or i = k + p1 + 2p2.

• When i = k + p1 + 2p2 we have the term

〈[1]p2 , [pt]k+p1+p2 , [1]−i 〉(X,D)
0,β1,3

〈[pt]i , [1]p1 , [1]−p1−p2〉(X,D)
0,β2,3

= (k + p2)〈[pt]k+p2 , [1]p1〉(X,D)
0,β,2 ,

in (17), by Proposition 3.5.
• When i < k + p1 + p2, we have

〈[1]p2 , [pt]k+p1+p2 , [1]−i 〉(X,D)
0,β1,3

= (k + p1 + p2 − i)〈[pt]k+p1+p2−i , [1]p2〉(X,D)
0,β2,2

,

by Proposition 3.5.

We summarize the above analysis of (17) in terms of i :

• i < 0, the summand is 0.
• i = p2, the summand is

(k + p1)〈[pt]k+p1 , [1]p2〉(X,D)
0,β,2 .

• i = k + p1 + 2p2, the summand is

(k + p2)〈[pt]k+p2 , [1]p1〉(X,D)
0,β,2 .

• p1 + p2 < i < k + p1 + p2, the summand is

(k + p1 + p2 − i)〈[pt]k+p1+p2−i , [1]p2〉(X,D)
0,β2,2

(i − p1 − p2)〈[pt]i−p1−p2 , [1]p1〉(X,D)
0,β2,2.

Set m := i − p1 − p2 and n := k + p1 + p2 − i . Then (17) becomes

(k + p1)Nk+p1,p2 + (k + p2)Nk+p2,p1 +
∑

m,n>0,m+n=k

mnNm,p1 Nn,p2 .

(II) Now we look at the RHS of the WDVV equation (16):
∑

〈[1]p1 , [1]p2 , [γ ]−i 〉(X,D)
0,β1,3

〈[γ ∨]i , [pt]k+p1+p2 , [1]−p1−p2〉(X,D)
0,β2,3. (18)
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• If i < 0, then the invariant 〈[γ ∨]i , [pt]k+p1+p2 , [1]−p1−p2〉(X,D)
0,β2,3

is a genus zero
three-point relative invariant with two negative contact orders. The virtual dimension
of the moduli space is (n − 2). On the other hand, the second marking has a point
insertion:

deg([pt]k+p1+p2) = n − 1 > n − 2.

It is a contradiction.
• If i = 0, by the virtual dimension constraint, we must have

[γ ∨]i = [1]0.

The string equation implies the invariant is zero.
• If i > 0, we must have

[γ ∨]i = [1]r , and [γ ]−i = [pt]−r for r := i > 0.

We have

〈[1]p1 , [1]p2 , [γ ]−i 〉(X,D)
0,β1,3

= 〈[1]p1 , [1]p2 , [pt]−r 〉(X,D)
0,β1,3

.

By Proposition 3.5,

〈[1]r , [pt]k+p1+p2 , [1]−p1−p2〉(X,D)
0,β2,3 = k〈[1]r , [pt]k〉(X,D)

0,β2,2.

Therefore, (18) becomes
∑

r>0

Np1,p2,−r k Nk,r .

This completes the proof. ��
Remark 3.8. We can consider the special case when p1 = 1, then the LHS of (15) is

(k + 1)Nk+1,p2 + (k + p2)Nk+p2,1 +
∑

m,n>0,m+n=k

mnNm,1 Nn,p2

and the RHS of (15) is
∑

r>0

N1,p2,−r k Nk,r

= k Nk,p2+1 +
p2−1∑

r=1

(p2 − r)Np2−r,1k Nk,r ,

by Proposition 3.3. Identity (15) becomes

(k + 1)Nk+1,p2 + (k + p2)Nk+p2,1 +
∑

m,n>0,m+n=k

mnNm,1 Nn,p2

= k Nk,p2+1 +
p2−1∑

r=1

(p2 − r)Np2−r,1k Nk,r .

If we further specialize to the case of toric del Pezzo surfaces with smooth divisors, we
recover [GRZ22, Lemma 5.3]. Here, we give a direct explanation of Identity (15) in
terms of the WDVV equation of the relative Gromov–Witten theory in [FWY20].
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4. A Mirror Theorem for Smooth Pairs

4.1. Relative mirror theorem. Let X be a smooth projective variety. Let {pi }r
i=1 be an

integral, nef basis of H2(X). For the rest of the paper, we assume that D is nef.
Recall that the J -function for absolute Gromov–Witten theory of X is

JX (τ, z) = z + τ +
∑

(β,l) 	=(0,0),(0,1)
β∈NE(X)

∑

α

qβ

l!
〈

φα

z − ψ
, τ, . . . , τ

〉X

0,1+l,β
φα,

where τ = τ0,2 + τ ′ ∈ H∗(X); τ0,2 = ∑r
i=1 pi log qi ∈ H2(X); τ ′ ∈ H∗(X)\H2(X);

NE(X) is the cone of effective curve classes in X ; {φα} is a basis of H∗(X); {φα} is the
dual basis under the Poincaré pairing. We can decompose the J -function as follows

JX (τ, z) =
∑

β∈NE(X)

JX,β(τ, z)qβ.

The J -function of the smooth pair (X, D) is defined similarly. We first define

H0 := H∗(X) and Hi := H∗(D) if i ∈ Z \ {0}.
The ring of insertions (state space) of relative Gromov–Witten theory is defined as

H :=
⊕

i∈Z
Hi .

Each Hi naturally embeds into H. For an element γ ∈ Hi , we denote its image in H by
[γ ]i . Define a pairing on H by the following.

([γ ]i , [δ] j ) =

⎧
⎪⎨

⎪⎩

0, if i + j 	= 0,∫
X γ ∪ δ, if i = j = 0,∫
D γ ∪ δ, if i + j = 0, i, j 	= 0.

(19)

The pairing on the rest of the classes is generated by linearity.

Definition 4.1. Let X be a smooth projective variety and D be a smooth nef divisor, the
J -function for the pair (X, D) is defined as

J(X,D)(τ, z) = z + τ +
∑

(β,l) 	=(0,0),(0,1)
β∈NE(X)

∑

α

qβ

l!
〈

φα

z − ψ̄
, τ, . . . , τ

〉(X,D)

0,1+l,β
φα,

where τ = τ0,2 + τ ′ ∈ H∗(X); τ0,2 = ∑r
i=1 pi log qi ∈ H2(X); τ ′ ∈ H\H2(X); {φα}

is a basis of the ambient part of H; {φα} is the dual basis under the Poincaré pairing.

