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A B S T R A C T

The boundary line model has been proposed for interpretation of the plot of a biological response (such as crop
yield) against a potentially-limiting variable from observations in a large set of scenarios across which other
factors show uncontrolled variation. Under this model the upper bound of the distribution of data represents
the limiting effect of the potential factor on the response. Methods have been proposed to fit this model, but
we propose that an initial exploratory data analysis step is needed to evaluate evidence that (i) the model is
plausible and (ii) that any limiting upper bound is exhibited by the data set (which could, in principle, not
include any cases where the factor is limiting). We propose a statistic based on the density of observations in
upper sections of early convex hull peels of the data plot. We evaluate this approach using various data sets,
some of which have been used for boundary line analysis in previous studies.
1. Introduction

Biological responses in nature, such as yield of arable crops, are
often driven by multiple factors (Cossani and Sadras, 2018), and so
the relationship between a response variable, such as yield of a dry-
land crop, and a single factor which, in principle, might influence this
variable, such as soil phosphorus concentration, have a complex joint
distribution. Webb (1972) observed that there may exist a maximum
limit which the biological response to a given level of factor does not
exceed which he referred to as the boundary line. A boundary line,
therefore, gives the maximum possible biological response for a given
level of the factor and may be an appropriate model for a biological
response in the most conducive environment where other factors are
not limiting. Any data points that fall below the boundary line are due
to the limiting effects of factors other than the factor of interest.

The boundary line model has attracted attention since Webb (1972)
proposed it, and has been widely used in studies that relate biological
responses to different environmental and non-environmental factors
e.g. in yield gap analysis (Casanova et al., 1999; Fermont et al., 2009;
Wairegi et al., 2010), studies of biogenic nitrous oxide emission from
soil (Lark and Milne, 2016) and of plant physiology (Buckley, 2017;
Shao et al., 2023) and ecology (Su et al., 2022). However, its inter-
pretations only hold if the upper (in some cases the lower) margin of
the scatter plot represents a limit and not just the contingent margins
of a particular data set. It has been recognized that boundary line
models are often used without any justification (Sadras, 2020). Two
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questions arise when one considers fitting a boundary line model to a
particular data set. First, is it biologically or agronomically reasonable
to postulate that some upper bound exists on the joint distribution of
a response variable 𝑦 and a potentially limiting factor 𝑥. There may
be prior biological grounds to expect this, but that will not always be
the case. Second, even if a boundary might exist in principle, does the
data set cover a sufficiently wide range of conditions such that this
boundary is exhibited, that is to say, there is a significant number of
cases where the limiting effect of 𝑥 is expressed because no other factors
are limiting. Further practical questions arise: what parametric form of
boundary model is appropriate and what values of those parameters
could be used as starting points to fit the model?

Most statistical methods used for boundary analysis provide no basis
to evaluate evidence that a bounding function is part of a plausible
model for the distribution of response variables and others of inter-
est. Lark and Milne (2016) give an example of one, where the evidence
can be assessed in terms of the maximized likelihood once a model
has been fitted. However, we propose that an exploratory method to
examine data to make an initial assessment of the plausibility of a
boundary model would facilitate the use of boundary line methods,
addressing both the questions of model plausibility and data suitability
discussed above, as well as the practical questions for model fitting.

Milne et al. (2006b) proposed such a method which we refer to
as the convex hull peel count method (CHPC). The convex hull of
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a bivariate set of data is the smallest convex subset of observations
which enclose all observations. The convex hull provides a basis for
the procedure of ‘peeling’ such a data set. The convex hull of the full
data set is its first peel, and the second peel is the convex hull of the
remaining data once the observations in the first peel are removed,
and so on. Milne et al. (2006b) proposed that a data set in which a
limiting boundary constrains the possible distribution of observations,
and which covers a sufficient range of conditions for that limitation to
be exhibited, will have a larger number of observations in the first few
peels than would be expected for an unbounded ‘null’ alternative model
such as the bivariate normal distribution. This test can be made more
sensitive by focusing on the upper portion of the peel (the subset which
is convex upward) when an upper boundary is expected.

Milne et al. (2006b) found that the CHPC method was somewhat
insensitive, and that it failed to provide evidence for a boundary in a
joint distribution in cases where this could subsequently be justified by
likelihood based criteria. We propose that a more sensitive test would
not be based on the number of convex hull peel points but rather on
their density in the space of the 𝑥∕𝑦 scatterplot. If the joint distribution
is bounded over some section, and this boundary is well-exhibited by
our data because in a significant number of instances other factors are
all not limiting, then we would expect multiple cases to be clustered
around this boundary, and for the data set to contrast in this respect
from expectations if it were a realization of an unbounded distribution
such as the multivariate normal.

The objective of this study is to develop and present a statistical
exploratory method that provides evidence of the limiting effect of a
boundary in a joint data set on a biological response and a potentially
limiting factor, based on the density of points in its convex hull peels.
This exploratory method can help the data analyst justify the fitting of
a boundary line model to a data set. We also show how these peels
might then be used for the initial selection of boundary models. This
will be illustrated with different biological data sets, some of which
have previously been used in boundary analysis studies.

2. Materials and methods

2.1. Development of method: Determination of peel density and testing its
significance

Our method consists of three steps (1) a check on marginal nor-
mality and identification and removal of outliers from the dataset, (2)
identification of boundary points in successive peels of the dataset, and
(3) testing the peel concentration in the upper bounds of the data to see
if it is significantly greater than that expected from a bivariate normal
dataset of the same size and similar basic summary statistics.

