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1 Introduction

In Quantum Field Theory (QFT), we usually seek to compute the expectation value of
operators O(ϕ̂), for some general function of the basic field operator ϕ̂, and we can do that
using a path integral over some probability distribution function e−I , such as,

⟨O⟩ ≡
∫
Dϕ e−IO∫
Dϕ e−I . (1.1)

The integrals are over real-valued fields ϕ, and the interval of integration ranges from −∞ to ∞.
If the exponent I of the weight is real-valued, such integrals may be computed analytically

or through numerical Monte-Carlo sampling [1]. In QFT this may be achieved directly for
systems at finite temperature or for some complex exponents by Wick rotation to Euclidean
time [2].

For truly real-time evolution out of equilibrium, Wick rotation is not applicable, I is
explicitly imaginary, the exponential is a complex phase, and straightforward convergence
of the integral is lost. This is known as the “sign” problem [3], and represents a central
problem of contemporary QFT.

Several approaches have been suggested, and are still under development to resolve or
at least ameliorate this sign problem. Two of these involve allowing the field variables to
take on complex values either through sampling by a Langevin equation exploring the entire
complex plane (complex stochastic quantization [4–6]), or restricting Monte-Carlo sampling to
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a deformation of the real axis into the complex plane (or Rn into Cn) (Lefschetz/Generalised
Thimbles [10–20]).

The former has been very successful in describing simple systems, and while a few
foundational issues remain unresolved, it has now also been tamed enough to be applied to
equilibrium QCD at finite density [7–9]. The latter is based on deep mathematics [10], but
has been found to be numerically demanding. The approach requires more work to allow
scaling to physically relevant system sizes [3, 20].

A subtle difference among different thimble approaches can also be readily reviewed. A
Lefschetz thimble in high dimension can only be determined numerically by the flow equation
from its critical point. Since the critical point is a fixed point, the flow equation starts in
practice from a small region around the critical point where the Gaussian approximation is
good enough. The constructed surface becomes closer to the Lefschetz thimble when the
small region gets closer to the critical point [11–13]. In comparison, the Generalized Thimble
is exact from the very beginning. Any integral in the family is supposed to attain the same
result as the original integral yields, thanks to Cauchy’s integral theorem, and for infinite
flow time the generalized thimble will reach the appropriate set of Lefschetz thimbles [14, 15].
In light of the Generalized Thimble/Cauchy’s integral theorem, we reexamine the Lefschetz
thimble and introduce another family of integration cycles, sewed thimbles. The integration
over these surfaces exactly reproduces the required result and the Lefschetz thimble will
be recovered in a particular limit.

In the present work, we present a set of developments to facilitate Monte-Carlo sampling
(almost) directly on a Lefschetz thimble. We have in mind the situation of an initial-
value problem, where initial conditions (the field and its derivative) are sampled by other
means [16, 17]. The subsequent quantum time-evolution of observables can then be determined
through the use of thimble methods. In particular, by considering one member of an ensemble
of initial conditions at a time, there is no issue of having to sample over multiple thimbles.
Each initial condition corresponds to a unique thimble.

The paper is organised as follows: we first introduce our method for a toy model double
integral in section 2. We introduce the “Sewed” thimble, polar coordinates, stereographic
coordinates and the integration over rays. In section 3 we set up the same formalism for
real-time QFT of a single scalar field in 0+1 dimensions and carry out the computation
on small systems. We conclude in section 4.

2 Setting up the formalism in 2 dimensions

As a starting point for our discussion, we consider a proxy for the sort of problems we
are going to face in the quantum mechanical path integral, and consider the ratio of two-
dimensional integrals

⟨O⟩ =
∫
R2 dx dy O(x, y) e−I∫

R2 dx dy e−I , (2.1)

where I is, in general, a complex-valued function. The procedure one may follow to perform
these integrals is to promote x and y to complex variables,

(x, y) → (z1, z2), (2.2)
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v1

v2
zcr

Lefschetz thimble

Figure 1. A schematic of the Lefschetz thimble embedded in C2. The figure shows the gradient flow
curves emanating from the critical point, that together make up the Lefschetz thimble, along with
eigenvectors of the Hessian of I, vα.

and deform the integration manifold from real(z1)× real(z2) to some more suitable manifold
(comprising the thimbles) living in the C2 parametrized by the z. The question then arises
as to how to construct this “suitable” manifold. One such choice is the Lefschetz thimbles,
manifolds associated with critical (stationary) points of I(z) in C2, with one thimble for each
critical point. The Lefschetz thimble is defined as the collection of gradient flow curves that
emanate from the critical point,1 with the flow determined through2

dzi

dτ
= ∂I

∂zi
. (2.3)

This process is sketched in figure 1. Also shown in the figure is the set of eigenvectors of
the Hessian of I, which we shall find useful later for parametrizing the thimble. In some
systems there may be multiple critical points, but not all of the thimbles will contribute
to the integral. To determine which do, one considers the upwards gradient flow, i.e. (2.3)
with a minus sign. The critical points whose upward flows intersect the original integration
manifold R2 are the ones whose thimbles contribute to the integral [10]. In our systems we
shall only have a single critical point, and so this subtlety does not arise [16, 17].

Starting from any point, other than zcr, the gradient flow leads to increasing Re(I),
while keeping the imaginary part, Im(I), constant. This follows straightforwardly from
the flow equation,

dI
dτ

= ∂I
∂zi

dzi

dτ
=
∣∣∣∣ ∂I∂zi

∣∣∣∣2 . (2.4)

1Note that the flow is zero at the critical point, so we are really interested in those curves that solve the
flow equation, with the condition that z(τ → −∞) = zcr.

2We will take overbar and ∗ to denote complex/hermitian conjugation.
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zcr

r0

r → ∞
θ

sewed thimble

Figure 2. A schematic of the construction of a sewed thimble. The sewed thimble is the curve that
starts at the critical point, using the quadratic part of I to flow until the curve reaches some distance
r0 from the critical point. At this point the full exponent I is used to construct the flow for the
remainder of the curve.