Definition 4.2. The (non-extended) I -function of the smooth pair (X, D) is

I(X,D)(y, z) =
∑

β∈NE(X)

JX,β(τ0,2, z)yβ

⎛

⎝
∏

0<a≤D·β−1

(D + az)

⎞

⎠ [1]−D·β,

where τ0,2 ∈ H2(X).
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Theorem 4.3. [FTY19, Theorem 1.4]. Let X be a smooth projective variety and D be
a smooth nef divisor such that −K X − D is nef. Then the I -function I(X,D)(y, τ, z)
coincides with the J -function J(X,D)(q, z) via change of variables, called the relative
mirror map.

The relative mirror theorem also holds for the extended I -function of the smooth pair
(X, D). For the purpose of this paper, we only write down the simplest case when the
extended data S is the following:

S := {1}.
Definition 4.4. The S-extended I -function of (X, D) is defined as follows.

I S
(X,D)(y, x1, z) = I+ + I−,

where

I+ :=
∑

β∈NE(X),k∈Z≥0
k<D·β

JX,β(τ0,2, z)yβ xk
1

zkk!
∏

0<a≤D·β(D + az)

D + (D · β − k)z
[1]−D·β+k,

and

I− :=
∑

β∈NE(X),k∈Z≥0
k≥D·β

JX,β(τ0,2, z)yβ xk
1

zkk!

⎛

⎝
∏

0<a≤D·β
(D + az)

⎞

⎠ [1]−D·β+k .

Theorem 4.5. [FTY19, Theorem 1.5]. Let X be a smooth projective variety and D
be a smooth nef divisor such that −K X − D is nef. Then the S-extended I -function
I S
(X,D)(y, x1, z) coincides with the J -function J(X,D)(q, z) via change of variables,

called the relative mirror map.

Although the relative mirror theorem of [FTY19] has been used in the literature
several times, the relative mirror map has never been studied in detail. We would like to
provide a detailed description of the relative mirror map here.

We consider the extended I -function in Definition 4.4 under the assumption that D
is nef and −K X − D is nef. The extended I -function can be expanded as follows

I S
(X,D)(y, x1, z)

= z +
r∑

i=1

pi log yi + x1[1]1

+
∑

β∈NE(X)
D·β≥2

〈[pt]ψ D·β−2〉X
0,1,β yβ(D · β − 1)![1]−D·β +

∞∑

k=1

I−k z−k,

where the coefficient of z0, denoted by τ(y, x1), is the relative mirror map:

τ(y, x1) =
r∑

i=1

pi log yi + x1[1]1 +
∑

β∈NE(X)
D·β≥2

〈[pt]ψ D·β−2〉X
0,1,β yβ(D · β − 1)![1]−D·β.

(20)
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The relative mirror theorem of [FTY19] states that

J (τ (y, x1), z) = I (y, x1, z).

The function τ(y, x1) is the mirror map computed from the extended I -function. We
will refer to τ(y, x1) as the extended relative mirror map. The relative mirror map for
the non-extended I -function is τ(y, 0). We will refer to it as the relative mirror map and
denote it by τ(y).

To be able to compute invariants from the relative mirror theorem, we need to under-
stand the invariants that appear in J (τ (y, x1), z). In particular, we need to understand
the following invariants in order to compute the theta function ϑ1.

• Relative invariants with one positive contact order and several negative contact
orders:

〈[1]−k1 , · · · , [1]−kl , [γ ]kl+1ψ̄
a〉(X,D)

0,l+1,β ,

where

D · β = kl+1 −
l∑

i=1

ki ≥ 0, and ki > 0.

This is needed to understand the relative mirror map.
• Relative invariants with two positive contact orders and several negative contact

orders of the following form:

〈[1]1, [1]−k1 , · · · , [1]−kl , [γ ]kl+1〉(X,D)
0,l+2,β ,

D · β − 1 = kl+1 −
l∑

i=1

ki ≥ 0, and ki > 0.

• Degree zero relative invariants with two positive contact orders and several negative
contact orders of the following form:

〈[1]1, [1]−k1 , · · · , [1]−kl , [pt]kl+1〉(X,D)
0,l+2,0.

We will compute these invariants in the following sections.

4.2. Relative invariants with several negative contact orders. Based on the expression
of relative mirror map in (20), to be able to compute relative invariants from the relative
mirror theorem, we first need to study relative invariants with several insertions of [1]−i
for i ∈ Z>0. We start with the case when x = 0. That is, there is only one marking with
positive contact order and no marking with insertion [1]1. We would like to claim that
the insertion [1]−i behaves like the divisor class D in the sense that there is an analogous
of the divisor equation as follows.

Proposition 4.6. Given a curve class β, Let ki ∈ Z>0 for i ∈ {1, . . . , l + 1} such that

D · β = kl+1 −
l∑

i=1

ki ≥ 0.
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Then we have the following relation.

〈[1]−k1 , · · · , [1]−kl , [γ ]kl+1ψ̄
a〉(X,D)

0,l+1,β = 〈[D]0, · · · , [D]0, [γ ]D·βψ̄a〉(X,D)
0,l+1,β , (21)

where γ ∈ H∗(D).

Proof. The base case I: a = 0.
In this case, there are no descendant classes. Then the identity becomes

〈[1]−k1 , · · · , [1]−kl , [γ ]kl+1〉(X,D)
0,l+1,β = 〈[D]0, · · · , [D]0, [γ ]D·β〉(X,D)

0,l+1,β . (22)

By Sect. 2.1, relative Gromov–Witten theory is defined as graph sums by gluing moduli
spaces of relative stable maps with moduli space of rubber maps using fiber products.
When there are more than one negative contact orders, the invariants are usually com-
plicated and involve summation over different graphs as described in Sect. 2.1. But for
invariants on the LHS of (22), the situation is significantly simplified.

Every negative contact marking must be distributed to a rubber moduli M∼

0

i
(D)

labelled by 
0
i . Since D is a nef divisor in X , we have

∫

βD

c1(ND/X ) ≥ 0,

for every effective curve class βD in D. Let βv be a curve class associated to a vertex v

in 
0, we must have

D0 · βv − D∞ · βv =
∫

π∗(βv)

c1(ND/X ) ≥ 0,

where π : P → D is the projection map. Therefore, the nefness of D implies that, for
each M∼


0
i
(D), the relative insertion at D0 can not be empty. Hence, at least one of the

positive contact markings on the LHS of (22) must be distributed to M∼

0

i
(D). Since

there is only one positive contact marking, there can only be one rubber moduli, denoted
by M∼


0(D). Therefore, all the negative contact markings, as well as the positive contact
marking, are distributed to M∼


0(D). The invariant can be written as

∑

G∈B


∏
e∈E de

| Aut(E)|
∑

η

〈η̌〉•,c
,(X,D)

∞ 〈η, [1]k1 , · · · , [1]kl , | |[γ ]kl+1〉∼,c



0 ,

where the superscript c
 means capping with the class c
(X/D) in Definition 2.4.
Let

p : M∼

0(P, D0 ∪ D∞) → M0,m(D, π∗(β1))

be the natural projection of the rubber map to X and contracting the resulting unstable
components. By [JPPZ20, Theorem 2], we have

p∗[M∼

0(P, D0 ∪ D∞)]vir = [M0,m(D, π∗(β1))]vir,

where π : P → D is the projection map.
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Note that there are l identity classes [1] and the degree of the class c
(X/D) is less
or equal to l − 1. We can apply the string equation l-times. Then the invariant

〈η, [1]k1 , · · · , [1]kl , | |[γ ]kl+1〉∼,c



0

vanishes unless π∗(β) = 0 and η contains exactly one element. Moreover, η needs to be
[γ̌ ]D·β and η̌ needs to be [γ ]D·β . Therefore,

〈η̌〉•,c
,(X,D)

∞ = 〈[γ ]D·β〉(X,D)

0,1,β .

