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Introduction

Micronutrient deficiencies are a serious challenge for 
global public health, and contribute, inter alia, to impaired 
physical and cognitive development, susceptibility of chil-
dren to pneumonia and diarrhoea and maternal mortal-
ity.1–4 This paper is specifically about zinc (Zn) deficiency. 
Zinc is essential to the human body as it is involved in 
many metabolic processes5 that include cell division, cell 
growth and differentiation, protein and DNA synthesis, 
RNA metabolism, immune function and wound healing.6 
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Abstract
Background: Because micronutrient deficiencies affect public health, countries monitor population status by national-
scale, multi-stage, micronutrient surveys (MNS). In design-based surveys, inclusion probabilities are specified for sample 
units and the corresponding sample weights allow design-unbiased estimates to be made of population parameters. 
Corrections may be possible on departures from the design; an alternative is to use linear mixed models (LMM), with an 
estimated covariance structure reflecting the sampling design, to obtain model-based estimates.
Design: The Ethiopia National Micronutrient Survey (2016) specified inclusion probabilities at enumeration area (EA) 
and household (HH) levels, and sample weights are provided. However, the design was not followed as it would have 
resulted in insufficient sampling from women of reproductive age.
Results: Having found no evidence that sample weights were informative for target serum micronutrient concentrations 
(Zn), we estimated LMM parameters, with Regions as fixed effects, and the variation of individuals nested within households, 
households within EA, and EA within regions, random effects. We obtained LMM standard errors, Best Linear Unbiased 
Estimates (BLUEs) of regional means, and empirical Best Linear Unbiased Predictions for sampled/unsampled EA and HH. 
The probability that each true regional mean exceeded the sufficiency threshold 65�g dL-1� �  was evaluated. The variances 
of BLUEs of regional means, under alternative sampling designs, were bootstrapped from LMM variance components.
Conclusions: We demonstrate use of LMM to obtain model-unbiased estimates and predictions when surveys deviate 
from the original design; and the use of LMM variance components to evaluate alternative designs for further sampling, 
or for sampling comparable populations.
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In addition, Zn supports normal growth and development 
during pregnancy and childhood.7 Zinc deficiency is asso-
ciated with high morbidity and mortality among mothers 
and new born infants, as well as increased risk of diarrhoea 
in children under 5 years of age.8 It is believed about 17%  
of the global population experience Zn deficiency, with a 
greater prevalence in developing countries in South and 
South-East Asia, Sub-Saharan Africa and Central 
America.8 Zinc sufficiency is indicated by a concentration 
of Zn in blood serum of above 65µg dL-1 for adult women, 
in a non-fasted sample collected in the morning.5

Because of the importance of micronutrients in public 
health, it is valuable to undertake national scale micronu-
trient surveys (MNS). Such surveys have been undertaken, 
for example in Malawi as part of the Demographic and 
Health Survey for 2015 /16.9,10 The results of these sur-
veys are used by many stakeholders, and notably by 
national government authorities to support the implemen-
tation of policies and programs to control micronutrient 
deficiencies. In this paper we examine data from the 
Ethiopian Micronutrient Survey (EMNS).11 Archived 
blood serum samples from EMNS have been analysed for 
Zn concentration because of the importance of this micro-
nutrient,12 and we focused on data for women of reproduc-
tive age (WRA) which is the largest demographic group in 
the sample.

The national-scale micronutrient surveys mentioned 
above are design-based multistage sampling (MSS) sur-
veys. A design-based sample13 is one in which the inclu-
sion of a particular unit from the sample frame in the 
final sample is a random event. In advance of random-
ization we do not know whether a particular unit will be 
included, but we do know the probability of this, the 
inclusion probability. Multistage designs consists of 
two or more stages of random sampling that typically 
follow the hierarchical structure of naturally occurring 
clusters, with a different type of cluster randomly sam-
pled at each stage of sampling; the clusters are nested 
within each other.14 An example of clusters nested 
within each other are households (HHs) randomly 
selected from within enumeration areas (EAs) which are 
randomly selected within regions. An Enumeration Area 
is a sampling unit which comprises some grouping of 
households. All households in the region of interest 
belong to exactly one EA. In a census an EA might cor-
respond to a region which one enumerator can cover in 
the sampling period, but in other household-based sur-
veys it might be smaller. In the Ethiopia MNS studied 
here an EA in a rural area typically comprises 150 200−  
households. Once an EA is selected for sampling it is 
feasible to enumerate households prior to sampling, and 
to undertake sensitization at EA scale. The use of MSS 
surveys with HH grouped in EA therefore increases 
logistical efficiency.

In MSS sampling designs inclusion probabilities are 
specified at different levels of the sampling. For example, 
each EA in a sampled district will have an inclusion prob-
ability, πEA,j  for the j

th
 EA. The HH within the EA may 

then have inclusion probabilities assigned, e.g. πHH,j,i for 
the i th  HH in the j

th
 EA. If a single individual is sampled 

in each HH, then the inclusion probability associated with 
the sample from the i th  HH in the j

th
 EA is π πEA,j HH,j,i. 