As a result, the whole integrand e−I becomes exponentially suppressed away from the critical
point along the flow. In effect, whereas the integral over the original manifold picks up
contributions from the entire real axis, only the region near the critical point contributes
when integrating over the complex-valued thimble. This property is what makes the integral
tractable numerically.

An alternative procedure is to use the same flow equation to flow all the points on the real
manifold R2 into C2. Then (the 2-dimensional generalisation of) Cauchy’s integral theorem
applies straightforwardly to an integral over this continuous deformation of the real space,
a Generalised thimble [14, 15]. The flow equation again ensures that the integral becomes
suppressed as the flow proceeds, and the trick is then to find a suitable flow time τ where
the integral converges sufficiently fast, whilst also keeping the Generalised thimble smooth
enough to efficiently Monte-Carlo sample it.

The two, related, proposals in this paper are to use a modified version of the Lefschetz
thimble, and to parametrize the thimble in a natural polar way that is suggested by the
system itself. The Sewed thimble that we propose comprises two regions, the inner region is
a surface constructed from the gradient flow of the quadratic part of I, while the outer is
constructed as the gradient flow of the full I. The size of this inner region is a matter of
choice, depending on the system. It is important to recognise that this does not constitute
an approximation to the integral, as Cauchy’s theorem still applies to this sewed thimble,
rather it is an approximation to the Lefschetz thimble. The parametrization that we use to
describe the thimble is polar in nature, with the flow time providing a radial co-ordinate,
r ∼ eτ , and the different rays (flows) being determined by angular co-ordinates, as depicted
in figure 2. The aim is then to solve the integral (2.1) by sampling in the angular directions,
while performing the full radial integral of the flow for each instance of the angles.
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2.1 Flow, inner and outer regions

We start by examining the inner region of the sewed thimble, where we use the quadratic
expansion of I about the critical point,

Iinner = 1
2ziHijzj , (2.5)

where

Hij = ∂2I
∂zi∂zj

∣∣∣∣∣
zcr

, (2.6)

such that the flow equation in the inner region is

dzi

dτ
= (Hijzj)⋆. (2.7)

In these expressions the indices range over x and y for our example, but more generally
they range over the dimension of the integration manifold, 1, . . . , n. We have also made
the co-ordinate choice that the critical point is at zcr = 0. Given the linearity of this flow
equation, we are able to solve it analytically [21, 22]. However, rather than trying to minimize
the size of this inner region to end up at the Lefschetz thimble, we embrace it, and let its
size become a variable that may be tuned.

To proceed we make use of Takagi factorization [21, 23] and write

vT Hv = D, (2.8)

where v is a unitary matrix, and D is a diagonal matrix whose entries are the positive square
roots of the eigenvalues of H†H. This leads us to an eigenvalue problem,

Hv = (Dv)⋆, (2.9)
⇒ Hijvjα = καv⋆

iα no sum on α. (2.10)

We interpret the α index as labelling the eigenvector vα
3 of H.

We now parametrize the thimble by introducing the real co-ordinates ξα, such that
on the thimble

zi =
∑

α

viαξα, (2.11)

and we discover that the flow equation may now be solved to find

ξα(τ) = ẽα exp(κτ), (2.12)

and we then trade one of the ẽα integration constants for a constant, τshift, by writing

ξα(τ) = eα exp[κα(τ + τshift)], (2.13)∑
α

eαeα = 1. (2.14)

3Note that the right hand side of (2.10) involves v⋆
α, rather than vα, so this is not the usual eigen-

value/eigenvector problem.
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This decomposition is just a polar co-ordinate description of the surface, with the eα describing
the angular co-ordinates on the thimble giving the direction of the flow, and the eτ being the
radial co-ordinate. Since the flow equation is autonomous, there exists a time shift symmetry
in the solutions, and we can simply fix τshift to some constant without loss of generality.
It is important to understand the co-ordinates on the thimble because any integration on
the thimble is going to require Jabobian factors, meaning we need an expression for the
components of ∂zi

∂τ and ∂zi
∂eα

. ∂zi
∂τ is just the flow equation (2.3), because the eα just label

which flow we are on, and so are constant along a given flow. On the other hand, ∂zi
∂eα

can
simply be obtained from differentiation of equation (2.11). We now have enough information
to compute the change in the integration measure

dnz = det
(

∂(z1, z2, . . .)
∂(τ, e1, e2, . . .)

)
dτ de1 de2 . . . (2.15)

Having flowed up to some distance eτ = r0 we then use the full non-linear I to construct
the remainder of the flow. The co-ordinates remain τ ( the distance along the flow) and eα

(the label of the flow), and so we need to know how to compute the Jacobian in this outer
region. Again, the ∂zi

∂τ of the Jacobian just comes from the flow equation (2.3), but now with
the full I, while for ∂zi

∂eα
we note that the flow equation leads to

∂

∂τ

(
∂zi

∂eα

)
= ∂2I

∂zi∂zj

∂zj

∂eα
, (2.16)

which means we may take the expression for ∂zi
∂eα

at the boundary of the inner region, and
use (2.16) to propagate it along the flow, giving the remaining parts of the Jacobian of (2.15).

By varying the size of the inner region through the parameter r0 (τ0), we obtain a
parametric family of integration manifolds. When r0 → 0, the Sewed thimble converges to
the Lefschetz thimble. Thanks to the Cauchy’s integral theorem, the result of the integral on
the new integration contour will be the same as on the Lefschetz thimble for any r0.

2.2 Application to a toy model

With the outline of the formalism given, let us work through an example where we have
analytic control, and consider the following expectation value

⟨y4⟩ =
∫

dx dy y4 e−iax(y−b)−icx3∫
dx dy e−iax(y−b)−icx3 , (2.17)

where without loss of generality we set a > 0. In this simple example, we can obtain the
analytic results (with a detailed derivation in appendix B)∫

dx dy e−iax(y−b)−icx3 = 2π

a
, (2.18)∫

dx dy y4 e−iax(y−b)−icx3 = 2π

a

(
b4 + 24bc

a3

)
. (2.19)

In this context, the factor y4 in the numerator’s integrand plays the role of the observable
O, while the exponential function is the weight e−I . For more complicated operators, the
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analytical result is not as readily available, and we turn to Lefschetz thimble methods to
compute the integral.

