
Academic Editor: Marcin Kaminski

Received: 18 December 2024

Revised: 6 February 2025

Accepted: 8 February 2025

Published: 11 February 2025

Citation: Chen, W.; Sun, H.; You, M.;

Jiang, J.; Rivera, M. A Knowledge

Graph-Based Framework for Smart

Home Device Action

Recommendation and Demand

Response. Energies 2025, 18, 833.

https://doi.org/10.3390/

en18040833

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

A Knowledge Graph-Based Framework for Smart Home Device
Action Recommendation and Demand Response †

Wenzhi Chen 1,* , Hongjian Sun 1, Minglei You 2 , Jing Jiang 3 and Marco Rivera 2

1 The Department of Engineering, Durham University, Durham DH1 3LE, UK; hongjian.sun@durham.ac.uk
2 The Department of Electrical and Electronic Engineering, University of Nottingham,

Nottingham NG8 1BB, UK; minglei.you@nottingham.ac.uk (M.Y.); marco.rivera@nottingham.ac.uk (M.R.)
3 The Department of Mathematics, Physics and Electrical Engineering, Northumbria University,

Newcastle upon Tyne NE1 8ST, UK; jing.jiang@northumbria.ac.uk
* Correspondence: 2017140863@bupt.cn; Tel.: +44-07594395100
† This paper is a revised and expanded version of a paper entitled Accurate Action Recommendations and

Demand Response for Smart Homes via Knowledge Graphs, which was presented at ICIT 2024 (The 25th IEEE
International Conference on Industrial Technology in Bristol, the UK) from 25th to 27th of March, 2024.

Abstract: Within smart homes, consumers could generate a vast amount of data that,
if analyzed effectively, can improve the convenience of consumers and reduce energy
consumption. In this paper, we propose to organize household appliance data into a
knowledge graph by using the consumers’ usage habits, the periods of usage, and the
location information for graph modeling. A framework, ‘DARK’ (Device Action Recom-
mendation with Knowledge graphs), is proposed that includes three parts for enabling
demand response. Firstly, a household device action recommendation algorithm is pro-
posed that improves the knowledge graph attention algorithm to make accurate household
appliance recommendations. Secondly, graph interpretable characteristics are developed in
the DARK using trained graph embeddings. Finally, with the recommendation expectation,
the consumers’ comfort level and appliances’ average power load are modeled as a multi-
objective optimization problem in the DARK to participate in demand response. The results
demonstrate that the proposed system can generate appliances’ action recommendations
with an average of 93.4% accuracy and reduce power load by up to 20% while providing
reasonable interpretations for the device action recommendation results on the customized
UK-DALE dataset.

Keywords: knowledge graph; smart home; demand response; recommendation system

1. Introduction
With the advent of smart appliances, there has been a growing interest in replacing

conventional automation with intelligent action recommendations for smart homes [1].
Accurate action recommendations can enhance the convenience of daily life, such as
automatically turning on the dining area lights during meals, closing curtains at night, or
turning on the TV/music based on residential habits, especially for the elderly or patients
with mobility difficulties [2]. Since action recommendations are closely related to human
activities, the interpretability of the algorithm is important [3]. However, to our knowledge,
no paper currently focuses on interpretable models particularly designed for household
appliance action recommendations, which is the aim of this paper.

While making recommendations, with the participation of a flexible load, the house-
hold appliances’ demand response can improve power grid efficiency [4]. Many household
appliances, such as fans, washing machines, and ovens, can be considered flexible loads
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with different power levels, and less energy consumption may lead to discomfort [5]. In
this paper, the demand response means that residents (exchangeable with consumers)
can balance comfort and energy consumption by setting the appropriate power level for
each appliance, thus improving energy efficiency. Optimizing action recommendations to
achieve demand response is another aim of this paper.

Research on household appliance action recommendations is limited and still in the
early stages as of September 2024, as summarized in the literature review below.