In the first step, we examine the marginal distribution of the 𝑥 and 𝑦
variables with histograms and summary statistics. In this case, 𝑥 repre-
sents the independent variable of interest e.g soil nutrient concentration
while 𝑦 represents the biological response e.g crop yield. If a boundary
model applies to our data, then the 𝑦 variable might not appear normal,
at least in the upper tail. We therefore, do not expect our data necessar-
ily to appear normal. However, we use plots and summary statistics to
evaluate whether it is plausible to regard the variable as drawn from a
normal process, perhaps with an upper censoring limit. Variables such
as soil nutrient concentrations are commonly positively skewed, and
this is a deviation from normality which might influence our diagnostic
while not reflecting the presence of a bound. Given our interest in a
bounded model we compute, along with the conventional coefficient
of skewness, the octile skewness (Brys et al., 2002). If this takes values
outwith the range [−0.2, 0.2] then we consider a transformation of
the variable (Rawlins et al., 2005). It is also necessary to have an
objective procedure to identify and remove outliers from the dataset.
For this we use the bagplot, a multivariate equivalent of the univariate
boxplot (Rousseeuw et al., 1999). A bagplot has four main components
2

which include, (1) a depth median (equivalent to the median in a
Fig. 1. An example of a bagplot components for a bivariate dataset of wheat yield
against soil potassium concentration (Lark et al., 2020).

boxplot) which is represents the centre of the dataset, (2) a ‘bag’ that
contains 50% of the data points (equivalent to the interquartile range,
𝑄3 − 𝑄1, where 𝑄𝑗 is the 𝑗th quartile, in a univariate boxplot), (3) a
‘fence’ that separates probable outliers (equivalent to 𝑄1−3×(𝑄3−𝑄1)
and 𝑄3 +3× (𝑄3 −𝑄1) for upper and lower outer fences in a univariate
boxplot), and (4) a loop indicating the points outside the bag but
inside the fence (see Fig. 1). A bagplot is constructed around a plot
of 𝑥 against 𝑦 variables of a dataset and all points that fall outside
the outer fence are taking to be outliers and are therefore, removed
from the dataset. Skewness is checked by looking at the shape of bag
and loop (Rousseeuw et al., 1999). In this study we used the bagplot
function from the aplpack library in R to compute the bagplot of our
data, observations from outside the loop were discarded as outliers.

In the second step, the data points in the outer peels (n = 10) of
a dataset are identified using the convex hull method (Skiena, 2008)
(see Fig. 2). Because the vertices in a peel are a convex set, one can
order them uniquely clockwise or anti-clockwise from an arbitrary first
vertex.

Let 𝐯𝑖 =
[

𝑥𝑖, 𝑦𝑖
]T ∈ 𝑉 denote the 𝑖th out of 𝑛 vertices in a peel of a

data set, where 𝑉 is the set of all vertices in the peel. Let 𝑉́ ⊂ 𝑉 denote
he subset of these vertices where

𝑗 ∈ 𝑉́ ⇒ 𝑥𝑗 = min
𝑖=1,𝑛

(

𝑥𝑖
)

, (1)

We then denote by 𝐯𝑙 the vertex such that

𝑙 ∈ 𝑉́ and 𝑦𝑙 = max
𝐯𝑘∈𝑉́

(

𝑦𝑘
)

. (2)

We call 𝐯𝑙 the first vertex in the clockwise ordering of the upper
eel. Similarly the last vertex in the upper peel is 𝐯𝑚 where 𝑉̀ denotes
he subset of vertices in the peel where

𝑗 ∈ 𝑉̀ ⇒ 𝑥𝑗 = max
𝑖=1,𝑛

(

𝑥𝑖
)

, (3)

We then denote by 𝐯𝑚 the vertex such that

𝑚 ∈ 𝑉̀ and 𝑦𝑚 = max
𝐯𝑘∈𝑉̀

(

𝑦𝑘
)

. (4)

Any vertex 𝐯𝑖 belongs to the upper peel set “𝑉 ⊂ 𝑉 , where the indices
are ordered clockwise, and 𝑙 ≤ 𝑖 ≤ 𝑚. This is illustrated in Fig. 2

The upper peel set “𝑉 can be divided into a left and right subset,
“l and “𝑉r respectively. If the set of vertices in the upper peel with
he maximum value of 𝑦 is denoted by 𝑉̇ then the mean value of the
orresponding values of 𝑥,

𝑥̇ = mean𝐯𝑖∈𝑉̇
(

𝑥𝑖
)

, (5)

and, for any 𝐯𝑖 ∈ “𝑉 ,

“
𝐯𝑖 ∈ 𝑉l ⟺ 𝑥𝑖 ≤ 𝑥̇
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𝐯𝑖 ∈ “𝑉r ⟺ 𝑥𝑖 > 𝑥̇. (6)

If “𝑉 𝑚
l and “𝑉 𝑚

r denote, respectively, the left and right upper sections
of the 𝑚th peel of a data set, then our analysis was based on the
combined subsets of sections from the first ten peels:

“𝑙 =
⋃

𝑚=1,…,10

“𝑉 𝑚
l (7)

and

“𝑟 =
⋃

𝑚=1,…,10

“𝑉 𝑚
r (8)

Our proposal is that evidence for a limiting boundary in the left
or right upper sections of a scatter plot of data can be evaluated by
the dispersion of the vertices in these respective subsets, compared
with the same statistic for a bivariate normal random variate of the
same size with the same parameters. Our proposed statistic is the
standard deviation of the Euclidean distances between the left and right
subsets and the centroid of the full data set, 𝐦 = [𝑥̄, 𝑦̄]T, where the
average values of the 𝑥 and 𝑦 variables over all observations are 𝑥̄ and
𝑦̄ respectively. The Euclidean distances between a vertex 𝐯𝑖 and the
entroid is given by

𝑖 =
{

(

𝐯𝑖 −𝐦
)T (𝐯𝑖 −𝐦

)

}
1
2 . (9)

For each data set we computed the standard deviation of the values
𝑖 for all 𝐯𝑖 ∈ “𝑙 and the same statistic for 𝐯𝑖 ∈ “𝑟. If this value is smaller
han the corresponding value for the first ten peels of a bivariate normal
andom variate of the same length as the data set, and with the same
ovariance matrix, then this is evidence for a greater concentration of
ertices in the upper bound (left or right section) of the data set. To test
he strength of this evidence we used a Monte Carlo method to obtain a
istribution of the test statistic for the case of the multivariate normal
ull distribution (Mecklin and Mundfrom, 2005).