To compute the Lefschetz thimble one first promotes the real variables to complex ones,

(x, y) → (z̃1, z̃2) ⇒ I = iaz̃1(z̃2 − b) + icz̃3
1 , (2.20)

and find the critical point(s) of I. In this case there is a single critical point given by

z̃cr = (0, b)T . (2.21)

The Lefschetz thimble then follows from constructing all the downward gradient flows (2.3)
that come from the critical point as τ → −∞. It is useful to adapt the co-ordinates to
those centred about the critical point, giving

z = z̃ − z̃cr, (2.22)
I = iaz1z2 + icz3

1 . (2.23)

Inner integral. The Gaussian thimble admits an analytic coordinate description, which we
will use for the inner region. To be precise, the Gaussian thimble is the Lefschetz thimble
for the action up to the quadratic terms around the critical point,

IG = I0 + 1
2zT Hz, (2.24)

where in our toy model (2.23), I0 = 0, and

H =

 0 ia

ia 0

 . (2.25)

the (positive) eigenvalues and eigenvectors of H, Hv = κv⋆, are found to be

κ1 = a, v1 = 1√
2

e−iπ/4

 1
1

 , κ2 = a, v2 = 1√
2

eiπ/4

−1
1

 . (2.26)

Then (2.13), (2.11) leads to

z1 = 1√
2

e−iπ/4p0rae1 −
1√
2

eiπ/4p0rae2, (2.27)

z2 = 1√
2

e−iπ/4p0rae1 + 1√
2

eiπ/4p0rae2, (2.28)

r = eτ , p0 = eaτshift , (2.29)

which do indeed satisfy the flow equation (2.3) for the quadratic part of I. Noting the
constraint (2.14) we choose

e1 = cos θ, e2 = sin θ, (2.30)
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to find that the z co-ordinates of the inner region of the sewed thimble, parametrized by
radial co-ordinate r and angular co-ordinate θ, are

z1 = 1√
2

p0rae−iθe−iπ/4,

z2 = 1√
2

p0raeiθe−iπ/4.
(2.31)

In order to perform the integrals in the new radial and angular co-ordinates we need the
Jacobian,

J = ∂(z1, z2)
∂(r, θ) = 1√

2
p0e−iπ/4

 ara−1e−iθ −irae−iθ

ara−1eiθ iraeiθ

 , (2.32)

and the numerator integral of (2.17) in (r, θ)-coordinates for the inner part of the sewed
thimble takes the form∫ 2π

0
dθ

∫ r0

0
dr ap2

0r2a−1 exp
[
−1

2ap2
0r2a − ic

(
p0√

2
rae−iθe−iπ/4

)3
]
O[x(r, θ), y(r, θ)], (2.33)

where we consider a general function O, and not just y4.

Outer integral. Having found the relevant integral for the inner part of the sewed thimble
we now need to compute the contribution from the outer part. The gradient flow equation
with the full I defines the sewed thimble in the outer region, starting from the flow time
τ0 ≡ ln(r0) and flowing to infinity, which is carried out numerically. The integral on the
thimble is computed through∫ 2π

0
dθ

∫ +∞

τ0
dτ Det(J)e−IO(x, y), (2.34)

where the Jacobian matrix is given by

J = ∂(z1, z2)
∂(τ, θ) =

(
∂z

∂τ
,
∂z

∂θ

)
. (2.35)

The ∂z
∂τ part of the Jacobian comes from the flow equation itself, as we know ∂I

∂z once the
location on the thimble, z, is given. For the ∂z

∂θ part of the Jacobian, we know its value at r0
because we have the analytic expression for z in the inner region of the sewed thimble. We
then take the value of ∂z

∂θ at r0 and find its value along the flow by solving (2.16), expressed in θ

∂

∂τ

(
∂zi

∂θ

)
= ∂2I

∂zi∂zj

∂zj

∂θ
. (2.36)

The initial values for the flow starting at r0 are

z̃1(r0) = 1√
2

p0ra
0e−iθe−iπ/4, z̃2(r0) = b + 1√

2
p0ra

0eiθe−iπ/4, (2.37)

J(r0) =

 p0√
2ara

0e−iθe−iπ/4 + 3cr2a
0

(
p0√

2eiθ
)2

−i 1√
2p0ra

0e−iθe−iπ/4

p0√
2ara

0eiθe−iπ/4 i 1√
2p0ra

0eiθe−iπ/4

 , (2.38)
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r

0.0

0.4

0.8 r0 = 2

0 π/2 π 3π/2 2π
θ

0.6

1.2

1.8
r0 = 0.1 r0 = 1 r0 = 2

Figure 3. p0 = 1, a = 1, b = 1, c = 0.1. (L) The weight functions exp (−Re(I) + ln |DetJ |), against
the flow distance r, for a particular choice of θ = π/3. (R) The integrated (over r) weight function∫

dr exp (−Re(I) + ln |DetJ |), against the angle θ.

where we have reverted to the original co-ordinates z̃, rather than those centred about
the critical point.

In this sewed thimble approach we have a new parameter, r0, which defines the crossover
point between flowing with the Gaussian exponent IG and the full exponent I. The integration
region is parametrized by r and θ, and we can examine how the integrand behaves along a
particular θ direction as we move along the flow parametrized by the radius r. The integrand
of (2.34) naturally splits into two pieces, a real weighting factor, e−Re(I)+ln(DetJ), and the
rest, which comprises the phase factors ei{Arg(DetJ))−Im(I)} and the O term. In figure 3 (left),
we show the logarithm of the weight function for the inner (2.33) and outer (2.34) parts of
the integral, for different values of r0, along a particular direction, θ = π/3. The integrand
contains the entire action I on the entire thimble, but the Jacobian matrix in the inner region
only includes the Gaussian contribution. This introduces a discontinuity in the complete
integrand, which is unproblematic, as we do the inner and outer integrals separately. We
see that the integrand decays as we move along the flow, which is the property we need in
order to render the integral well behaved at large r.