There is only one edge, hence
∏

e∈E de

| Aut(E)| = D · β.

It remains to compute

〈[γ̌ ]D·β, [1]k1 , · · · , [1]kl , | |[γ ]kl+1〉∼,c



0

with π∗(β) = 0. This is the same as the rubber invariant with the base being a point.
Set d = D · β. We claim that it coincides with the following relative Gromov–Witten
invariants of (P1, 0 ∪ ∞) with negative contact orders

〈[1]d , [1]−k1 , · · · , [1]−kl , | |[1]kl+1〉(P
1,0∪∞)

0,l+2,d . (23)

This is because one can run the above computation of the LHS of (22) to the invariant
(23), we see that (23) equals to

d〈[1]d | |[1]d〉(P1,0∪∞)
0,l+2,d 〈[γ̌ ]D·β, [1]k1 , · · · , [1]kl , | |[γ ]kl+1〉∼,c



0 .

It is straightforward to compute that

〈[1]d | |[1]d〉(P1,0∪∞)
0,l+2,d = 1

d
.

This proves the claim that

〈[γ̌ ]D·β, [1]k1 , · · · , [1]kl , | |[γ ]kl+1〉∼,c



0

withπ∗(β) = 0 equals to (23). The invariant (23) has already been computed in [UKW23,
Proposition B.2]:

〈[1]d , [1]−k1 , · · · , [1]−kl , | |[1]kl+1〉(P
1,0∪∞)

0,l+2,d = dl−1.

Therefore the LHS of (22) is

(D · β)l〈[γ ]D·β〉(X,D)
0,1,β = 〈[D]0, · · · , [D]0, [γ ]D·β〉(X,D)

0,l+1,β

by the divisor equation.
The base case II: l = 1.
Then the LHS of (22) is a relative invariant with one negative contact order. Similar

to the proof of Proposition 3.3, the invariant is of the form,

∑

G∈B


∏
e∈E de

| Aut(E)|
∑

〈[γ ]k2ψ
a | |[1]k1, η〉∼


0〈η̌〉•,(X,D)

∞ .
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For the RHS of (22), we consider the degeneration to the normal cone of D and apply
the degeneration formula. After applying the rigidification lemma [MP06, Lemma 2],
the invariant is of the form

∑

G∈B


∏
e∈E de

| Aut(E)|
∑

〈[γ ]k2−k1ψ
a | |[1]0, η〉∼


0〈η̌〉•,(X,D)

∞ .

The only difference between the LHS of (22) and the RHS of (22) is the contact orders
of two markings (contact orders k2 and k1 for the LHS and contact orders k2 − k1 and
0 for the RHS) for the rubber invariants. We pushforward the rubber moduli spaces to
the moduli space M(D) of stable maps to D. Since the genus zero double ramification
cycle is trivial, it does not depend on the contact orders. Therefore, the LHS of (22) and
the RHS of (22) are the same.

Induction:
Now we use the induction to prove the case when a > 0 and l > 1. Suppose Identity

(21) is true when a = N ≥ 0. When a = N + 1, we apply the topological recursion
relation

〈[1]−k1 , · · · , [1]−kl , [γ ]kl+1 ψ̄
N+1〉(X,D)

0,l+1,β

=
∑

〈[γ ]kl+1 ψ̄
N ,
∏

j∈S1

[1]−k j , T̃i,k〉(X,D)
0,β1,2+|S1|〈T̃ k−i ,

∏

j∈S2

[1]−k j , [1]−k1 , [1]−k2 〉(X,D)
0,β2,3+|S2|,

where the sum is over all β1 + β2 = β, all indices i, k of basis and S1, S2 disjoint sets
with S1 ∪ S2 = {3, . . . , l}. The nefness of the divisor D implies that

T̃ k
−i = [α]b and T̃i,k = [α̌]−b,

for some positive integer b ≥ k1.
Note that

〈[α]b,
∏

j∈S2

[1]−k j , [1]−k1 , [1]−k2 〉(X,D)
0,β2,3+|S2| = 〈[α]b−k1−k2 ,

∏

j∈S2

[1]−k j , [D]0, [D]0〉(X,D)
0,β2,3+|S2|

follows from the base case.
On the other hand, we have

〈[γ ]kl+1 ψ̄
N ,
∏

j∈S1

[1]−k j , [α̌]−b〉(X,D)
0,β1,2+|S1| = 〈[γ ]kl+1−k1 ψ̄

N ,
∏

j∈S1

[1]−k j , [α̌]−b+k1〉(X,D)
0,β1,2+|S1|.

This is because, for these invariants, the graph sum in the definition of the relative
invariants only has one rubber space and all the markings are in the rubber space.
Moreover, the class c
 does not depend on the value of kl+1 and b. Therefore, we have
the identity.
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Therefore, we have
∑

〈[γ ]kl+1ψ̄
N ,
∏

j∈S1

[1]−k j , T̃i,k〉(X,D)
0,β1,2+|S1|〈T̃ k

−i ,
∏

j∈S2

[1]−k j , [1]−k1 , [1]−k2〉(X,D)
0,β2,3+|S2|

=
∑

〈[γ ]kl+1−k1ψ̄
N ,
∏

j∈S1

[1]−k j , [α̌]−b+k1〉(X,D)
0,β1,2+|S1|〈[α]b−k1 ,

∏

j∈S2

[1]−k j , [D]0, [D]0〉(X,D)
0,β2,3+|S2|

= 〈[D]0, [D]0,
∏

j∈{3,...,l}
[1]−k j , [γ ]kl+1−k1ψ̄

N+1〉(X,D)
0,3,β ,

where the third line is the topological recursion relation. We have the identity

〈[1]−k1 , · · · , [1]−kl , [γ ]kl+1ψ̄
N+1〉(X,D)

0,l+1,β

= 〈[D]0, [D]0,
∏

j∈{3,...,l}
[1]−k j , [γ ]D·β−k1ψ̄

N+1〉(X,D)
0,l+1,β .

