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ABSTRACT 

Objectives: Mechanical power (MP) and driving pressure (∆P) have been proposed as 

indicators, and possibly drivers, of ventilator-induced lung injury. We tested the utility of these 

different measures as targets to derive maximally protective ventilator settings.  

 

Design: A high-fidelity computational simulator was matched to individual patient data and used 

to identify strategies that minimize ∆P, MP and a modified version of MP (MMP) that removes 

the direct linear, positive dependence between MP and PEEP. 

 

Setting: Interdisciplinary Collaboration in Systems Medicine Research Network. 

 

Subjects: Data were collected from a prospective observational cohort of pediatric ARDS from 

the Children’s Hospital of Philadelphia (N=77) and from the low tidal volume (VT) arm of the 

ARDSNetwork tidal volume trial (N=100). 

 

Interventions: Global optimization algorithms evaluated more than 26.7 million changes to 

ventilator settings (approximately 150,000 per patient) to identify strategies that minimize ∆P, 

MP or MMP. 

 

Measurements and Main Results: Large average reductions in ∆P (23%-Pediatric, 23%-Adult), 

MP (44%-Pediatric, 66%-Adult) and MMP (61%-Pediatric, 67%-Adult) were achievable in both 

cohorts when oxygenation and ventilation were allowed to vary within pre-specified ranges. 

Reductions in ∆P (12%-Pediatric, 2%-Adult), MP (24%-Pediatric, 46%-Adult) and MMP (44%-
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Pediatric, 46%-Adult) were achievable even when no deterioration in gas exchange was allowed. 

Minimization of MP and MMP was achieved by increasing VT and decreasing respiratory rate 

(RR). In the pediatric cohort, minimum ∆P was achieved by reducing VT and increasing RR and 

PEEP. The ARDSNetwork dataset had limited scope for further reducing VT, but ∆P was still 

significantly reduced by increasing PEEP. 

 

Conclusions: Our analysis identified different strategies that minimized ∆P or MP consistently 

across pediatric and adult datasets. Minimizing standard and alternative formulations of MP led 

to significant increases in VT. Targeting ∆P for minimisation resulted in ventilator settings that 

also reduced MP and MMP, but not vice versa. 
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INTRODUCTION 

Mechanical power (MP) (1-3) and driving pressure (∆P) (4) have recently been proposed 

as measures, and potentially drivers, of ventilator-induced lung injury (VILI) in acute respiratory 

distress syndrome (ARDS). MP is defined as (1)): 

𝑀𝑃 = 0.098 × 𝑅𝑅 × {𝑉𝑇
2 × [0.5 × 𝐸𝐿𝑟𝑠 + 𝑅𝑅 ×

(1 + 𝐼: 𝐸)

60 × 𝐼: 𝐸
× 𝑅𝑎𝑤] + 𝑉𝑇 × 𝑃𝐸𝐸𝑃}  

where ELrs is the elastance of the respiratory system, I:E is the inspiratory-to-expiratory time 

ratio, and Raw is the airway resistance. ΔP is defined as the difference between plateau pressure 

(Pplat) and PEEP, and reflects the tidal volume (VT) normalized to respiratory system compliance.  

Arguments for the importance of MP focus on the injurious biophysical role of energy 

(stress X strain) and dynamics (rates of airway pressure change and cycling frequency) during 

mechanical ventilation (2), whereas arguments for the centrality of ∆P are supported by 

statistical and computational analyses of trial data that show strong correlations between ∆P and 

mortality (4, 5). However, the rationale for both MP and ∆P rely on re-analyses of adult ARDS 

cohorts, and while initial studies are in progress (NCT03616704 and NCT03939260), an 

intervention targeting either parameter has yet to be proven efficacious.  