Inclusion probabilities at some level are all equal in the 
case of simple random sampling, but it is common practice 
for πEA,j  to be proportional to the size of the j

th
 EA, mea-

sured, for example, by its population or the number of HH 
which it contains. This is called sampling with probability 
proportional to size (PPS). More information on sample 
weights is given in Appendix 1.

Design-based sampling, which incorporates the inclu-
sion probabilities, allows unbiased estimates of popula-
tion parameters. This is typically done by reference to 
sample weights. The sample weight for the i th  HH in the 
j th  EA is

1
.

π πEA,j HH,j,i

The sample weight corresponds to the number of popula-
tion units which the corresponding sample can be regarded 
as representing. If the sample weight is multiplied by the 
value of the observation for the corresponding sample unit, 
and the product is summed over the whole sample then the 
result is an unbiased estimate of the population total. If the 
weights are normalized to sum to 1 over the sample then an 
unbiased estimate is obtained of the sample mean. These 
weights, normalized or unnormalized, reflect the structure 
of the sample frame and the sample design can be speci-
fied before the survey is undertaken or any data are avail-
able. The same weights would be applied for estimation 
from any variable measured on the sample units.

It is not unusual, particularly when a sampling exercise 
is being undertaken for the first time, that the original 
design sample weights do not apply to the complete final 
sample. This may be due to factors such as refusal of a 
sampled HH to participate, or loss of data. In such cases, 
post-hoc adjustments may be made to the sample weights, 
for example, to adjust for non-response.15 However, the 
post-hoc adjustment of weights is not without problems.16 
In the example of the Ethiopia MNS which we report here, 
substantial changes were made to the sample survey in the 
field, and in such instances, we propose using an alterna-
tive approach to derive estimates, based on a linear mixed 
model (LMM).

In LMM we treat our data as a combination of fixed 
effects which determine the mean of the dependent vari-
able, and random effects which account for variation about 
the mean. In a MSS, for example, EA and HH means are 
modelled as random variables of mean zero which account 
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for differences between EA means and the mean expected 
from the fixed effects, and HH means and the EA mean. 
Their variances are key model parameters. By virtue of 
their design, MSS designs collect data from purported 
clusters (e.g., regions, EAs within regions, and HHs within 
EAs within regions). Although many individual factors 
determine an individual’s micronutrient status, we may 
expect some degree of correlation between the biomarkers 
for individuals within an EA due to causes which show 
less variation within an EA than between EAs. For exam-
ple, individuals within the same EA may have a more simi-
lar diet than individuals in different EAs, with staple crops 
grown over soils with similar micronutrient status. Access 
to health care, fortification programmes and more local-
ized food sources like fish are also expected to vary 
between EAs, but to be relatively uniform within them. 
This is reflected in the LMM by the random EA mean 
which contributes to modelled values within any EA, and 
to larger variances at between-EA scale than within-EA. 
Similarly, individuals within the same HH are likely to be 
a cluster of genetically related people, with a common diet 
and environment. While the use of appropriate sample 
weights would allow us to avoid bias from two-stage sur-
veys, the alternative model-based approach of linear mixed 
modelling (LMM) is to propose a covariance structure 
which reflects the nested structure of the sample, and then 
to estimate its parameters by residual maximum likelihood 
(REML). These parameters then provide what is in effect a 
weighting of the observations for the fixed effects from the 
data. Where this weighting differs from the sample weights 
referred to above is that they depend on the observed 
between EA and between HH within EA correlation of the 
observations, and so are variable-specific and not known 
until the data are collected and modelled. The design-
based method has the advantage of being unbiased and 
free from model-type assumptions (i.e. that the data are a 
realization of a multivariate normal random model), but 
where the model assumptions are plausible the use of 
model information in the weighting can be an advantage.

We may expect a design-based analysis of a set of survey 
data to give an unbiased estimate of the sample mean, and, 
with suitable estimators, a meaningful characterization of 
the uncertainty of the mean in its standard error. However, 
an LMM with a random effects structure which is correctly 
specified so that it reflects the survey design also provides a 
basis to estimate the mean, and to characterize the uncer-
tainty with a standard error based on the fitted model.17 To 
illustrate this we undertook a simulation exercise. A large 
population of values was simulated, comprising a total of 42 
913 HH in 991 EA (these were random quantities, the exam-
ple can be reproduced with R code in the supplementary 
material). These were then sampled by an MSS design with 
50 EA selected by simple random sampling, and 100 HH 
per EA, also by simple random sampling. The mean value 
and its standard error was estimated by design-based 