In 2014, Rasch, Katharina et al. proposed a smart home recommendation system
that continuously interpreted the user’s current situation and recommended services that
aligned with the user’s habits. However, due to the limitations of the algorithms at that
time, the accuracy was only about 60% [6]. In 2016, Chen et al. proposed a hybrid rec-
ommender system based on the Kalman Filter to predict the actions that users wanted to
perform next in a smart home environment [7]. However, the recommendation accuracy
was a major concern. In 2016, Belghini, Naouar et al. proposed a smart home recommenda-
tion system that offered personalized services using contextual information and physical
sensor data; however, this paper only focused on the theoretical framework [8]. In 2021,
Reyes-Campos et al. proposed a method for discovering resident behavior patterns using
machine learning techniques and the Internet of Things [9]. In 2022, Jeon et al. proposed
a precise action recommendation method for smart homes [10], which summarized the
device control and temporal context of each action through a self-attention mechanism and
extracted patterns related to the query from the sequence using an attention mechanism.
Although the recommendation accuracy was good, both [9,10] did not consider energy
optimization as well as the interpretability of their algorithms. In 2022, Varlamis et al.
proposed a recommendation system that integrated sensor data, user habits, and user feed-
back to provide timely, personalized energy-saving suggestions [11]. This paper applied
only to specific scenarios, such as predicting unnecessary lighting and air conditioning
use or whether a room was occupied, which limited its applicability. In 2023, Yao et al.
developed a recommendation system using GraphSAGE [12]. This system created a unique
graph for each user based on the specific rules they employed in their smart devices. The
system employed a federated training algorithm to ensure user data privacy. Both our
approach and [12] utilized graph-based recommendation algorithms. The difference was
that our recommended actions were triggered by electricity usage, leading to demand
response-driven optimization. Additionally, our algorithm was based on a knowledge
graph incorporating information from the edges, but this was not considered in [12]. In
2023, Ali et al. presented a method for an adaptive smart home system aimed at developing
personalized automation systems that provide smart home services to users [13]. Similarly,
this work did not consider the interpretability of the algorithm and further energy opti-
mization. In 2024, Tahar et al. proposed a dynamic, context-aware recommender system for
smart homes [14] but did not consider the interpretability of the recommendation system.

While the aforementioned recent studies focused on energy optimization to enhance
the accuracy of recommendations, none have simultaneously considered both energy
optimization and model interpretability during the recommendation process. Our research
seeks to address this research gap, primarily focusing on the following aspects:

1. How to incorporate information to accurately recommend the next action of house-
hold appliances?

2. How to generate the interpretation for the recommended results of household appli-
ance actions?

3. How to optimize energy consumption and comfort levels by setting the appropriate
power for each household appliance?
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In response to these questions, this paper establishes a framework ‘DARK’, represent-
ing Device Action Recommendations with Knowledge graph that accurately recommends
and optimizes the appliances’ next action with interpretive methods considering demand
response optimization. Please note that ‘DARK’ is an acronym derived from the initials of
‘Device’, ‘Action’, ‘Recommendations’, and ‘Knowledge’, and it does not have any actual
academic meaning. The main contributions of this paper are as follows:

1. We propose a modified KGAT algorithm by enhancing its sampling and aggregation.
This algorithm predicts the next likely actions of appliances using a knowledge graph.
We conducted comparative experiments with the traditional KGAT, DNN, CNN, and
RNN algorithms, observing that our method demonstrates superior performance.

2. An interpretation method for the recommended results is proposed. This method
utilizes embeddings for reasoning and analyzes the rationale behind each recommen-
dation, enhancing the trustworthiness of our recommendation system.

3. Demand response optimization is carried out based on the expected recommended
actions, taking into account the energy consumption and comfort level of consumers.
This approach improves energy efficiency by effectively balancing energy consump-
tion with comfort.

The remaining structure of this paper is as follows: Section 2 presents the system
architecture, Section 3 introduces the proposed algorithm and method, Section 4 presents
the simulation and results of the system, and Section 5 provides the conclusion.

2. System Composition
The overall architecture of DARK is built upon a household appliance system, as

represented in Figure 1. The system comprises appliances, sensors, a small-scale database,
and a home energy management system. Each appliance possesses the following attributes:

1. Rated power: Each appliance has its rated power. For example, a toaster has a rated
power of 1500 W.

2. Appliance location: Appliances are distributed across different rooms, including the
kitchen, living room, office, bedroom, utility room, children’s room, and undefined
locations.

3. Comfort impact: Each appliance has a different impact on comfort.
4. Habitual usage time: Each appliance has specific habitual usage times. For example,

gas stoves are mostly used during mealtime, while lights are frequently used at night.
5. Habitual usage sequence: Some appliances have a habitual usage sequence. For

instance, the most commonly used appliance following a hair dryer might be a
hair straightener.

All the appliances are connected to the home’s local area network, and sensors monitor
them to collect energy consumption data. The data are sent to the local database for process-
ing and transformed into embeddings. The data in the database are then used by the home
energy management system to create recommendations. The recommended results are sent
to the interpretation module to generate interpretations and to the optimization module
to generate optimization results, considering both comfort level and energy consumption,
assisting consumers in decision-making.
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Figure 1. The proposed system architecture of DARK has different modules. The energy consumption
information is collected by sensors and used in the local model. Then, the data are sent to different
modules, including the embedding, recommendation, interpretation, and optimization modules.