To date, there has been no randomized trial to determine the appropriate application of 

any type of protective ventilation in pediatric ARDS, and observational studies offer conflicting 

results (6-10). Ventilator management in children is often extrapolated from adults, with 

uncertain applicability (10). Pediatric ARDS has a distinct epidemiology, with different inciting 

etiologies and predictors of outcome (11, 12), relative to adults, necessitating specific 

investigations in children. Overall, even less evidence is available for children regarding the 

utility of either MP or ∆P as metrics of VILI or as modifiable ventilator parameters.  
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To investigate how minimizing either MP or ∆P would affect ventilator settings and gas 

exchange in ARDS, we employed a high-fidelity computational simulator matched to individual 

patient data from two separate cohorts, pediatric and adult. High-fidelity simulation holds the 

potential to develop, test, and directly compare ventilation strategies prior to exposing vulnerable 

patients to potentially damaging interventions (13). Global optimization algorithms, 

implemented on high-performance computing clusters, were used to evaluate more than 26.7 

million different changes to the baseline ventilator settings to identify those that minimized ∆P, 

MP, and a modified formulation of MP (MMP) based on concerns (14) regarding the direct, 

positive, linear effect of positive end-expiratory pressure (PEEP) on MP in the original MP 

equation.  Changes to ventilator settings were constrained within specified limits, and maximally 

protective settings optimizing ∆P, MP, and MMP were calculated for two different scenarios (a) 

allowing, within safe limits, some deterioration in gas exchange from baseline, and (b) without 

allowing any deterioration in gas exchange. The primary aim of this study was to assess the 

scope for achieving more protective ventilation by separately minimizing ∆P, MP, or MMP. A 

secondary goal of the study was to investigate to what extent protective ventilation strategies 

identified for the pediatric cohort were consistent with those computed for the adult cohort. 

 

MATERIALS AND METHODS 

Patient Selection 

Pediatric cohort: Patients were selected from an ongoing (2011 onwards) prospective 

cohort (15) of intubated children meeting Berlin ARDS criteria from the Children’s Hospital of 

Philadelphia (CHOP). The study was reviewed by the CHOP Institutional Review Board, and 

requirement for informed consent waived. Seventy-seven subjects between 1 month and 18 years 
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of age (Mean: 3.1 ± 3.3 years, 23% severe, 44% moderate and 33% mild ARDS), ventilated via 

cuffed endotracheal tube during neuromuscular blockade, were selected. Subjects were selected 

based on the initial development and validation of the pediatric algorithm. An initial 

development cohort of children with identically sized endotracheal tubes (5.0 mm internal 

diameter) under neuromuscular blockade, and two subsequent test cohorts of infants under 2 

years of age and children with VT > 10 mL/kg. Arterial blood gases (ABG) and ventilator 

changes during the first 72 hours of ARDS were recorded. All subjects were ventilated with 

decelerating flow in either pressure control or pressure-regulated volume control. Peak 

inspiratory pressure (PIP), PEEP, and exhaled VT were collected at the ventilator for patients 

with VT ≥ 100 mL using integrated software provided by the manufacturer (Dräger, Inc., Lübeck, 

Germany), and using a sensor proximate to the endotracheal tube for VT < 100 mL.  

Adult cohort: Data were extracted from 100 adult ARDS patients randomly selected 

(14% severe, 66% moderate, 20% mild) from the low VT arm of the ARMA trial (16). Data were 

provided in a de-identified state by the Biologic Specimen and Data Repository Information 

Coordinating Centre the National Heart, Lung and Blood Institute, and informed consent was not 

required. All patients received mechanical ventilation in assist-control ventilation mode, and we 

used the earliest available post-randomization data. 

 

Simulator Calibration to Patient Data 

Analyses were carried out using a simulator that includes representations of multiple 

interacting organ systems, incorporates a high level of physiological detail, and has been 

extensively validated in several previous studies of adult (17, 18) and pediatric ARDS (13) 

(Supplemental File, section S1-S2). The simulator was matched to individual patient data 
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(ventilator parameters and ABGs at single time points) using advanced global optimization 

algorithms, (Supplemental File, section S3). The optimal parameterisation of the simulator for 

each patient was used in all subsequent analyses (in the case of multiple parameterisations 

returning similar fits, robustness of the results was checked on the best 20). 

 

Maximally Protective Ventilation as a Constrained Optimization Problem 

After matching the model to each individual patient, the potential for achieving 

maximally lung-protective (but acceptably effective) ventilation was investigated by formulating 

and solving different optimization problems. We used advanced global optimization algorithms 

implemented on high-performance computing clusters to exhaustively search through more than 

26.7 million different changes (approximately 150,000 per patient) to the reported ventilator 

settings – namely VT, respiratory rate (RR), FIO2, PEEP and duty cycle (DC, inspiratory-to-total 

time ratio) to identify which settings produced minimum values of the following quantities: 

• ΔP (difference between Pplat) and PEEP), with Pplat is calculated directly from the simulator. 