estimation using the svymean function from the survey 
package for the R platform.18 The LMM mean and standard 
error were estimated from the same sample, using the lme 
function from the nlme library.19 For both estimates it was 
observed whether the (known) population mean was 
included in the 90% confidence interval. This procedure 
was repeated 1000 times, and the proportion of cases in 
which the confidence interval included the population mean 
was computed as an estimate of the coverage probability of 
the interval. The 95% confidence interval for the coverage 
estimates was computed by the method of (Blaker)20 using 
the blakerci function from the PropCIs library.21 The cover-
age estimates were both close to the specified probability 
(90%) which was included in the confidence interval in each 
case (Table 1). This demonstrates that both the design and 
model-based approaches give reliable results for the analy-
sis of MSS data, provided that the survey information is 
known for the design-based procedure. As the model does 
not depend on the survey weights, the LMM provides an 
alternative when the true survey weights are unknown due 
to departures from survey design in the field.

Linear mixed models (LMMs) with REML parameter 
estimation are also useful when there are missing values in 
survey data. In fact, REML was developed specifically for 
the task of recovering information from data sets which are 
unbalanced because of missing observations,22 with the 
missing values treated as a random process. Missing val-
ues are a common phenomenon in HH surveys due to non-
response (e.g. one might be less likely to find people 
whose work takes them far from home), or refusals at indi-
vidual level within households. Non-response is consid-
ered an increasing problem in HH surveys,23 and may 
exceed 50% .24 Non-participation in a survey may intro-
duce bias, for example if households not engaged with cur-
rent outreach programmes are more likely than average to 
refuse participation).

In an MSS hierarchical sampling design, means at the 
level where all units are sampled can be treated as fixed 
effects. For example, at the regional level in the Ethiopian 
National Micronutrient Survey (ENMS) examined in this 
paper. These mean values may be of direct interest in 
themselves, for example, used to prioritize Zn interven-
tions among regions by ranking the regional mean serum 
Zn concentration for women of reproductive age (WRA) 
of Ethiopia. Estimates of these means have error variances, 
which can be obtained from the LMM, and used to obtain 
confidence intervals (CIs).

Table 1. Simulation results.

Mean type Mean Standard error Coverage (95%)

Design 99.3 2.6 0.93–0.96
Model 98.8 2.6 0.93–0.96
Naive 98.9 0.8 0.42–0.48
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The motivation of this paper is to show how LMM can 
be used to make population parameter estimates from 
national-scale surveys that departed in practice from the 
original sample plan. The idea being to raise awareness 
among of those involved in micronutrient research, for 
example, data analysts, policy makers, non-governmental 
organizations (NGOs), etc., who encounter such data in 
their day-to-day work, and subsequently to increase the 
accuracy of estimates of micronutrient status with robust 
estimates of uncertainty. We describe the data that departed 
from the sample plan (ENMS), highlighting how it 
departed from the plan. And we show how to (a) specify 
the LMM, (b) interpret the estimated regional means, 
understood either as estimates or as predictions of the 
means of unsampled included units and (c) calculate and 
interpret CIs and PIs. We also explain how variance com-
ponents estimated for EAs and HHs can be used to improve 
the efficiency of future national-scale surveys. Finally, we 
consider how estimates and predictions for biomarker val-
ues from sample surveys can be compared with nutrition-
ally relevant threshold values to support intervention 
decisions, while quantifying the inevitable uncertainty.

Methods

Ethiopian National Micronutrient Survey 
(ENMS) description

We used data on the concentration of Zn in blood serum of 
WRA sampled in the ENMS.11 The objectives of the sur-
vey were to support estimation of prevalence, at National 
scale, of anaemia, deficiencies of six vitamins and miner-
als, and the proportion of households with adequately 
iodized salt.11 The specific biomarker data analysed here 
were not in the original EMNS, but were obtained from 
archived samples.12 Serum Zn concentration was mea-
sured by inductively coupled plasma mass spectrometry 
(ICP-MS), which was considered more reliable than the 
method used to measure serum Zn in the original EMNS. 
The serum Zn concentrations were adjusted for inflamma-
tion, using the procedure from the BRINDA project.25 We 
chose to analyse the WRA demographic group because 
they were the largest sample (1181) across all regions of 
Ethiopia (Table 2).

Sampling in the EMNS was by a simple hierarchical 
design, with EAs nested within regions and city admin-
istrations, and HHs nested within EAs within regions. 
All regions and city administrations were sampled. 
Therefore, the key elements of the sampling design were 
EAs and HHs. The sampled populations were in the nine 
regions and two city administrations, comprising pre-
school children 6 – 59  months (PSC), school-age chil-
dren 5 –14  years (SAC), non-pregnant women of 
reproductive age 15 – 49  years (WRA) and men (Men).

