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Abstract

It is well understood that apicomplexan parasites, such as the malaria pathogen Plasmodium, are descended from free-living
algae, and maintain a vestigial chloroplast that has secondarily lost all genes of photosynthetic function. Recently, two fully
photosynthetic relatives of parasitic apicomplexans have been identified, the ‘chromerid’ algae Chromera velia and Vitrella
brassicaformis, which retain photosynthesis genes within their chloroplasts. Elucidating the processes governing gene
expression in chromerid chloroplasts might provide valuable insights into the origins of parasitism in the apicomplexans.
We have characterised chloroplast transcript processing pathways in C. velia, V. brassicaformis and P. falciparum with a focus
on the addition of an unusual, 39 poly(U) tail. We demonstrate that poly(U) tails in chromerids are preferentially added to
transcripts that encode proteins that are directly involved in photosynthetic electron transfer, over transcripts for proteins
that are not involved in photosynthesis. To our knowledge, this represents the first chloroplast transcript processing
pathway to be associated with a particular functional category of genes. In contrast, Plasmodium chloroplast transcripts are
not polyuridylylated. We additionally present evidence that poly(U) tail addition in chromerids is involved in the alternative
processing of polycistronic precursors covering multiple photosynthesis genes, and appears to be associated with high
levels of transcript abundance. We propose that changes to the chloroplast transcript processing machinery were an
important step in the loss of photosynthesis in ancestors of parasitic apicomplexans.
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Introduction

The transition from a photosynthetic to a parasitic lifestyle has

occurred a multitude of times across the eukaryotes [1]. Parasitism,

concomitant with either the complete loss or a severe reduction in

dependence on photosynthesis, has been documented in members

of the land plants and the green, red, and brown algae [1–4].

Typically, parasitic organisms descended from photosynthetic

ancestors retain chloroplasts with their own genome, but these

genomes are vastly reduced in content. Various hypotheses have

been suggested for why certain genes are retained in the

chloroplast, and others are transferred to the nucleus, such as

the greater relative frequency of mutations in chloroplast genes,

the higher energetic cost associated with synthesis and import of

cytoplasmic proteins, and the direct regulation of chloroplast-

encoded genes in response to changes in chloroplast redox state, or

other biochemical parameters [5–7]. However, the reasons why,

and when, chloroplast genes are lost during the transition from

photosynthesis to parasitism remain comparatively underexplored.

Perhaps the most dramatic example of the transition from

photosynthesis to parasitism occurs in the apicomplexans, a group

containing several pathogens of major humanitarian importance,

including the malaria parasite Plasmodium, and Toxoplasma and

Cryptosporidium, causative agents respectively of toxoplasmosis and

cryptosporidiosis, both potentially fatal to immuno-compromised

patients [1]. Apicomplexans are descended from photosynthetic

algae, and the majority - apart from Cryptosporidium - retain a

vestigial, non-photosynthetic, chloroplast-derived organelle,

termed the ‘apicoplast’, which is involved in a number of

metabolic pathways fundamental to parasite viability and pathol-

ogy [8,9]. The apicoplast contains its own genome that is

conventionally organised, but has lost all genes for proteins that

function directly in photosynthetic electron transfer, which we will

henceforth term ‘photosynthesis genes’, and only retains genes of

non-photosynthetic function [10].

Although the evolutionary origin of the apicoplast has been the

subject of debate, recent studies firmly place it as being of

secondary, red algal derivation, and sharing a common ancestry

with the chloroplasts found in a closely related group of algae, the

peridinin dinoflagellates [10–12]. Peridinin dinoflagellates possess

an extremely unusual chloroplast genome, which is organised on

small, plasmid-like elements termed ‘minicircles’, and has a highly

reduced coding content. The chloroplast genomes of peridinin

dinoflagellates contain only a few photosynthesis genes, genes for

ribosomal and transfer RNAs, and in some species other open

reading frames that lack an identified function, or recognisable

homologues to other lineages [1,13]. Dinoflagellate chloroplasts

use abnormal RNA metabolism pathways including rolling circle

transcription, and extensive post-transcriptional editing occurs in

certain species [14,15]. Most dramatically, a 39 terminal poly(U)
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tail is added during the processing of transcripts of protein-coding

genes [16]. While similar transcript polyuridylylation events have

been reported in various nuclear and mitochondrial lineages, they

do not occur in plant or other algal chloroplasts. Transcript

polyuridylylation has likewise not been found in the apicoplast,

although, to our knowledge, this has not been shown systematically

and the only information available comes indirectly from EST

libraries and next generation sequencing reads [12,17,18].

In the past decade, two fully photosynthetic close relatives of

apicomplexan parasites have been identified, jointly referred to as

the ‘chromerid’ algae [1,19]. Chromera velia is a small, single-celled

alga with coccoid and motile forms, whereas Vitrella brassicaformis

(e.g. CCMP3155) is a much larger, pseudocolonial alga, with a

complex life cycle [19,20]. Both species form symbiotic associa-

tions with zooxanthellate corals [19–21], and recent studies

suggest that many more as yet uncultured chromerids are present

in coralline environments [22,23]. Phylogenetic analyses robustly

place C. velia and V. brassicaformis as separate sister groups to

apicomplexans [11,19] to the exclusion of peridinin dinoflagel-

lates. The exact dates at which the chromerid lineages diverged

from the parasitic apicomplexans remain a matter of debate,

although these have been estimated to be anywhere between 350

and 700 million years before the present, and were probably well

after the divergence of the common ancestor of apicomplexans

and chromerids from the dinoflagellates [24–26]. Some of the

metabolic pathways associated with the chloroplasts of C. velia, at

least, are more similar to those occurring in the chloroplasts of

other free-living algae than to those of apicomplexans, whereas the

opposite is true for others [27–31]. A more detailed understanding

of the processes governing the expression of photosynthesis versus

non-photosynthesis genes in the chloroplasts of chromerid algae

might provide insights into the evolution of parasitism in early

apicomplexans.

The chloroplast genomes of both C. velia and V. brassicaformis

have been sequenced and are of the same endosymbiotic

derivation as those of apicomplexans and peridinin dinoflagellates.

The V. brassicaformis chloroplast genome consists of one single

circular chromosome, similar to that of apicomplexans, while the

C. velia chloroplast genome is believed to comprise a single, long

linear chromosome, unlike that of either dinoflagellates or

apicomplexans [11,32]. However, both chromerid chloroplast

genomes are larger than those of either the apicomplexan or

peridinin dinoflagellate lineages, retaining 55 (Chromera) and 71

(Vitrella) non-redundant annotated protein-coding genes, of both

photosynthetic and non-photosynthetic function, as well as a small

number of open reading frames of unannotated function, and

specific to either species [11].

It has previously been shown that, similar to the situation in

dinoflagellates, poly(U) tails are added to at least three chloroplast

transcripts (psaA, psbB, psbC) in C. velia [11,32]. However, it is not

known to which other transcripts in C. velia chloroplasts poly(U)

tails are added, or whether similar poly(U) addition occurs in V.

brassicaformis [32]. More broadly, the precise functional role of

transcript poly(U) addition in chromerid algae remains unchar-

acterised. Here, we present an in-depth study of transcript poly(U)

addition in C. velia and V. brassicaformis. We demonstrate that in

both species poly(U) tails are principally added to transcripts

encoding functional components of the photosynthetic electron

transfer chain. Conversely, transcripts that do not encode products

that directly function in photosynthesis tend not to be polyur-

idylylated in either C. velia or V. brassicaformis. This is to our

knowledge the first example of a chloroplast transcript processing

pathway that differentially recognises a particular functional

category of genes. We additionally demonstrate that poly(U)

addition occurs early in transcript processing in C. velia, and may

influence other processing events on photosynthesis gene tran-

scripts. Finally, we confirm that poly(U) addition does not occur in

the apicomplexan Plasmodium falciparum. As the poly(U) machinery

in chromerid algae is involved in the differential recognition of

photosynthesis and non-photosynthesis genes, its loss may have

played an important role in the transition of early apicomplexans

from photosynthesis to obligate parasitism.

Results

Poly(U) tails are principally added to photosynthesis
gene transcripts in Chromera velia and Vitrella
brassicaformis

To test for the presence of polyuridylylated transcripts in C. velia

and V. brassicaformis, we generated cDNA using an oligo-d(A)

primer, which anneals to transcript poly(U) tails [12,33]. The

oligo-d(A) primed cDNA was used as a template for a series of

PCR reactions using the same oligo-d(A) primer, and a series of

forward primers specific to different chloroplast genes from each

species (Table S1). Figure 1 shows the results from two

representative photosynthesis genes where RT-PCR products

were obtained, consistent with the presence of polyuridylylated

transcripts (fig. 1: C. velia psbA, atpB-2, panel A, lanes 1–2; V.

brassicaformis psbA, atpB, panel A, lanes 7–8). The identity of each

transcript obtained via PCR was confirmed by direct sequencing,

using the PCR forward primer as the sequencing primer. Similar

products were observed with a control transcript from a

dinoflagellate chloroplast (Amphidinium carterae psbA) that is known

to be polyuridylylated (fig. 1, panel B, lane 1) [33].

