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Abstract

Synthetic images can help alleviate much of the cost in
the creation of training data for plant phenotyping-focused
AI development. Synthetic-to-real style transfer is of partic-
ular interest to users of artificial data because of the domain
shift problem created by training neural networks on images
generated in a digital environment. In this paper we present
a pipeline for synthetic plant creation and image-to-image
style transfer, with a particular interest in synthetic to real
domain adaptation targeting specific real datasets. Utiliz-
ing new advances in generative AI, we employ a combina-
tion of Stable diffusion, Low Ranked Adapters (LoRA) and
ControlNets to produce an advanced system of style trans-
fer. We focus our work on the core task of leaf instance
segmentation, exploring both synthetic to real style trans-
fer as well as inter-species style transfer and find that our
pipeline makes numerous improvements over CycleGAN for
style transfer, and the images we produce are comparable
to real images when used as training data.

1. Introduction
The ability to apply today’s most powerful deep learning
models to a given problem is often constrained by the avail-
ability of high quality, domain specific, and annotated train-
ing data. In diverse areas such as digital plant phenotyp-
ing this is exacerbated by a wide range of different growth
environments, plant species and growth stages. This leads
to an extremely varied set of domains, which in turn can
be difficult and expensive to capture in training data. Of-

Figure 1. Our LoRA and ControlNet based style transfer pipeline
demonstrates transferring between different rosette plant datasets,
showing the ability to realistically transfer style whilst accurately
maintaining both geometry and shape. Note the constrained geom-
etry of the leaves despite the style differences in each row. Images
across the diagonal show the original images from each dataset.

ten, data augmentation can allow small datasets to perform
as though a greater number of images was provided, how-
ever this is still inferior to increasing the number of unique
samples. In this work we therefore focus on the creation
and domain style transfer of images of handcrafted artificial



plants, using 3D rendering to generate new images, and a
diffusion based AI pipeline to improve the photo realism of
the generated images using few shot LoRA models to target
specific test sets.

Synthetic generation has been proposed as a way of cre-
ating low-cost training data for deep learning models for
many years. More significantly, synthetic image generation
pipelines such as presented here allow for the automated an-
notation of these images as well, further reducing time and
effort cost, especially in the case of complex polygon-based
labels required for instance segmentation. The challenge
faced in using synthetic data is domain shift, where syn-
thetic images are unable to train a model that generalises
onto the real images they seek to emulate. In order to solve
this we present a pipeline comprising multiple cutting-edge
denoising models, enabling us to substantially increase the
visual and feature similarity between our computer gener-
ated plants and real plants that we hope to digitally pheno-
type.

The ultimate goal is to produce training sets that lead to
a model’s accuracy which surpasses that of a model trained
on real images alone. This could be achieved by making a
blend of real and synthetic training images, or purely using
synthetic images. The process aims to challenge a model
during training to a wide diversity of images that ensure a
robust and generalisable model which doesn’t suffer from
erratic behaviour and has consistent high accuracy.

We select leaf instance segmentation as an application on
which to showcase our new pipeline. We chose this prob-
lem first because it is of interest to many researchers in dig-
ital plant phenotyping, with the segmentation of individual
plant components being both an interesting problem and an
important first step to many downstream analyses, such as
plant health monitoring. This problem domain also benefits
from high availability of datasets of rosette plants, includ-
ing multiple of Arabidopsis Thanalia, which makes up the
focus of our work.

Our motivation is the high cost of creating novel plant
datasets for different phenotyping problems. Capturing real
world images is problematic, as it is very difficult to capture
the wide selection of morphological distributions and envi-
ronmental factors needed to create a truly diverse dataset.
By contrast, after its initial creation, a synthetic plant model
can be easily reconfigured to create a much wider range
of data, improving generalisation. Moreover, blending real
and synthetic imagery into a training set has been shown to
give a beneficial boost of accuracy compared to either com-
ponent alone [6].

We are also motivated to take advantage of rapid im-
provements in generative AI technology. Models based on
denoising diffusion have emerged in recent years to out-
perform previous GAN-based methods of AI image gener-
ation [13]. In this paper we therefore hope to leverage this

new technology as part of a powerful, novel synthetic data
pipeline.