With this setup, we are now able to compute the integrals numerically. We can first
perform the integral along the flow time τ (equivalently the flow distance r), where exponential
suppression allows for convergence for a fairly small range in τ . This radial integral (via
fourth-order Runge-Kutta method in practice, over both the inner range r = 0 − r0 and the
outer range r0 −∞) leads to an effective weight function, now only dependent on the angle θ,
as shown in figure 3 (right). We observe that in this toy model example, the weight function
is quite dependent on r0. Although the integrand can have strong θ and r0-dependence,
the integral remains finite and independent of r0. Still, when Monte-Carlo sampling the
integrand, one would struggle with ergodicity if the peaks become too sharp. Analogous
peaks were seen in the partial partition function of the one-dimensional Thirring model [18].
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Finally, we can easily perform the integral numerically along the angular direction, from
0 to 2π, to the required numerical precision. Despite having different choices of r0 and
different weight functions, the total integral will be the same. This direct prescription for
the integral is only applicable for low dimensional integrals, with few integration variables.
In higher dimensions, we must turn to Monte Carlo integration. To get a feel for how that
is done, we will proceed with our toy model.

2.3 Monte Carlo sampling and reweighting

Continuing with our parametrization of the Sewed thimble from the previous section, we
can now instead use Monte Carlo sampling to compute

⟨O⟩ =
∫

dθ dτ e−iIm(I)+iArg(DetJ)e−Re(I)+ln |DetJ |O(τ, θ)∫
dθ dτ e−iIm(I)+iArg(DetJ)e−Re(I)+ln |DetJ | . (2.39)

We have explicitly split the weight function up into a positive definite part and a complex
phase. Integrating over the real-valued domain, we encounter the classic sign problem. The
integrand e−iax(y−b)−icx3 contributes with equal amplitude |e−I | = 1 for all x, y, while the
complex phase can be arbitrary. Summing over contributions with different phases leads to
cancellations, so that the denominator is much smaller than its statistical errors.

On the Sewed thimble, we can carry out the Monte Carlo sampling methods like on the
Lefschetz thimble, either by point (τ, θ) [11, 12], or by ray (θ) [13]. (In fact, the Lefschetz
Thimble methods can be applied directly to the outer integral in the Sewed Thimble.) In
high dimension, the coordinate of the thimble can only be determined numerically by the
flow equation, which is usually a heavy task as the tangent vectors should also be transported
simultaneously. For each point in the sampling, such a flow shall be computed, although
only the final coordinate information will be used. To make a good usage of the whole flow,
we can treat the integration along the flow as the element of sampling. The drawback is
that the observables should be calculated along the flow too, therefore no longer as flexible
as in sampling on the point approach. In the following tests of Sewed Thimble with a few
observables, we are going to adopt the sampling on the ray approach. As a first step to
resolving this, we select the distribution function P (θ)

P (θ) ≡
∫

dτ e−Re(I)+ln |DetJ |. (2.40)

The original expression (2.39) then corresponds to computing

⟨O⟩ =

〈
O(θ)/P (θ)

〉
P (θ)〈

A(θ)/P (θ)
〉

P (θ)

, (2.41)

where the subscript P (θ) means the sampling is drawn according to the distribution function
P (θ), and

A(θ) ≡
∫

dτ e−iIm(I)+iArg(DetJ)e−Re(I)+ln |DetJ |, (2.42)

O(θ) ≡
∫

dτ O(τ, θ)e−iIm(I)+iArg(DetJ)e−Re(I)+ln |DetJ |. (2.43)
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Figure 4. (L) Histogram of P (θ), where the solid lines are from figure 3 From top to bottom, r0 = 0.1
(blue), 1 (black), 2 (red) respectively. p0 = 1, a = 1, b = 1, c = 0.1. (R) Scatter plot of A(θ)/P (θ).
Each dot represents (Re(A/P ) − 1, Im(A/P )) of a saved data point.

r0 ⟨y4⟩
2 3.50 ± 0.10
1 3.37 ± 0.13

0.1 3.34 ± 0.12
Exact 3.4

Table 1. Numerical and analytic evaluation of ⟨y4⟩. a = 1 = b, c = 0.1.

These definitions are non-trivial. We sample values of θ using the distribution P (θ), which
arises from integrating over the radial coordinate τ , without the phase and without the
observable. We then compute A(θ) as an integral over τ with the phase, and O(θ) as an
integral over τ including the phase and the observable. These integrals are done numerically.
In figure 4 (left), we show the histograms of values of θ for 20,000-step Markov chains, for
different values of r0. Overlaid is the analytic weight distribution, which we see matches
very well. Apparently at these values of r0, the peak structure does not hamper the MC
process. Figure 4 (right) shows the region probed by the complex phase in the denominator
A/P of (2.41), and we see that it indeed becomes smaller as r0 becomes smaller, and the
exponential suppression kicks in closer to the critical point.4 We may then proceed to compute
the observable ⟨y4⟩, table 1, where we discover the numerical calculation reproduces the
analytic result, within the 1σ error bars.