In contrast, analogous RT-PCRs against representative chloro-

plast genes that do not encode products directly involved in

photosynthesis from both species (rps11 and rrs) failed to resolve

Author Summary

Chloroplasts contain their own genomes, containing two
broad functional types of gene: genes encoding proteins
directly involved in photosynthesis, and genes with a non-
photosynthesis function, such as cofactor biosynthesis,
assembly of protein complexes, or expression of the
chloroplast genome. Thus far, to our knowledge, no
chloroplast gene expression pathways in any lineage have
been found to target one functional category of gene
specifically. Here, we show that a chloroplast RNA
processing pathway – the addition of a 39 poly(U) tail –
is specifically associated with photosynthesis genes in two
species of algae, the ‘chromerids’ Chromera and Vitrella.
The addition of the poly(U) tail enables the precise
processing of mature photosynthesis gene transcripts
from precursor RNA, and is likely to be essential for
expression of the chromerid photosynthesis machinery.
The chromerid algae are the closest photosynthetic
relatives of a parasitic group of eukaryotes, the apicom-
plexans, which include the malaria pathogen Plasmodium.
Apicomplexans are descended from algae, and retain a
reduced chloroplast, which contains genes only of non-
photosynthesis function. We have confirmed that 39
poly(U) tails are not added to Plasmodium chloroplast
transcripts. The expression pathways associated with
photosynthesis genes have therefore been lost in the
evolution of the apicomplexan chloroplast, and this loss
could potentially have driven the transition from photo-
synthesis to parasitism.

Chloroplast RNA Processing in Alveolates
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clear products, even after two successive rounds of PCR

amplification (fig. 1, panel A, lanes 3–4, 9–10). We could detect

RT-PCR products generated using gene-specific primers (fig. 1,

panel A lanes 5–6, 11–12, Table S2), implying that transcripts of

each gene are present, but do not receive a poly(U) tail. Similar

products were observed for a control nuclear transcript (C. velia

Hsp90) as well as a transcript from a diatom chloroplast

(Phaeodactylum tricornutum psbA) which has previously been shown

not to receive a poly(U) tail (fig. 1, panel B lanes 3–6) [12].

To determine whether poly(U) tail addition is significantly biased

towards photosynthesis genes in chromerid algae, we performed

oligo-d(A) RT-PCRs against every annotated gene and open

reading frame in the C. velia chloroplast genome (n = 78), and over

half the genes in the V. brassicaformis chloroplast genome (n = 43, out

of 74 total) (Table S2). In both species, transcript poly(U) addition

was significantly biased towards photosynthesis genes (chi-squared:

C. velia P,0.005; V. brassicaformis P,0.05). While we could identify

some genes that contradicted general patterns - i.e. transcripts of

photosynthesis genes that do not receive a poly(U) tail or

polyuridylylated transcripts that encode non-photosynthesis pro-

teins, or novel open reading frames – most of these exceptions were

specific to one species. Only two non-photosynthesis genes (rpl3 and

rps18) were found to possess poly(U) sites in both species, and none

of the non-polyuridylylated photosynthesis genes was conserved

between C. velia and V. brassicaformis (fig. 2). None of the poly(U) sites

identified was predicted to lie within poly(T) tracts of more than

6 bp in either genomic sequence, suggesting that the poly(U) tails

are not genome-encoded [11]. Consistent with other studies [32],

we could not detect any evidence of post-transcriptional editing in

any transcripts in either species.

Location of poly(U) sites
We wished to determine whether poly(U) sites were associated with

specific regions of chromerid chloroplast genomes. Comparison of

RT-PCR products with genomic sequences showed that, other than a

preferential association with photosynthesis gene 39 UTRs, poly(U)

sites are broadly distributed across chromerid chloroplast genomes.

We could identify poly(U) sites on genes located at the 59 end (C. velia

petG), in the interior (C. velia atpB-2) and 39 end (C. velia psbA) of clusters

of related function, as well as on photosynthesis genes that are located

within clusters containing genes of otherwise non-photosynthetic

function (e.g. C. velia atpI, which is positioned downstream of rps14

and upstream of rpl11) [11]. We tested whether poly(U) sites were

enriched at the start or end of potential operons in C. velia, defining

operons as uninterrupted clusters of genes in the genomic sequence

that are in the same transcriptional orientation [11], and could not

find any significant association (Table S3, chi-squared: P.0.35).

Plant chloroplasts utilise two different RNA polymerases: a

nuclear-encoded polymerase related to the phage-type polymerase

of mitochondria, which principally transcribes non-photosynthesis

genes, and a bacterial-type, plastid-encoded polymerase, princi-

pally involved in the expression of photosynthesis genes [34–36].

Modulation of the activity of each polymerase may underpin

developmental and physiological changes in chloroplast gene

expression [37–39]. While there is no evidence for the presence of

a phage-type plastid polymerase outside the land plant lineage

[40,41], subunits of a bacterial-type polymerase are encoded in the

chloroplast genomes of C. velia and V. brassicaformis [11]. To test

whether this polymerase preferentially transcribes genes that either

contain or lack an associated poly(U) site, we searched for

predicted bacterial-type promoters across the 59 UTR of every

gene in the C. velia chloroplast using a Neural Network Promoter

Prediction server [42]. Similar to what has been reported in plants

[35,36], we found evidence for large numbers of candidate

promoters in the C. velia chloroplast at a wide range of positions,

including upstream of photosynthesis and non-photosynthesis

genes (Table S3). Across the entire genome, bacterial promoters

appeared to be weakly enriched upstream of genes that possess

Figure 1. Determining the poly(U) state of representative chloroplast genes from C. velia and V. brassicaformis. Hyperladder I (Bioline)
was used as a size marker, with the positions of representative size bands given to the side of each gel photo. Panel A: RT-PCRs for Chromera velia
(lanes 1–6) and Vitrella brassicaformis (lanes 7–12). Lanes 1–2, 7–8: Oligo-d(A) RT-PCRs for the photosynthesis genes psbA and atpB-2 (C. velia)/atpB (V.
brassicaformis); Lanes 3–4, 9–10: oligo-d(A) RT-PCRs for the non-photosynthesis genes rps11 and rrs; Lanes 5–6, 11–12: RT-PCRs using an internal,
gene-specific cDNA primer for rps11 and rrs for both species. The multiple bands observed for C. velia atpB-2 (lane 2) correspond to different atpB(2)
transcripts containing alternative poly(U) sites. Panel B control RT-PCRs. Lanes 1–2: oligo-d(A) and internal gene-specific RT-PCRs for Amphidinium
carterae psbA; lanes 3–4: oligo-d(A) and internal gene-specific RT-PCRs for Phaeodactylum tricornutum psbA; Lanes 5–6: oligo-d(A) and internal gene-
specific RT-PCRs for C. velia Hsp90; lanes 7–8: PCR positive (DNA template) and negative controls (no template) for C. velia psbA.
doi:10.1371/journal.pgen.1004008.g001

Chloroplast RNA Processing in Alveolates

PLOS Genetics | www.plosgenetics.org 3 January 2014 | Volume 10 | Issue 1 | e1004008



poly(U) sites (chi-squared: P,0.05). However, this was almost

entirely due to the fact that bacterial promoters were generally not

found upstream of ORFs of unknown function, which are also less

likely to possess poly(U) sites than photosynthesis genes. Consid-

ering genes of recognisable function, there was no direct

association between the presence of predicted bacterial promoters

and poly(U) sites (chi-squared: P.0.2). It therefore appears that- at

least in the case of a bacterial polymerase- there is not a

convincing association between the presence of a candidate

promoter and poly(U) site on specific genes.

We additionally analysed the position of poly(U) sites relative to

the 39 end of coding sequences. The position of poly(U) sites

relative to the 39 end of each gene is certainly highly variable,

although certain trends were present in each species. Typically,

poly(U) sites in V. brassicaformis were positioned close to the stop

codon, with an average 39 UTR of 55 nt, although in one case

(petG) a 39 UTR of 277 nt was recorded (Table S2). In contrast,

poly(U) sites in C. velia were positioned further downstream of the

stop codon, with an average 39UTR of 145 nt, and extending up

to 584 nt for one poly(U) site found downstream of psbH (Table

S2). In one case, the C. velia ORF264 gene, we could identify a

poly(U) site that was positioned within the coding sequence itself,

50 bp upstream of the stop codon. This was the only poly(U) site

to be found immediately upstream of a predicted termination

codon. Oligo-d(A) RT-PCR using a gene specific forward

primer, positioned immediately downstream of this poly(U) site,

revealed the presence of a second ORF264 poly(U) site,

positioned 281 nt into the 39 UTR (Tables S1, S2). The

sequence covered by the ORF264 gene does not contain any

other sizeable open-reading frames that terminate upstream of

the poly(U) site, and it is therefore likely that the addition of a

poly(U) tail at the internal site disrupts translation of the ORF264

transcript.