The regions and city administrations, which were 
treated as strata for the survey, were not sampled 

proportional to size to ensure adequate representation of 
smaller regions. Within each stratum a two-stage sam-
pling design was planned. The primary units (PU) were 
Enumeration Areas (EA). A list of these, provided by the 
Central Statistical Authority, was used as the sampling 
frame. From this list, EAs were randomly selected with 
probability proportional to size. And the selected EAs 
were then visited to compile HH lists, and to identify 
logistical problems for fieldwork. Based on the listing, 11 
HHs were selected by simple random sampling (so the 
inclusion probability of each household depends on the 
number in the EA and the sample size). Households 
deemed to be inaccessible were excluded and replaced by 
another drawn from the remaining HHs in the EA by sim-
ple random sampling.

Ethical approval for the ENMS was obtained from the 
National Research Ethical Review Committee of the 
Ethiopian Science and Technology Ministry (Reference 
3.10/433/06). Informed consent was obtained from all adult 
participants and assent for all child participants in the survey.

Departures from sample practice

In the original sampling design, 11 HHs, 7 WRA (1 per 
HH, maximum), 3 men and 6 SAC were to be sampled 
from each EA. And all PSCs in the selected HHs were to 
be sampled. The sampling was based on the random order-
ing of the HHs from which the individuals were selected 
according to fixed rules. For example, the six SAC were to 
be selected from the 2nd, 4th, 6th, 8th, 9th and 10th HHs 
of the 11.

However, the original sampling design was not fol-
lowed. Instead of sampling 1 WRA per HH, maximum, the 
teams collected data from all WRA encountered in a sam-
pled HH to compensate for some HHs that did not have 
WRA. Also, the design was complicated further for PSC in 
that it was intended to sample all children in the 11 HHs, 
which gave rise to multiple samples within many of the 
basic sample units of the design, leading to some degree of 
within-household correlation.

Table 2. Summary table of sample.

Region EAs HHs WRA

Addis Ababa 33 118 119
Afar 27 165 80
Amhara 41 299 181
Bensihangul-Gumuz 24 149 86
Dire Dawa 27 135 72
Gambella 22 127 83
Harari 24 117 64
Oromia 46 331 188
SNNPR 41 270 143
Somal 26 136 70
Tigray 32 196 95
Totals 343 2043 1181
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We therefore have somewhat different designs for the 
different demographic groups, not a simple balanced two-
stage sample with 11 sample units within the primary 
units, as was planned. For these reasons, the design inclu-
sion probabilities do not apply to any of the data collected 
from individuals, as designed, which can have implica-
tions on the efficient estimation of micronutrient deficien-
cies. As we could not use sampling weights, one option is 
to use linear mixed modelling (LMM) to make estimates 
and predictions from the survey. Linear mixed models 
have an added advantage of making estimates of variance 
components.

Specification of the linear mixed model (LMM)

We specified region means as fixed effects, and EAs and 
HHs, random effects. This specification paralleled the 
sampling design where all regions were sampled, and EAs 
and HHs, randomly sampled.

In the linear mixed model (LMM) a vector of n obser-
vations, y, is treated as a combination of fixed and random 
effects. The fixed effects may be continuous covariates or 
factors, in this study the fixed effect was the mean value of 
the biomarker for each region. The LMM takes the follow-
ing form,

y X Zu= ,� �� �

where X  is an n p×  design matrix which associates each 
of the n  observations with a value for each of p  fixed 
effects, and τ  contains the fixed effects coefficients. In 
this study we used a parameterization of the model in 
which X i j[ , ] = 0  unless the i th observation corresponds to 
the j

th
 region in which case X i j[ , ] = 1.

There are r  random effects, with values in u , and z 
is an n× r design matrix which associates each observa-
tion with a subset of these. In our case the random 
effects are the rEA enumeration areas (EA) and the rHH 
households (HH), with HH nested within EA. We may 
therefore think of u  as comprising two subvectors, the 
rEA ×1 vector of EA random effects, uEA, and the rHH ×1 
vector of HH random effects, uHH, where r r r= EA HH+ , 

and u u u= ,EA
T

HH
T T

�� �� . The design matrix Z  associates 

each observation with exactly one EA and one HH 
within that EA. The term ε  is an independent and iden-
tically distributed residual.

It is assumed that the random effects and residual terms 
are independent, and normally distributed. The random 
effects at each level of a nested structure have a common 
variance, so in this case the model parameters include a 
separate variance component for EA within regions, σEA

2 ; 

one for HH within EA, σHH:EA
2 , and a residual variance, ��

2. 