• Mechanical Power, defined as (1): 

𝑀𝑃 = 0.098 × 𝑅𝑅 × {𝑉𝑇
2 × [0.5 × 𝐸𝐿𝑟𝑠 + 𝑅𝑅 ×

(1 + 𝐼: 𝐸)

60 × 𝐼: 𝐸
× 𝑅𝑎𝑤] + 𝑉𝑇 × 𝑃𝐸𝐸𝑃} (1) 

where ELrs is respiratory system elastance, I:E is inspiratory-to-expiratory ratio, and Raw is the 

airway resistance. Note that, as shown in [1], the MP equation can also be simplified to: 

 

𝑀𝑃 =  0.098 × 𝑅𝑅 × 𝑉𝑇 × (𝑃𝐼𝑃 − 0.5 × ∆𝑃) (2) 

• A modified version of MP, given by: 

𝑀𝑀𝑃 = 0.098 × 𝑅𝑅 × 𝑉𝑇
2 × [0.5 × 𝐸𝐿𝑟𝑠 + 𝑅𝑅 ×

(1 + 𝐼: 𝐸)

60 × 𝐼: 𝐸
× 𝑅𝑎𝑤] (3) 

which removes the direct linear, positive dependence between MP and PEEP (14). 
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To ensure the relevance of these optimization problems to clinical practice, it is necessary 

to constrain the search for maximally protective settings to include only those that do not 

compromise oxygenation and ventilation. We did this by defining upper and lower limits for the 

ventilation settings themselves, and by defining allowable limits for the values of PIP, PaO2 and 

PaCO2 produced by the settings (Table 1). Ventilation settings that minimized ∆P, MP and MMP 

while keeping values of PIP, PaO2 and PaCO2 within their specified limits were computed for 

each patient (Approach 1). In the pediatric cohort, these limits were based on those used in the 

ARDSNetwork trial, adapted to match pediatric conventions (6, 8, 10, 19). As the pediatric 

cohort was developed using decelerating flow, as is most common in pediatrics (20), PIP was 

used as a constraint, rather than Pplat. When data indicated that a patient’s initial ventilator state 

did not comply with one or more of the specified safety limits, changes to the settings were only 

made if they led to an improvement in the relevant parameters (e.g., reducing PaCO2 or PIP). 

As an alternative strategy, we also investigated whether changes to ventilator settings 

could be found that minimized ∆P, MP and MMP without resulting in any deterioration in PaO2 

and PaCO2 from baseline values (Approach 2). An upper limit of 35 cmH2O was applied for PIP 

in the pediatric cohort. Due to relatively higher baseline PIP in adults, the upper limit was set to 

the corresponding baseline values for these patients (Supplemental File, section S6). 

 

Statistical Analysis 

 Data are presented as mean ± standard deviation (SD), or shown graphically using 

median, interquartile and total ranges. To avoid violation of underlying distribution assumptions, 

variables were compared using the signed-rank test. A two-sided p-value of < 0.05 was 

considered significant. 
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RESULTS 

The Simulator Accurately Represents Individual Patient Data  

The ability of the simulator to reproduce patient data was verified by comparing its 

responses (PaO2 and PaCO2) against data on the responses of patients from both cohorts. After 

calibration (Supplemental File, section S3), each patient in the cohort was simulated for 30 

minutes (or until reaching steady-state) under volume controlled mechanical ventilation with 

constant flow in the supine position. Figure 1-(A) to 1-(C) compares the outputs of the simulator 

with the original data, expressed as median, interquartile range and actual range for the entire 

cohort. Figure 1-(D) to 1-(F) shows the Bland-Altman plots for data points versus simulator 

output values. These results confirm the capability of the simulator to accurately replicate 

multiple output values of the patients included in both cohorts across a range of different 

ventilator settings. 

 

Reductions in ∆P, MP, and MMP were Achieved in Both Cohorts 

When ABGs were allowed to vary within pre-specified ranges (Table 1), average 

maximum reductions in ∆P of 3.0 ± 2.2 cmH2O (23%) compared to baseline values in the 

pediatric cohort and 3.2 ± 2.1 cmH2O (23%) in the adult cohort were achievable (Figure 2). 