Several other C. velia chloroplast genes appeared to possess

multiple potential poly(U) sites, as with ORF264. In some

instances, oligo-d(A) RT-PCR reactions for C. velia produced

multiple bands visible after gel electrophoresis (e.g. atpB-2; fig. 1,

panel A, lane 2; Table S2), which could correspond to multiple

alternative poly(U) sites within the 39 UTR. We assessed variation

in poly(U) site position by cloning and sequencing individual RT-

PCR products for transcripts from three genes that produced

multiple products by oligo-d(A) RT-PCR (C. velia psaC, atpB-2, atpI;

Table S4). To identify whether poly(U) sites vary even in genes

where no obvious heterogeneity in position could be inferred

purely from gel electrophoresis, we cloned and sequenced

individual RT-PCR products for petD and psbA from both C. velia

and V. brassicaformis, each of which produced only a single visible

gel band. We found substantial variability in 39 UTR length for

many of the transcripts tested, even if only one band was

distinguishable by agarose gel electrophoresis. In one particularly

extreme case (atpB-2) we observed eleven different poly(U) sites,

ranging from 60 to 467 nt into the 39 UTR (fig. S1, Table S4),

which broadly corresponded to the different band sizes visible on

oligo-d(A) RT-PCR (fig. 1, panel A, lane 3). In contrast, little

variability was seen with V. brassicaformis petD and psbA, which had

consistent tail lengths and only a single nucleotide variability in the

39UTR prior to the poly(U) tail.

Consistent with this variability, we were unable to identify any

conserved sequence motifs located either upstream or downstream

of the poly(U) sites in either species. Nor could we identify any

consistent changes in GC or purine content, or any predicted

secondary structures that were universally associated with poly(U)

sites in either species, suggesting that different poly(U) sites might be

defined in different ways by the transcript processing machinery.

However, ten of the twenty-four poly(U) sites in V. brassicaformis,

including four sites associated with non-photosynthesis genes (ccs1,

chlN, rps4, rps16) were immediately adjacent to the 59 end of

predicted tRNAs (Table S2, fig. S2). Although we could identify

poly(U) sites that were independent of tRNAs, we could not identify

any genes immediately upstream of tRNA genes whose transcripts

did not receive poly(U) tails (Table S2). This suggests that some of

the poly(U) sites in V. brassicaformis are generated by the cleavage of

downstream tRNAs from precursor transcripts.

Poly(U) tail addition is associated with high levels of
transcript abundance in Chromera velia

It has previously been suggested that the poly(U) tails found in

dinoflagellate chloroplasts may facilitate gene expression, either by

protecting transcripts from 39 end degradation [33], or by enabling

other transcript processing events, such as editing, that facilitate

translation [12,43]. A recent next generation sequencing study of

the Chromera velia chloroplast transcriptome, by Janouškovec et al.,

Figure 2. The total distribution of poly(U) sites across
chromerid chloroplasts. The Venn diagrams show the total results
of oligo-d(A) RT-PCRs for genes from C. velia and V. brassicaformis. Chi-
squared distributions and P values for the significance of association
between photosynthesis function and presence of an associated
poly(U) site are shown at the bottom of the diagram.
doi:10.1371/journal.pgen.1004008.g002

Chloroplast RNA Processing in Alveolates
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recovered substantially higher read coverage for transcripts of

photosynthesis genes than for transcripts of genes that are not

directly involved in photosynthesis, or other open reading

frames, suggesting that photosynthesis gene transcripts are highly

abundant in the C. velia chloroplast [32]. Substantial variation was

recorded in transcript abundance within individual operons,

indicating that this is at least in part dependent on differences in

transcript processing over different genes [32]. We considered

whether the presence of a poly(U) tail might be associated with high

transcript abundance in chromerid chloroplasts. Calculating from

the quantitative read coverage data obtained by Janouškovec et al.

[32], genes that possess poly(U) sites are significantly more highly

expressed than those that do not (Table S3, Mann-Whitney test, P,

E-04).

While there may be a general association between polyuridy-

lylation and high levels of expression, other gene-specific factors

are also likely to influence transcript abundance, and it is therefore

not justifiable to attribute differences in transcript level between

different genes solely to the presence of a poly(U) tail. In plant

chloroplasts, photosynthesis genes are generally more highly

expressed than genes of non-photosynthesis function [44,45],

and the higher transcript abundance associated here with

polyuridylylated transcripts, which predominantly function in

photosynthesis, could similarly be due to the function of the

protein, as opposed to the presence or absence of a poly(U) tail. To

gain a more accurate understanding of whether transcript poly(U)

tails affect transcript abundance, we considered the expression

levels of three photosynthesis genes that are present in the C. velia

chloroplast genome as multiple copies or fragments. The psaA gene

is split into two functional units, which encode separate parts of the

mature photosystem I reaction centre protein [11,32]. The two

psaA transcripts are not trans-spliced together, and are separately

translated to form distinct but presumably functionally cooperative

proteins [32]. Transcripts of each of the psaA genes are highly

expressed, and both have been shown to receive a poly(U) tail

([32], fig. 3, panel A, lanes 1–2). A similar situation is true for the

atpB gene, encoding the chloroplast ATP synthase b subunit,

which is likewise split into two functionally autonomous, and

highly expressed gene fragments. As with psaA, we could detect

poly(U) tails on both atpB transcripts (fig. 3, panel A, lanes 3–4). In

contrast to the atpB and psaA genes, the atpH gene is present in two

paralogous copies on the C. velia with very different expression

patterns. Transcripts of atpH-1 encode a complete copy of the

ATP synthase c subunit, and are highly abundant in chromerid

chloroplasts [32]. Transcripts of atpH-2 encode not only a

complete c subunit, but in addition encode a novel 89 aa C-

terminal extension not found in protein sequences from other

chloroplast lineages (fig. S3, panel A). The atpH-2 transcripts are

nearly one hundredfold lower in abundance than those of atpH-1,

are the least abundant photosynthesis gene transcripts within the

C. velia chloroplast, and are only marginally more abundant than

rpl36, the least abundant transcript of recognisable protein-coding

function. This suggests that the atpH-2 gene is a pseudogene ([32],

fig. 3, panel B). The 59 end and 59 UTR of the atpH-2 gene are

almost identical to the atpH-1 gene (93% nucleotide similarity; fig.

S3, panel B), suggesting that the difference in transcript abundance

is due to sequences within the 39 extension or 39 UTR of atpH-2.

We found that while transcripts of atpH-1 receive a poly(U) tail,

transcripts of atpH-2 do not (fig. 3, lanes 5–8). The loss of a poly(U)

site from the atpH-2 gene, associated with a much lower level of

expression than any other analogous gene in the C. velia

chloroplast, very strongly indicates that the presence of a poly(U)

tail is associated with high levels of gene expression in chromerid

chloroplasts.

Extent of poly(U) addition across chromerid chloroplast
transcripts

Given that poly(U) tails appear to be associated with high

transcript levels in chromerids, we wished to investigate the precise

role of the poly(U) tail in transcript processing. In particular, we

wished to determine what proportion of transcripts for individual

photosynthesis genes contain poly(U) tails, and whether alterna-

tive, poly(U)-independent processing pathways may be present.

We accordingly performed RT-PCRs on circularised RNA for a

range of chloroplast transcripts in Chromera velia using an internal,

gene-specific cDNA synthesis primer, an outward-directed PCR

reverse primer that annealed just within the 59 end of coding

sequence (CDS), and a PCR forward primer that annealed to the

39 end of the CDS (Table S1). We tested six genes known to

possess poly(U) sites; five photosynthesis genes, of varying levels of

transcript abundance (in descending order: psbA, petB, psbH,

atpB(2), and atpI), and rps18, one of only two non-photosynthesis

genes found to possess a poly(U) site in both C. velia and Vitrella

brassicaformis. In addition, we tested two genes that lacked an

associated poly(U) site: rps14, located directly upstream of atpI, and

atpH-2, directly upstream of psbA.

We identified homopolymeric poly(U) tails on C. velia psbA, atpB-

2, atpI, petB and psbH transcripts, consistent with the oligo-d(A)

RT-PCR data (fig. 4, Table S5, panels A–D). Only two of the

polyuridylylated transcripts identified by circular RT-PCR, out of

a total of 27 sequenced, contained any nucleotides other than

uridine within the 39 tail, indicating that heteropolymeric tails are

extremely rare in chromerid chloroplasts. For each gene, we could

additionally identify non-polyuridylylated transcripts, similar to

what has been found in dinoflagellates [12,33], but in almost every

case these transcripts terminated either within the CDS or

significantly upstream of the poly(U) site in the 39 UTR of the

gene, which may suggest that they are the 39 degradation products

of previously polyuridylylated transcripts (fig. 4). Within the five

polyuridylylated photosynthesis genes, we could identify only three

transcripts (one transcript each for psbA, petB, and atpI) that

terminated at or extended past the corresponding poly(U) sites.