Stereographic coordinates. For our example in two variables, we opted for using polar
coordinates with one angle θ and the τ/r radial direction. The finite angular integration
interval allows us to compute the integrals along the θ-direction without any compromise on
precision. However, for Monte Carlo sampling of many variables, the periodic boundaries

4The phase coming from the Jacobian J is not suppressed, but since it generically has a power-law
dependence on the radius, the exponentially decreasing e−I will dominate. In some special cases, the Jacobian
can become exponential, and even delay convergence. We will return to this point in future.
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Figure 5. (L) Scatter plot of A(E)/P (E) − 1. Each dot represents (Re(A/P ) − 1, Im(A/P )) of a
saved data point. Histograms on the real and imaginary parts are shown on the sides. (R) Histogram
of the probability distribution function P (E). r0 = 1, p0 = 1, a = 1, b = 1, c = 0.1.

and finite range require extra consideration, which turns out to make this parametrization
inefficient. For this reason, we will parametrize high dimensional integrals using stereographic
coordinates. The switch between the polar coordinate and the stereographic coordinate is
straightforward, for a single variable we write (2.30) as

e1 = 2E

E2 + 1 , e2 = E2 − 1
E2 + 1 , (2.44)

with the connection between the two descriptions being E = cos(θ)
1−sin(θ) . Using 100,000 MC

steps, we find ⟨y4⟩ = 3.47 ± 0.09 (for r0 = 1, see figure 5). Now the weight function has tails
for large E, since dθ = 2

E2+1dE, and so is suppressed as ∝ E−2 as |E| → ∞. The suppression
is still only a power-law, and at low dimension (only a few variables), some care is needed for
the Markov chain not to get stuck in the tail regions. The situation will be improved in high
dimension, as the distribution will go to zero quickly due to the dimensionality.

3 Application to the discretized real time path integral

Ultimately, the purpose of the exercise is to compute expectation values in real-time out-
of-equilibrium quantum field theory of the form [16]

⟨O(t)⟩ = N
∫

Dϕ+Dϕ−O(t)⟨ϕ+
0 , t0|ρ̂|ϕ−

0 , t0⟩e
i
ℏ

∫
C L, (3.1)

where S =
∫
C L[ϕ] is the action and we use the shorthand

∫
C for the combined space and

time-integral
∫

d3x
∫

dt along the contour C in the complex t-plane (see figure 6). N is an
(infinite) normalisation constant

1
N

=
∫

Dϕ+Dϕ−⟨ϕ+
0 , t0|ρ̂|ϕ−

0 , t0⟩e
i
ℏ

∫
C L. (3.2)
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φm

· · ·

· · ·

Figure 6. Schwinger-Keldysh contour discretized in time.

Without further ado, we will rotate to the Keldysh basis [24–27]

ϕcl = 1
2
(
ϕ+ + ϕ−

)
, ϕq = ϕ+ − ϕ−, (3.3)

ϕ+ = ϕcl + 1
2ϕq, ϕ− = ϕcl − 1

2ϕq, (3.4)

and specialise to the case of a single real self-interacting scalar field with the potential

V (ϕ) = m2

2 ϕ2 + λ

24ϕ4. (3.5)

The action may then already at this point be written in terms of field variables on a discrete
lattice of space time points as

S =
∑
x3

d3x dt

{
ϕcl

0 − ϕcl
1

dt2 ϕq
0 −

ϕcl
2 − 2ϕcl

1 + ϕcl
0

dt2 ϕq
1 . . . −

ϕm − 2ϕcl
m−1 + ϕcl

m−2
dt2 ϕq

m−1 (3.6)

− 1
2∇ϕcl

0 ∇ϕq
0 −∇ϕcl

1 ∇ϕq
1 . . . −∇ϕcl

m−1∇ϕq
m−1 −

1
2V ′

0ϕq
0 −

1
2

1
24(ϕq

0)3V ′′′
0

− V ′
1ϕq

1 −
1
24(ϕq

1)3V ′′′
1 . . . − ϕq

(m−1)V
′

(m−1) −
1
24(ϕq

(m−1))
3V ′′′

(m−1)

}
.

where for instance V ′
i = dV/dϕ|ϕcl

i .
As described in [16], we can now split the path integral into two parts, an initial condition

and a dynamical part

Z =
∫

Dϕcl
0 Dϕcl

1 W (ϕcl
0 , ϕcl

1 )
∫

D̃ϕclD̃ϕqe
i
ℏSdyn , (3.7)

W (ϕcl
0 , ϕcl

1 ) =
∫

Dϕq
0⟨ϕ

+
0 , t0|ρ̂|ϕ−

0 , t0⟩e
i
ℏSinit , (3.8)

where

Sinit =
∑
x3

d3xdt

{
ϕcl

0 −ϕcl
1

dt2 +
[1

2∇
2ϕcl

0 −V ′
0

]}
ϕq

0, (3.9)

Sdyn =
∑
x3

d3xdt
m−1∑
n=1

([
−ϕcl

n+1+2ϕcl
n −ϕcl

n−1
dt2 +∇2ϕcl

n −V ′
n

]
ϕq

n−
1
24(ϕq

(m−1))
3V ′′′

(m−1)

)
, (3.10)
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The object D̃ does not contain the measures associated with ϕq
0, ϕcl

0 and ϕcl
1 , Sinit consists of

the terms containing ϕq
0, and Sdyn is the part of the action with no ϕq

0 terms. This assumes
that interactions are switched on at t = 0, so that there are only linear ϕq

0 terms in Sinit.
This prescription amounts to stipulating that the initial condition is a free-field (Gaussian)

state. The splitting up allows us to sample the initial condition ensemble (the “initial” integral,
variables ϕq

0, ϕcl
0 and ϕcl

1 ) directly from a Gaussian initial state with no sign problem. And
for each such initial configuration, sample over the remaining variables (the “dynamical”
integral ϕq

>0, ϕcl
>1) on their Sewed thimble as described above. The exponent that appears

in the Picard-Lefschetz integral is then I = − i
ℏSdyn,

I = − i

ℏ

∫
dx dt

m−1∑
n=1

(
ϕcl

n+1 − ϕcl
n+1

dt2 ϕq
n − 1

24(ϕq
(m−1))

3V ′′′
(m−1) . . .