The joint distribution of u and ε  is therefore modelled as

  
u 0

0

G 0
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�
�
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where the random effects have an r × r covariance matrix 
G. In the case of the nested design-based sample used here 
G can be written in terms of the variance components for 
the random effects and identity matrices I :

G
I 0

0 I
=

,
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and the residual term has an n n×  covariance matrix 
R Iv n= 2�� , which is diagonal because of the assumption 
that the residuals are independent. The unknown parame-
ters, the variance components σEA

2 , σHH:EA
2  and ��

2 are esti-
mated by residual maximum likelihood which avoids the 
well-known bias in ordinary maximum likelihood estima-
tion. We did this estimation using the lmer function from 
the lme4 library for the R platform.26

BLUE, BLUP and E-BLUP

Once the random effects parameters are estimated, the 
Mixed Model equation of Henderson et al.27 can be applied 
to obtain the Best Linear Unbiased Estimates of the fixed 
effects coefficients (BLUE, ττ) and the Best Linear 
Unbiased Predictions of the random effects (BLUP, u). 
The equation is as follows:
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The error covariance matrix of the estimates/predic-

tions ��� �T Tu�
��

�
��
, C , is estimated by

  C W R W G = ,1 * 1T
v
� �

�� �   (3)

where W X Z� � �,  and G
0 0

0 G
*

1
�
�

�
�

�

�
��
.

The BLUP for some random quantity, described by a 
LMM, is the mean for the prediction distribution of that 
quantity, conditional on the model and observations. When 
the REML estimates of the random effects parameters are 
used to specify the model then the BLUP is sometimes called 
the empirical BLUP or EBLUP. Equation (2) can be solved 
to find the EBLUP of the individual random effects by using 
the estimated variance parameters to specify Rv and G .

EBLUP for the units within the sample

The EBLUP for the mean value for a sampled EA in a sam-
pled region is the sum of the BLUE of the regional mean 
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and the BLUP of the random effect for that EA. The 
EBLUP for the mean of a sampled HH within an EA is, 
similarly, the sum of the BLUE for the regional mean and 
the BLUPs for the EA and HH random effects. The error 
variance of these predictions can be obtained from the 
variance and covariances of the model BLUEs and BLUPs 
given in equation (3). Such predictions would be useful, 
for example, if EA or HH from the original survey were 
under consideration for participation in further research 
where we wanted to select units where there is good reason 
to expect zinc deficiency.

EBLUP for unsampled units within the sample 
frame

Often we want to make an inference from sample data 
about unsampled units. Consider, for example, a case 
where a community within a Region of Ethiopia, corre-
sponding to an EA, not included in the EMNS survey, is to 
be incorporated into a study and we want, in advance of 
field work to evaluate the probability that zinc is in defi-
ciency there on the basis of the EMNS data.

If we want a prediction for an unsampled EA within a 
region, then, given the assumptions in our model that EAs 
within a region are independent, our best prediction is the 
BLUE for the regional mean. The error variance of this 
prediction is given by the sum of the error variance of the 
BLUE, and the between EA within region variance, σEA

2 .
Similarly, if we want a prediction for an household 

within an unsampled EA the BLUE of the regional mean is 
our best estimate and, this time the error variance of the 
prediction is given by the sum of the error variance of the 
BLUE, the between EA within region variance, σEA

2 , and 
the between HH within EA variance, σHH:EA

2 .
If we want a prediction for an unsampled household 

within a sampled EA, then the EBLUP for the EA mean 
(i.e. the sum of the BLUE and the BLUP for the EA ran-
dom effect) is our best prediction. The sum of the predic-
tion error variance for this EBLUP and the between HH 
within EA variance, σHH:EA

2  gives us the variance of this 
prediction.

EBLUP for a new observation

The EBLUP for a new observation (i.e. an individual mea-
surement), conditional on our data and the estimated 
model, can be written as

 
� � �

�

y0 0
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0
1 1

=

= ,
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x v V X v V y

T
o,p
T

T
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T
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T
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�

� �
 (4)

where x0  contains the entries for a design matrix for the 
observation (i.e. in this case indicators for the regional 
mean which is the fixed effect), vo,p  is a vector of covari-
ances between the observations and the predicted value, 
and

v ZGz0 =
T

where z  is a 1× r  vector which indicates any correspond-
ing random effects from the data, that is, sample units to 
which the individual belongs, if any) and

V ZGZ R= .T +

Information for further sampling

The LMM provides us with estimates of the variance compo-
nents at each level of the sampling design. All other compo-
nents of the estimation or prediction error variances for 
BLUEs and BLUPs depend only on the sample design (i.e. on 
the number of samples, and the number of EA and HH over 
which they are distributed within the regions). It is therefore 
possible to make estimates of the uncertainty of inferences 
based on different future sample designs, either within the 
same population or in analogous ones, given the estimated 
variance components. See, for example, Webster and Oliver.28

To illustrate this we envisage a sampling task. This is of 
more limited scope than EMNS, focused within a single 
region. We are interested in forming a reliable estimate of the 
regional mean for the biomarker across a single region. We 
used a parametric bootstrap approach to the problem. For 
some specified sample design (a given number of EA in the 
region, and HH per EA, with a single individual sampled per 
household), we wrote a covariance matrix for a sample of 
observations based on the estimated variance components for 
EA, HH within EA, and observations within HH obtained 
from the EMNS analysis. A set of sample data were then sim-
ulated from this matrix using the mvrnorm function from the 
MASS library for the R platform.29 The LMM was then fitted 
to the data and the BLUE of the regional mean was estimated. 
This procedure from the simulation step on was repeated 
5000 times. The standard deviation of the BLUE values were 
treated as estimates of their standard error, and a 95% confi-
dence interval was obtained for this. This was done for vari-
ous designs with total sample sizes of 50, 100, 200 and 300, 
and with the number of EA varying between 5 and 150.