Privacy protection is also essential. User data is considered private and should not be
disclosed to third parties. To ensure user privacy, the database data is not shared externally.
Instead, federated learning can be employed, only uploading the local model to the server.
Federated learning ensures that the data remains only locally stored [15]; however, this is
not the focus of this paper. This paper considers only standalone action recommendation
systems without sharing any data, so there are no privacy leakage concerns.

3. Proposed Algorithm
This section introduces the proposed methods for graph building and the algorithms

used in DARK’s embedding, recommendation, interpretation, and optimization module.

3.1. Method for Building Knowledge Graph

It is assumed that each appliance has an associated sub-meter, so individual electricity
usage data for each appliance can be obtained. If this is not achievable and only a main
smart meter exists, non-intrusive load monitoring can be used for power disaggregation
to obtain individual appliance electricity data. Then, the next step would be data pro-
cessing for DARK, involving the following sequence of steps: format conversion, noise
filtering, device selection, graph construction from conventional datasets, incorporating
other attributes, and finally, negative sampling.

3.1.1. Format Conversion and Noise Filtering

First, the format should be transformed. The system needs to recognize and transform
the timestamps into the year-month-day format and aggregate the data into certain intervals.
The data may contain a large amount of noise, so filters are implemented to determine the
on/off states of appliances as well as filter out momentarily switched-on appliances and
electricity leakage. Due to the unique characteristics of each type of electrical appliance, the
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filtering thresholds for each type of appliance need to be customized according to the rated
power. The thresholds (rated power) are shown in Table 1. The column ‘Comfort Level’
will be introduced later in the Section 4.4.

Table 1. Rated power and comfort level of home appliances.

Device Rated Power (Watt) Comfort Level ci

Washing machine 1700 0.0001
Dishwasher 2350 0.0001
TV 130 0.0003
Kitchen lights 150 0.0003
HTPC 70 0.0003
Kettle 2400 0.0005
Toaster 1580 0.0005
Microwave 1510 0.0005
LCD office monitor 50 0.0003
Hi-Fi office stereo 15 0.0003
Breadmaker 580 0.0005
Living room amp 45 0.0003
Living room floor lamp 1100 0.0003
Hoover (vacuum cleaner) 2000 0.0001
Kitchen desktop lamp 40 0.0003
Bedroom desk lamp 80 0.0003
Living room side lamp 20 0.0003
Living room subwoofer 50 0.0003
Living room TV cabinet lamp 25 0.0003
Kitchen table lamp 20 0.0003
Kitchen phone stereo 20 0.0003
Utility room lamp 45 0.0003
Bedroom table lamp 60 0.0003
Coffee machine 1270 0.0003
Bedroom chargers 30 0.0003
Hair dryer 1680 0.0003
Straighteners 500 0.0003
Iron 1800 0.0003
Gas oven 60 0.0005
Child’s table lamp 15 0.0003
Child’s desk lamp 50 0.0003
Office desk lamp 1 30 0.0003
Office desk lamp 2 25 0.0003
Office desk lamp 3 20 0.0003
Office PC 240 0.0005
Office fan 50 0.0003
LED printer 900 0.0005

3.1.2. Domestic Devices Selection

Some appliances are not suitable for inclusion in the recommendation system. Figure 2
displays the typical power consumption of the fridge and washing machine for a day
(24 h) [16]. The fridge exhibits a characteristic of prolonged operation, making it less suit-
able for recommendation system data. Please note that even after filtering, the refrigerator
still exhibits significant periodic high peaks. These are not detailed in the UK-DALE dataset,
but they can be assumed from the opening and closing of the refrigerator or the refrigera-
tor’s periodic defrost function. On the other hand, the washing machine shows distinct
triggering patterns, making it a suitable candidate for inclusion in the recommendation
system data. So appliances with long-term operation, such as refrigerators, routers, iPad
chargers, etc., are excluded. Additionally, some appliances that are not under human
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control also need to be excluded. For example, the function of boilers is based on a preset
automatic control system.

Figure 2. Power consumption for fridge and washing machine over time.

3.1.3. Graph Construction

Each appliance is treated as a node and adds an edge between two appliances if the
appliances are used one after another, labeled as “used before/after”. A knowledge graph
is also established for the time zones where appliances are used, connecting time nodes
with appliance nodes. The relationship can be represented as “used during the time period”.
Finally, a knowledge graph for the location of appliances can be established, connecting
location nodes with appliance nodes and labeling the relationship as “located in the room”.
Other attributes, such as the rated power and comfort level, are added for each appliance.
This information helps the graph to find the hidden relationships in recommendations
and carry out demand response, as they connect the usage information with the energy
consumption through a graph.