Overall, our data are consistent with poly(U) tail addition being

the only 39 maturation pathway acting on photosynthesis gene

transcripts.

We could identify transcripts for both atpH-2 and rps14 that

extended into the 39 UTR, but could not detect poly(U) tails or

any other form of terminal modifications on transcripts of either

gene (Table S5, panels A, C). This indicates that transcripts from

genes that lack poly(U) sites are not subject to any alternative 39

modification events. Surprisingly, a circular RT-PCR using

primers internal to the rps18 gene failed to identify any

polyuridylylated transcripts (although their existence was indicated

by the oligo-d(A) linear RT-PCR experiments), but instead

recovered large numbers of transcripts that terminated within

the 39 UTR, upstream of the previously identified consensus

poly(U) site (Table S5, panel E). We could retrieve polyuridyly-

lated rps18 transcripts only by using a PCR forward primer that

annealed directly upstream of the rps18 poly(U) site, thus biasing

the PCR for transcripts that extended at least as far as the poly(U)

site. However, in this case we also identified equal numbers of

transcripts that extended past the consensus poly(U) site (fig. 4,

Table S5, panel E). This suggests that the effective concentration

of polyuridylylated rps18 transcripts was very low. Therefore, while

rps18 and some other non-photosynthesis genes may possess

poly(U) sites that are detectable by oligo-d(A) RT-PCR, the

majority of the corresponding non-photosynthesis gene transcripts

do not receive a poly(U) tail during transcript processing. This

confirms that the poly(U) tail is principally functionally involved in
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the processing of photosynthesis gene transcripts in chromerid

chloroplasts.

Similar to the variation we observed for transcript 39 ends, we

found that different transcripts identified for a particular gene by

circular RT-PCR had different 59 terminus positions (Table S5).

For a few genes, transcripts appeared to terminate preferentially at

a certain position within the 59 UTR: for example, 7 out of 8 atpH-

2 transcripts sequenced terminated 35 nt upstream of the atpH-2

gene. However, for other genes, we could identify transcripts that

terminated at different positions in the 59 UTR, or terminated at

the 59 end within the CDS (Table S5), suggesting heterogeneous

processing of the 59 end.

Poly(U) addition is associated with transcript processing
in Chromera velia

It has long been known that chloroplast genes are cotranscribed

[46–49]. Recently, it has been demonstrated that poly(U) tails are

added to polycistronic transcripts in dinoflagellates, indicating that

poly(U) tail addition may occur relatively early in transcript

processing [15,33]. We found extensive evidence for polycistronic

transcripts in both chromerid species from oligo-d(A) RT-PCR.

For some genes for which we could not identify a monocistronic

polyuridylylated transcript, polycistronic polyuridylylated products

were recovered, with the poly(U) site in the 39 UTR of the gene

furthest downstream. These polycistronic polyuridylylated prod-

ucts extended over two genes (e.g. C. velia psbK-psbV) and in one

case, even over four genes (V. brassicaformis rps14-psbV-ccsA-psbK),

(Table S2). At three other selected loci (C. velia, atpH2-psbA,

ORF207-atpB2, and rps14-atpI), we could specifically amplify

transcripts that extended over both genes from oligo-d(A) primed

cDNA, using PCR primers that would amplify a region between

the 59 end of the upstream gene and the 39 end of the downstream

gene (fig. S4). To determine whether these polycistronic transcripts

are subject to similar 59 end-processing events as monocistronic

transcripts, or uniquely represent primary transcripts, we per-

formed circular RT-PCRs using a primer combination specific to

dicistronic rps14-atpI transcripts (Table S1, S5). As the T4 RNA

ligase used for RNA ligation can only act on transcripts with 59

monophosphate groups, any products consistent with polycistronic

transcripts would indicate that these transcripts had undergone 59

Figure 3. Polyuridylylation of duplicated photosynthesis gene transcripts in the Chromera velia chloroplast. This figure shows the result
of a series of RT-PCRs to characterise differential patterns of polyuridylylation for different copies of the psaA, atpB, and atpH genes in C. velia. Panel A:
A gel photo showing oligo-d(A) RT-PCRs for (lanes 1–6) psaA-1, psaA-2, atpB-1, atpB-2, atpH-1 and atpH-2. Poly(U) tails were found on transcripts of
both psaA genes, as has been previously reported, both atpB genes, and atpH-1, while atpH-2 was found not to be polyuridylylated. Lanes 7 shows
the result of a gene-specific RT-PCR against atpH-2, demonstrating that non-polyuridylylated atpH-2 transcripts are present. Lane 8 shows a template
negative control. Panel B: Total abundance of transcripts for each gene in the quantitative read data obtained by Janouškovec et al. [32]. For
reference, the most highly expressed (psbA) and least abundant (rpl36) transcripts encoding recognisable protein-coding function are also shown.
Polyuridylylated transcripts are shaded in blue, and non-polyuridylylated transcripts in orange. While all six of the polyuridylylated transcripts shown
are highly expressed, atpH-2 transcripts are found at much lower abundance, only slightly greater than those of rpl36, indicating that the atpH-2 gene
may be a pseudogene.
doi:10.1371/journal.pgen.1004008.g003
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processing [15,33]. We could detect a polyuridylylated transcript

that extended from the 59 end of rps14 to the atpI poly(U) site

(Table S5, panel B). In total, our data suggest that the chromerid

chloroplast transcript pool consists of a mixture of monocistronic,

dicistronic and potentially even larger polycistronic transcripts, (U)

sites (psbA, atpB-2, atpI; fig. 5, panels A–C), many of which may

have undergone 59 and 39 end processing.

Given the heterogeneous composition of the chromerid

chloroplast transcript pool, we wished to determine how significant

a fraction of the C. velia chloroplast transcriptome polycistronic

transcripts represented. We accordingly analysed northern blots of

C. velia RNA using probes specific to transcripts of genes that

possess poly(U) sites (psbA, atpI, and atpB-2), and of genes that do

not (atpH-2, rps14) (Table S6). For each of the genes that possess

poly(U) sites, we could identify bands consistent with monocis-

tronic transcripts. For psbA, we observed a single band corre-

sponding to an 1100 nt transcript, while for atpI we observed a

band corresponding to about 950 nt (fig. 5, panels A, B). These

agree with expected sizes (from circular RT-PCR results) of

monocistronic transcripts (59 UTR, gene, 39 UTR and a poly(U)

tail) (Table S5). Although we cannot exclude that non-

polyuridylylated psbA or atpI transcripts were also present, we

did not identify (by circular RT-PCR) any non-polyuridylylated

transcripts, of either gene, of a length that would comigrate with

the bands visible in the northern blots (Table S5). For atpB-2, we

identified multiple bands. The two high intensity bands at 1600

and 1800 nt correspond to the monocistronic, polyuridylylated

transcripts obtained by circular RT-PCR (fig. 5, panel C; Table

S5). We additionally identified a higher molecular weight band of

2000 nt, and while we could not identify any transcripts by

circular RT-PCR of a similar length, this band could plausibly

represent monocistronic transcripts that extend to the most distant

poly(U) site associated with atpB-2, positioned 467 nt into the 39

UTR (Table S4). No non-polyuridylylated atpB-2 transcripts of

1500 nt length or greater were identified by circular RT-PCR.

However, circular RT-PCR (Table S5) did reveal the presence of

non-polyuridylylated atpB-2 transcripts, with 39 ends internal to

the atpB-2 CDS, which might correspond to a faint 1300 nt band

detected in the northern blot (fig. 5, panel C; Table S5).

In contrast to the high abundance of monocistronic transcripts,

we could not identify any higher molecular weight bands of a size

consistent with polycistronic transcripts, for either psbA or atpB-2

(fig. 5, panel A). We could identify a faint band in the atpI northern

blot at 1400 nt that might correspond to a polycistronic precursor,

but this band was of much lower intensity than the band

corresponding to the monocistronic transcript (fig. 5, panel D).

Overall, our data indicate that while polycistronic transcripts may

be present in chromerid chloroplasts, the transcripts of at least

Figure 4. 39 end positions of atpI and psbH circular RT-PCR sequences. These transcript diagrams show the total number, and
polyuridylylation state of transcript 39 ends mapped for two representative Chromera velia genes that had previously been identified to possess
poly(U) sites from oligo-d(A) RT-PCR. Circular RT-PCR data for a further six genes is given in Table S5. Transcripts are aligned against the
corresponding genomic sequence; polyuridylylated transcripts are shaded in blue, and non-polyuridylylated transcripts in orange. The terminus
position of each transcript in the 39 UTR of the gene is shown in brackets next to the transcript. For both atpI (panel A) and psbH (panel B), we could
obtain several transcripts that terminated in a poly(U) tail, consistent with oligo-d(A) RT-PCR data. We could not identify any other forms of terminal
modification on these transcripts. Although we could obtain non-polyuridylylated transcripts for both genes, almost all of these transcripts either
terminated within the CDS or upstream of the consensus poly(U) site. Only one non-polyuridylylated atpI transcript was found unambiguously to
terminate downstream of the consensus atpI poly(U) site. It is therefore likely that these non-polyuridylylated transcripts represent the degradation
products of previously polyuridylylated transcripts.
doi:10.1371/journal.pgen.1004008.g004
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some photosynthesis genes are predominantly present as mono-

cistronic mRNAs, many of which are likely to possess poly(U) tails.