Results

Exploratory data analysis

We identified three large values of serum Zn concentration 
(outliers) which exceeded the upper ‘outer fence’ of Tukey,30 
that is, a threshold value equal to the third quartile of the data 
set plus three times the H-spread or inter-quartile range. 
Because our focus here is on the variability of serum Zn con-
centrations and its implications for prediction uncertainty 
and future sample design, we elected to remove these values 
before fitting the LMM. That is not to say that they should be 
discarded for other interpretations of the data set. A histo-
gram of the data on the sample data is given in Figure A1 in 
the Appendix.
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An initial fit of the LMM to the data was undertaken 
and the residuals at population-, EA- and HH-levels were 
extracted. Their summary statistics are shown in Table 3, 
and histograms in Figure A2 in the Appendix. On the basis 
of these exploratory plots and statistics, the assumption of 
normally-distributed random effects in the model was 
deemed to be plausible.

EA sample weights and EA random effect 
BLUPs

We have noted that the EMNS survey was originally 
designed with inclusion probabilities specified at EA 
level (proportional to size at EA level, and equal across 
the EA at HH level). However, for WRA the selection of 
individuals for sampling was not based on the original 
sample plan, and so the inclusion probabilities, from 
which sample weights would be calculated, do not hold. 
Our analysis is therefore not based on the sample 
weights. However, we should consider the risk that the 
inclusion probabilities at EA level are informative. That 
is to say, EAs with larger inclusion probabilities might 
be more likely to have Zn deficiency (or sufficiency) 
than average. There are formal methods to check for 
informativeness of sample weights, for example by 
Pfeffermann.31 However, in this study we do not know 
the actual sample weights for individual observations 
(this the motivation for our use of LMM) so these tests 
cannot be applied. We therefore used an informal method 
to evaluate any evidence that the EA inclusion probabili-
ties might be informative. We extracted the BLUPs for 
the EA random effects, and plotted them in order of EA 
inclusion probability. This is shown in Figure 1. Where 
the BLUPs are shown as points distributed about their 
mean (zero). The red line shows the moving average of 
the random effect BLUPs within a window. There is no 
evidence from this plot of any trend in the Zn variation 
at EA level with EA inclusion probability, and so we pro-
ceed on the assumption that the original design weights 
are uninformative.

BLUEs of region means as weighted means

If one examines the mixed model equation, equation (2), 
then it is apparent that the BLUEs for the regional means, 
and the BLUPS for the random effects for the sample units, 
are linear combinations of the data:
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In this sense, the BLUEs for the regional means are 
weighted means of the observations, as would be estimates 
based on survey weights, but with weights which reflect 
the modelled degree of within HH and within EA correla-
tion. To give an intuitive insight into this we extract in 
Table 4 the effective weights for the estimation of the 
mean serum Zn concentration for Amhara region for WRA 
in different households in 5 EA from the region. From 
these we can see the following.

1. Individual weights are smaller within EA with more 
observations. To see this compare the EAs ENMS037, 
ENMS036 and ENMS312 with one, three and four 
observations respectively (each from a single house-
hold), and corresponding weights for each observa-
tion of 0.009,0.007 0.006and . This reflects the fact 

Table 3. Residual summary statistics.

Level Mean Median Skewness Octile skewness Number of outliers

Population level 0.11 −0.28 0.41 0.01 0
EA level 0.01 −0.47 0.43 0.05 1
HH level 0.0 −0 0.4 0.44 0.06 0

Figure 1. BLUP for the EA random effect of each EA in 
EMNS (serum Zn concentration for WRA) plotted in order of 
increasing selection probability. The red line shows the moving 
average of the BLUP in five successive ordered EA.
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that repeated observations within an EA are to some 
extent correlated.

2. Individual weights within an EA from different 
households are larger than for multiple observa-
tions within households. Compare EAs ENMS312 
and ENMS039; both include four observations, but 
in the former these are each from a different house-
hold, whereas in the latter the four observations 
comprise two from each of two households. The 
weights in the latter case are smaller, reflecting the 
correlation between observations within the same 
household.

3. Within an EA, single observations within house-
holds have larger weights than repeat observations 
within one. Consider EA ENMS040, with three 
observations within a single household, each with a 
smaller weight than the remaining five observa-
tions in that EA from five different households.