In summary our contributions are as follows:
1. We describe our method for synthetic data generation

using L-Systems within Blender to capture both images
and instance segmentation masks.

2. We present our complete pipeline for domain style trans-
fer using Stable Diffusion, ControlNet and LoRA mod-
els.

3. We compare our model both qualitatively and quantita-
tively against CycleGAN, a common GAN based style
transfer model.

4. We conduct a series of experiments evaluating our data
against real data for instance segmentation, demonstrat-
ing our methods comparable results to real data, particu-
larly when limited real data is available.

Figure 2. Example images from each of the five real datasets we
use as targets for our style transfer.

2. Related Work

2.1. Phenotyping with Synthetic Data

Researchers have shown an interest in using synthetic
data to train digital phenotyping models for the past 10
years. Early attempts using 3D modelling include Ward
et al [19] [18], Barth et al [3] and Napier et al [11] who
focus on rosette plants, pepper plants, and wheat crops re-
spectively. In these publications, 3D modelling tools such
as Blender are used to create detailed 3D scenes and large
datasets of synthetic images.

Other techniques for generating synthetic data have in-
cluded GAN based images such as Giuffrida et al’s [17]
model ARIGAN which generates Arabidopsis from noise,



or Toda et al [16] and Gao et al [5], who each create new
images by compositing elements of existing real images to-
gether.

3D modelling is generally popular because it allows the
greatest level of control over the synthetic plants, alongside
automatic capture of annotations. However, images gen-
erated in this way often suffer most from the domain gap
problem, where their artificial quality generalises poorly
onto real images. Forms of domain adaptation such as fea-
ture space alignment have been used in to combat domain
shift between synthetic and real images, such as Ayalew et
al [2] in 2020, in which a gradient reversal layer enforces
domain invariance in the CNN’s feature extractor. Alter-
natively, style transfer approaches that attempt to copy the
visual style of a target domain onto an image are a common
method used to counter synthetic to real domain shift. Here,
CycleGAN [22] has often been the first choice for unpaired
style transfer since its publication. CycleGAN enables style
transfer from a source to target domain and back again, en-
suring image content stays consistent and has been used in
a large number of publications [3] [7] [10]. In this paper
we show that compared to modern approaches such as ours,
CycleGAN is limited by its domain specificity, difficulty in
training, and need for larger training datasets.

2.2. Diffusion Models

Diffusion models are a type of generative AI which are able
to produce highly detailed images from noise using a iter-
ative denoising process. Since their popularisation in 2020
by Ho et al [8], such models have become common for cre-
ating AI artwork, photo editing and most recently for gen-
erating synthetic data such as in Nguyen et al [12] in 2023
who generates images using classes from MSCOCO. The
rapid advances in this technology have allowed high quality
images to be produced, among them Latent Space Diffusion
introduced by Rombach et al [13], incorporating a VAE and
cross attention layers into the overall architecture.

2.3. Conditioning Diffusion Models

In order to be used for synthetic data generation, a major
challenge to diffusion models is the requirement to produce
accurate pixel label annotations that closely align with the
generated images. Approaches that condition models with
an input that also serves as an annotation have risen in pop-
ularity. ControlNet by Zhang et al [21] has quickly become
a very popular way to condition diffusion models on a wide
range of different annotation formats, and Anagnostopoulou
et al [1] have demonstrated it as effective approach for con-
ditioned style transfer of synthetic data of mushrooms.

2.4. Finetuning Diffusion Models

Since many popular diffusion models are trained across
large and varied datasets, using them to produce images in

Figure 3. Synthetic plant being generated in Blender. To the
top right you can see instances of different shaped leaves that are
copied randomly into the new plant in addition to being rescaled.

the style of particular target domains is challenging. How-
ever, fine tuning large transformer models for specific do-
mains and tasks can be costly and expensive, so instead
there has been a focus on research that explores the best
way to adapt or extend large base models at a lower cost.
Dreambooth by Ruiz et al [15] allows the introduction of
new subjects in text-to-image diffusion models using just
a few examples by overriding a rare token in the models
vocabulary with a new meaning. More recently low rank
adapters [9] or LoRAs have been ported to diffusion mod-
els, after being first introduced by Hu et al in 2021 as a
means of more efficiently fine tuning large language mod-
els. LoRA in particular is popular for allowing finetuning
for specific tasks or domains without having to directly their
hundreds of billions of parameters, making it computation-
ally cheaper.