It is possible that the presence of a poly(U) tail might be associated

with the processing of polycistronic precursors to monocistronic

transcripts. To test this, we probed northern blots for atpH-2 and

rps14, which are not polyuridylylated, to determine whether they are

processed as efficiently as transcripts of genes that possess poly(U)

sites. The atpH-2 probe sequence was designed against the C-

terminal extension unique to the C. velia atpH-2 gene, and therefore

was not expected to cross-hybridise with transcripts of atpH-1 (Table

S6). Surprisingly, a northern blot probed for atpH-2 recovered

several high intensity, high molecular weight bands (fig. 5; panel D).

The 900 and 1500 nt bands correspond in size to polycistronic

atpH-2 transcripts obtained by circular RT-PCR that extended well

into the psbA CDS (Table S5). A lower intensity band at 500 nt was

of similar size to degraded transcripts observed in circular RT-PCR

that terminated within the atpH-2 CDS (fig. 5, panel D; Table S5).

We could not identify a band of corresponding size (600 nt) to

monocistronic atpH-2, even though such transcripts were identified

using circular RT-PCR. This suggests that monocistronic atpH-2

transcripts are not present at physiologically significant concentra-

tions (fig. 5, panel D; Table S5).

Similarly, in the case of the rps14, which lacks an associated

poly(U) site, only bands at 1700 and 2000 nt could be observed,

far larger than the c. 500 nt monocistronic transcripts obtained by

circular RT-PCR (fig. 5, panel E). The dominant populations of

rps14 transcripts must at least possess a lengthy 39 UTR, as similar

bands were also recovered by a probe that spanned the non-coding

region downstream of rps14 and upstream of the adjacent atpI gene

(fig. 5; panel F). This implies that, at least at certain loci, transcripts

of genes that lack associated poly(U) sites may be subject to limited

39 end-maturation events, and are instead retained on higher

molecular weight precursors.

Transcripts in the C. velia chloroplast are subject to
alternative processing

For several of the oligo-d(A) RT-PCR products sequenced (e.g.

C. velia atpI, V. brassicaformis rps18), the poly(U) site associated with a

Figure 5. Northern blots of Chromera velia chloroplast transcripts. Left, DIG-labelled RNA ladder I (Roche) with approximate size of each band.
The sizes of monocistronic polyuridylylated transcripts (panels A-C), or intact monocistronic non-polyuridylylated transcripts (panels D–E) as obtained
by circular RT-PCR are listed above the corresponding blot. Panels A–C: northern blots probed for psbA, atpB-2 and atpI (all contain an associated
poly(U) site). Bands are broadly equivalent to the size of monocistronic transcripts as obtained by circular RT-PCR. Panel D: northern blot probed for
atpH-2, which lacks an associated poly(U) site. Although a low abundance 500 nt band is present, the most intense bands likely correspond to
polycistronic precursors, as obtained by circular RT-PCR, at $900 nt. Panel E: rps14, which lacks an associated poly(U) site. Bands of an equivalent size
to a monocistronic rps14 transcript are not detectable, and instead, two higher molecular weight bands are observed, at 1700 nt, and at 2000 nt.
Panel F: intergenic region between rps14 and atpI, recovering bands of the same size as those in Panel D, indicating that rps14 transcripts extend
through this intergenic region.
doi:10.1371/journal.pgen.1004008.g005
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particular gene is positioned within the 59 end of the downstream

coding sequence. If these polyuridylylated transcripts are gener-

ated from the cleavage of longer, polycistronic precursors, the

poly(U) sites would indicate that transcripts are generated by

alternative 39 processing, in that the generation of a mature

mRNA from a polycistronic precursor transcript would prevent

the generation of an mRNA of the downstream gene from the

same precursor. Such alternative processing is similar to what has

been previously identified in other chloroplast lineages [33,47].

To determine whether alternative processing can occur in

chromerid chloroplasts, we investigated transcript processing at

the C. velia petG-petB-psbH-atpA locus (fig. S5). We identified

polyuridylylated dicistronic petG-petB and petB-psbH transcripts,

using similar RT-PCRs as before (fig. S5), demonstrating that

polyuridylylated polycistronic transcripts are present over this

locus. The poly(U) site associated with petB is located 27 nt within

the 59 end of psbH, and the psbH poly(U) site is located up to

584 nt into atpA (Table S2), hence it would be impossible to

generate complete psbH transcripts from a precursor that had

already yielded a polyuridylylated petB transcript, or atpA

transcripts from a precursor that yielded psbH. We could

additionally identify polyuridylylated monocistronic petB, mono-

cistronic psbH, and dicistronic petB-psbH transcripts by circular

RT-PCR (Table S5, panel D). This indicates that transcripts at

this locus do undergo some degree of 59 cleavage, and that

monocistronic transcripts could plausibly be cleaved from poly-

cistronic precursors.

It is possible that, instead of being generated by the processing

of common, polycistronic precursors, mRNAs in chromerid

chloroplasts that have overlapping terminus regions might be

separately transcribed from different promoter sites in the 59UTR

of each gene, and accumulate as independent populations of

transcripts. Although we cannot exclude the possibility that some

psbH transcripts are independently transcribed from promoter

sequences promoter elements positioned between the petB and

psbH genes, we could identify psbH transcripts from circular RT-

PCR that extend at the 59 end into the petB CDS by up to 261 nt

(Table S5, panel D), which clearly must have been initiated from

elements further upstream. While it is possible that psbH

transcripts are generated from a promoter internal to the petB

CDS, internal promoter sites are uncommon at least for protein-

coding genes in plant chloroplasts, and generally appear to give

rise only to very low levels of transcripts [35,36,50], so it is unlikely

that the transcriptional products of an internal promoter sequence

would be detectable by circular RT-PCR. Taken together, our

data therefore indicates that petB and psbH transcripts are most

likely to be cotranscribed from a common promoter element

upstream of the petB 59 end. In at least some cases, mature,

monocistronic petB and psbH mRNAs are generated by the

alternative 59 and 39 cleavage of a common polycistronic

precursor, which may be the dicistronic petB-psbH transcripts

obtained by circular RT-PCR (fig. 6, panel A).

Finally, we wished to determine whether alternatively processed

transcripts comprise a significant proportion of the chromerid

chloroplast transcript pool. We investigated the relative abundance

of different processing intermediates over the petB-psbH locus, by

analysing northern blots with probes for the C. velia petB and psbH

genes (fig. 6). The psbH probe was positioned downstream of the

petB poly(U) site, and the petB probe was positioned so that there

was minimal overlap with the 59 end of psbH transcripts (Table S1,

S5, S6). Monocistronic transcripts should therefore only be

detectable in either the petB or psbH blots, whereas common

polycistronic precursors should be detectable in both. We observed

1600 and 1800 nt bands in both the petB and psbH blots (fig. 6,

panel B). The 1600 nt band was of an equivalent size to

polyuridylylated, dicistronic petB-psbH transcripts obtained by

circular RT-PCR (Table S5, panel D), indicating that polycis-

tronic transcripts are abundant over this locus. We could not

identify any other high molecular weight bands of high intensity in

either blot. However, we also observed lower molecular weight

bands that were specific to either the petB or the psbH blots (fig. 6,

panel B). The 1100 nt band seen when probed for petB is similar in

size to a monocistronic transcript, which terminates at the 59 end

in the intergenic region between petG and petB, and at the 39 end in

the psbH CDS, as obtained by circular RT-PCR (fig. 6, panel B;

Table S5, panel D). Similarly, the 700 nt band seen when probed

for psbH is similar in size to the circular RT-PCR sequence of a

monocistronic transcript that terminates at the 59 end in the petB

CDS, and at the 39 end in the atpA CDS (fig. 6, panel B; Table S5,

panel D). This indicates that monocistronic petB and psbH

mRNAs, generated by alternative processing, do accumulate to

a detectable level in C. velia chloroplasts. If poly(U) tails are added

to transcripts prior to 59 processing, the selection of a specific

poly(U) site may even be involved in specifying which 59 end

maturation pathway occurs.

Plasmodium falciparum apicoplast transcripts are not
polyuridylylated

As transcripts from non-photosynthesis genes in chromerid

chloroplasts are generally not polyuridylylated, we wished to

determine whether poly(U) tails were added to apicoplast

transcripts, since proteins encoded in the apicoplast genome do

not function in photosynthesis. We accordingly performed oligo-

d(A) RT-PCRs as before, using RNA from Plasmodium falciparum,

and PCR forward primers specific to all thirty protein-coding

genes in the apicoplast. Oligo-d(A) RT-PCRs against apicoplast

genes typically did not yield distinct bands (Fig. 7, lanes 1–3). In

some cases, we could observe faint bands on gel electrophoresis of

oligo-d(A) RT-PCR products, which could potentially represent

polyuridylylated transcripts. However, when sequenced, no

product corresponded to apicoplast sequences. In contrast, we

could identify non-polyuridylylated transcripts for apicoplast genes

by amplification of cDNA generated using gene-specific primers

(fig. 7, lanes 4–6). We therefore conclude that only non-

polyuridylylated transcripts are present in the P. falciparum

apicoplast.