Run the above argument multiple times to trade markings with negative contact orders
with markings with insertion [D]0. We end up with either one negative contact order or
no negative contact order. The former case is the base case II: l = 1, the latter case is
just Identity (21). ��

The identity will be slightly different if we add an insertion of [1]1. For the purpose
of this paper, we only consider the case when there are no descendant classes. There
is also a (more complicated) identity for descendant invariants, but we do not plan to
discuss it here.

Proposition 4.7. Given a curve class β, let ki ∈ Z>0 for i ∈ {1, . . . , l + 1} such that

D · β − 1 = kl+1 −
l∑

i=1

ki ≥ 0.

Then we have the following relation.

〈[1]1, [1]−k1 , · · · , [1]−kl , [γ ]kl+1〉(X,D)
0,l+2,β = (D · β − 1)l〈[1]1, [γ ]D·β−1〉(X,D)

0,2,β , (24)

where γ ∈ H∗(D).

Proof. The proof is similar to the proof of Proposition 4.6. We first consider the LHS of
(24). By definition, every negative contact marking must be in a rubber moduli M∼


0
i
(D)

labelled by 
0
i and each rubber moduliM∼


0
i
(D) has at least one negative contact marking

distributed to it. Similar to the proof of Proposition 4.6, the nefness of D implies that
the last marking (with insertion [γ ]kl+1 ) has to be distributed to the rubber space.

Now we examine the first marking. Since the contact order of the first marking is
1, the nefness of D implies that the first marking and the last marking can not be in
different rubber space. On the other hand, if the first marking and the last marking
(both with positive contact orders) are in the same rubber space, then we claim the
invariant vanishes. This is because, after pushing forward to Mg,n(D, π∗(β)), there are
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(l +1)-identity class 1 and the degree of the class c
 is l −1. Applying the string equation
(l +1)-times implies that the invariant is zero. Therefore, there is only one rubber moduli,
labelled by 
0, and the first marking can not be distributed to the rubber moduli. The
LHS of (24) is of the following form

∑

G∈B


∏
e∈E de

| Aut(E)|
∑

η

〈[1]1, η̌〉•,c
,(X,D)

∞ 〈η, [1]k1 , · · · , [1]kl , | |[γ ]kl+1〉∼,c



0 .

Then the rest of the proof follows from the proof of Proposition 4.6 that the Equation
(24) holds. Note that the contact order of the unique marking in η is D · β − 1 instead
of D · β. Therefore, we have the factor (D · β − 1)l instead of (D · β)l . ��

One can add more insertions of [1]1, then we have a similar identity as follows.

Proposition 4.8. Given a curve class β, Let ki ∈ Z>0 for i ∈ {1, . . . , l + 1} such that

D · β − a = kl+1 −
l∑

i=1

ki ≥ 0.

Then we have the following relation.

〈[1]1, . . . , [1]1, [1]−k1 , · · · , [1]−kl , [γ ]kl+1〉(X,D)
0,a+l+1,β

= (D · β − a)l〈[1]1, . . . , [1]1, [γ ]D·β−a〉(X,D)
0,a+1,β , (25)

where γ ∈ H∗(D).

Proof. The proof is similar to the proof of Proposition 4.6 and Proposition 4.7. We do
not repeat the details. ��

4.3. Degree zero relative invariants. The following invariants will also appear in the
J -function when plugging in the mirror map:

〈[1]1, [1]−k1 , · · · , [1]−kl , [γ ]kl+1〉(X,D)
0,l+2,β , with D · β = 0.

We again apply the definition of relative Gromov–Witten invariants with negative contact
orders in Sect. 2.1 and then pushforward the rubber moduli to M0,l+2(D, π∗(β)). Then
applying the string equation (l + 1)-times, then the invariants vanish unless β = 0.

When l = 1, the invariants have two markings with positive contact orders and one
marking with negative contact order. By direct computation, we have

〈[1]1, [1]−k1 , [pt]k2〉(X,D)
0,3,0 = 1.

Therefore, We still need to compute degree zero, genus zero relative invariants with
two positive contacts and several negative contacts. By the definition of relative invariants
with negative contact orders in Sect. 2.1, the bipartite graphs simplifies to a single vertex
of type 0 and the moduli space is simply the product M0,n × D.

We will have the following result.
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Proposition 4.9.

〈[1]1, [1]−k1 , · · · , [1]−kl , [pt]kl+1〉(X,D)
0,l+2,0 = (−1)l−1, (26)

where k1, . . . , kl are positive integers and

1 + kl+1 = k1 + · · · + kl .

These invariants can be computed from the I -function. The I -function is a limit of
the I -function for the twisted invariants of BZr . The I -function is also the restriction of
the I -function for (X, D) to the degree zero case.

Before computing the corresponding orbifold invariants, we briefly recall the relative-
orbifold correspondence of [FWY20]:

rm−〈
m∏

i=1

τai (γi )〉X D,r
0,m,β = 〈

m∏

i=1

τai (γi )〉(X,D)
0,m,β ,

where there are m markings in total and m− of them are markings with negative contact
orders; ai ∈ Z≥0; γi are cohomology classes of X (or D) when the marking is interior
(or relative/orbifold, respectively). We would like to point out that it is important to keep
in mind the factor rm− .

We need to consider the S-extended I -function for the twisted Gromov–Witten in-
variants of BZr for sufficiently large r , with extended data

S = {1,−k1, . . . ,−kl}.

The I -function is

z
∑ xa

1

∏l
i=1 xai−ki

za+
∑l

i=1 ai a!∏l
i=1 ai !

∏
b≤0,〈b〉=〈− a

r −∑l
i=1(ai (1− ki

r ))〉(bz)
∏

b≤− a
r −∑l

i=1(ai (1− ki
r )),〈b〉=〈− a

r −∑l
i=1(ai (1− ki

r ))〉(bz)
[1]〈 a

r −∑l
i=1

ai ki
r 〉,

(27)

where 〈b〉 is the fractional part of the rational number b.
The orbifold mirror map, the z0-coefficient of the I -function, is

x1[1] 1
r

+
∑

{i1,...,i j }⊂{1,...,l}
x−ki1

· · · x−ki j

j−1∏

b=0

(
ki1 + · · · + ki j

r
− b

)
[1]

1−
ki1

+···+ki j
r

.

Since the expression of the I -function and the mirror map looks quite complicated
for general l. We would like to first start with the computation for the case when l = 2
for a better explanation of the idea.
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4.3.1. Computation for l = 2 When l = 2, the I -function becomes

z
∑ xa

1 xa1−k1
xa2−k2

za+a1+a2 a!a1!a2!

∏
b≤0,〈b〉=〈− a

r −∑2
i=1 ai (1− ki

r ))〉(bz)
∏

b≤− a
r −∑2

i=1(ai (1− ki
r )),〈b〉=〈− a

r −∑2
i=1(ai (1− ki

r ))〉(bz)
[1]〈 a

r −∑l
i=1

ai ki
r 〉.