The sample covariance matrix of the data set was estimated and
hen used to compute a realization of a bivariate normal random variate
f the same length as the data. This was done using the mvrnorm
unction from the MASS library for the R platform (R Core Team, 2022;
enables and Ripley, 2002). The bagplot was then used to exclude any
imulated values which would be identified as outliers according to the
riteria we used in the analysis of the real data. The first ten peels of
he simulated values were removed, and the left and right upper subsets
ere extracted for each in turn and combined into corresponding left
nd right upper bound sets. The standard deviation of the Euclidean
istance from the data centroid for each set was then calculated. This
as repeated 10 000 times. This number was determined based on the
rocedure suggested by Percival and Walden (2000). In this procedure,
he number of simulations are sufficient if the condition,

𝜌 − 𝛼)2 >
4𝑀 ′(𝑀 −𝑀 ′)

𝑀3
(10)

is satisfied. In Eq. (10), 𝑀 is the number of simulations, 𝑀 ′ is the
number of times the simulated test statistic exceed the actual observed
test statistic, 𝜌 is proportion of the number of times the simulated
statistic exceeds the actual statistic and the total number of simulations
and 𝛼 is the critical probability value (0.05 in this case). The empirical
distribution of this statistic was then used to compute an approximate 𝑝-
value for the null hypothesis that the original data had concentration of
observations in the upper peels comparable to a normal random variate.

The peel density results in the left and right sections of the data
guide on which model to fit by checking the structure of points in the
peels when significant clustering is observed. Initial guess parameters
to be used in statistical boundary line modelling can be obtained by
fitting an appropriate model to the boundary points.

A graphical example of the process of determining the successive
peels in a data set is given in Fig. 2 using a scatter plot of a simulated
bivariate (𝑥, 𝑦) dataset with means, 𝜇𝑥 = 0, 𝜇𝑦 = 0, correlation (𝑥, 𝑦)
3

= 0, and covariance 1 (Fig. 2a). The convex hull of the data set is
Fig. 2. The process of determining the successive peels in a dataset. (a) A scatterplot
of a simulated bivariate (𝑥, 𝑦) normal dataset. (b) The convex hull of the dataset
determined as the first peel indicated with a red solid round dots . (c) The peel split
into the left (red), and right (blue) sections. (d) Vertices in successive 10 peels of the
dataset.

determined as the first peel with the vertices indicated with a red solid
round dots (Fig. 2b). These vertices are then split into two, the left,
and right sections with respect to the maximum value of 𝑦, 𝑦max, in
the peels (Fig. 2c). Vertices with the value of 𝑥𝑖 less than the 𝑥 value
which corresponds to 𝑦max in the peel are denoted as left section (points
with solid red circles) while vertices with values of 𝑥𝑖 greater than the 𝑥
value which corresponds to the 𝑦max are denoted as right section (points
with solid blue boxes). Vertices in successive 10 peels of the data set
are categorized as the combined left and right sections (Fig. 2d). The
clustering in the left and right sections can then be determined.

2.2. Sample size requirement

The size of sample required to detect a boundary has received little
attention. In this case we are concerned with the task of testing a null
hypothesis that the observations in the peels of a data set, specifically
in the upper increasing or decreasing sectors, are distributed as would
be expected for observations from a bivariate normally distributed
random variate. Sample size requirement for such inference is the
addressed by power analysis. In power analysis we consider a minimum
effect size of interest, for which we wish to be able to reject the null
hypothesis at a desired level e.g. 𝑝 ≤ 0.05 or 𝑝 ≤ 0.01. The power
is the probability that an underlying effect size would be detected
at the specified level, and depends on sample size. In this case we
consider the effect size as the proportion of observations which lie on
the boundary. This can be specified in a model case where the boundary
effect is modelled by censoring a bivariate distribution of variables at
some boundary defined as a function 𝑦 = 𝑓 (𝑥). Power analysis can
be done by simulating a data set from such a censored distribution,
with an added measurement error in the response variable, and then
running the inference procedure described above. Power is estimated
by repeating this procedure multiple times, and noting the proportion
of cases in which the null hypothesis is rejected at the specified level.
This is the estimate of power.

To demonstrate this process, we simulated a bivariate normally
distributed data set of 2000 points that relates a potential limiting soil
variable, 𝑥 and response variable crop yield, 𝑦. To create a boundary,
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where all other factors are assumed to be non-limiting, a limiting
exponential function of the form

𝑦 = 𝑦0 + 𝑦max(1 − 𝑒
(

−𝑥
𝑐

)

) (11)

as fitted to the data as the boundary line where 𝑦0 is the intercept,
max is the maximum possible response value of 𝑦 and 𝑐 describes how
uickly the response approaches 𝑦max. Similar boundary line models
ave been fitted to data relating crop yields to a soil nutrient e.g. soil
in previous boundary line studies (Fermont et al., 2009; Kintché

t al., 2017; Wairegi et al., 2010). The parameters of the function
ere adjusted so that there were 30%, 20% or 10% data points in

he original sample which were above the boundary line. All points
hat lie above the boundary line were adjusted to the corresponding
oundary values, given 𝑥. This allowed us to have three datasets with
ifferent concentration of points near the boundary. A random error,
hich represents the measurement error, was added to the response
ariable 𝑦 by randomly sampling from a normal distribution with mean
and a standard deviation given as a percentage of the mean of 𝑦.

hree possible percentage values for this error, 2%, 5% and 10% were
sed. This gave us three possible measurement errors for 𝑦.

For each combination of the concentration of points near the bound-
ry and measurement error, the data was sampled with replacement 𝑛
umber of times, where 𝑛 is equal to a given data size, and the 𝑝-value
or peel clustering was determined as described in Section 2.1. This
as repeated 1000 times and as such, 1000 𝑝-values were determined

or a given 𝑛. The power was then determined as the proportion of 𝑝-
alues less or equal to the desired significance level (0.05) in the left
nd right sections of the data. A confidence interval for the power was
alculated using the method proposed by Blaker (2000). This process
as repeated for varying data sizes, 𝑛, equal to 100, 300, 500, 700, 900,
000 and 2000. A power of 80% is usually considered sufficient in most
xperimental studies (Scheiner and Gurevitch, 2001). Therefore, a data
ize that gives 80% power is considered appropriate to detect boundary
hen it exists at a given significance level. This allowed us examine a
inimum data size required to detect evidence for a boundary given a
easurement error and proportion of points limited by the boundary.