3.1.4. Negative Sampling

Negative sampling is performed on the dataset to accelerate convergence. For example,
a gas oven is often used from 18:00 to 24:00, recorded as ‘gas oven-used during the time-
18:00’. This time can be replaced by 2:00 to 4:00 in the morning for producing negative
examples, which have never happened, recorded as ‘gas oven-never used during the
time-3:00’. This method creates negative examples at a 1:1 ratio in numbers with positive
examples. The reason for choosing a 1:1 ratio is that the model does not overly favor either
positive or negative samples, which improves training stability and prevents overfitting to
one side. This is also an empirical choice commonly adopted in the KGAT algorithm [17].

Compared to conventional data, by modeling the relationships between nodes in
graph data and visualizing the connections between household data nodes and edges,
one can intuitively understand how the proposed KGAT model performs reasoning and
makes recommendations. This also imparts a structural nature to the model’s decisions,
beyond merely relying on the statistical properties of the data, which facilitates data
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mining [18]. Figure 3 illustrates the constructed knowledge graph, which is a part of the
overall knowledge graph. It depicts a subgraph containing a kitchen light, microwave, and
kettle, along with each appliance’s attributes. For instance, the most commonly used time
for the microwave is 6:00 to 12:00 on Tuesday. Similarly, the rated power of the kettle is
2000 Watts. There are also associations between appliances. For example, kitchen lights,
the kettle, and the microwave are all in the kitchen, so they all point to the ‘kitchen’ point.
Actions commonly taken after turning on the kitchen light include using the kettle or
microwave, thus establishing relationships (edges on the graph) between appliances.

Kitchen_lights

Located_in

Kitchen

Shiftable No

Rated_power

100 Watt

Most_common_

timezone

Tuesday

18:00–24:00

Kettle

Next_common_action

Located_in

Rated_power

2000 Watt

Shiftable

No

Most_common_

timezone

Friday

6:00–12:00

Microwave

Next_common_action

Located_in

Shiftable

No

Rated_power

1200 Watt

Most_common_

timezone

Tuesday

6:00–12:00

Figure 3. Constructed domestic appliances knowledge graph. Each household appliance has at-
tributes such as shift ability, rated power, usage time, and appliance location. If there is a sequential
order of usage between two appliances, a line is established between them.

3.2. Embedding Module

During the data processing, it is necessary to convert the data into embeddings,
which use high-dimensional vectors to represent the discrete data. The transformation
from data to embeddings facilitates the use of knowledge graph algorithms in subsequent
steps. During backpropagation, its parameters are updated based on the gradient of the
loss function to minimize the difference between predicted results and true labels. The
following data were encoded to embeddings:

1. Appliances: Each appliance is assigned an embedding, resulting in a set of embed-
dings for different appliances.

2. Time zones: The daily time is divided into four time periods: midnight, morning,
afternoon, and evening. Thus, a week can be divided into 4× 7 = 28 time zones. These
28 time zones are encoded as a set of embeddings.

3. Locations: Appliances are distributed across different rooms, and an embedding is
created for each room.

Please note that the reason for dividing daytime into four zones is that recommenda-
tion systems often have time dependencies. This allows time to be segmented into natural
periods, such as late night for rest, morning for waking up and starting work, afternoon for
work and study, and evening for entertainment and relaxation. Daily habits vary, as people
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typically engage in different activities on Mondays, Fridays, and weekends. Therefore,
time was divided into 4 × 7 = 28 time zones. Compared to hourly segmentation, this
approach reduces the computational burden on the recommendation system and lowers
complexity. Additionally, merging data into broader time periods facilitates the discovery
of potential features.

The embedding layer aims to train the embedding of (h, r, t) such that the embedding
of the head eh plus the embedding of relation er approaches the embedding of tail et for
any positive (h, r, t) in distance (for example, L2 distance), which can be represented as

g(h,r,t) = ||Wreh + er − Wret||22 , (1)

where || · ||22 means the squared results of the L2 distance. g(h,r,t) represents the positive
triples, and the value of g(h,r,t) should be close to zero. However, for negative triples, the h, r
or t can be replaced by other values that never happened. For example, g(h,r,u) is generated
by replacing t with u arbitrarily, and the value of g(h,r,u) should be infinity.

The embedding module converts discrete inputs into continuous embeddings. These
embeddings are then fed into the knowledge graph layer as input for training.

3.3. Recommendation Module

After encoding the original data into embeddings, the embeddings can be further
used for recommendations. The recommendation module introduces the proposed DARK
algorithm, an improved KGAT algorithm in the recommendation area. It also includes a
comparison with the traditional KGAT algorithm.