− 1
(2r − 1)!22r−2 (ϕq

(m−1))
2r−1V

(2r−1)
(m−1)

)
, (3.11)

using the shorthand

ϕcl
n+1 = 2ϕcl

n − ϕcl
n−1 + dt2

[
∇2ϕcl

n − V ′
n

]
. (3.12)

The upshot is that once the initial condition variables are chosen, this sets the boundary
conditions for the dynamical integral. The critical point is found by solving a second order
differential equation dI/dϕi = 0 (the classical equation of motion corresponding to the action),
which has a unique solution given the boundary condition ϕcl

0 , ϕcl
1 . This means that for each

initial set of variables, there is a unique thimble to sample over.
It remains to define the initial condition through the Wigner function for a free vac-

uum state

W
(
ϕcl

0 , πcl
0

)
= exp

(
−1
ℏ

[
ω
∣∣∣ϕcl

0

∣∣∣2 + 1
ω

∣∣∣πcl
0

∣∣∣2]) , (3.13)

with ω the frequency, and where we have introduced the momentum field variables πcl
0 , which

may be chosen through a forward time discretization prescription as

πcl
0 ≡ ϕcl

1 − ϕcl
0

dt
. (3.14)

3.1 Implementation of the dynamic path integral

For simplicity, we neglect the spatial directions, so that the system reduces to 0+1 dimensions,
quantum mechanics. The dynamical path integral involves a total of N = 2m−2 field variables.
Given values for ϕcl

0 and ϕcl
1 , the unique critical (classical) field variable configuration follows

from varying the action ϕcl = ϕ̃cl and ϕq = 0.5

Keeping ϕcl
0 and ϕcl

1 fixed, the aim is now to rewrite the path integral into the form

⟨O(Φ)⟩ =
∫

dN−1E

∫ ∞

0
dr Det(J)e−IO(Φ), (3.15)

5Note that the “classical” variables ϕcl acquire values corresponding to the classical solution ϕ̃cl.
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using stereographic coordinates E1,...,N−1 and a radial coordinate r, and split the integration
domain into an inner (Gaussian flow) and an outer (full non-linear flow) contribution as
in the previous section.

Finally, the integrals for an ensemble of initial conditions ϕcl
0 and ϕcl

1 , should be averaged
over to produce the value of the chosen observable.

3.2 Inner integral

The inner integral is computed on the Gaussian thimble, which follows from the Hessian
matrix H at the critical point. We want to know the N eigenvalues κi and eigenvectors
vi according to (2.10)

Hvα = καv⋆
α. (3.16)

We note that H = iHim is purely imaginary, and Him is real and symmetric. Suppose
the eigensystem of Him consists of eigenvalues sα and eigenvectors wα. Then, κα consists
of both sα and −sα, and in particular, for the positive eigenvalues, the eigenvectors can
be constructed as

if sα > 0 then κα = sα, vα = e−iπ/4wα, (3.17)

if sα < 0 then κα = −sα, vα = eiπ/4wα. (3.18)

The thimble can then be parameterized as (2.11)(2.13)

Φ = Φcritical +
∑

α

cαrκαeαvα, (3.19)

where the cα’s are the part relevant to the time shift and can all be set to the same constant,
cα = c0, for simplicity. The stereographic coordinates Ei are

e1 = 2E1

E2 + 1
, . . . , eN−1 = 2EN−1

E2 + 1
, eN = E2 − 1

E2 + 1
.

with E2 ≡
∑N−1

a=1 E2
a. The Jacobian in the inner region, when converting from Φ variables

in the path integral to τ and Ei, is

J =
(

∂Φ
∂r

,
∂Φ
∂E1

, · · · ,
∂Φ

∂EN−1

)
=
(∑

α

cαrkαeαvα
kα

r
,
∑

α

cαrkαvα
∂eα

∂E1
, · · · ,

∑
α

cαrkαvα
∂eα

∂EN−1

)
,

(3.20)
for which the determinant can be written

Det(Jinner) = Det (v) cN
0 r
∑N

α=1 κα−1 2N−1

(E2 + 1)N+1

(
κN (E2 − 1)2 +

N−1∑
a=1

4κaE2
a

)
. (3.21)

In the end, the inner integral is calculated as:∫
dN−1E

∫ r0

0
dr Det(Jinner)e−IO(Φ), (3.22)

where the integration is again limited to the interval [0, r0] for some choice of r0, and the
action I is the entire non-linear action. We stress that this is not an approximation in terms
of the integral that we are interested in, we are just deforming the path away from the
thimble, and Cauchy’s integral theorem tells us we will get the same answer for the integral.
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3.3 Outer integral

From τ0 = ln(r0) to r → ∞, the rest of the Sewed thimble is traced out by the gradient
flow equations:

∂Φi

∂τ
= ∂I

∂Φi
,

∂

∂τ

(
∂Φi

∂Ea

)
= ∂2I

∂Φi∂Φj

∂Φj

∂Ea
. (3.23)

Initialization is set by matching to the Gaussian thimble at τ0

Φ|0 = Φcritical +
∑

i

cαrκα
0 nαvα,

∂Φ
∂Ea

∣∣∣∣
0

=
∑

α

cαrκα
0 vα

∂nα

∂Ea
,

∂Φi

∂τ

∣∣∣∣
0

= ∂I
∂Φi

∣∣∣∣∣
0

. (3.24)

In the end, the outer integral is computed as∫
dN−1E

∫ +∞

τ0
d τ Det(Jouter)e−IO(Φ), (3.25)

where the Jacobian in the outer region is

Jouter ≡
(

∂Φ
∂τ

,
∂Φ
∂E1

, · · · ,
∂Φ

∂EN−1

)
. (3.26)

3.4 Reweighting

Following the process of section 2.3 we note that the object we wish to compute may be recast as

⟨O⟩ =
∫

dE dτ O(τ, E)e−iImI+iArg(DetJ)e−ReI+ln |DetJ |∫
dτ dE e−iImI+iArg(DetJ)e−ReI+ln |DetJ | , (3.27)

where we have again included the Jacobian as a contribution to the exponent, and split
the exponent into a real and imaginary part. The real part gives rise to a positive definite
distribution P (E), that we may sample

P (E) =
∫

dτ e−ReI+ln |DetJ |. (3.28)

While the imaginary part must be included through reweighting. We note the identity

⟨O⟩ =

〈
O(E)/P (E)

〉
P (E)〈

A(E)/P (E)
〉

P (E)

, (3.29)

where

A(E) =
∫

dτ eiArg(DetJ)−iImIe−ReI+ln |DetJ |, (3.30)

O(E) =
∫

dτ O(τ, E)eiArg(DetJ)−iImIe−ImI+ln |DetJ |. (3.31)

The procedure is then to sample N − 1-tuples of Ej from the distribution P (E) and compute
the averages of A(E) and O(E). Provided the distribution P (E) is sufficiently well-behaved,
the integral should converge.