The orbifold mirror map is

x1[1] 1
r

+ x−k1 [1]
1− k1

r
+ x−k2 [1]

1− k2
r

+ x−k1 x−k2

(
k1 + k2

r
− 1

)
[1]

1− k1+k2
r

.

We would like to take the coefficient of x1x−k1 x−k2 z−1[1]− k1+k2−1
r

of the I -function

and the J -function. The coefficient of the I -function is

k1 + k2 − 1

r
− 1.

By the mirror theorem, this coefficient of the I -function coincides with the coefficient
of the J -function:

〈[1] 1
r
, [1]

1− k1
r
, [1]

1− k2
r
, r [1] k1+k2−1)

r
〉BZr ,tw
0,4

+

(
k1 + k2

r
− 1

)
〈[1] 1

r
, [1]

1− k1+k2
r

, r [1] k1+k2−1
r

〉BZr ,tw
0,3 .

Note that the invariant

〈[1] 1
r
, [1]

1− k1+k2
r

, r [1] k1+k2−1
r

〉BZr ,tw
0,3

coincides with degree zero relative invariant with one negative contact order and the
value of the invariants is 1 by direct computation. Therefore, we have

k1 + k2 − 1

r
− 1 = 〈[1] 1

r
, [1]

1− k1
r
, [1]

1− k2
r
, r [1] k1+k2−1

r
〉BZr ,tw
0,4 +

(
k1 + k2

r
− 1

)
.

Hence, we have

r〈[1] 1
r
, [1]

1− k1
r
, [1]

1− k2
r
, [1] k1+k2−1

r
〉BZr ,tw
0,4 = −1

r
.

We conclude that, the degree zero relative invariant with two negative contact orders is

〈[1]1, [1]−k1 , [1]−k2 , [pt]k1+k2−1〉(X,D)
0,4,0

= r2〈[1] 1
r
, [1]

1− k1
r
, [1]

1− k2
r
, [1] k1+k2−1

r
〉BZr ,tw
0,4

= −1.



79 Page 32 of 44 F. You

4.3.2. Computation for general l

Proof of Proposition 4.9. We proceed with induction on l. Suppose Identity (26) is true
for l = N > 0. For l = N + 1, extracting the coefficient x1

∏N+1
i=1 x−ki z

−1[1]
−1−

∑N+1
i=1 ki

r
of the I -function (27), we have

N∏

b=1

(
−1 +

∑N+1
i=1 ki

r
− b

)
.

The corresponding coefficient of the J -function is

〈[1] 1
r
,

N+1∏

i=1

[1]
1− ki

r
, r [1] −1+

∑N+1
i=1

r

〉BZr ,tw
0,N+3

+
∑

{i1,i2}⊂{1,...,N+1}

(
ki1 + ki2

r
− 1

)
〈[1] 1

r
,

∏

i∈{1,...,N+1}\{i1,i2}
[1]ki , [1]

1− ki1
+ki2
r

, r [1] −1+
∑N+1

i=1 ki
r

〉BZr ,tw
0,N+2

+ · · ·

+
N∏

b=1

(∑N+1
i=1 ki

r
− b

)
〈[1] 1

r
, [1]

1−
∑N+1

i=1 ki
r

, r [1] −1+
∑N+1

i=1 ki
r

〉BZr ,tw
0,3 .

We further multiply both coefficients of the I -function and the J -function by r−N ,
then take the constant coefficient (which is the coefficient of the lowest power of r ). This
coefficient of the I -function is

(
−1 +

N+1∑

i=1

ki

)N

.

Apply the induction on l, the coefficient of the J -function is

r N+1〈[1] 1
r
,

N+1∏

i=1

[1]
1− ki

r
, [1] −1+

∑N+1
i=1

r

〉BZr ,tw
0,N+3

+
∑

{i1,i2}⊂{1,...,N+1}

(
ki1 + ki2

)
(−1)N−1

+
∑

{i1,i2,i3}⊂{1,...,N+1}

(
ki1 + ki2 + ki3

)
(−1)N−2

+ · · ·

+

(
N+1∑

i=1

ki

)N

.
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The coefficient of the J -function can be simplified to

r N+1〈[1] 1
r
,

N+1∏

i=1

[1]
1− ki

r
, [1] −1+

∑N+1
i=1

r

〉BZr ,tw
0,N+3

+ N

(
N∑

i=1

ki

)
(−1)N−1 +

(
N

2

)( N∑

i=1

ki

)
(−1)N−2 + · · · +

(
N+1∑

i=1

ki

)N

.

Therefore, the identity of the (coefficients of the) I -function and the J -function is

(
−1 +

N+1∑

i=1

ki

)N

= r N+1〈[1] 1
r
,

N+1∏

i=1

[1]
1− ki

r
, [1] −1+

∑N+1
i=1 ki
r

〉BZr ,tw
0,N+3

+ N

(
N∑

i=1

ki

)
(−1)N−1 +

(
N

2

)( N∑

i=1

ki

)
(−1)N−2 + · · · +

(
N+1∑

i=1

ki

)N

.

The binomial theorem implies that

(−1)N = r N+1〈[1] 1
r
,

N+1∏

i=1

[1]
1− ki

r
, [1] −1+

∑N+1
i=1

r

〉BZr ,tw
0,N+3

The orbifold definition of the relative Gromov–Witten invariants with negative contact
orders implies Identity (26). ��

4.4. Relative mirror map. We recall that the extended relative mirror map (20) is

τ(y, x1) =
r∑

i=1

pi log yi + x1[1]1 +
∑

β∈NE(X)
D·β≥2

〈[pt]ψ D·β−2〉X
0,1,β yβ(D · β − 1)![1]−D·β.

Let

g(y) =
∑

β∈NE(X)
D·β≥2

〈[pt]ψ D·β−2〉X
0,1,β yβ(D · β − 1)!.

Let ι : D ↪→ X be the inclusion map and ι! : H∗(D) → H∗(X) be the Gysin pushfor-
ward. Recall that

H :=
⊕

i∈Z
Hi ,

where H0 = H∗(X) and Hi = H∗(D) for i 	= 0. We also denote ι! : H → H∗(X)

for the map such that it is the identity map for the identity sector H0 and is the Gysin
pushforward for twisted sectors Hi . We first let x1 = 0, then

ι!J(X,D)(τ (y), z) = e(
∑r

i=1 pi log yi +g(y)D)/z

⎛

⎝z +
∑

β∈NE(X)

∑

α

yβeg(y)(D·β)

〈
φα

z − ψ̄

〉(X,D)

0,1,β

D ∪ φα

⎞

⎠ .
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This has the same effect with the change of variables
r∑

i=1

pi log qi =
r∑

i=1

pi log yi + g(y)D, (28)

or,

qβ = eg(y)D·β yβ.