3.3.1. Knowledge Graph Attention Networks

In KGAT, attention mechanisms are utilized to determine the aggregation weights of
neighboring node embeddings in [17]

a(h,r,t) = Softmax((Wret)
Ttanh(Wreh + er)) , (2)

where the a(h,r,t) is the calculated attention for knowledge graph aggregation. Softmax(·)
and tanh(·) (hyperbolic tangent function) are activation functions. Wr is the relation
transformation matrix. eh, er, and et are the head, relation, and tail entity, respectively. Then,
it aggregates the embeddings of neighboring nodes based on the weights in [17]

eNh = ∑
(h,r,t)∈Nh

a(h,r,t) × et , (3)

where eNh is the aggregated entity, which means how much information the tail entity et is
going to pass to the head entity eh, which is represented as [17]

agg = LeakyRelu(Wtrans(eh + eNh)) , (4)

where agg is the information aggregation vector, which contains weighted information
with the head and tail entities and can then be used for recommendations by embedding
the dot product with the aimed user embeddings. LeakyRelu is the activation function.
Wtrans is the transformation matrix [17].

3.3.2. Modified KGAT Algorithm

Different from the traditional KGAT algorithm, some improvements have been made
to the action recommendation scenario. The pseudocode is shown as Algorithm 1. Based
on the original KGAT algorithm, the proposed algorithm improves (1) the embedding
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aggregation process and (2) the embedding sampling method. These enhancements help
improve recommendation performance. The detailed description is as follows:

Algorithm 1: The modified KGAT networks in the recommendation module of
DARK
1 Load knowledge graph sequence embeddings ese

(h,r,t,time), time zone embeddings eti
(h,r,t), and

location embeddings elo
(h,r,t) from processed datasets.

2 Initialize the list L.
3 for episode = 1, M do
4 for ese

h , ese
t in ese

(h,r,t,time) do
5 Sampling dataset sh for ese

h and st for ese
t according to the distribution of ese

(h,r,t),

eti
(h,r,t) and elo

(h,r,t).

6 Constructing adjacency matrics Adjh with sh and Adjt with st.
7 for each eh, er and et in Adjh do
8 ah-(h,r,t) =

9 Softmax((Wret)
Ttanh(Wreh + er))

10 eh-Nh = ∑(h,r,t)∈Nh ah-(h,r,t) × et

11 aggh = LeakyRelu(W(eh + eh-Nh))

12 end for
13 for each eh, er and et in Adjt do
14 at-(h,r,t) =

15 Softmax((Wret)
Ttanh(Wreh + er))

16 et-Nh = ∑(h,r,t)∈Nh at-(h,r,t) × et

17 aggt = LeakyRelu(W(eh + et-Nh))

18 end for
19 V = concatenate(aggh, aggt, ese

time)
20 Store O = Relu(FullyConnectedLayer(V)) in L
21 end for
22 end for
23 Output: L

Firstly, the algorithm aims to predict the next potential appliance to be used based on
known residents’ appliance usage habits. In the traditional KGAT recommendation algo-
rithm, only potentially recommended appliances undergo graph embedding aggregation
because traditional KGAT treats the recommended appliance as an item and the known
appliance as a user. However, in the household device action system, the known appliance
usage can also be treated as an item and aggregated. This is expressed in lines 13–18 of
Algorithm 1, where the subscript t-Nh and h-Nh means that eh-Nh is generated by t or h,
similar to the subscripts h-(h, r, t) and t-(h, r, t).

In addition, each type of attribute, such as timezone, usage sequence, and location, is
first collected, ensuring equal chances of different kinds of data. Then, a distribution-based
sampling is used in line 5. These samples will inform the knowledge graph algorithms
about the studied case and affect the aggregation results. For example, if a particular
appliance is most commonly used on Tuesday mornings, the probability of sampling
Tuesday mornings for the adjacency matrix will be higher. This is expressed in lines 5–6.

The output L contains aggregated embeddings aggh for head embeddings and aggt

for tail embeddings. Then, the embedding L is used as the input for the fully connected
layers for training.

3.4. Interpretation Module

After making recommendations in the recommendation module, the results can be
sent to the interpretation module for further reasoning.

In recommendation algorithms, interpretability is crucial for making the recommenda-
tion results convincing. The purpose of this module is to provide further interpretations
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of the recommended results. It is known that the trained embeddings in graph neural
networks can represent the meaning of the data [19], and in paper [20], Ai et al. used that
for making interpretations. Based on this characteristic, we generate reasons for the recom-
mended results, which consist of three types of reasons: (1) Habitual usage sequence, which
means an appliance is often used after another one. (2) Habitual usage time, which means
an appliance is often used at some specific time. (3) Usage at a habitual location, which
means an appliance is used because it has location relationships with other appliances.