In appendix A we present the explicit expressions for the potential (3.5) for N = 4 field
variables. In the simulations presented below, we use N = 4, 6, 8.
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Figure 7. N = 4. (L) Scatter plot of A(E)/P (E) + 1. (R) A scan of the probability distribution
function P (E) over E1, with E2 = E3 = 0.

3.5 Monte-Carlo sampling on the thimble

Just as for the 2-variable model in section 2.3, we proceed to compute the expectation
values in (3.29) over the distribution (3.28) using standard Monte-Carlo techniques. This
distribution is again defined through an integral over τ , so as the Markov chain moves around
the N − 1 dimensional Ea-space, when performing the Metropolis step, two such integrals
must be computed. Computing the observables A(E) and O(E) also involves performing
integrals over τ given an N − 1-tuple of Ea. All of these involve inner (on the Gaussian
thimble up to r0) and outer (on the non-linear thimble from r0) integrals, and we again
find discontinuities and distributions similar to figure 3. Again, these are harmless as we
perform the inner and outer integrals independently.

We have a certain amount of freedom in tuning our implementation. The physical system
is determined by the parameters m2 and λ. The lattice implementation by the parameters dt

and N . And we must choose a value for r0 (τ0) as well as parameters of the MC algorithm
(proposal function, number of CM steps).

Figure 7 shows the distribution of the object A(E)/P (E) + 1 (left, similar to figure 5)
for N = 4, as well as the probability distribution projected to just one coordinate E1. We see
that the phase of A/P again is localized, around −1 in this case, and that the sampling of
E features a peak structure. The peaks become more pronounced as the Gaussian thimble
region is increased, r0 increases.

In figure 8 (left), we again show the distributions P (E) over just one of the stereographic
variables for N = 4, for different r0 for a non-interacting λ = 0 system. As expected, for
λ = 0, there is no dependence on r0, since the whole thimble is Gaussian. In figure 8 (right),
we show the distribution for an interacting theory at different systems sizes N = 4, 6, 8,
clearly showing that the peak structure becomes more pronounced as N increases.

We now focus on two observables, the two-point functions

O2 = ⟨ϕq
1ϕcl

2 ⟩, O3 = ⟨ϕq
1ϕcl

3 ⟩, (3.32)

and compute them for a single initial condition using six different implementations: the
Generalised thimble for flow time τ = 0.2, 0.4, 0.6 and the Sewed thimble for r0 = 0.5, 1.0, 1.5.
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r0 = 1.
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Figure 9. The value of the observables (3.32) for six different implementations of the dynamic path
integral. O2 is in black and O3 is in red, with, for example, “Gt0.2” referring to the Generalized
thimble with flow time τmax = 0.2 and “St1.5” referring to the Sewed thimble implementation with
r0 = 1.5. The green dashed lines represent the results of free theory, as analyzed in the appendix A.

In all cases, we use 106 MC steps. In figure 9, We see that they all produce consistent results
(the correlators are expected to be purely imaginary), while the Sewed thimble appears to
give somewhat smaller statistical errors, a factor of 2-3.

From a practical point of view the goal is for thimble-MC integration of these path
integrals to resolve (or at least ameliorate) the exponential growth of simulation time as
the number of variables increases. And so in figure 10 we show the wall-time for the six
implementations. We see that for a fixed number of MC steps, the Generalised thimble
out-performs the Sewed thimble, and that the choice of algorithm and parameters may give
an improvement of up to a factor 10. Combining this with the decrease of statistical errors
makes the Generalised and Sewed thimbles fairly evenly matched in terms of performance.
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Figure 10. Wall time for simulations using six different implementations, with the same system size
(N = 4) and the same number of MC steps (106).

4 Conclusion

Resolving the sign problem for real-time quantum fields is a major goal of contemporary
numerical field theory. While equilibrium systems at finite chemical potential are coming
under control through complex langevin techniques, full quantum real-time evolution out
of equilibrium remains a challenge.

In this work, we have proposed a variant of the method of Lefschetz thimbles, which
involves performing MC sampling on a particular type of thimble named “Sewed” thimbles.
These Sewed thimbles consist of a Gaussian inner region near the critical point which can
be found analytically in a straightforward way, and an outer region generated numerically
by a flow equation. By further parameterizing the path integral by a flow time/radius and
stereographic variables, a weight function can be generated by integrating over the radius, so
that MC sampling need only be done on the remaining N − 1 variables.

We find that we can reproduce analytic results for simple systems and results consistent
with other thimble approaches, and that in terms of efficiency, Sewed thimbles are competitive
with, for instance, Generalised thimbles.