In this paper we propose combining LoRAs with Con-
trolNets to create a domain transfer architecture that can
be targeted at specific target domains. We combine this
with 3D modelling to create a complete pipeline for cre-
ating highly realistic synthetic datasets using diffusion.

3. Materials and Methods
Here we describe our overall pipeline for generating our
synthetic datasets. Starting with the creation of 3D mod-
elled plants, we then apply a diffusion model to create
realistic synthetic images. Our diffusion model is com-
bined with multiple ControlNets, which enable pixel per-
fect alignment with our Synthetic annotations, and a LoRA



that allows highly accurate style transfer to a learned target
domain. Overall our pipeline allows us to create synthetic
datasets that outperform previous methods, while having a
much lower cost to create.

3.1. 3D Modelling Rosette Plants

We create and render synthetic rosette plants using
Blender [4], a popular 3D modelling tool for use in this
work and shown in figure 3. We chose to design a generic
rosette plants to maximise ability to generalise to different
plants, and to fully leverage our style transfer pipeline. In
order to create our digital plants we first created a number
of 3D modelled template leaves using a simple mesh, and
texture it with a photograph of an Arabidopsis leaf. We also
model a basic pot, soil and background to make up the tem-
plate for our scene.

In order to generate a large number of unique plants
we use Blender’s built in Python scripting tools to create
a pipeline for automatic plant creation and image capture.
This pipeline also utilizes L-systems [14], a method of mod-
elling plants using iterative growth rules, which aid in mak-
ing generated plants more natural. Creation of individual
plants are achieved by duplicating our template leaves and
rotating, scaling them and positioning them inside our pot
based on the manner we would expect real plants to grow,
for example leaves appearing in opposing pairs.

After each 3D plant is created we render an image from
above using the CYCLES render engine, with random ad-
justments applied to scene lighting to increase variation.
After rendering we then additionally capture an instance
segmentation mask of the scene by re-texturing the leaves
to unique RGB colours and disabling the rendering of back-
ground elements before capturing a second label render
(shown in figure 4b. This process is repeated for the dataset,
using random values for the number, size and rotation of
individual leaves. As a result of this process we generate
a dataset of 1400 synthetic rosette plant images alongside
their associated label masks, creating 100 images each for
leaf counts between 2 and 15. We then apply our Generative
AI pipeline to manipulate these images to make them more
realistic and appropriate to a particular phenotyping task.

3.2. Low Ranked Adapter

LoRA models allow the fine tuning of large diffusion mod-
els using only a small sample of images of a specific do-
main, subject or style. This is achieved by learning a set
of weight changes, which, combined with the pretrained
weights, make up the finetuned model. A low rank de-
composition of the weight changes substantially reduces
the number of trainable parameters, making LoRA models
faster and computationally cheaper to train. Our pipeline
uses a LoRA trained on unlabelled images from our target
dataset, and can quickly learn to associate the style of the

(a) Blender Image (b) Instance Mask

(c) Soft Edge Mask of RGB Image (d) Canny Edge of Instance Mask

Figure 4. Example of the four synthetic images used in our style
transfer pipeline.

target domain with a trigger keyword.
For our experiments we select 10-30 images from each

of our target datasets to use as training material for our style
transfer LoRAs, examples of each are shown in figure 2.
We use an implementation of LoRA training called Kohya
to train a separate LoRA for each target dataset, using de-
fault settings initialised for Stable Diffusion v1.5, a popular
implementation of Latent Diffusion Models. Each model is
trained for 10 epochs using an NVIDIA Titan X GPU.

3.3. ControlNets

ControlNet models are extensions of a diffusion model that
allows additional forms of conditioning to guide image syn-
thesis. This is achieved by duplicating blocks from the en-
coder half of the models UNet that are conditioned by a new
input and injecting their outputs into the models decoder. In
order to ensure the generated images match the annotations
from our synthetic data, we employ two ControlNet models
to condition the diffusion model in different but complimen-
tary ways.