.3. Description of the experimental and field data used

We illustrate our method with seven data sets, some of which
ave been used in previous boundary line analysis studies. These are
escribed below.

.3.1. Dataset 1: Wheat yield vs. evapotranspiration
Dataset 1 was compiled by Sadras and Angus (2006) and comprises

easured wheat yield and estimated evapotranspiration (ET) from sites
n China, the Mediterranean regions of Europe, North America, and
ustralia. For more details about this dataset refer to Sadras and Angus

2006). Yield is associated with factors other than evapotranspiration.
owever, for a given evapotranspiration, yield is biologically bounded
y a conserved upper limit of the biomass-transpiration ratio, and the
heoretical harvest index (Foulkes and Reynolds, 2015; French and
chultz, 1984). In our analysis, we examined evidence of peel clustering
n the upper bound for yield in response to ET to reflect the bounding
elationship.

.3.2. Dataset 2 and 3: AgSpace Agriculture Ltd wheat yield and soil
roperty survey data

Dataset 2 and 3 was compiled by AgSpace Agriculture Ltd and
omprises measures of wheat yield and selected soil properties includ-
ng potassium (K) and phosphorus (P), which were measured across
ngland in different management units, in this case in 2016. AgSpace
griculture Ltd conducts soil sampling for its customers on the basis of
re-identified management zones within each field. The management
nits were delineated by experienced soil scientists using a free survey
4

nd each management unit formed the basis for the sampling zone. o
wenty four soil cores to depth of 15 cm were collected in each
ampling zone and combined into a bulk sample. From the bulk sample,
subsample was then taken for laboratory analyses for P and K. The
lsen’s method was used to extract P while 1M ammonium nitrate was
sed to extract K. The result was treated as the estimate of the sampling
one. The mean wheat yield was measured for each zone for the year
015 to 2017. The dataset used in this study is based on measurements
one in 2016. For more details about this study, refer to Lark et al.
2020). In our analysis, we examined existence of a boundary on the
pper edges of yield response to P (and K) which is taken as the yield
esponse when other factors are not limiting.

.3.3. Dataset 4: Leaf stomatal conductance of broad bean plants
Dataset 4 is based on a pot experiment that was conducted in

003 at Silsoe, Bedfordshire, UK, to evaluate the effect of soil water
tatus on stomatal conductance. Broad beans plants (Vicia faba) were
lanted in compost and then transplanted into 200 one litre pots with
oils of varying textural classes after germination and grown in a
lass house. The variation in texture gave rise to varying soil moisture
onditions. Simultaneous leaf stomatal conductance (mmol m−2 s−1)
nd volumetric soil water content (%) measurements were made using
n AP4 porometer (Delta-T Devices Ltd, Burwell, Cambridge, UK) and
Theta Probe (Delta-T Devices) respectively on a regular basis during

he growth period. For more information on the data see Milne et al.
2006b). Leaf conductance is dependant on stomatal opening which is
ffected by water status amongst other environmental factors. It is thus
xpected that conductance will be maximum when the stomata are fully
pen. In this study, we examined the relationship of leaf conductance
nd volumetric soil water content. We expect an upper boundary in this
elationship to represent leaf conductance when other environmental
actors are not limiting. We note that various studies by plant physiol-
gists have used the boundary line concept to relate process models of
tomatal function to corresponding data (e.g. Buckley, 2017).

.3.4. Dataset 5: Leaf stomatal conductance of winter wheat plants
Dataset 5 is based on a pot experiment that was conducted at

ilsoe, Bedfordshire, UK, to evaluate the effect of soil water status
n stomatal conductance. A winter wheat crop (Triticum aestivum var.
onsort) was grown in the season 2002/2003 in a field with soils of
arying textural classes. After germination, three wheat plants were
ransplanted into each of the 200 one litre pots filled with soils of
arying textural classes from the field they were initially planted.
imultaneous measurements of stomatal conductance (mmol m−2 s−1)
nd volumetric soil water content (%) were taken at an interval of
hree weeks using an AP4 porometer and a Theta Probe respectively.
or each pot, conductance measurements were made on six leaves and
he mean of three moisture content measurements was assumed to be
he associated moisture content value. For more information on the
ata see Milne et al. (2006b). Just as in dataset 4, we examined the
elationship of leaf conductance and volumetric soil water content.
imilarly, we expect an upper boundary in this relationship to represent
eaf conductance when other environmental factors are not limiting.

.3.5. Dataset 6: Vegetation index of winter wheat plants
Dataset 6 is based on an experiment conducted at Silsoe Research

nstitute, Bedfordshire, UK, during the season 2000/2001 to study
heat response to nitrogen spatial variations. This was a randomized
lock design having 465 plots with five different rates of nitrogen
ertilizer on an 11.6 ha field. At the end of the growing season, the
rop was harvested and local yield response to nitrogen functions were
stimated at nodes of a square grid of 10-m sides. As described by Lark
nd Wheeler (2003), the local yield response functions are of the form
= 𝑎 + 𝑏𝑅𝑁 . Yield, 𝑌 , therefore, increases with nitrogen rate (𝑁) to

n asymptote, which they called the local asymptotic yield (LAY). In a
ollow up study by Milne et al. (2006b), they evaluated the possibility
f predicting local asymptotic yield at an early stage in the season using
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Table 1
Summary statistics of the response and independent variables in datasets 1 to 7.