All the connections between the recommended appliances and the known appliances
within two hops are identified in the graph, and we find the embeddings of all the nodes
and relationships involved. Using the embedding approach described in the paper [19],
we have

et ≈ eh + er , (5)

where the head embedding eh plus relation embedding er should approach the tail embed-
ding et as much as possible after training. Ideally, they are equal.

Here we propose a new measure as shown in (6)–(11) for the recommendation results
in the context of household appliance action recommendations. From (5), the embedding
of the reasons can be calculated in (6)–(8).

ese
total = (ese

h + ese
r )e

se
t , (6)

eti
total =

1
N
(

N

∑
j=1

(eti
h,j + eti

r,j)e
ti
t,j) , (7)

elo
total = (elo

h + elo
r )e

lo
t , (8)

R(se) =
ese

total

ese
total + eti

total + elo
total

, (9)

R(ti) =
eti

total

ese
total + eti

total + elo
total

, (10)

R(lo) =
elo

total

ese
total + eti

total + elo
total

, (11)

where the superscript se, ti, and lo refer to different reasons like sequence, timezone, and
location. The values ese

total, eti
total, and elo

total are the product values of the embeddings. From
the characteristic embedding of TransE [20], a higher product value means that the reason
has a stronger relationship with the answer, where eti

total is the top N average product of the
embedding of the reason timezone. ese

total and elo
total only exist if two household appliances

have a sequential relationship or are placed in the same location. In (9)–(11), the explanation
R of different reasons is calculated.

Please note that a major drawback of interpretation is that, generally, the correctness
of the interpretation cannot be verified; thus, it is usually used as a reference rather than
a precise interpretation. In this paper, the verification method only checks whether the
interpretations align with common sense. If this is true, the interpretations are considered
to be correct. Since interpretations themselves are estimations of the user’s intentions,
surveys can be created in the future to further verify the accuracy of these interpretations.

3.5. Optimization Module

Based on the results of the recommendation module, multi-objective optimization
can be performed for demand response. This section primarily introduces the objective
functions in the optimization module of DARK for optimizing energy consumption and
the user’s expected satisfaction.
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When solving complex problems with multiple objectives and a large number of
parameters, the Genetic Algorithm is a promising method, especially when these objectives
involve a non-linear problem [21].

It is assumed that the power of each appliance is adjustable within a certain range,
and the power of an appliance affects the comfort level as given by

f comfort = − f discomfort = −
N

∑
i=1

ci(Pi − Preal
i )2 , (12)

where f comfort is a comfort function, and f discomfort represents the sum of discomfort
scores for N appliances. The rated power of appliance i is Preal

i with i = 1, . . . , N. Power
significantly above or below the rated power can result in discomfort. The average power
load of appliances is calculated by

favgpower =
1
N

N

∑
i=1

Preal
i . (13)

For (12) and (13), we address two competing objectives: maximizing comfort, which
represents consumer needs, and minimizing average power load, a consideration crucial for
supporting power grid operations. For this type of optimization problem, multi-objective
optimization algorithms, such as genetic algorithms, can be used to find the Pareto front.
The outcome of the optimization is to set the power level Pi for appliance i based on the
expectation of the recommendation results. Through the optimization results, multiple
feasible solutions between comfort level and average power load can be selected in the
Pareto front [22].

4. Simulations Setup
This section introduces the simulation environment, dataset preprocessing, and the

simulation results, including accuracy and interpretations. Finally, the results of the pro-
posed demand response algorithm are introduced.

4.1. Dataset and Software

UK Domestic Appliance-Level Electricity is a household electricity dataset used for
non-intrusive load recognition research [16]. The UK-DALE dataset provides high-precision
power consumption data, including 54 household appliances such as refrigerators, washing
machines, ovens, lighting, etc. It is based on electricity-triggered information. The detailed
sampling frequency, reaching as high as 6 Hz, makes constructing the graph’s structure
possible and suitable. We used the dataset and transformed it into graph-structured data.
Please note that this paper only considers electricity consumption and no other kinds of
consumption, such as geothermal or gas.

For software, the PyTorch (https://pytorch.org/ accessed on 5 February 2025) frame-
work was used for deep learning. The parameters are listed in Table 2.

Table 2. Parameters for the recommendation system.