ControlNet models support a wide range of different
conditional inputs. We first use a Canny Edge detection
ControlNet, that enforces the generated image to match
edges given as input. Canny edge filters are a low cost tech-
nique that outputs hard edges detected in an image. As such
we apply a Canny Edge filter to the segmentation mask of
the source image (figure 4d), giving us a perfect outline of
each individual leaf (excluding occluded edges). Using the



Target Dataset MaP50:95

Name Size CycleGAN LoRA-Synth LoRA-All Real
CVPPP A1 30 0.550 0.559 0.666 0.701
CVPPP A2 10 0.238 0.540 0.656 0.594
CVPPP A3 10 0.339 0.423 0.669 0.635
CVPPP A4 30 0.458 0.457 0.541 0.633
Komatsuna 30 0.081 0.594 0.635 0.770

Table 1. Quantitative Results of our experiments, highest scores for each dataset are shown in bold.

edges of the segmentation mask with a ControlNet enforces
strict adherence to the geometry of the leaves and ensures
that segmentation accuracy is preserved during style trans-
fer. This process promotes a pixel perfect alignment be-
tween the new image and the synthetic labels.

We also utilize a SoftEdge Control Net to enforce a more
relaxed geometry of the input image to apply during style
transfer. Unlike Canny edge detection, SoftEdge is based
on holistically-nested edge detection [20], a learned edge
detector that captures edges while being less sensitive to
noise and small shapes than Canny edge detectors. We ap-
ply a HED processor to each of our rgb synthetic images,
capturing the outline of each plant as well as the pot and
background elements 4c. By using the HED edges as input
to the SoftEdge ControlNet we guide the diffusion model to
generate high quality edges of the entire scene, even when
only very small leaves are present.

3.4. Style Transfer Workflow

Our base model is Stable diffusion v1.5[13], selected as a
high performing and general model that supports our target
512x512 resolution. This model is then adapted with our
LoRA trained on the current dataset being targeted (see 4.2)
and prompted with the trigger word for that dataset’s style.
For each input image we extract first a HED edge from the
RGB image and a canny edge from the instance segmenta-
tion mask and apply these to a soft edge and canny Control
Net each respectively. A specific advantage of using LoRA
and Control Nets versus finetuning a specific checkpoint is
the ability to apply them in this modular format enabling
easy reuse at a lower cost of resources.

We pass images from our source dataset along with their
annotations into our workflow as inputs. Our model then
outputs the style transferred image, which combined with
out input annotations make up our LoRA style transferred
datasets.

4. Experimental Results

4.1. Target Datasets

We employ a variety of different real target datasets listed
below, covering both examples of different datasets of

the same plant species, and alternative rosette style plant
species. An example of each dataset is shown in figure 2.
• CVPPP A1, 2 and 4. Arabidopsis thaliana plants from

the CVPPP dataset, these datasets contain 128, 31, and
625 images respectively each grown in different environ-
ments and captured at different stages of growth.

• CVPPP A3. Tobacco Plants from the CVPPP dataset
containing 27 images.

• Komatsuna. Komatsuna spinach plant dataset of which
we are using a random sample of 300 images.
Note that Tobacco (A3 dataset) and Komatsuna plants

are both plants that produce rosettes of leaves during early
growth stages similar to Arabidopsis, but differ in their leaf
shape, colour, and texture. By designing our synthetic data
to be a generic rosette plant, we hope to be able to use it to
obtain strong results across multiple species, demonstrating
the efficiency of our approach.

With each dataset we create a training split of images to
use as our target for domain style transfer, as well as val-
idation during training. The larger datasets (A1, A4, Ko-
matsuna) we use 30 images as our target and for smaller
datasets (A2, A3) we take only 10 images to ensure a larger
number of images are available for testing. All remaining
images from each dataset are then used during our experi-
ments as an unseen test set.

4.2. Experiments

For each target dataset we conduct a series of experiments
to evaluate the effectiveness of different approaches to style
transfer. Each experiment produces a training dataset from
which we trained a Mask-RCNN model as a means of eval-
uating that particular approach to style transfer. We train
each Mask-RCNN model for 100 epochs using a default hy-
per parameter configuration for instance segmentation using
an NVIDIA A6000 GPU. and evaluated using the MaP50:95

metric, where precision is averaged across a range of IoU
values from 50 to 95.

For all experiments images were resized to 512x512 res-
olution for consistency and to limit computational expense
on the higher resolution datasets.