Reductions in ∆P of over 1 cmH2O were achieved in 95% of pediatric and 82% of adult patients. 

The corresponding reductions when targeting MP were 3.3 ± 2.6 J.min-1 (44%) in the pediatric 

cohort (87% of whom had MP reduced by over 20%) and 21.0 ± 5.4 J.min-1 (66%) in the adult 

cohort, with all patients reducing MP by over 20%. When targeting MMP, reductions were 3.7 ± 

2.3 J.min-1 (61%) in the pediatric cohort and 15.2 ± 4.9 J.min-1 (67%) in the adult cohort 
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(reductions of over 20% in 95% and 99% of the pediatric and adult cohorts, respectively). 

Reductions were statistically significant in all groups (signed-rank test p < 0.05). In all the above 

cases, more protective ventilation was achieved with no significant deterioration in patient 

oxygenation (PaO2), although PaCO2 did consistently increased towards the upper limits 

(Supplemental File, Figure S5). In both cohorts, settings that minimized ∆P also reduced MP and 

MMP, whereas settings that minimized MP and MMP increased ∆P (largely due to the resulting 

increases in VT (see below). 

When the optimizations were constrained to allow no deterioration in gas exchange (i.e. 

only changes that maintained, or improved, PaO2 and PaCO2 with respect to baseline values), 

reductions were achievable in ∆P of 1.6 ± 1.4 cmH2O (12%) and 0.4 ± 1.0 cmH2O (2%) were 

achievable compared to baseline values in the pediatric and adult cohorts, respectively (Figure 

3). Reductions of ∆P of over 1 cmH2O were achieved in 58% of pediatric and 16% of adult 

subjects. Corresponding reductions when targeting MP were 1.7 ± 1.4 J.min-1 (24%) in the 

pediatric cohort and 14.4 ± 4.9 J.min-1 (46%) in the adult cohort, with 57% of pediatric and 98% 

of adult patients having MP reduced by over 20%. When targeting MMP, the reductions 

achievable were 2.5 ± 1.5 J.min-1 (44%) in the pediatric cohort (90% of whom had reductions of 

more than 20%) and 10.3 ± 4.4 J.min-1 (46%) in the adult cohort (97% achieving reductions of 

more than 20%). Reductions were significant in all cases (signed-rank test p < 0.05). 

 

Minimum values of ∆P and MP are Achieved by Distinct Ventilation Strategies 

Minimum values of MP in both adult and pediatric cohorts were produced by increased 

VT (Pediatric: 1.4 ± 1.8 mL.kg-1 (+19%), Adult: 1.9 ± 1.1 mL.kg-1 (+34%)), decreased RR 

(Pediatric: -8.6 ± 5.1 bpm (-34%), Adult: -15.6 ± 5.0 bpm (-56%)), DC at or close to its specified 
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upper limit of 0.6, and PEEP at or close to its specified lower limit of 5 cmH2O (Figure 4). FIO2 

increased in both pediatric and adult cohorts (Pediatric: +39%, Adult: +26%).  

Similar changes in VT, RR and DC were observed in both cohorts when targeting the 

MMP. As expected, minimizing MMP rather than MP resulted in higher values of PEEP in both 

pediatric and adult cohorts (Pediatric: 2.9 ± 4.6 cmH2O (+39%), Adult: 3.5 ± 5.0 cmH2O 

(+52%)) along with lower values of FIO2 in pediatric patients (-21%). 

In the pediatric cohort, minimum ∆P was achieved by reducing VT (1.3 ± 1.6 mL.kg-1 (-

15%)) while increasing RR and PEEP (2.3 ± 8.2 bpm (+11%) and 2.4 ± 4.5 cmH2O (+34%) 

respectively). In the adult cohort, no reductions in VT were possible, but ∆P could still be 

reduced by increasing PEEP (2.2 ± 3.5 cmH2O (+32%)). No changes in DC were observed in 

either cohort when targeting ∆P. Patterns of changes in ventilator settings were consistent in 

most cases between Approach 1 (allowing some deterioration in blood gas values; Figure 4) and 

Approach 2 (allowing no deterioration in blood gas values; Supplemental File, Figure S7), 

although when minimizing ∆P in pediatric patients, Approach 2 produced higher values of FIO2 

than Approach 1, in order to satisfy the requirement for no deterioration in oxygenation. 