Parameter in Recommendation System Values

Device/Relation/Time embedding dimension 128
Embedding input nodes 3
KGAT input nodes 384
(Comparison) RNN/CNN/DNN input nodes 384
DNN hidden nodes 384 × 128
DNN output nodes 1
Learning rates 0.001
Training iterations in a round 50

https://pytorch.org/
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4.2. Results for Recommendations

Our modified KGAT algorithm of DARK is compared with other algorithms, including
the original KGAT, DNN, CNN, and RNN [23]. The recommended results are defined as
the top three most likely appliances generated by the recommendation algorithm, and a
recommendation score greater than 0.95 is also added to the recommendation list. Precision
is determined by comparing it with the labels.

Figure 4 shows a selected instance where all other conditions were the same, represent-
ing typical algorithm performance. It can be observed that DNN and CNN yielded notably
inferior results. However, they do show training effectiveness. Assuming the selection of
3 devices at random from a set of 37 devices, the probability of including a specific number
is C(36, 2)

C(37, 3) , which is around 8.1%, and C means combination calculation in mathematics. The
recommendation accuracy of DNN and CNN reaches approximately 30%. The performance
of the RNN algorithm steadily improved over time, but the KGAT algorithm (averaged
accuracy: 87.3%) reached the highest precision comparable to RNN in the first round. The
improved KGAT achieved the highest accuracy (averaged accuracy: 93.4%) and provided
the most accurate recommendations, which averaged 6.1% (accuracy improved) compared
with the traditional KGAT algorithm, though the gap is not so apparent in the Figure 4.
The related data are summarized in Table 3.

Table 3. Comparison of recommendation accuracy of different algorithms.

Algorithm Highest Accuracy Lowest Accuracy Average Accuracy

KGAT 90.4% 83.3% 87.3%
DNN 32.9% 29.8% 31.1%
CNN 31.3% 26.5% 28.9%
RNN 88.9% 31.6% 77.6%
Proposed KGAT solution 94.7% 91.4% 93.4%

Figure 4. Recommendation accuracy vs training iterations for different algorithms.
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4.3. Results for Interpretations
4.3.1. Reason-Timezone

Figure 5 represents the detailed next action recommendation after using an oven, and
Figure 6 illustrates the recommended results for different appliances. On the left are the
target appliances for recommendations, and on the right are the appliances most likely to
be used next after using the target appliance in all instances. The results are sorted by the
degree of recommendation from 0 to 1.

Figure 5. Next action’s recommendation rankings and marks of various appliances after using
an oven.

This means these two appliances are frequently used at the same time, as shown
in Figure 5. According to the residents’ habits on Tuesday nights, appliances such as
lights, office lamps, and appliances for entertainment purposes, such as television, Hifi,
and HPTC, are the most commonly used in our dataset. A similar result in Figure 6 is
‘Utilityrm_lamp’, and ‘WashingMachine’ are recommended because they have always been
used at the same time.

4.3.2. Reason-Sequence

This reason means that 2 appliances are always used together. The recommended
score on the horizontal axis is the inner product of embeddings from the recommen-
dation algorithm. Appliances like ‘hair_dryer’ and ‘straightener’ are often used with
each other because of the use sequence. Other similar results are ‘Kitchen_phone_stereo’
and ‘Kitchen_lamp2’, as well as ‘Microwave’ and ‘Kitchen_dt_lamp’. The probabil-
ity analysis is shown in Figure 6. This interpretation aligns with common sense, as
‘hair_dryer’ and ‘straightener’ are often used together after taking a shower. The use
of ‘Kitchen_phone_stereo’ and ‘Microwave’ often requires lamps.
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Figure 6. The most possible recommendation result for each domestic appliance; the left side
represents appliances that have already been used, and the right side shows the appliances that are
most likely to be used next.

4.3.3. Reason-Location

This reason means both appliances are in the same location. In Figure 5, when
using the gas oven on Tuesday afternoon, the recommended appliance list includes the
kettle, microwave, and other kitchen lights. This also aligns with common sense, as using
appliances for cooking in the evening often involves turning on lights or using a kettle to
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boil water in the same location. In Figure 6, the recommendation results can be categorized
into the following groups.

• Living Room Series: Such as ‘TV’, lamp for TV in the living room Livingroom_lamp_tv,
amplifier in the living room ‘Amp_livingroom’, ‘HTPC’, and subwoofer ‘Sub-
woofer_livingroom’ are ranked as the top recommendations for each other, which
align with daily usage logic, as using the TV often requires auxiliary devices like a
lamp or speaker.

• Kitchen Series: Including lights ‘Kitchen_lights’ and ‘Kitchen_dt_lamp’, ‘Kettle’, ‘Toaster’,
‘Gas_oven’, ‘Coffee_machine’, and kitchen phone stereo ‘Kitchen phone_stereo’. These
appliances are recommended as the top choices for each other, which makes sense
since they often collaborate. For example, cooking may involve turning on the lights.