In this exploratory work, we have been restricted to a very short real-time extent
(N = 4, 6, 8 variables). But using our stereographic parameterization, this is at least in
principle simple to generalise to larger systems. When doing so, one should be aware of
a possibly challenging peak structure in the sampling weight function P (E) [18], which
for large system may require more sophisticated MC technology than just a Metropolis
algorithm. Indeed, multicanonical algorithms or further reparametrizations may be needed
to smoothen out these features.
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A Implementation of the dynamic path integral for N = 4

For completeness, we here provide explicit expressions for quantum mechanics at N = 4.
We will adopt the abbreviations

V0(ϕ) ≡ V (ϕ), V1(ϕ) ≡
dV

dϕ
, V2(ϕ) ≡

d2V

dϕ2 , (A.1)

W0 ≡
∑

l=3,5···

ϕl
1

l!
V (l)(ϕ̃cl

1 ), W1 ≡
∑

l=3,5···

ϕl−1
1

(l − 1)!
V (l)(ϕ̃cl

1 ), W2 ≡
∑

l=3,5···

ϕl−2
1

(l − 2)!
V (l)(ϕ̃cl

1 ), (A.2)

where V (l)(ϕ̃cl
1 ) ≡ dnV

dϕn

∣∣
ϕ=ϕ̃cl

1
. We can specify the action, and its first- and second-order

derivatives, as

I = − i

2dt

[
4ϕ1ϕ̃cl

2 − 2ϕ2ϕ̃cl
1 + 2ϕ2ϕ̃cl

1 − 4dt2W0 (A.3)

+ (ϕ2 − ϕ1)2 −
(
ϕ2 + ϕ1

)2 +
s∑

j=2

[
(ϕj+1 − ϕj)2 −

(
ϕj − ϕj+1

)2
]

(A.4)

− 2dt2
s∑

j=2

[
V0(ϕj) − V0(ϕj)

] ]
, (A.5)

where ϕ1 ≡ ϕq
1

2 and with the underscore j ≡ 2s + 2 − j,

∂I
∂ϕ

= i

dt



ϕ2 + ϕ2 − 2ϕ̃cl
2 + 2dt2W1

ϕ3 − 2ϕ2 + ϕ̃cl
1 + dt2V1(ϕ2) + ϕ1

...
ϕj+1 − 2ϕj + ϕj−1 + dt2V1(ϕj)
...

ϕs − ϕs

...
−ϕj+1 + 2ϕj − ϕj−1 − dt2V1(ϕj)
...

−ϕ3 + 2ϕ2 − ϕ̃cl
1 − dt2V1(ϕ2) + ϕ1



, (A.6)

H ≡ ∂2I
∂ϕ2 = i

dt



f1 1 1
1 f2 1

1 . . .

1
1 fs+1 −1

−1 . . .

−1
1 −1 f2s



, (A.7)
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with

f1 = 2dt2W2, fi = −2 + dt2V2(ϕi), fs+1 = 0, fi = 2− dt2V2(ϕi), (if i > s + 1). (A.8)

When s = 2, we have

I = − i

2dt

[
4ϕ1ϕ̃cl

2 − 2ϕ2ϕ̃cl
1 + 2ϕ4ϕ̃cl

1 − 4dt2W0 (A.9)

+ (ϕ2 − ϕ1)2 − (ϕ4 + ϕ1)2 + (ϕ3 − ϕ2)2 − (ϕ4 − ϕ3)2 − 2dt2 [V0(ϕ2) − V0(ϕ4)]
]
, (A.10)

∂I
∂ϕ

= i

dt


ϕ2 + ϕ4 − 2ϕ̃cl

2 + 2dt2W1

ϕ3 − 2ϕ2 + ϕ̃cl
1 + dt2V1(ϕ2) + ϕ1

ϕ2 − ϕ4

−ϕ3 + 2ϕ4 − ϕ̃cl
1 − dt2V1(ϕ4) + ϕ1

 , H ≡ ∂2I
∂ϕ2 = i

dt


f1 1 1
1 f2 1

1 f3 −1
1 −1 f4

 ,

(A.11)

where

f1 = 2dt2W2, f2 = −2 + dt2V2(ϕ2), f3 = 0, f4 = 2 − dt2V2(ϕ4). (A.12)

When the interaction is off, the whole integral is a Gaussian one. We can obtain the
two-point correlation directly from the Hessian matrix,

⟨ϕϕT ⟩ = H−1. (A.13)

In the case, we obtain

⟨ϕq
1ϕcl

2 ⟩ = −idt, (A.14)

⟨ϕq
1ϕcl

3 ⟩ = −idt
(
2 − m2dt2

)
, (A.15)

which are independent of the initial values.

B The double integrals

By performing the integral first on y and then on x, we can readily obtain∫
dx dy e−iax(y−b)−icx3 = 2π

a
, (B.1)

where the first integration leads to a delta function, with the definition∫
dp eipz = 2πδ(z). (B.2)

If instead, we perform the integral on x first, the result is an Airy function, whose definition is

Ai[z] ≡ 1
2π

∫ ∞

−∞
dt exp

(
−i

t3

3 − itz

)
. (B.3)

– 21 –



J
H
E
P
0
3
(
2
0
2
5
)
0
5
8

This can be used to compute∫
dx dy y4 e−iax(y−b)−icx3 = 2π

3√3c

∫
dy y4Ai

[
a(y − b)

3√3c

]
= 2π

a

(
b4 + 24bc

a3

)
. (B.4)

Alternatively, we can take use of the delta function
∫

dx dy y4e−iax(y−b)−icx3 =
∫

dy y4 exp
[
−ic

(
i

a

∂

∂y

)3] ∫
dxe−iax(y−b) (B.5)

= 2π

a

∫
dy y4 exp

[
−ic

(
i

a

∂

∂y

)3]
δ(y − b) (B.6)

= 2π

a

∫
dy δ(y − b) exp

[
−ic

(
− i

a

∂

∂y

)3]
y4 (B.7)

= 2π

a

(
b4 + 24bc

a3

)
, (B.8)

where we have utilized the following convention

xe−iax(y−b) = i

a

∂

∂y
e−iax(y−b),

∫
dyf(y)δ(n)(y − b) = (−1)n

∫
dyf (n)(y)δ(y − b), (B.9)

with f (n) denoting the n-th order derivative ∂nf/∂yn.

Data Availability Statement. This article has no associated data or the data will not
be deposited.

Code Availability Statement. This article has associated code in a code repository. The
data on which this paper is based may be reproduced using the code and scripts found on
Github at https://github.com/zgmou/SewedThimble.

Open Access. This article is distributed under the terms of the Creative Commons Attri-
bution License (CC-BY4.0), which permits any use, distribution and reproduction in any
medium, provided the original author(s) and source are credited.
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