Discussion

We have characterised the distribution and function of poly(U)

sites across the chloroplast genomes of the chromerid algae

Chromera velia and Vitrella brassicaformis, and have shown that

Plasmodium falciparum transcripts do not undergo polyuridylylation.

The poly(U) sites found on chromerid chloroplast transcripts share

some degree of similarity with those of dinoflagellates. Variable or

alternative poly(U) sites, which appear to be particularly

widespread in C. velia, have also been observed in several

dinoflagellate species [12,16,33,51]. Furthermore, the association

between poly(U) sites and tRNA cleavage in V. brassicaformis has

previously been suggested for the dinoflagellate Heterocapsa triquetra

[43,51]. However, unlike in dinoflagellates, polyuridylylation

occurs only on specific transcripts in chromerid chloroplasts. To

date, only one protein-coding gene that lacks an associated poly(U)

site has been identified in a peridinin dinoflagellate chloroplast -

petD in Amphidinium carterae [15]. Conversely, large numbers of

protein-coding genes in both the C. velia and V. brassicaformis

chloroplasts lack an associated poly(U) site, and these principally

encode products that do not directly function in photosynthetic

Chloroplast RNA Processing in Alveolates

PLOS Genetics | www.plosgenetics.org 9 January 2014 | Volume 10 | Issue 1 | e1004008



electron transfer. While we could identify a small number of

photosynthesis genes in either C. velia or V. brassicaformis that lacked

poly(U) sites, or transcripts of non-photosynthesis genes that were

polyuridylylated (Table S2, fig. 2), very few of these exceptions

were conserved between both species, and our rps18 circular RT-

PCR data suggest that at least some of the poly(U) sites associated

with non-photosynthesis genes may not be physiologically

significant (Table S5, panel E). Thus, the polyuridylylation of

chromerid chloroplast transcripts appears to largely be dependent

on a photosynthetic function of the translation product.

With this in mind, the function of transcript polyuridylylation in

chromerid chloroplasts is particularly intriguing. The high

expression level of photosynthesis gene transcripts, which has

been suggested to help enable rapid photo-physiological adapta-

tion to changing light conditions [27,32], may suggest that the

poly(U) tail facilitates transcript accumulation in chromerid

chloroplasts. Transcript processing complexes are known to be

involved in negative regulation of non-coding transcripts in other

organelle lineages [4,52]. The presence or absence of a poly(U) site

might similarly be involved in discriminating between functional

and non-functional photosynthesis gene transcripts, such as those

of the functional atpH-1 gene and the non-functional atpH-2 gene,

and might potentially determine the levels to which they

accumulate in chromerid chloroplasts (fig. 3). Notably, the atpH-

2 CDS itself does not contain in-frame premature termination

codons, or any other features that would directly prevent its

expression. Thus, the loss of a poly(U) site on the atpH-2 transcript,

and consequent reduction in transcript abundance [32], could

minimise expression of atpH-2 without inactivation of the

underlying gene sequence. It remains to be determined whether

atpH-2 protein accumulates to a significant level in C. velia

chloroplasts, but our data as a whole certainly suggest that poly(U)

tails may facilitate expression of functional copies of photosynthesis

genes in chromerid chloroplasts.

One possible means by which the poly(U) tail could facilitate

gene expression is by coordinating other chloroplast transcript

processing events. As polyuridylylated polycistronic transcripts are

present in chromerid chloroplasts, poly(U) tails might be added

Figure 6. Processing of Chromera velia petB and psbH
transcripts. Panel A shows one possible model for the alternative
processing of transcripts over the C. velia petB-psbH locus. Complete
coding sequences are shown by thick black arrows, and non-coding
DNA by thin black lines. Thick grey lines show incomplete regions of
coding sequence on transcript ends that have been generated by
alternative processing. Vertical arrows show the likely progression of
transcript processing events. The petB and psbH genes are initially
cotranscribed from a promoter element located upstream of the petB
gene, as part of a long polycistronic transcript that may also extend
over the petG and atpA genes (i). The initial primary transcript
generated is likely to be processed at both the 59 and 39 ends to
form shorter polycistronic intermediates, such as a dicistronic poly-
uridylylated petB-psbH transcript that extends from the petB 59 UTR to a
poly(U) site positioned downstream of psbH, within the atpA CDS (ii).
This dicistronic transcript may then be cleaved to form either a
monocistronic polyuridylylated petB (iii) or psbH transcript (iv). As the
petB poly(U) site is positioned within the psbH CDS (iii), and the psbH 59
end is positioned within the petB CDS (iv), mature, monocistronic petB
and psbH transcripts cannot be generated from the same precursor, and
thus are cleaved from different transcript precursors via mutually
exclusive processing steps. Panel B shows northern blots analysed using
probes against the petB and psbH genes. Left DIG-labelled RNA ladder I
(Roche) with sizes indicated. The sizes of monocistronic polyuridylylated
transcripts as obtained by circular RT-PCR are listed above the
corresponding blot. In each blot, two conserved higher molecular
weight bands are present at 1600 and 1800 nt, which are likely to likely

represent polycistronic precursors covering the petB and psbH coding
sequences. In addition, lower molecular weight bands unique to either
the petB (1100 nt) or psbH blots are observed (700 nt), consistent with
monocistronic transcripts as recovered by circular RT-PCR.
doi:10.1371/journal.pgen.1004008.g006

Figure 7. Poly(U) tails are not added to apicoplast transcripts in
Plasmodium falciparum. This gel photo shows the result of a series of
RT-PCRs to characterise polyuridylylation for transcripts from the P.
falciparum rpoB, rpoC and sufB genes. Lanes 1–3: Oligo-d(A) RT-PCRs for
rpoC (lane 1), rpoD (lane 2) and sufB (lane 3) transcripts. Lanes 4–6:
Gene-specific RT-PCR for rpoC, rpoD and sufB.
doi:10.1371/journal.pgen.1004008.g007
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relatively early in transcript processing. For certain genes that

possess poly(U) sites (petB, psbH), polycistronic transcripts accumu-

late to concentrations detectable in northern blots, but in these and

other genes (e.g. psbA, atpB-2, atpI), monocistronic mRNAs, which

have presumably been cleaved from polycistronic precursors, are

abundant (fig. 5, panels A–C, fig. 6). Similar patterns of transcript

abundance have recently been reported for other photosynthesis

genes in C. velia by Janouškovec et al. [32]. In contrast to the high

levels of transcript processing observed for polyuridylylated genes,

transcripts from the rps14 and atpH-2 genes (which do not contain

associated poly(U) sites) are predominantly present as high

molecular-weight precursors (fig. 5, panels D–F), indicating that

transcripts are subject to very limited 39 end processing in the

absence of a poly(U) tail, and the presence of a poly(U) site could

be associated with the cleavage of polycistronic transcripts to

monocistronic mRNAs. At loci such as C. velia petG-petB-psbH that

contain multiple possible poly(U) sites, the selection of a poly(U)

site may define which products are generated. Alternative

processing of precursors containing multiple potential photosyn-

thesis gene transcripts has previously been suggested to occur in

dinoflagellates [15,33], and is similar to alternative 39 polyadeny-

lylation sites previously observed in nuclear genomes, which may

substantially alter the coding capacity and regulatory properties of

nuclear transcripts [53,54]. It will be interesting to test how the

presence of a poly(U) tail may influence the accumulation

and expression of polyuridylylated transcripts. For example,

polyuridylylated transcripts might be more stable than non-

polyuridylylated transcripts following the inhibition of chloroplast

transcription, or be more frequently associated with polysomal

fractions in chromerid chloroplasts..