We will also refer to the change of variables (28) as the relative mirror map. In particular,
relative mirror map coincides with the local mirror map of OX (−D) after a change of
variables y �→ −y.

When x1 	= 0, we will be able to compute invariants with more than one positive
contact order. We will consider it in the following section.

5. Theta Function Computation via Relative Mirror Theorem

Theorem 5.1. Let X be a smooth projective variety with a smooth nef anticanonical
divisor D. Let W := ϑ1 be the mirror proper Landau–Ginzburg potential. Set qβ =
t D·β x D·β . Then

W = x−1 exp (g(y(q))) ,

where

g(y) =
∑

β∈NE(X)
D·β≥2

〈[pt]ψ D·β−2〉X
0,1,β yβ(D · β − 1)!

and y = y(q) is the inverse of the relative mirror map (28).

We will prove Theorem 5.1 in this section through the mirror theorem for the smooth
pair (X, D) proved in [FTY19].

For the purpose of the computation of the theta function:

xϑ1 = 1 +
∞∑

n=1

∑

β:D·β=n+1

n〈[1]1, [pt]n〉(X,D)
0,β,2 qβ,

we will only consider the S-extended I -function with

S = {1}.
Recall that the S-extended I -function of (X, D) is defined as follows:

I S
(X,D)(y, x1, z) = I+ + I−,

where

I+ :=
∑

β∈NE(X),k∈Z≥0
k<D·β

JX,β(τ0,2, z)yβ xk
1

zkk!
∏

0<a≤D·β(D + az)

D + (D · β − k)z
[1]−D·β+k,

and

I− :=
∑

β∈NE(X),k∈Z≥0
k≥D·β

JX,β(τ0,2, z)yβ xk
1

zkk!

⎛

⎝
∏

0<a≤D·β
(D + az)

⎞

⎠ [1]−D·β+k .
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5.1. Extracting the coefficient of the J -function. We consider the J -function

J (τ (y, x1), z),

where

J(X,D)(τ, z) = z + τ +
∑

(β,l) 	=(0,0),(0,1)
β∈NE(X)

∑

α

qβ

l!
〈

φα

z − ψ̄
, τ, . . . , τ

〉(X,D)

0,1+l,β
φα,

and

τ(y, x1) =
r∑

i=1

pi log yi + x1[1]1 +
∑

β∈NE(X)
D·β≥2

〈[pt]ψ D·β−2〉X
0,1,β yβ(D · β − 1)![1]−D·β.

The sum over the coefficient of x1z−1 of J (τ (y, x1), z) that takes value in [1]−n , for
n ≥ 1, is the following

[J (τ (y, x1), z)]x1z−1 =
∑

β:D·β≥1,n≥1

∑

l≥0

〈[1]1, τ (y), · · · , τ (y), [pt]n〉(X,D)
0,β,l+2

qβ

l!

+
∑

β:D·β=0

∑

n≥1,l>0

〈[1]1, τ (y), · · · , τ (y), [pt]n〉(X,D)
0,β,l+2

1

l! . (29)

By Proposition 4.7, we have

∑

β:D·β≥1,n≥1

∑

l≥0

〈[1]1, τ (y), · · · , τ (y), [pt]n〉(X,D)
0,β,l+2

qβ

l!
= exp (−g(y))

∑

β:D·β=n+1,n≥1

〈[1]1, [pt]n〉(X,D)
0,β,2 qβ, (30)

where

g(y) =
∑

β∈NE(X)
D·β≥2

〈[pt]ψ D·β−2〉X
0,1,β yβ(D · β − 1)!

and

qβ = eg(y)D·β yβ.

When D · β = 0, the invariants are studied in Sect. 4.3. As mentioned at the begin-
ning of Sect. 4.3, we need to have β = 0. The degree zero invariants are computed in
Proposition 4.9. Therefore, we have

∑

β:D·β=0

∑

n≥1,l>0

〈[1]1, τ (y), · · · , τ (y), [pt]n〉(X,D)
0,β,l+2

1

l!

= g(y) +
∑

l≥2

1

l!g(y)l(−1)l−1

= − exp (−g(y)) + 1. (31)
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Therefore, (30) and (31) imply that (29) is

[J (τ (y, x1), z)]x1z−1

= exp (−g(y))
∑

β:D·β=n+1,n≥1

〈[1]1, [pt]n〉(X,D)
0,β,2 qβ − exp (−g(y)) + 1. (32)

Note that (32) is not exactly the generating function of relative invariants in the
theta function ϑ1. We want to compute

∑
β:D·β=n+1,n≥1 n〈[1]1, [pt]n〉(X,D)

0,β,2 qβ instead of
∑

β:D·β=n+1,n≥1〈[1]1, [pt]n〉(X,D)
0,β,2 qβ .

Write

D =
r∑

i=1

mi pi

for some mi ∈ Z≥0. In order to computeϑ1, we apply the operator
D = ∑r
i=1 mi yi

∂
∂yi

−
1 to the J -function J (τ (y, x1), z). Then (32) becomes

(
−

r∑

i=1

mi yi
∂(g(y))

∂yi

)
exp (−g(y))

∑

β:D·β=n+1

〈[1]1, [pt]n〉(X,D)
0,β,2 qβ

+ exp (−g(y))

r∑

i=1

mi yi

r∑

j=1

∂q j

∂yi

∂

∂q j

∑

β:D·β=n+1

〈[1]1, [pt]n〉(X,D)
0,β,2 qβ

− exp (−g(y))
∑

β:D·β=n+1

〈[1]1, [pt]n〉(X,D)
0,β,2 qβ

+

(
1 +

r∑

i=1

mi yi
∂(g(−y))

∂yi

)
exp(−g(y)) − 1. (33)

We compute the partial derivatives

∂q j

∂yi
=
{

y j em j g(y)m j
∂g(y)
∂yi

j 	= i;
em j g(y) + y j em j g(y)m j

∂g(y)
∂y j

j = i.