Dataset Size (n) Variable Mean Median sd Skewness Octile skewness

1 691 ET (mm ha−1) 289.62 281.54 83.70 0.54 0.15
1 691 Yield (ton ha−1) 2.41 2.27 1.08 0.53 0.12
2 6358 P (mg kg−1) 25.96 22 14.39 1.84 0.36
2/3 6358 Wheat yield 9.25 9.36 1.86 −0.48 −0.06
3 6358 K (mg kg−1) 198.34 183 84.52 2.36 0.21
4 1438 Leaf conductance (mmol m−1 s−1) 16.77 14.2 9.72 1.23 0.36
4 1438 Moisture content (%) 13.69 12.9 5.19 0.91 0.14
5 3430 Leaf conductance (mmol m−1 s−1) 22.80 15.55 20.52 1.56 0.52
5 3430 Moisture content (%) 15.35 13.2 9.08 0.47 0.30
6 200 NDVI 0.65 0.66 0.06 −0.84 −0.29
6 200 Local asymptotic yield (ton ha−1) 8.43 8.14 1.145 0.48 0.33
7 188 SOC (%) 1.07 1.07 0.16 0.08 0.08
7 188 Soil clay (%) 26.03 25.33 3.75 0.82 0.22
Table 2
The probability (𝑝-value) of getting an 𝑠𝑑 value less than that of a normal bivariate joint distribution on the left (𝑙) and right (𝑟) sections of datasets 1 to 7.

Dataset Variables 𝑠𝑑𝑙 ̄𝑠𝑑𝑙 p-value𝑙 𝑠𝑑𝑟 ̄𝑠𝑑𝑟 p-value𝑟
1 Wheat yield vs. ET 54.229 64.824 0.019 79.908 57.511 0.999
2 Wheat yield vs. log P 1.045 1.181 0.019 1.115 1.276 0.013
3 Wheat yield vs. log K 1.208 1.294 0.097 1.335 1.390 0.229
4 Leaf conductance vs. log moisture content 2.450 4.162 0.000 4.970 3.201 1.000
5 log leaf conductance vs. log moisture content 0.332 0.448 0.000 0.286 0.340 0.096
6 Local asymptotic yield vs. NDVI 0.609 0.692 0.125 0.688 0.714 0.379
7 Inv-SOC vs. log soil clay 0.085 0.075 0.839 0.090 0.0854 0.709
a
𝑠
t
(
a
t
1
0
o
(
s
s
a
S

spectral reflectance in the visible red and near-infrared region which
were measured at the time of second nitrogen applications. For this,
they used Skye Instruments type SKR1800 dual channel radiometers
(Skye Instruments, Llandrindod, Powys, UK) fitted with narrow band
interference filters centred at 660 nm and 730 nm. These were mounted
on a 24-m boom at 4-m intervals. NDVI was calculated from these
measures. For more details on the data see Lark and Wheeler (2003).
We expect this relationship to be limited by an upper boundary that
shows the potential yield and so, we evaluated evidence of boundary
existence in this dataset.

2.3.6. Dataset 7: Soil carbon and clay content of soils at the Broadbalk
wheat experiment site

The Broadbalk wheat experiment at Rothamsted, Harpenden, UK is
one of the oldest continuous agronomic experiments in the world. It
was set up in 1843 to tests long-term effects of fertilizer and cropping
treatments (for more details see Powlson (1994). Here we consider
paired measurements of soil organic carbon (SOC) and clay content
that were taken on plots from the Broadbalk experiment as part of
a study by Watts et al. (2006)). In this study SOC was measured
on 188 plots from Broadbalk and clay contents on a subset of these
(131 plots in total). The missing clay values were estimated by linear
interpolation. Prior to cultivation in autumn 2000 the soil was sampled
to a depth of 23 cm using a 19-mm-diameter gouge auger. A total of
18 samples were taken per plot, which were then bulked. Total C was
determined by combustion and inorganic C (CaCO3-C) was determined
by manometry (Martin and Reeve, 1955). SOC was calculated and
expressed as percentage (g SOC per 100 g soil). The clay content
(%) of the soil was determined by sieving and sedimentation. Our
conjecture is that the clay protects the organic matter against bacterial
degradation, and so SOC cannot fall below a clay-content-determined
threshold (Milne et al., 2006a) and hence we expect some bounding
effects at the lower bounds of the dataset. Due to the fact that the
limiting response of SOC to clay content has a lower boundary rather
than an upper boundary, which our method tests, this dataset has
been inverted by multiplying the soil organic carbon content by −1
to create a new variable called ‘Inv-SOC’ and thus the relationship
between soil clay content and Inv-SOC is expected to have an upper
5

boundary (Fig. 3(g)). e
3. Results

Table 1 shows the summary statistics mean, median, standard de-
viation, skewness and octile skewness of the variables in the different
datasets. The variables conductance, in datasets 4 and 5, soil P con-
centration in dataset 2, Soil K concentration in dataset 3, NDVI and
LAY in dataset 6, and the clay content in dataset 7 have an octile
skewness outside the range of [−0.2,2] and hence indicate skewness.
The skewness of these variables can also be observed in the exploratory
bagplots of datasets 1 to 7 presented in Fig. A.1 in Appendix A.

In dataset 2 and 3 (Figs. A.1(b) and A.1(c)), the depth median leans
to the left of bag while datasets 4 and 5 (Figs. A.1(d) and A.1(e)), the
depth median is leaning towards the bottom left of the bag plot. A
log-transformation was done on these variables bring them to normal-
ity. For NDVI and LAY in dataset 6 transformation did not improve
the normality. Exploratory histograms have also been presented in
Appendix B for these variables and their transformations. Using the
bagplot, outliers were observed and removed from datasets 1, 2, 3, 4
and 5 (see Appendix A). No outliers were observed for datasets 6 and
7. The scatter plots in Figs. 3(a) to 3(g) show the relationships between
the response variables and the independent variables for datasets 1 to 7
respectively showing the boundary points in the left and right sections
of the datasets.