• CycleGAN. Each target dataset of real real images was
used to train a CycleGAN model for 100 epochs. This



model was used to convert our dataset of 1400 synthetic
images to the real which was in turn used to train Mask-
RCNN.

• LoRA-Synth. Each training split is used to train a LoRA
for stable diffusion that adapts the base model to a new
domain. Our synthetic dataset is then style transferred
using the LoRA and ControlNet pipeline described in 3.4.
This creates a dataset of 1400 images which are used to
train Mask-RCNN.

• LoRA-All. Here we use the same LoRA as the experi-
ment above, however in addition to applying our pipeline
to our synthetic data we also convert all real images from
the other domains, by inputting these images and their
annotations into our style transfer pipeline. Images of
real-to-real style transfer are shown in Figure 1 and this
combined dataset was then used to train Mask-RCNN for
instance segmentation.

• Real. We train Mask-RCNN using our real data split.
Note that we expect this experiment to perform very well,
even with a small dataset due to the relatively simple na-
ture of this problem. Achieving comparable or better
scores than this with our other experiments would be a
major metric of success for our work.

4.3. Qualitative Results

In Figure 5 we can see that CycleGan performs poorly when
performing domain style transfer compared to our LoRA
based approach. In the examples shown we see that the Cy-
cleGAN model consistently adds green leaf texture outside
the bounds of the instance segmentation mask. Addition-
ally we see that our LoRA based model creates much more
defined edges between leaves that occlude each other com-
pared to CycleGan where edges are less clear.

We also show results from our LoRA model when con-
verting from Synthetic to each real domain in figure 6. Here
we can see by comparison to a real example that the LoRA
model learns to generate visually distinct styles for each tar-
get domain that closely resemble the real images (shown in
the first column).

Finally, Figure 1 shows the effectiveness of our approach
at translating different real images between their respec-
tive styles and species. Again we see that our approach is
successful in transferring the aesthetic of different datasets
to one another, including where the plant is of a different
species, whilst maintaining the geometric structure of the
leaves.

4.4. Quantitative Results

In table 1, we report MaP results for each of our experi-
ments and datasets.

For our CycleGAN experiments, we achieved a wide
spread of results with a worst MaP score of 0.081 for Ko-
matsuna and a best score of 0.550 for CVPPP A1. We

(a) Instance Mask (b) CycleGAN Output (c) LoRA Output

Figure 5. Comparison of CycleGan and LoRA style transferred
images from the same annotation, showing the higher quality do-
main adaptation achieved with LoRA and the better adherence to
the annotation geometry.

also see that among the CVPPP datasets, the results for A2
and A3, which importantly contain only 10 training images,
were notably lower amongst the CycleGAN results.

LoRA-Synth produces a narrower range of results
(0.423-0.559). The majority of LoRA-Synth results outper-
formed equivalent CycleGAN experiments, with set A4 be-
ing the only exception to this, which we note was still within
0.001 of the CycleGAN result. In all other experiments the
LoRA dataset was substantially more effective, especially
for the Komatsuna dataset.

LoRA-All showed the strongest performance of all of the
non-real tests, scoring between 0.541 and 0.669; it outper-
forms CycleGAN and LoRA-Synth in every instance. For
experiments A2 and A3, the LoRA-All model outperformed
even the real data experiments, showing its robustness to
even very limited data. For all other experiments LoRA-All
performed well while trailing the real results by only a small
amount each time.

5. Discussion
5.1. Analysis of results

Overall the results show that our LoRA model performs bet-
ter style transfer than CycleGAN, with a downstream in-
stance segmentation model scoring higher in most cases.

We also see that LoRA is more robust when used with



small training datasets of real images, as compared to Cy-
cleGAN we do not see a performance drop for sets A2 and
A3, when only 10 images are supplied. We observe that
LoRA-all is even able to outperform Real for this dataset,
suggesting that in some circumstances LoRA models could
even be a suitable replacement for new, real-image datasets.

CycleGAN performs poorly on the Komatsuna dataset,
while LoRA is still able to perform relatively well, scoring
0.594 (LoRA-Synth) compared to 0.081 (CycleGAN). We
hypothesise this is because, of the datasets tested, Komat-
suna is the most distinct in appearance from the Arabidop-
sis and Tobacco plants in the other datasets, causing Cy-
cleGAN to struggle to perform style transfer between such
different objects. By contrast, our combination of LoRA
and two ControlNet models appears more robust.