BLUEs and EBLUPs

Regional means: BLUEs and their confidence intervals. The 
BLUEs for regional mean serum Zn concentration for 
women of reproductive age (WRA) in the Ethiopian 
regions ranged from 57µg dL-1  (Oromia) to 69.2µg dL-1 
(Addis Ababa) (Table 5). Three regions had point esti-
mates below 60µg dL-1 , and the rest, 8� � , were above 
60µg dL-1  (Table 5). However, Addis Ababa was the only 
region with a mean serum Zn concentration that was above 
the threshold cut-off for sufficiency of 65µg dL-1 

demarcated by the vertical dotted line in Figure 2. The 
means are plotted in Figure 2 (black dots), along with 95% 
confidence intervals (solid horizontal black lines strad-
dling the means) which are based on the standard errors in 
Table 5. The standard errors vary between 0.96  and 1.5 , 
corresponding to error variances of 0.92  and 2.25  respec-
tively. These estimates could be used directly to plan Zn 
intervention for regions in Ethiopia. For example, Oromia, 
the region with the smallest estimated mean 57.7�g dL-1� � 
could be prioritized for Zn intervention, whereas Addis 

Table 4. Some example LMM weights from enumeration 
areas (EAs) and households (HHs) in Amhara region.

Region EA HH Weight

Amhara ENMS036 C036-04 0.007070486
Amhara ENMS036 C036-07 0.007070486
Amhara ENMS036 C036-02 0.007070486
Amhara ENMS312 C312-05 0.006372480
Amhara ENMS312 C312-06 0.006372480
Amhara ENMS312 C312-10 0.006372480
Amhara ENMS312 C312-04 0.006372480
Amhara ENMS039 C039-04 0.005832112
Amhara ENMS039 C039-02 0.005832112
Amhara ENMS039 C039-04 0.005832112
Amhara ENMS039 C039-02 0.005832112
Amhara ENMS037 C037-02 0.009053915
Amhara ENMS040 C040-09 0.004807782
Amhara ENMS040 C040-07 0.004807782
Amhara ENMS040 C040-04 0.004807782
Amhara ENMS040 C040-02 0.004807782
Amhara ENMS040 C040-01 0.004807782
Amhara ENMS040 C040-05 0.003680640
Amhara ENMS040 C040-05 0.003680640
Amhara ENMS040 C040-05 0.003680640

Table 5. Estimates of regional means, and standard errors 
(SE) of the estimates.

Regions
Estimated 
mean

SE of estimated 
mean

Addis Ababa 69.18 1.18
Afar 60.57 1.46
Amhara 62.35 1.01
Benishangul-Gumuz 59.90 1.38
Dire Dawa 60.11 1.47
Gambella 62.29 1.46
Harari 61.08 1.60
Oromia 57.78 0.96
SNNPR 57.99 1.07
Somali 61.13 1.50
Tigray 60.03 1.35

Figure 2. The regional mean concentration of Zn in blood 
serum of WRA, estimated from EMNS data by weighted least 
squares after REML estimation of variance parameters of a 
LMM. The solid black line shows the confidence interval of the 
estimate. The solid grey line shows the prediction interval for 
the mean, treated as the EBLUP of the mean of an unsampled 
EA within each region. The boxplot at the top shows the 
distribution of the sample data. The vertical dashed line is a 
threshold concentration for Zn sufficiency.
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Ababa, with the largest estimated mean, may require no 
interventions, unless these are targeted to particular vul-
nerable subgroups. The regional mean, however, masks 
substantial variation at the EA, HH and individual levels, 
so while Oromia may be the priority region, there could be 
substantial regions of severe deficiency elsewhere, includ-
ing in Addis Ababa.

EBLUPs and Prediction intervals (PIs). Table 6 presents 
EBLUPs of serum Zn for some example cases in Oromia 
Region. These are at different levels of organization (indi-
vidual, EA mean or HH mean) and based on different sam-
pling situations (sampled or unsampled HH and EA). In 
each case the sampled EA and sampled HH considered are 
the same. The BLUPs and their prediction error variances 
are as described in the Methods section. Note that all these 
BLUP error variances are at least an order of magnitude 
larger than the estimation error variance of the BLUE. The 
cases in rows 2, 4 and 7 are all for cases where the predic-
tion is outside the sampling frame at all levels (in an 
unsampled EA). In all these cases the BLUP is equal to the 
BLUE for the regional mean. The variance is largest for 
BLUPs at the individual level.

For EBLUPs of EA means (rows 1 and 2) or HH means 
(rows 3 and 4), the variances are larger in the latter. The 
prediction error variance for the mean of a sampled EA is 
smaller than that of an unsampled EA, but is not negligible 
because of the contribution of variances at within-EA lev-
els. The same is seen for HH mean predictions.