Therefore,

r∑

i=1

mi yi

r∑

j=1

∂q j

∂yi

∂

∂q j

=
r∑

j=1

⎛

⎝m j y j

(
em j g(y) + y j e

m j g(y)m j
∂g(y)

∂y j

)
+ mi yi

∑

j 	=i

y j e
m j g(y)m j

∂g(y)

∂yi

⎞

⎠ ∂

∂q j

=
r∑

j=1

(
1 +

r∑

i=1

mi yi
∂g(y)

∂yi

)
m j q j

∂

∂q j

=
(

1 +
r∑

i=1

mi yi
∂g(y)

∂yi

)
r∑

j=1

m j q j
∂

∂q j
.
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Hence, (33) is
(

−
r∑

i=1

mi yi
∂(g(y))

∂yi

)
exp (−g(y))

∑

β:D·β=n+1

〈[1]1, [pt]n〉(X,D)
0,β,2 qβ

+ exp (−g(y))

(
1 +

r∑

i=1

mi yi
∂g(y)

∂yi

)

r∑

j=1

m j q j
∂

∂q j

∑

β:D·β=n+1

〈[1]1, [pt]n〉(X,D)
0,β,2 qβ

− exp (−g(y))
∑

β:D·β=n+1

〈[1]1, [pt]n〉(X,D)
0,β,2 qβ

+

(
1 +

r∑

i=1

mi yi
∂(g(−y))

∂yi

)
exp(−g(y)) − 1

=
(

−1 −
r∑

i=1

mi yi
∂(g(y))

∂yi

)
exp (−g(y))

⎛

⎝
∑

β:D·β=n+1

〈[1]1, [pt]n〉(X,D)
0,β,2 qβ

⎞

⎠

+ exp (−g(y))

(
1 +

r∑

i=1

mi yi
∂g(y)

∂yi

)

⎛

⎝
r∑

j=1

∑

β:D·β=n+1

(n + 1)〈[1]1, [pt]n〉(X,D)
0,β,2 qβ + 1

⎞

⎠− 1

=
(

1 +
r∑

i=1

mi yi
∂(g(y))

∂yi

)
exp (−g(y))

⎛

⎝
∑

β:D·β=n+1

n〈[1]1, [pt]n〉(X,D)
0,β,2 qβ + 1

⎞

⎠− 1.

5.2. Extracting the coefficient of the I -function. Recall that, when β = 0, we have

JX,0(τ0,2, z) = z.

When β 	= 0, we have

JX,β(τ0,2, z) = eτ0,2/z
∑

α

〈
ψm−2φα

〉X
0,1,β

yβφα

(
1

z

)m−1

and

m = dimC X + D · β − deg(φα) ≥ D · β.

The I -function can be expanded as

I = z + x1[1]1 + τ0,2 +
∑

β∈NE(X)
D·β≥2

〈[pt]ψ D·β−2〉X
0,1,β yβ(D · β − 1)![1]−D·β +

∞∑

k=1

I−k z−k .
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We would like to sum over the coefficient of x1z−1 of the I -function that takes value
in [1]−n for n ≥ 1. By direct computation, the sum of the coefficients is

[I (y, z)]x1z−1 =
∑

β:D·β=n+1,n≥1

〈[pt]ψn−1〉X
0,1,β yβ (n + 1)!

n
. (34)

We apply the operator


D =
r∑

i=1

mi yi
∂

∂yi
− 1

to the I -function I (y, z). Then (34) becomes

∑

β:D·β=n+1,n≥1

〈[pt]ψn−1〉X
0,1,β(y)β(n + 1)!.

5.3. Matching. The relative mirror theorem of [FTY19] states that the coefficients of
the I -function and the J -function are the same. Therefore, we have

∑

β:D·β=n+1,n≥1

〈[pt]ψn−1〉X
0,1,β(y)β(n + 1)!

=
(

1 +
r∑

i=1

mi yi
∂(g(y))

∂yi

)
exp (−g(y))

⎛

⎝
∑

β:D·β=n+1

n〈[1]1, [pt]n〉(X,D)
0,β,2 qβ + 1

⎞

⎠− 1.

(35)

Recall that

g(y) =
∑

β∈NE(X)
D·β≥2

〈[pt]ψ D·β−2〉X
0,1,β yβ(D · β − 1)!.

Therefore

r∑

i=1

mi yi
∂(g(y))

∂yi

=
∑

β∈NE(X)
D·β≥2

〈[pt]ψ D·β−2〉X
0,1,β yβ(D · β)!

=
∑

β:D·β=n+1,n≥1

〈[pt]ψn−1〉X
0,1,β(y)β(n + 1)!
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we conclude that (35) becomes

1 +
∑

β:D·β=n+1,n≥1

〈[pt]ψn−1〉X
0,1,β(y)β(n + 1)!

=
⎛

⎝1 +
∑

β:D·β=n+1,n≥1

〈[pt]ψn−1〉X
0,1,β(y)β(n + 1)!

⎞

⎠ exp (−g(y))

⎛

⎝
∑

β:D·β=n+1

n〈[1]1, [pt]n〉(X,D)
0,β,2 qβ + 1

⎞

⎠ .

Therefore

1 = exp (−g(y))

⎛

⎝
∑

β:D·β=n+1

n〈[1]1, [pt]n〉(X,D)
0,β,2 qβ + 1

⎞

⎠ .

We have

1 +
∑

β:D·β=n+1

n〈[1]1, [pt]n〉(X,D)
0,β,2 qβ = exp (g(y(q))) , (36)

where y = y(q) is the inverse mirror map. This concludes Theorem 5.1.

6. Toric Varieties and the Open Mirror MMap

In this section, we will specialize our result to the toric case. The proper Landau–
Ginzburg potential can be computed explicitly.

Let X be a toric variety with a smooth, nef anticanonical divisor D. Recall that the
small J -function for absolute Gromov–Witten theory of X is

JX (z) = e
∑r

i=1 pi log qi /z

⎛

⎜⎜⎝z +
∑

(β,l) 	=(0,0),(0,1)
β∈NE(X)

∑

α

qβ

l!
〈

φα

z − ψ

〉X

0,1,β

φα

⎞

⎟⎟⎠ ,

where τ0,2 = ∑r
i=1 pi log qi ∈ H2(X); {φα} is a basis of H∗(X); {φα} is the dual basis

under the Poincaré pairing.
By [Giv98], the I -function for a toric variety X is

IX (y, z) = zet/z
∑

β∈NE(X)

yβ

(
m∏

i=1

∏
a≤0(Di + az)

∏
a≤Di ·β(Di + az)

)
,

where t = ∑r
a=1 pa log ya , yβ = y p1·β

1 · · · y pr ·β
r and Di ’s are toric divisors.

The I -function can be expanded as

z +
r∑

a=1

pa log ya +
∑

j

D j

∑

c1(X)·β=0,D j ·β<0
Di ·β≥0,∀i 	= j

(D j · β − 1)!∏m
i=1,i 	= j (Di · β)! yβ + O(z−1).
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The J -function and the I -function are related by the following change of variables,
called the (absolute) mirror map:

r∑

i=1

pi log qi =
r∑

i=1

pi log yi +
∑

j

D j

∑

c1(X)·β=0,D j ·β<0
Di ·β≥0,∀i 	= j

(D j · β − 1)!∏m
i=1,i 	= j (Di · β)! yβ

Set z = 1, the coefficient of the 1 ∈ H0(X) of the J -function is
∑

β∈NE(X)
D·β≥2

〈[pt]ψ D·β−2〉X
0,1,β

The corresponding coefficient of the I -function is

∑

Di ·β≥0,∀i

1∏m
i=1(Di · β)! yβ

=
∑

β∈NE(X)
D·β≥2

1∏m
i=1(Di · β)! yβ.