 

DISCUSSION 

Our results provide several new insights into the types of ventilation strategies that are 

likely to promote lung protective ventilation in ARDS patients. A high degree of consistency was 

observed in settings that minimized ∆P, MP, and MMP across the diverse patient cohorts in both 

datasets, providing grounds for optimism that strategies for maximally protective ventilation 

could be developed that would be widely applicable in ARDS. 
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Perhaps the most counterintuitive result is that maximum reductions in MP and MMP are 

consistently achieved by increasing VT, (see Figures S7 and S8), since from both the standard 

(Equation 1) and modified (Equation 3) formula for MP it seems obvious that lowering VT 

should lower MP. Crucially, however, this ignores the impact of incorporating constraints on 

allowable deterioration in patient gas exchange, which would always exist in treatment strategies 

implemented at the bedside. These constraints, combined with the complexity of making 

simultaneous adjustments to multiple ventilator settings, add a host of other trade-offs that render 

the optimal combination of ventilator settings almost impossible to predict based on clinical 

intuition alone. Our results point to a complex interplay between ventilator parameters which 

would support the development of a closed-loop system that can incorporate direct patient inputs, 

thereby providing individualized safe and effective mechanical ventilation. 

In the pediatric cohort, minimum values of ∆P were achieved by reducing VT and 

increasing RR and PEEP. This strategy has much in common with the ARMA trial protocol, 

which also lowered VT while increasing RR. Some have postulated that this combination led to 

increased intrinsic (and hence total) PEEP (21), which may have contributed to the mortality 

benefit in this trial. However, it should be noted that subsequent trials of higher versus lower 

PEEP have not demonstrated a mortality benefit in heterogeneous ARDS populations (22-25). 

Since the selected patients in the adult cohort were from the low VT arm of the trial, no further 

reductions in VT were possible without violating imposed constraints on gas exchange. However, 

∆P could still be significantly reduced in this cohort by moderately increasing PEEP. 

Our findings provide novel insights into the challenges of using either ∆P or MP to 

develop protective ventilatory strategies. In our models, targeting reductions in ∆P led to 

increased RR and increased PEEP. While a strong association between higher ∆P and mortality 
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has been demonstrated (4, 26, 27), ∆P was not a therapeutic target in these patients, and causality 

remains elusive. There is data suggesting that increasing RR (28) and PEEP (29) beyond safe 

thresholds can be deleterious in injured lungs. Furthermore, in the Alveolar Recruitment for 

ARDS Trial (ART) clinical trial (25), a ventilatory strategy that decreased ∆P resulted in 

increased mortality. The usefulness of targeting ∆P directly thus remains to be demonstrated. 

These concerns also apply to strategies that target reductions in MP. While MP represents 

a more complete attempt to describe the contributions of multiple parameters to VILI by 

invoking their “energy cost,” the relative contributions of the different parameters (i.e., their 

relatively equal “weightings” in the formula) remains the subject of debate. An example is the 

controversy around how PEEP contributes to MP (14). Our results show that different 

formulations of the MP equation lead to different optimal strategies; specifically, higher PEEP 

when optimizing MMP. Our finding that strategies that minimize MP and MMP increase VT 

highlights the challenges of targeting one specific parameter in designing protective ventilatory 

strategies. This is particularly important given the findings from recent pre-clinical animal 

studies that, for the same MP, strategies employing higher rather than lower VT had increased 

injury (30, 31). All these findings highlight the need for prospective validation of ventilator 

strategies that target reduced MP. Of importance, computational modelling of the impact of 

targeting these parameters (or combinations of different VILI indices) may identify promising 

non-intuitive combinations of ventilator settings for clinical testing, and also allow more 

effective stratification of patient populations by revealing differences in the effects of ventilation 

strategies across heterogeneous patient populations. We note that current ventilators do not 

routinely calculate and display MP, and that the ability to do so would improve tracking of this 

parameter for both clinical and research purposes. 
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Our study has a number of limitations. The pediatric dataset was derived from a single 

institution, and while the severity of ARDS and outcomes were similar to other cohorts, 

generalizability cannot be assumed. To minimize confounding, the model was configured to 

represent patients who are fully sedated and/or paralyzed; therefore, autonomic reflex modules 

were not utilized. In both cohorts, for each patient the model was “trained” on a single dataset 