Table 2 shows the results of the hypothesis tests for evidence of clus-
tering of peels at the upper bounds of the seven datasets. The sd𝑙 and sd𝑟
re standard deviations on left and right sections respectively, ̄𝑠𝑑𝑙 and
𝑑̄𝑟 are the means of the obtained sd of the left and right sections from
he 10 000 simulations. Three scenarios are possible for any dataset,
1) No evidence of a boundary in the dataset, (2) there is evidence of
boundary on one side of the scatter plot (left or right sections) or (3)

here is evidence of a boundary on both sides of the dataset. For dataset
, which relates wheat yield to ET, the 𝑝-value of the left section is
.019, indicating that there is evidence of the existence of a boundary
n the left side of the dataset while the right side shows no evidence
𝑝-value > 0.05). This is a similar for dataset 4 and 5, relating beans log
tomatal conductance to volumetric soil water content and wheat log
tomatal conductance to log volumetric soil water content respectively,
s well as the dataset 7 which relates log soil clay content and Inv-
OC. The dataset 2, relating log P concentration to wheat yield, shows

vidence of a boundary existence in both the left and right sections
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c
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Fig. 3. Scatter plots of (a) wheat yield against evapotranspiration, (b) wheat yield against log phosphorus, (c) wheat yield against log potassium and, (d) beans log stomatal
onductance against soil water content, (e) wheat log stomatal conductance against log volumetric water content, (f) local asymptotic yield against NDVI and (g) Inv-SOC against
og soil clay content, showing the boundary points in the left and right sections of the datasets 1 to 7 respectively.
f the data (𝑝-values < 0.05). Datasets 3 and 6 (relating log soil K
concentration to wheat yield, and NDVI to the local asymptotic yield)
do not exhibit evidence of a boundary in both the left and right sections
6

of the datasets (𝑝-values > 0.05).
The Fig. 4 shows two examples of the appropriate form of models
that can be fitted to the datasets relating ET and wheat yield (Fig. 4(a)),
and log soil phosphorus concentration and wheat yield (Fig. 4(b)) as

guided by the peel density results in the left and right sections of the
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Fig. 4. Fitting appropriate forms of boundary model to datasets 1 (a) and 2 (b) based on peel density results.
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atasets. A linear model of the form

= 𝑚𝑥 + 𝑐 (12)

as fitted to the dataset 1 (Fig. 4(a)) where 𝑐 represents the y-intercept
nd 𝑚 is the slope. The coefficients of the fit are 𝑐 = −2.04 and 𝑚 =
.025. A linear plus plateau broken stick model of the form

=

{

𝑚𝑥 + 𝑐, if 𝑥 ≤ 𝑏𝑝
𝑏𝑝𝑥 + 𝑐, if 𝑥 > 𝑏𝑝

(13)

as fitted to dataset 2 (Fig. 4(b)), where 𝑐 representing the y-intercept,
is the slope and bp is the 𝑥 value at which the equation changes from

inear to plateau. The coefficients of the fit are 𝑐 = 1.57, 𝑚 = 4.73 and
p = 2.53.

The results of the power analysis from the simulated data set are
hown in Fig. 5. These results are for the left section only as evidence of
oundary was only observed in the left section of the simulated dataset.
t a concentration of 10% of points near the boundary, a power of
0% was attained at a sample size of 800 when measurement error
as 2% of mean yield while a power of 80% was achieved at 900
nd 1000 data size for measurement errors of 5% and 10% respectively
Fig. 5(a)). Increase in concentration of data points from 10% to 30%
educed the data size required to achieve a power of 80% (Fig. 5(b)).
t a measurement error of 5%, a 10% concentration of data points at

he boundary achieved 80% power with a data size of 800 while this
as achieved at a data size of 750 and 650 for a concentration of 20%
nd 30% respectively.

. Discussion

An exploration of a dataset with objective and repeatable statistics
hould be a first step in boundary line analysis. In previous studies the
ecision to fit a boundary model has been based on visual inspection
f the data, and in most cases once the model is fitted there is no
asis for post hoc assessment of the boundary-based interpretation.
his will limit the validity and practical value of the model itself. For
xample, dataset 6 (Fig. 3(f)), from which we expected to predict the
ocal asymptotic yield from NDVI measurements at the upper bounds
f the data, looks to have a limiting response of local asymptotic yield
o NDVI which may take the form of a rising linear function from
oint {0.45,6} to point {0.7,10.5}. However, the test shows that there
s insufficient evidence to support a boundary-based interpretation. It
ight be better to fit a predictive model with additive effects of other
otential limiting factors where these can be measured, or it might
e necessary to collect more data from a wider range of conditions
7

o exhibit a biological bound convincingly. This is a similar case to 3
ataset 7 (Fig. 3(g)) which relates Inv-SOC and log soil clay content.
lay protects SOC from microbial degradation by forming organo-clay
ompounds which reduce the SOC loss, the greater the clay content,
he greater the SOC is expected (Singh et al., 2018). Therefore, there
s a limiting response such that a given amount of clay content will
old a minimum amount of SOC otherwise it will always be above that
inimum. It is, therefore, expected that the test will pick a boundary

n the right section of the scatter plot (recall the data was inverted by
ultiplying SOC by −1). However, the test on this dataset does not give

ufficient evidence of the existence of this boundary in the right section,
here our prior expectation of bounded behaviour holds. It is possible

n this case that the data, coming from a single field, albeit a variable
ne, do not represent sufficiently varied environmental conditions to
xhibit the lower bound of interest.

For dataset 3 (Fig. 3(c)), we expect to have a response of increasing
ield with soil K concentration up to a given level of K (K𝑝𝑒𝑎𝑘) that
roduces maximum yield. Beyond K𝑝𝑒𝑎𝑘, yield will not increase further
ut reaches a plateau. We might expect a reduction in yield at some
oint beyond K𝑝𝑒𝑎𝑘, perhaps because within-field regions with severe
imitations from factors other than available K tend to accumulate this
utrient in the soil because of small rates of offtake by the crop, or if
large concentration of K reduces the retention of other cations like
agnesium leading to its deficiency. Although the visual inspection

hows some form of a relationship of which the yield initially increases
ith K and then reduces after some point {5.2,14}, the test shows that

here is no significant peel clustering in both the left and right sections
f the dataset.