6.1. Toric Fano varieties. When X is Fano, the absolute mirror map is trivial. Then we
have

g(y) =
∑

Di ·β≥0,∀i

(D · β − 1)!∏m
i=1(Di · β)! yβ.

Then Theorem 5.1 specialize to

W = exp

⎛

⎝
∑

Di ·β≥0,∀i

(D · β − 1)!∏m
i=1(Di · β)! y(q)β

⎞

⎠ ,

where y(q) is the inverse to the relative mirror map

r∑

i=1

pi log qi =
r∑

i=1

pi log yi + g(y)D.

If we further specialize the result to dimension 2 case, we recover the main result of
[GRZ22].

6.2. Toric varieties with a smooth, nef anticanonical divisor. Theorem 5.1 specializes
to

W = exp

⎛

⎝
∑

Di ·β≥0,∀i

(D · β − 1)!∏m
i=1(Di · β)! y(q)β

⎞

⎠ ,

where y(q) is the inverse to the relative mirror map
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r∑

i=1

pi log qi =
r∑

i=1

pi log yi + g(y)D +
∑

j

D j

∑

c1(X)·β=0,D j ·β<0
Di ·β≥0,∀i 	= j

(−D j · β − 1)!∏m
i=1,i 	= j (Di · β)! yβ.

Let X be a Fano variety with a smooth anticanonical divisor D. In [GRZ22], the
authors proposed that the mirror proper Landau–Ginzburg potential is the open mirror
map of the local Calabi–Yau OX (−D). When X is toric, the open mirror map for the
toric Calabi–Yau OX (−D) has been computed in [CCLT16,CLT13] (see also [You20]
for the computation in terms of relative Gromov–Witten invariants).

The SYZ mirror construction for a toric Calabi–Yau manifold Y was constructed in
[CCLT16,CLT13]. We specialize to the case when Y = OX (−D) where D is a smooth,
nef, anticanonical divisor of X . Note that, we do not need to assume X is Fano. The SYZ
mirror of Y is modified by the instanton corrections. Following [Aur07,Aur09], the SYZ
mirror of a toric Calabi–Yau manifold was constructed in [CCLT16,CLT13] where the
instanton corrections are given by genus zero open Gromov–Witten invariants. These
open Gromov–Witten invariants are virtual counts of holomorphic disks in Y bounded
by fibers of the Gross fibration. It was shown in [CCLT16,CLT13] that the generating
function of these open invariants is the inverse of the mirror map for Y . This generating
function of these open invariants is referred to as the open mirror map in [GRZ22].

Comparing the open mirror map of [CCLT16,CLT13] with our relative mirror map,
we directly have

Theorem 6.1. Let (X, D) be a smooth log Calabi–Yau pair, such that X is toric and D
is nef. The proper Landau–Ginzburg potential of (X, D) is the open mirror map of the
local Calabi–Yau manifold OX (−D).

6.3. Beyond the toric case. Beyond the toric setting, the conjecture of [GRZ22] is also
expected to be true as long as we assume the following principal (open-closed duality)
in mirror symmetry.

Conjecture 6.2. The instanton corrections of a local Calabi–Yau manifold OX (−D) is
the inverse mirror map of the local mirror theorem that relates local Gromov–Witten
invariants with periods.

Open Gromov–Witten invariants have not been defined in the general setting. More-
over, open Gromov–Witten invariants are more difficult to compute. On the other hand,
the local mirror map can usually be computed. As we have seen in Sect. 4.4, the lo-
cal mirror map and the relative mirror map coincide. Therefore, we have the following
result.

Corollary 6.3. Assuming Conjecture 6.2, the proper Landau–Ginzburg potential is the
open mirror map.

7. Fano Varieties and Quantum Periods

For a Fano variety X , the function g(y) is closely related to the quantum period of X .
In fact, we have

Theorem 7.1. The function g(y) coincides with the anti-derivative of the regularized
quantum period.
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Proof. We recall that

g(y) =
∑

β∈NE(X)
D·β≥2

〈[pt]ψ D·β−2〉X
0,1,β yβ(D · β − 1)!.

We consider the change of variables

yβ = t D·β.

Then the derivative d
dt of g(t) is

∑

β∈NE(X)
D·β≥2

〈[pt]ψ D·β−2〉X
0,1,β t D·β(D · β)!,

which is precisely the regularized quantum period in [CCG13]. ��
Following the Fanosearch program, the regularized quantum period of a Fano variety

coincides with the classical period of its mirror Laurent polynomial. A version of the
relation between the quantum period and the classical period was obtained in [TY23b]
using the formal orbifold invariants of infinite root stacks [TY23a]. Combining with the
Fanosearch program, one can explicitly compute the proper Landau–Ginzburg potential
of a Fano variety as long as one knows its mirror Lanurent polynomial. In particular, we
have found explicit expressions of the proper Landau–Ginzburg potentials for all Fano
threefolds using the expression of the quantum periods in [CCGK16].

Example 7.2. We consider the Fano threefold V10 in [CCGK16, Section 12]. It is a
Fano threefold with Picard rank 1, Fano index 1, and degree 10. It can be considered as a
complete intersection in the Grassmannian Gr(2, 5). Following [CCGK16], the quantum
period is

GV10(y) = e−6y
∞∑

l=0

∞∑

m=0

(−1)l+m yl+m ((l + m)!)2(2l + 2m)!
(l!)5(m!)5

(1 − 5(m − l)Hm),

where Hm is the m-th harmonic number.
Therefore,

gV10(y) = e−6y
∞∑

l=0

∞∑

m=0

(−1)l+m yl+m ((l + m)!)2(2l + 2m)!
(l!)5(m!)5

(1 − 5(m − l)Hm)(l + m − 1)!

The proper Landau–Ginzburg potential is

W = x−1 exp
(
gV10(y(t x))

)
,

where y(t x) is the inverse of

t x = y exp
(
gV10(y)

)
.

Similarly, one can compute the proper Landau–Ginzburg potential for all Fano three-
fold using the quantum period in [CCGK16]. Moreover, there are large databases [CK22]
of quantum periods for Fano manifolds which can be used to compute the proper Landau–
Ginzburg potential.
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Remark 7.3. We noticed that H. Ruddat [Rud22] has been working on the relation be-
tween the proper Landau–Ginzburg potential and the classical period. This can also be
seen from Theorem 7.1 because it is expected from mirror symmetry that the regular-
ized quantum period of a Fano variety equals the classical period of the mirror Laurent
polynomial. The Laurent polynomials are considered as the potential for the weak, non-
proper, Landau–Ginzburg model of [Prz07,Prz13]. Therefore, Theorem 7.1 provides an
explicit relation between the proper and non-proper Landau–Ginzburg potentials.
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