(i.e., ventilator settings and blood gasses recorded at a single time point) and model calculations 

regarding the effect of other ventilator settings on, for example, lung compliance, are predictions 

that assume an unchanged patient physiological state. The model also does not include the effect 

of inflammatory mediators, which are difficult to quantify and to isolate in clinical settings. As 

the model is computational in nature, it does not provide any direct physiologic, histological or 

biological evidence of the effects of the proposed ventilation strategies on VILI, and further 

animal and human studies should be performed to provide conclusive evidence of their 

effectiveness in achieving more protective ventilation. The model was developed to focus on 

ventilator settings affecting VILI; thus, we chose to set constraints on PaCO2, rather than pH, 

which is often modified by entirely non-ventilator interventions, such as volume resuscitation or 

exogenous bicarbonate. Finally, models were based on ventilator settings and ABGs at single 

timepoints, and not on prospective data collection after planned ventilator changes. Such a study 

design would provide a more granular data regarding an individual patient’s response to specific 

ventilator adjustments. 

However, our study also has several unique strengths. Over 26.7 million distinct 

combinations of ventilator settings were implemented and evaluated on two separate cohorts of 

patients with ARDS. It is difficult to imagine such a comprehensive exploration of different 

ventilation strategies ever being possible via animal or clinical trials. The study also allows a 



16 

 

direct comparison of the effects of protective ventilation strategies in adult and pediatric ARDS 

patients. Our results clearly demonstrate the utility of pilot studies using high-fidelity simulation 

to assess novel interventions targeting MP or ΔP (or any other VILI indicator), and hence to 

inform the design of more targeted and effective clinical trials on actual patients.  

  

CONCLUSIONS 

We identified novel ventilatory strategies that our model predicts will ∆P, MP, and MMP 

in datasets from adults and children with ARDS. The identified strategies were consistent within 

each patient group, and were similar in both adults and children, suggesting that protective 

ventilatory strategies derived from studies in adults may have utility in children with ARDS. Our 

model predicts that attempts to minimize MP could result in the use of higher VT. Since this 

contradicts the current consensus on using lower VT it raises questions regarding the use of MP 

as a direct target to minimize VILI, at least as currently formulated.  Overall, our findings 

demonstrate the limitations of ventilatory strategies that target either ∆P or MP, highlighting the 

need to continue to refine these targets, and for ultimate validation of these strategies in clinical 

trials. 
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Figure Legends: 

Figure 1: Panels (A) to (C) compare the simulator outputs versus patient data expressed as 

median, interquartile ranges and actual ranges. Panels (D) to (F) show the Bland-Altman plots 

for simulator outputs and data. R represents the correlation coefficient of the data and the 

simulated values. 

 

Figure 2: Approach 1 – Change in driving pressure, mechanical power and modified mechanical 

power when minimizing different targets (i.e. ∆P, MP and MMP) and allowing some 

deterioration in patient gas exchange. Panels (A) to (C) show results for the pediatric cohort and 

(D) to (F) for the adult cohort. Box plots demonstrate data as median, interquartile range and 

actual. Numbers on the whiskers are mean ± SD. ∆P: Driving Pressure; MP: Mechanical Power; 

MMP: Modified Mechanical Power. The corresponding changes in tidal volume, respiratory rate, 

duty cycle, FIO2 and PEEP are shown in Fig. S7 and S8. 

 

Figure 3: Approach 2 – Change in driving pressure, mechanical power and modified mechanical 

power when minimizing different targets (i.e. ∆P, MP and MMP) and allowing no deterioration 

in gas-exchange. Panels (A) to (C) show results for the pediatric cohort and (D) to (F) for the 

adult cohort. Box plots demonstrate data as median, interquartile range and actual. Numbers on 

the whiskers are mean ± SD. ∆P: Driving Pressure; MP: Mechanical Power; MMP: Modified 

Mechanical Power. The corresponding changes in tidal volume, respiratory rate, duty cycle, FIO2 

and PEEP are shown in Fig. S7 and S8. 

 

 