The distribution and function of the poly(U) machinery in

chromerid chloroplasts may underline key events in the evolution

of the non-photosynthetic apicoplast found in apicomplexans. The

most parsimonious scenario is that transcript polyuridylylation

arose in a photosynthetic common ancestor of chromerids,

dinoflagellates, and apicomplexans (fig. 8, point A). It is not

possible to determine whether poly(U) tails in this common

ancestor were added only to photosynthesis transcripts, or were

initially applied to all chloroplast transcripts with specificity arising

later, as the chloroplasts of peridinin dinoflagellates do not retain

any recognisable genes of non-photosynthetic function, which

instead have been almost entirely relocated to the nucleus

[13,55,56] (fig. 8, point B). However, in the common ancestor of

chromerids and apicomplexans, the polyuridylylation machinery

exclusively targeted transcripts of photosynthesis genes (fig. 8,

point C), with specific exceptions and counterexamples having

arisen subsequently in each lineage since their divergence. In each

chromerid species, poly(U) sites have been lost from a small

number of photosynthesis genes, and gained by a few non-

photosynthesis genes. In contrast, within parasitic apicomplexans,

all of the photosynthesis genes have been lost from the apicoplast,

presumably concomitantly with the loss of the associated

polyuridylylation machinery (fig. 8, point D) [10]. It is possible

that an early ancestor of apicomplexans changed from a

photosynthetic to a non-photosynthetic lifestyle, and the poly(U)

machinery was subsequently lost due to a lack of selective pressure

for its retention. Equally, if the presence of a poly(U) pathway were

essential for the correct processing of photosynthesis gene

transcripts, then the loss of the protein(s) involved in polyuridylyla-

tion might have been a key step in the transition from a

photosynthetic to a parasitic lifestyle. Examples are known from

parasitic plants where the loss of a consensus transcript processing

site appears to precede inactivation of a chloroplast gene, and

presumably its eventual loss of the chloroplast genome [4,57].

Further analysis of the gene expression machinery of chromerids

may provide important insights into the evolutionary steps

required to convert a photosynthetic alga into a non-photosyn-

thetic parasite such as Plasmodium.

Materials and Methods

Ethics statement
All work involving human blood was carried out in accordance

with the UK Human Tissue Act (2004), and we thank our

anonymous donors for their blood.

Cultures
Liquid cultures of Chromera velia CCMP2878 were grown in f/2

medium at 18uC, under 30 mE illumination on a 16:8 h L:D cycle.

Cultures were harvested at 18 days post-inoculation (mid-log

phase) for RT-PCR, and at 30 days (early stationary phase) for

northern blotting. C. velia cells were predominantly in coccoid

form at all time points harvested.

Vitrella brassicaformis CCMP3155 were grown under the same

conditions in f/2 medium supplemented with 100 mg/l ampicillin,

and 20 mg/l each kanamycin and spectinomycin. Cultures were

harvested at approximately two to three months post-inoculation,

at which point pigmented colonies of vegetative cells were visible

in the culture flask. Amphidinium carterae CCMP 1314 and

Phaeodactylum tricornutum CCAP 1055/2 were grown under the

Figure 8. The evolution of transcript polyuridylylation in the
alveolates. This schematic figure shows the evolutionary history of the
chloroplasts of dinoflagellates, apicomplexans, and chromerids . The
phylogenetic relationships between each lineage are given as per [11].
The content of each associated chloroplast genome is depicted by
shaded boxes on each branch. The polyuridylylation of chloroplast
transcripts is likely to have arisen once, in a common ancestor of all four
lineages, which contained both photosynthesis and non-photosynthe-
sis genes in its genome (point A). Following their divergence from the
other three lineages, dinoflagellates relocated all non-photosynthesis
genes to the nucleus, leaving only photosynthesis genes, of which
almost all possess an associated poly(U) site (point B). As a result, it is
not possible to determine whether the chloroplast polyuridylylation
machinery was initially applied to all chloroplast transcripts, or only to
photosynthesis gene transcripts; however, the polyuridylylation ma-
chinery of the last common ancestor of chromerids and apicomplexans
was certainly specific to photosynthesis genes (point C). While this
situation has broadly remained true in each chromerid lineage, the
apicomplexans have subsequently lost both photosynthesis genes and
the associated chloroplast transcript processing machinery from their
chloroplast (point D).
doi:10.1371/journal.pgen.1004008.g008
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same conditions in f/2 medium as previously described [12], and

harvested at 25 days post-inoculation (mid-log phase).

Plasmodium falciparum was cultured in donated red blood cells

according to a method previously described [58].

Nucleic acid isolation
Mature cultures of C. velia and V. brassicaformis were pelleted,

washed twice with sterile artificial seawater, and resuspended in

1 ml Trizol reagent (Invitrogen)/30 mg cells. Each resuspension

was ground to a powder in liquid nitrogen in a clean pestle and

mortar that had been prewashed in 10% hydrogen peroxide to

remove RNase.

The powdered cells were resuspended in an additional 1 ml

Trizol/30 mg cells, and Trizol phase extraction, DNase treatment

and RNA cleanup was performed as previously described [12,33].

Each RNA sample was confirmed to be DNA-free through two

rounds of direct PCR. Total RNA was harvested from asynchro-

nous P. falciparum culture using Trizol (Invitrogen) as previously

described [59]. RNA for use in RT-PCR reactions was stored at 2

80uC in diethylpyrocarbonate-treated water. RNA for use in

northern blots was not subjected to DNase treatment, but

resuspended immediately following precipitation in formamide,

and stored at 280uC. Genomic DNA was harvested from C. velia

as has previously been described [11].

RT-PCR and sequencing
Oligo-d(A) and gene-specific RT-PCRs were performed for C.

velia and V. brassicaformis as previously described [12]. Due to the

extreme AT-richness of the genome, P. falciparum PCR reactions

were carried out for 30 elongation cycles, with an annealing

temperature of 50uC and an extension temperature of 60uC. RNA

of C. velia was circularised, and circular RT-PCRs were performed

using previously described methods [12,33]. Primers for each RT-

PCR reaction are tabulated in Table S4.

PCR products were purified using the MinElute PCR cleanup

kit (Qiagen). Cloned products were ligated into pGEM-T Easy

vector (Promega), transformed into competent Escherichia coli

DH5a, and purified with either a GeneJET miniprep kit

(Fermentas) or a Qiagen miniprep kit prior to sequencing.

Products were sequenced using an Applied Biosystems 3730xl

DNA Analyzer.

Sequence analysis
Sequences were aligned against the C. velia and V. brassicaformis

chloroplast genome using MAFFT (http://mafft.cbrc.jp/

alignment/software/). To identify putative bacterial promoters

in the C. velia chloroplast, we extracted the 59 UTR sequence of

each gene, and searched for promoter sequences using the Neural

Network Promoter Prediction server [42] (http://www.fruitfly.

org/seq_tools/promoter.html). A pilot experiment was performed

using the barley chloroplast genome, for which promoters have

been extensively characterised [36] , and a cut-off value of 0.8 was

selected as identifying the highest number of promoters with a

minimal false positive rate.

To identify putative sequences associated with poly(U) sites,

alignments of every 39 UTR sequence, and the 100 bp of genomic

sequence downstream of each poly(U) site, were constructed. To

search for sequences with conserved patterns of purines and

pyrimidines, sequences were manually recoded using RY IUPAC

nomenclature, as has previously been described [60]. Conserved

primary sequences were searched by visual inspection of

alignments, by reciprocal BLASTing of each sequence against

each other sequence within the alignment, and with three online

motif search programs: Bioprospector (http://robotics.stanford.

edu/,xsliu/BioProspector/), Improbizer(http://users.soe.ucsc.

edu/,kent/improbizer/improbizer.html), and PhyloGibbs(http://

www.phylogibbs.unibas.ch/cgi-bin/phylogibbs.pl). GC contents

were plotted using the crude alignments and GeneIOUS Pro

(http://www.geneious.com/). Conserved secondary structures were

searched using the locARNA (http://www.bioinf.uni-freiburg.de/

Software/LocARNA/) and Carnac web servers (http://bioinfo.lifl.

fr/carnac/). Oligo-d(A) RT-PCR products were deposited in

GenBank (Accession numbers KC618536-KC618583).

Northern blotting
Northern blots were performed using a DIG northern starter kit

(Roche). For each blot, 3 mg total cellular RNA was diluted to

20 ml in formamide, melted at 65uC for 5 minutes, snap frozen,

and separated by electrophoresis at 100 V on a 1% TBE-agarose

gel, containing 500 mg/l guanidine thiocyanate, for 90 minutes.

4 ml DIG-labelled RNA ladder I (Roche), again diluted to 20 ml in

formamide, melted and snap frozen, run alongside as a size

marker, and a formamide-only lane was run as a negative control.

The northern transfer was set up overnight per the manufacturer’s

instructions, using a positively charged nitrocellulose membrane

(Roche). To confirm RNA integrity during electrophoresis, an

additional lane of total cellular RNA was run out, stained post-hoc

in ethidium bromide, and visualised with UV. The residual gel

slices left following compression were likewise stained and

visualised to confirm RNA integrity during transfer.

Blots were hybridised overnight at 65uC against complementary

RNA probes, generated by in vitro transcription of a template

sequence, using T7 RNA polymerase and digoxigenin-labelled

nucleotides. Template sequences were generated by ligating PCR

products against desired regions of the C. velia chloroplast genome

into pGEM-T Easy vector sequence (Promega), and amplifying

the ligation products using a T7 primer and a PCR forward

primer, to generate products containing the short, 49 bp T7 arm

of the vector sequence fused to an antisense orientation insert.

Probe sequences are tabulated in Table S1. Hybridisation

products were visualised using an anti-digoxigenin/CPD-star

system (Roche), per the manufacturer’s instructions.

Supporting Information

Figure S1 Associated poly(U) sites of the Chromera velia atpB-2 gene.