5.2. Advantages over CycleGAN

In addition to our LoRA model outperforming the Cycle-
GAN model overall in our experimental results, we also
favour this newer method due to its greater flexibility, ro-
bustness and better visual performance.

As shown in figure 5, CycleGAN-generated images are
much more likely to hallucinate plausible leaves instead of
those in the source image, and is much less consistent over-
all than the ControlNet conditioning. In addition to this,
the experiments with the A2 and A3 datasets show that Cy-
cleGAN’s ability to generate accurate style transfer almost
completely collapses when provided with only 10 train-
ing images, whereas images generated from the LoRA ap-
proach appear visually acceptable even with so few training
images.

A key advantage of our pipeline not being restricted to
a single source domain is that it is much easier to incor-
porate new data into a training pipeline. CycleGAN is
source-domain specific, and as such is more computation-
ally expensive when combining data from multiple sources,
as additional models will need to be trained for each source
dataset. In contrast LoRA can be applied to images from
any domain without retraining making it easy to apply to
new datasets as demonstrated in our LoRA-All experiments.

5.3. Future Work

Having demonstrated the effectiveness of this pipeline on
leaf segmentation, we hope to go further and explore more
challenging problems in digital phenotyping, for example
Panoptic Segmentation of Crops and Weeds, where we be-
lieve that synthetic data is even more important due to the
increased cost of annotation, and we also theorise that with-
out a similar pipeline, a larger amount of real images would
be needed for equal performance due again to complexity.

In addition to further applications within plant pheno-
typing, we also believe that the use of diffusion model text
prompts could also be used to curate an even more bespoke

dataset. Examples of how this could be used could involve
prompting the model to visualise plant stresses or other en-
vironmental elements. This control of impressive but gen-
eral purpose diffusion models will become increasingly im-
portant if we hope to generate more scientifically accurate
and plausible training data in the future.

6. Summary
In this paper we have presented a new pipeline for image
to image style transfer, and applied it to digital plant phe-
notyping training datasets. We have demonstrated its ef-
fectiveness at both synthetic-to-real, inter-species and more
conventional domain adaptation between datasets. Overall,
our new pipeline has shown improvements in performance
over CycleGAN style transfer, demonstrated through our
experimental results. Furthermore we have reported im-
provements to robustness, shown by its consistency across
varied datasets, and flexibility, shown by its ability to use a
single model for style transfer from both synthetic and mul-
tiple real datasets, requiring only small amounts of training
data. Overall we have shown that a style transfer approach
such as ours would be preferable to a CycleGAN based ap-
proach for a wide range of more challenging phenotyping
tasks, both where synthetic data is used, and where other
real data can be leveraged in place of creating new annota-
tions.

References
[1] Dafni Anagnostopoulou, George Retsinas, Niki Efthymiou,

Panagiotis Filntisis, and Petros Maragos. A realistic syn-
thetic mushroom scenes dataset. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 6281–6288, 2023. 3

[2] Tewodros W Ayalew, Jordan R Ubbens, and Ian Stavness.
Unsupervised domain adaptation for plant organ counting.
In Computer Vision–ECCV 2020 Workshops: Glasgow, UK,
August 23–28, 2020, Proceedings, Part VI 16, pages 330–
346. Springer, 2020. 3

[3] Ruud Barth, Jochen Hemming, and Eldert J Van Henten. Op-
timising realism of synthetic images using cycle generative
adversarial networks for improved part segmentation. Com-
puters and Electronics in Agriculture, 173:105378, 2020. 2,
3

[4] Blender Online Community. Blender - a 3D modelling and
rendering package. Blender Foundation, Stichting Blender
Foundation, Amsterdam, 2018. 4

[5] Junfeng Gao, Andrew P French, Michael P Pound, Yong He,
Tony P Pridmore, and Jan G Pieters. Deep convolutional neu-
ral networks for image-based convolvulus sepium detection
in sugar beet fields. Plant methods, 16:1–12, 2020. 3

[6] Zane KJ Hartley and Andrew P French. Domain adaptation
of synthetic images for wheat head detection. Plants, 10(12):
2633, 2021. 2

[7] Zane KJ Hartley, Aaron S Jackson, Michael Pound, and An-
drew P French. Ganana: Unsupervised domain adaptation
for volumetric regression of fruit. Plant Phenomics, 2021. 3



Figure 6. Figure showing an example real image from each dataset (column 1) following by 4 example images generated by style transfer-
ring real images using our diffusion pipeline (columns 2 - 5).