• Bedroom Series Such as the lamp in the Bedroom ‘Bedroom_d_lamp’ and Bedroom’s
charger ‘Bedroom_chargers’ are recommended as top choices for each other, with the
primary reason being location, aligning with typical usage patterns.

• Office Series: Such as three lamps in the office ‘Office_lamp1’, ‘Office_lamp2’ and
‘Office_lamp3’, LCD device ‘Lcd_office’, and Hifi device ‘Hifi_office’ are recommended
as top choices for each other.

4.3.4. Example of Failed Recommendations

The last six items in Figure 6 are considered unsuccessful recommendation results due
to a lack of data or unrepresentative data.

4.4. Results for Demand Response

It is assumed that the rated power of all appliances is adjustable within 0.8–1.2 times.
In the simulation, assuming that there are three kinds of comfort levels in Table 1: The first
kind is adjustable appliances, including washing machines and dishwashers, the parameter
ci in (12) is set as 0.0001, which means it will produce less uncomfortable if the power
is adjusted. The second kind is mainly entertainment appliances, including TV, HTPC,
etc. The parameter ci is set as 0.0003. The third kind is essential household appliances,
including gas ovens, office PCs, etc. The parameter ci is set as 0.0005, which means it will
cause discomfort if the demand response adjusts it. The value of ci is manually set based on
life experience. The values 0.0001, 0.0003 and 0.0005 are chosen because they can normalize
the dissatisfaction score to a range of 0–400.

After optimization by the Genetic Algorithm with the objective dissatisfaction calcu-
lated in (12) and the averaged power calculated in (13), the Pareto front generated by the
optimization algorithm converges. In genetic algorithms, the HV value (Hypervolume)
represents the size of the hypervolume formed by the Pareto front and the reference point.
A larger HV value indicates that the solution set covers a wider area in the objective space,
implying better optimization performance. Figure 7 records the change in HV value over
the optimization iterations, showing that the algorithm’s performance gradually converges
after 10,000 iterations. In addition, the genetic algorithm’s convergence time was analyzed
during the simulation process. Since the genetic algorithm optimizes based on the recom-
mended list, the problem is fixed and relatively simple. The optimization times for 10 runs
of the 20,000 generations genetic algorithm are as follows: 8.67, 8.63, 8.66, 8.66, 8.60, 8.57,
8.54, 8.57, 8.78, and 8.55 s. The average optimization time is only 8.62 s. The Pareto front is
shown in Figure 8, where each point represents a set of device power settings.
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Figure 7. The hypervolume value of the genetic algorithm over 20,000 generations optimization.

Figure 8. Pareto front for bi-objective optimization in demand response. The optimized Pareto points
(marked in blue) significantly outperform the unoptimized points (marked in red) in terms of both
users’ expected satisfaction and average power consumption.

In Figure 8, the blue points represent the optimized Pareto fronts, which have the
most efficient energy consumption and comfort balance. The red points represent the
values obtained by simulating user operations, assuming that the power range of each
electrical appliance is a random multiple of 0.8 to 1.2 times the rated power; calculate the
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energy consumption and discomfort level (average power between 560 and 740 watts).
It can be seen that the optimized Pareto front blue points can achieve lower discomfort
levels than the red points while saving energy consumption. The green star dots represent
rated appliances’ power (average power = 650 watts and discomfort level = 0). It can be
seen that compared to the green dots. The optimized power load can be reduced by up to
(650 watt − 520 watt)/650 watt = 20% with the proposed algorithm (The average power
of the rightmost blue point is 520 watts).

According to the user’s preference, the system can assign power settings to each
appliance based on the Pareto fronts toward a higher comfort level or energy saving.

5. Conclusions
The proposed DARK framework integrates a knowledge graph-based recommen-

dation system with interpretative analysis and multi-objective optimization for enabling
demand response. Our results indicate that the modified KGAT algorithm effectively pre-
dicts the next actions of appliances and provides comprehensible interpretations of these
recommendations. By fine-tuning the expected outcomes, we successfully achieve a balance
between consumers’ comfort and average power load, represented by a Pareto front.

One limitation of the simulations in this paper is that, due to the constraints of the
dataset and the complexity of customizing data, only the UK-DALE dataset was used. This
does not demonstrate the broad applicability of the algorithm but serves only as a starting
point for future research. To obtain an exact percentage, much more research should be
conducted in the future, including studies involving inaccurate data.

Future research will aim to develop more complex recommendation graphs (or use
different datasets) and test the robustness of the algorithm in practical applications.
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