This alignment shows the first 500 bp downstream of the Chromera

velia atpB-2 gene. Grey arrows correspond to the different poly(U)

sites, identified from the sequences of twenty randomly selected

separate, individual cloned oligo-d(A) RT-PCR products using a

gene-specific forward PCR primer against C. velia atpB-2. Numbers

indicate that multiple colonies gave rise to the same poly(U) site.

(TIFF)

Figure S2 tRNA-associated poly(U) sites in Vitrella brassicaformis.

These diagrams show the 39 UTRs of transcripts for the V.

brassicaformis psaD and ccs1 genes, as defined by oligo-d(A) RT-

PCR. Grey arrows show the associated poly(U) addition sites for

each transcript; the poly(U) tail is not directly shown. In both

genes, the poly(U) site is positioned immediately upstream of an

associated tRNA (respectively tRNL-CAA and tRNN-GUU). The

position and structure of each tRNA, as predicted by the

tRNAscan-SE server (http://lowelab.ucsc.edu/tRNAscan-SE/) is

shown for each transcript sequence.

(TIFF)

Figure S3 Alignments of chromerid chloroplast atpH sequences.

Panel A shows a protein alignment contains the predicted

translation products of Chromera velia atpH-1 and atpH-2, and
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Vitrella brassicaformis atpH, as well as sequences from other

representative photosynthetic eukaryotes. Sequence alignments

were constructed using MAFFT (http://mafft.cbrc.jp/alignment/

server/index.html) using the default settings. An 85% consensus

sequence is given at the top of the alignment; characters that

match the consensus are shaded for each sequence. The predicted

translation product of C. velia atpH-2 contains an 89aa C-terminal

extension not found in any other AtpH sequence. Panel B shows

nucleotide sequence BLAST alignments for the 59 end of the

coding sequence (i) and 59 UTR (ii) of the C. velia atpH gene copies.

For each alignment, atpH-1 is shown in the query line, and atpH-2

in the subject line. A high degree of sequence conservation (93%) is

observed for both regions. This suggests that the very different

transcript abundances observed for each gene copy is likely to be

dependent on sequence features at the 39 end of each transcript.

(TIFF)

Figure S4 Polycistronic polyuridylylated transcripts in Chromera

velia. atpH2-psbA, ORF247-atpB2, and rps14-atpI all consist of an

upstream gene that lacks an associated poly(U) site, and a

downstream gene that contains an associated poly(U) site as shown

in the diagram. Oligo-d(A) cDNA was used as the PCR template,

and a PCR was performed to identify dicistronic transcripts, using

a forward primer against the 59 end of the upstream gene, and a

reverse primer internal to the downstream gene. PCR over the

atpH2-psbA intergenic region using lane 1: oligo-d(A) cDNA; lane

2, gDNA; lane 3, template negative conditions. Lanes 4–6: as lanes

1–3 with ORF247-atpB2 locus. Lanes 7–9: as lanes 1–3 with rps14-

atpI locus.

(TIFF)

Figure S5 Cotranscription of the Chromera velia petG-petB-psbH

locus. As figs. 3 and 4, a transcript diagram with each of the PCR

amplicons tested is shown beneath the gel photo. Lanes 1–3: oligo-

d(A) RT-PCR for psbH, petB and petG transcripts (all polyuridy-

lylated). The poly(U) sites associated with the petB and psbH genes

are positioned respectively inside the 59 ends of the psbH and atpA

coding sequences, hence mature petB, psbH and atpA mRNAs

cannot be generated from the same transcript. lanes 4–5: oligo-

d(A) RT-PCR for the intergenic petG-petB and petB-psbH regions;

lanes 6–7: PCR for the same intergenic regions using DNA

template; lanes 8–9: PCR for the same intergenic region using

template negative conditions. The positive results for lanes 4–5

indicates that individual poly(U) sites within this locus are

generated by alternative 39 processing of polycistronic precursors.

(TIFF)

Table S1 Tabulated primers used. Panel 1 gives primers for

oligo-d(A) RT-PCRs of chromerid chloroplast transcripts (includ-

ing control reactions) and nested RT-PCRs to detect dicistronic

polyuridylylated transcripts in Chromera velia, and Panel 2 gives

primers used for circular RT-PCRs. Panel 3 gives primers for

oligo-d(A) RT-PCRs of the Plasmodium falciparum apicoplast.

(XLSX)

Table S2 Tabulated results for oligo-d(A) RT-PCRs against

Chromera velia and Vitrella brassicaformis chloroplast transcripts. This

table shows the result of every diagnostic oligo-d(A) RT-PCR

reaction performed for chromerid chloroplast genes in this study.

Each studied gene is listed either as having a direct function in

photosynthetic electron transfer (PS), as having a defined function

that is not directly associated with photosynthesis (NON-PS), or as

being an ORF with no defined function (ORF). The results of

oligo-d(A) RT-PCRs are given as follows: (Y), a poly(U) site is

associated with a given gene, as confirmed by direct sequencing of

the oligo-d(A) RT-PCR product; (2), there is no poly(U) site

associated with the given gene, as confirmed by negative oligo-d(A)

primed RT-PCR results through two successive rounds of PCR

amplification; (n/a), the gene is absent from the given chloroplast

genome. The positions of each poly(U) site on the NCBI accessions

for each chromerid chloroplast genome sequence are given. Genes

that are asterisked were found to have multiple alternative

associated poly(U) sites either from the presence of multiple bands

on oligo-d(A) RT-PCR gels, or through cloning and sequencing of

individual RT-PCR products; here, the most extreme positions

and values identified are given. The total frequency of poly-

uridylylated photosynthesis and non-photosynthesis genes, the

mean 39 UTR length, and the mean poly(U) tail length for each

species are given at the bottom. In genes where multiple potential

poly(U) sites were identified, the averages of the most extreme

values observed were used for calculations of total species mean

values.

(XLSX)

Table S3 Bioinformatic analysis of the distribution of poly(U)

sites in Chromera velia. Panel 1 tabulates the polyuridylylation state,

predicted function, and location of each gene within operons, and

the presence of predicted bacterial promoters in the C. velia

chloroplast genome. Operons are defined from the genomic

sequence [11], and promoter sites are predicted via a Neural

Network prediction server [42]. The chi-squared association

values against poly(U) sites for each value are shown at the

bottom, calculated both against the genome as a whole, and

against genes of recognisable predicted function only. Panel 2 gives

an exemplar list of bacterial-type promoters obtained by screening

the first 50 kbp of the C. velia genome, with a threshold probability

of 0.8. Panel 3 tabulates the polyuridylylation state of each gene

against the mean read coverage obtained by Janouškovec et al.

[32], in absolute terms, logarithmic terms, and ranked terms. The

mean transcript abundance for genes that possess poly(U) sites

versus genes that do not is shown below, calculating against the

genome as a whole, and against each functional category of genes

(photosynthesis genes, non-photosynthesis genes, and unannotated

ORFs). In each case tested, genes that possess poly(U) sites are

more abundant represented in the C. velia chloroplast transcript

pool than genes that lack poly(U) sites.

(XLSX)

Table S4 Alternative poly(U) sites observed in chromerid

chloroplast genes. This table shows each of the poly(U) sites

observed by cloning and sequencing individual oligo-d(A) RT-

PCR products for the Chromera velia atpB-2, atpI, petD, psaC and psbA

genes, and the petD and psbA genes of Vitrella brassicaformis. As per

Table S2, the position of the poly(U) site on the corresponding

genome sequence, plus the 39 UTR and poly(U) tail lengths are

given.

(XLSX)

Table S5 Tabulated circular RT-PCR sequences for Chromera

velia psbA,atpH-2, atpB-2, atpI, rps14, petB, psbH and rps18. These

tables show the terminus positions of the eight genes studied by

circular RT-PCR, and the transcript sequences obtained for them.

Transcripts are grouped by the primer combinations used to

obtain them. For rps18, two alternative PCR forward primers were

used: a primer that annealed within the 39 end of the CDS (series

A), and a primer that annealed immediately upstream of the

poly(U) site, within the 29 UTR (series B). For each transcript, the

start and end positions on the genomic sequence is shown, as well

as the transcript length, and the distance of the 59 and 39 ends

from the gene termini. Unless specifically noted otherwise, non-

polyuridylylated transcripts terminate upstream of the consensus

poly(U) site for the gene. Transcripts of equivalent size to bands
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detected in the corresponding northern blots (figs. 5, 6) are

highlighted in bold.

(XLSX)

Table S6 Tabulated probes used for northern blots of Chromera

velia chloroplast transcripts. For each probe, both the sequence

itself, including the T7 arm of the pGEM-tEasy vector, and the

positions on the C. velia chloroplast genome from which the probe

was generated are given.

(XLSX)
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31. Botté CY, Yamaryo-Botté Y, Rupasinghe TW, Mullin KA, Macrae JI, et al.

(2013) Atypical lipid composition in the purified relict plastid (apicoplast) of

malaria parasites. Proc Natl Acad Sci USA 110: 7506–7511.
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