As we have noted above, such negative outcomes do not necessarily
reclude the boundary-line interpretation for a relationship between
ariables. It may be, for example, that the boundary is not exhibited
n the particular data set because of other limiting factors, or that the
ata set is too small to provide evidence for a relatively complex model,
nd more data are needed. If the boundary line is to be fitted as an
xplicitly statistical model (e.g. Lark and Milne, 2016), then it may be
ustified to proceed and to evaluate internal evidence for this model
efore applying it. However, where this is not done, as in most studies
n yield gap analysis or wider boundary line analysis, then in cases
uch as our datasets 3 (relating log K concentration to wheat yield) and
(relating NDVI to local asymptotic yield), then a boundary model is

ard to justify. We think that boundary line methods, as applied in a
ange of fields, would gain credibility if this approach were used to
ustify the fitting and interpretation of boundary response models.

Datasets 1, 4 and 5 show evidence of a boundary effects in the left
ections only. Both visual assessment of the plots in Figs. 3(a), 3(d) and

(e) and peel density test are consistent in this. Visual interpretation
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Fig. 5. Detection power with confidence interval for (a) varying measurement error and (b) varying concentration of points at the boundary of a dataset at 0.05 significance level.
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f Fig. 3(a) (dataset 1), suggests that a linear boundary yield response
pplies from an ET of 100 mm ha−1 to 300 mm ha−1. However, above

the ET of 300 mm ha−1, there does not seem to be a well defined
boundary. Earlier research by French and Schultz (1984) showed a
positive relation between transpiration and the crop dry matter produc-
tion. However, it is also expected that some data points will fall below
this established relationship because of other biotic and abiotic factors
affecting dry matter production. This positive relation between the ET
and wheat yield is maximized at the upper edges in the left section of
the dataset as confirmed by the positive test of peel clustering.

For dataset 4 and 5 (Figs. 3(d) and 3(e)), visual inspection suggests
some form of limiting response (boundary) which is characterized by an
initial increase in stomatal conductance with increasing soil moisture
content and a plateau thereafter. Stomatal conductance is influenced by
plant water status i.e. increase in moisture content increases stomatal
conductance. However, the porosity of a leaf is controlled by opening
of the stomata, which not only respond to plant water status but also
other environmental factors (Lavoie-Lamoureux et al., 2017). These
environmental factors may reduce the conductance below the expected
as permitted by the plant water status. Therefore, the relationship
between conductance and the water status of a plant is expected to
have a boundary at the upper limits at which the conductance is
maximum when the stomata are fully open i.e. when not restricted by
other environmental conditions. Stomatal conductance will fall below
this maximum when environmental conditions limit stomatal opening.
This is confirmed by the test in both the beans and wheat leaves
which indicate a presence of boundary in the left section. For dataset 5
(Fig. 3(e)), the left section shows rise and plateau which is in agreement
with the theoretical basis. For dataset 4 (Fig. 3(d)), it does not show
evidence of peel clustering at the plateau of constant conductance
although a visual interpretation might suggest this. This may result
from there being fewer observations data points on the right side of
the scatter plot (wetter soil) compared to the left side and insufficient
to exhibit an upper bound. There are notably more observations with
soil water content below 17.5% v/v than above. As a result we have
insufficient data to exhibit a plateau conductance and our data are not
at the boundary in right section of the scatter plot. Though there are
some points in the right section of dataset 5 (Fig. 3(e)) which may
suggest that conductance will reduce with increased moisture content
above 3.5, there is no biological explanation for this. Neither of these
datasets showed evidence of a boundary when the method of Milne
et al. (2006b), which considers the number of vertices in the peel, was
used. In our proposed method, the data is split into two sections (left
8

and right) and each section is tested separately. This aids detection
of structure in the different parts of the data scatter and therefore
increases the sensitivity for detecting a boundary.

For dataset 2 (Fig. 3(b)), visual inspection suggests that there is
a linear limiting response of yield to log P concentration from point
{1.8,10.8} to point {2.6,13.8} which reaches a plateau thereafter at
yields of about 14 t ha−1, meaning that there is no further increase in
yield with increased log P at this stage. This is confirmed by the test
which has a positive test for boundary occurrence in both the left and
right sections of the data. We expect that yield will increase with P and
then plateaus at some soil P content (P𝑝𝑒𝑎𝑘). There maybe some negative
effect of increasing soil P concentration above some given value beyond
the P𝑝𝑒𝑎𝑘 if there is some indirect effect of P on yield e.g. too much P
an inhibit the development of soil organisms like mycorrhizal fungi
hich have symbiotic relationships with plant roots and are necessary

or healthy plant growth. However, this is usually not very common
nd hence the linear plus plateau model illustrated in Fig. 4(b) is an
ppropriate model for this data. Another possible interpretation was
aised for the corresponding data set on soil K above, if there is a
onsistent limiting effect of some other factor in a region of a field,
hen an immobile nutrient such as P may accumulate in the soil there
ecause take-off by the crop is small. In this part of the boundary line
he soil P itself is thus a proxy for other limiting factors.

In these cases where the evidence of a boundary is provided, one is
onfident to fit the boundary line model to these datasets.

In boundary line analysis, there is a need for one to choose an
ppropriate model to fit a dataset after it has been established that a
oundary model is plausible (Lark et al., 2020; Milne et al., 2006b,a).
arious models are available to fit to datasets. Some datasets may
onform to models that show a decrease in response variable, 𝑦, with an

increase in the independent factor, 𝑥, e.g. relationship between timing
of first weeding operation and crop yield (Fermont et al., 2009), others
datasets may conform to models that exhibit a linear rise in response
variable as the independent factor increases. This will, however, not
increase to infinity as biological response will always reach a limit.
Therefore, some models will show an increasing response with an inde-
pendent factor until they reach a maximum, at which point the response
will decrease with increase in the independent factor e.g. the response
of soil nitrous oxide emission to soil water filled pore space (Schmidt
et al., 2000) while some models will show an increase in response with
factor until it reaches a maximum after which an increase in factor will
not result in any increase in response resulting in a plateau of response
variable e.g. the response of soil nitrous oxide emission to soil nitrate
content (Schmidt et al., 2000). An appropriate model for a particular
dataset must thus be chosen if the results of the analysis are to be