[8] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising dif-
fusion probabilistic models. Advances in neural information
processing systems, 33:6840–6851, 2020. 3

[9] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen.
Lora: Low-rank adaptation of large language models. arXiv
preprint arXiv:2106.09685, 2021. 3

[10] Yinglun Li, Xiaohai Zhan, Shouyang Liu, Hao Lu, Ruibo
Jiang, Wei Guo, Scott Chapman, Yufeng Ge, Benoit Solan,
Yanfeng Ding, et al. Self-supervised plant phenotyping by
combining domain adaptation with 3d plant model simula-
tions: application to wheat leaf counting at seedling stage.

Plant Phenomics, 5:0041, 2023. 3
[11] Chris C Napier, David M Cook, Leisa Armstrong, and Dean

Diepeveen. A synthetic wheat l-system to accurately detect
and visualise wheat head anomalies. In 3rd International
Conference on Smart and Innovative Agriculture (ICoSIA
2022), pages 379–391. Atlantis Press, 2023. 2

[12] Quang Nguyen, Truong Vu, Anh Tran, and Khoi Nguyen.
Dataset diffusion: Diffusion-based synthetic data generation
for pixel-level semantic segmentation. In Advances in Neural
Information Processing Systems, pages 76872–76892. Cur-
ran Associates, Inc., 2023. 3

[13] Robin Rombach, Andreas Blattmann, Dominik Lorenz,



Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 10684–10695, 2022. 2, 3, 5

[14] Grzegorz Rozenberg and Arto Salomaa. The mathematical
theory of L systems. Academic press, 1980. 4

[15] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch,
Michael Rubinstein, and Kfir Aberman. Dreambooth: Fine
tuning text-to-image diffusion models for subject-driven
generation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 22500–
22510, 2023. 3

[16] Yosuke Toda, Fumio Okura, Jun Ito, Satoshi Okada, Toshi-
nori Kinoshita, Hiroyuki Tsuji, and Daisuke Saisho. Training
instance segmentation neural network with synthetic datasets
for crop seed phenotyping. Communications biology, 3(1):
173, 2020. 3

[17] Mario Valerio Giuffrida, Hanno Scharr, and Sotirios A Tsaf-
taris. Arigan: Synthetic arabidopsis plants using genera-
tive adversarial network. In Proceedings of the IEEE in-
ternational conference on computer vision workshops, pages
2064–2071, 2017. 2

[18] Daniel Ward and Peyman Moghadam. Scalable learning
for bridging the species gap in image-based plant pheno-
typing. Computer Vision and Image Understanding, 197:
103009, 2020. 2

[19] Daniel Ward, Peyman Moghadam, and Nicolas Hudson.
Deep leaf segmentation using synthetic data. arXiv preprint
arXiv:1807.10931, 2018. 2

[20] Saining Xie and Zhuowen Tu. Holistically-nested edge de-
tection. In Proceedings of the IEEE international conference
on computer vision, pages 1395–1403, 2015. 5

[21] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding
conditional control to text-to-image diffusion models. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 3836–3847, 2023. 3

[22] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A
Efros. Unpaired image-to-image translation using cycle-
consistent adversarial networks. In Proceedings of the IEEE
international conference on computer vision, pages 2223–
2232, 2017. 3


	. Introduction
	. Related Work
	. Phenotyping with Synthetic Data
	. Diffusion Models
	. Conditioning Diffusion Models
	. Finetuning Diffusion Models

	. Materials and Methods
	. 3D Modelling Rosette Plants
	. Low Ranked Adapter
	. ControlNets
	. Style Transfer Workflow

	. Experimental Results
	. Target Datasets
	. Experiments
	. Qualitative Results
	. Quantitative Results

	. Discussion
	. Analysis of results
	. Advantages over CycleGAN
	. Future Work

	. Summary