reliable and of practical use.
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The division of the vertices in the peels into left and right sections,
as given in the method we propose, provides guidance on what model
one can fit the data. Taking dataset 1 as an example (Fig. 3(a)), from
the scatter plot of yield (t ha−1) against ET (mm ha−1), one may be
tempted to fit a non-linear or broken stick boundary line model of
increasing yield with increasing ET from the point {105 mm ha−1, 1.7 t
ha−1 } up to the point {300 mm ha−1, 5 t ha−1} and have a horizontal
function of yield for ET greater than 300 mm ha−1. However, the results
from the test show evidence of a boundary only in the left and not in
the right sections, this indicates that it may be better to fit a linear
model of increasing yield with increasing ET without the horizontal
section as the data may not have reached the point of constant yield
with increasing ET (Fig. 4(a)). This agrees with the model that was
suggested by the authors that used this dataset in previous boundary
line analysis study (FAO and DWFI, 2015) . Conversely, if you take
dataset 2 (Fig. 3(b)), which shows evidence of a boundary in both the
left and right sections, the broken stick model might be a better model.
The left side of the scatter shows a more linear relationship from the
point {1.8 mg kg−1, 11 t ha−1} up to the point {2.5 mg kg−1, 13 t
ha−1} while the right side shows more of a flat relationship between
the yield and the log-transformed P concentration (Fig. 4(b)), hence,
a broken stick model that consist of a linear and plateau component
would be ideal for this dataset. This agrees with the model that was
suggested by the authors that used this dataset (Lark et al., 2020). The
decision of selecting an appropriate model should, however, be made
by taking into account other considerations like the theoretical basis
and plausibility of the suggested model. Although the boundary points
used to check for the bounding effects are not necessarily the points to
which a boundary line is to be modelled, the coefficients of a model
fit to these points can provides the initial starting values (coefficients)
for fitting statistical boundary line models like the bivariate censored
model proposed by Milne et al. (2006a).

The exploratory method we propose is intended for analysis of
biological data sets where one factor is thought to limit the response
of another, for example crop yield, in response to a soil nutrient
concentration. However, we recognize that the number of peels used for
this analysis, which was set to 10 as default, might not be possible for
some datasets, especially those containing fewer data points. For such
datasets, the number of peels tested may be reduced to an appropriate
number else the whole dataset may be considered as boundary points.

This study presents some novel results on the sample size required
for a boundary line analysis. These are based on a particular hypo-
thetical scenario. From the power analysis on the simulated data set,
the data size required to achieve a power of 80% is affected by the
measurement error and concentration of points at the boundary. The
larger the concentration of data points near the boundary, the larger
the power to detect the bounding effect. Conversely, as the measure-
ment error increases, the power to detect the boundary reduces. Large
measurement error obscures the boundary, and so reduces power. In
the simulated case, between 650 to 800 data are required to detect
a boundary in a dataset (𝑝 ≤ 0.05) where 10 to 30% of data are on
the boundary (apart from measurement error) and the measurement
error is 1%–10% of the mean of response variable. This indicates that
boundary line analysis is a tool for analysis of ‘big-data’. In real cases
sample size might be investigated based on an estimate of measurement
error and a prior view on the proportion of sites at which a factor
should be limiting in order to be of practical relevance. As with other
statistical hypothesis testing methods, the larger the data size, the
better as it reduces the margin of error and increases the reliability of
the results. The method of Milne et al. (2006b), which is based on the
number of vertices in a peel, may also be used as a complementary test
9

for smaller datasets.
5. Conclusion

We provide an exploratory tool for determining evidence of the
existence of a boundary in a dataset which also gives guidance to the
suggestion of an appropriate type of model that one can fit a dataset.
This tool provides an objective test for plausibility of the boundary
model and therefore, the basis for fitting boundary line to a dataset and
interpret them biologically. This has been a missing element in most
boundary analysis procedures. This methodology additionally enables
the selection of the starting values for fitting boundary line model
when using the bivariate censored model. Simulation studies on this
methodology show that several hundred observations are required for
this method. Given our observation that a data set must be large enough
to exhibit the boundary, this is not surprising and emphasizes that
boundary line analysis is a tool for the assessment of big data sets. We
recommend further works to improve the power analysis methodology
we have proposed by accessing other factors that affect the effect size
in boundary detection. Data sets 1 and 2 which have been used for
boundary line analysis in previous studies were confirmed to show
evidence of a boundary and the boundary line model forms fitted are
in agreement to what the results of our exploratory analysis suggest.
We recommend that future boundary analysis studies should carry out
this initial exploratory data analysis step so as to justify the of the
fitting boundary line models to data if there is evidence of bounding
effect.
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Appendix A. Bagplots for the variables in datasets 1 to 7

See Fig. A.1.

Appendix B. Histograms for the variables in datasets 1 to 7

See Figs. B.1–B.7.
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Fig. A.1. Bagplots of the datasets (a) wheat yield against evapotranspiration, (b) wheat yield against phosphorus, (c) wheat yield against potassium and, (d) beans stomatal
conductance against soil water content, (e) wheat stomatal conductance against volumetric water content, (f) local asymptotic yield against NDVI, and (g) SOC against soil clay
content.
Fig. B.1. Histograms of the (a) evapotranspiration and (b) wheat yields from dataset 1.
10
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Fig. B.2. Histograms of the (a) soil phosphorus concentration, (b) log soil phosphorus concentration and (c) yield from dataset 2.

Fig. B.3. Histograms of the (a) soil potassium concentration, (b) log soil potassium concentration and (c) yield from dataset 3.
11
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Fig. B.4. Histograms of the (a) bean leaf conductance, (b) natural log of bean leaf conductance and (c) soil volumetric moisture content from dataset 4.

Fig. B.5. Histograms of the (a) Wheat leaf conductance, (b) natural log of wheat leaf conductance, (c) soil volumetric moisture content and (d) natural log of soil volumetric
moisture content from dataset 5.
12
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Fig. B.6. Histograms of the (a) soil clay content, (b) natural log of clay content and (c) soil organic content from dataset 6.

Fig. B.7. Histograms of the (a) NDVI, (b) natural log of NDVI, (c) local asymptotic yield and (d) natural log of local asymptotic yield from dataset 7.
13
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