Each row of Table 6 represents a possible situation in 
which a prediction is required to support a decision. For 
example, consider a case where we were planning a fur-
ther study in the Oromia region which was to be held in a 
sampled EA, and we wanted a case where we were confi-
dent that the mean serum Zn concentration in WRA is 
below the 65µg dL-1 threshold. For the sampled EA in row 
1, the EBLUP of the mean is well below this threshold. 
Assuming normal variation (justified by our exploratory 
analysis of the LMM), the variance can be used to com-
pute the probability that the EA mean is < 65µg dL-1. 
Table 6 shows that this probability is > 0.99 . Table 6 also 

presents the interpretation of this probability in terms of 
the Intergovernmental Panel on Climate Change’s cali-
brated phrases32: < 0.01 (exceptionally unlikely), < 0.33 
(unlikely), ≥ 0.66 (likely), ≥ 0.9 (very likely), ≥ 0.99 (vir-
tually certain). Note that it is virtually certain that the 
mean for this sampled EA is below the threshold.

Now if we wished to expand the EAs in the second 
study, including one which had not been sampled, then the 
prediction ‘shrinks’ to the regional mean BLUE (on Table 
5). The effect is small, but the prediction error variance 
nearly doubles. The probability that the unsampled EA 
mean is less than the threshold is smaller than for the sam-
pled case, but is still large at 0.96, which is interpreted as 
very likely.

Row 3 of the Table shows that, for a particular sampled 
household, the uncertainty is close to that for an unsam-
pled EA mean. Because the sampled HH EBLUP is smaller 
than the regional mean BLUE (in Table 5), the probability 
that the HH mean is below the threshold is slightly larger 
than for the unsampled EA mean (0.98). Again, for an 
unsampled HH in an unsampled EA (row 4) the EBLUP 
shrinks to the regional mean BLUE, and the prediction 
error variance is notably larger than for the sampled EA, 
but the probability that the HH mean is below the thresh-
old is 0.90, still interpreted as very likely.

Rows 5–7 are all predictions for individuals. The pre-
diction error variances are all an order of magnitude larger 
than those for HH or EA mean BLUPS, and the probability 
that the individual Zn serum concentration is < 65µg dL-1 
ranges from 0.75 to 0.80. Note that in all cases in Table 6, 
the EBLUP is below the threshold, the probability that the 
true value is below the threshold decreases from EA to HH 
to individual level because the uncertainty of the predic-
tion also increases, and so the probability that the true 
value is actually above the threshold.

Table 7 presents the probability that the mean of an 
unsampled EA is < 65µg dL-1 for each sampled region. In 
each case the BLUP shrinks to the BLUE of the regional 
mean, as presented in Table 5. The prediction intervals are 
shown in Figure 2. They are the solid horizontal grey lines 
straddling the means, which are clearly larger than the 

Table 6. EBLUPs of individuals in sampled and unsampled enumeration areas (EAs) and households (HHs), and sampled and 
unsampled (EAs) and HHs, all within Oromia Region.

Scenario
Enumeration 
area (EA)

Household (HH) EBLUP type EBLUP Variance Probability < 65µg dL-1 Interpretation

1. Sampled – EA 56.6 8.9 >0.99 Virtually certain
2. Unsampled – EA 57.8 16.6 0.96 Very likely
3. Sampled Sampled HH 56.5 18.8 0.98 Very likely
4. Unsampled Unsampled HH 57.8 31.3 0.90 Very likely
5. Sampled Sampled Individual 56.5 100.2 0.80 Likely
6. Sampled Unsampled Individual 56.6 104.9 0.79 Likely
7. Unsampled Unsampled Individual 57.8 112.6 0.75 Likely
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confidence intervals (the solid horizontal black lines also 
straddling the means). H¡return¿

Lessons for future sampling. The bootstrapped standard 
error for the BLUE of the regional mean is reduced below 
1.0 by a sample of 300 individuals from 25 EAs – so 12 
HH per EA, (Figure 3). If the same total sample size were 
distributed over just 10 EAs (30 HH per EA), then the 
uncertainty of the BLUE would be larger. Note that if we 
sample 50 EA with 100 samples the standard error exceeds 
1, it is brought below 1 if the EAs are sampled with 200 
individuals. The reduction in uncertainty from increasing 
the sample size over 50 EA from 200 to 300 is small, 
despite the 50% increase in the number of biomarker anal-
yses, and the intrusive sampling of individuals. Such 
results would clearly help the rational choice of a sample 
design.

If the marginal costs of an additional sample EA, CEA, 
in the survey, and an additional HH within a sampled EA, 
CHH, or at least their ratio R C CEA,HH EA HH= /  can be 
approximated, then the optimum number of HH to sample 
per EA, m, can be estimated on the assumption of a uni-
form total number of HH in each EA, M  (REF):

 


m R

M

=
2 2

2
2 2EA,HH

HH:EA

EA
HH:EA

� �

�
� �

�

�

�

�
�  (6)

If we assume that in our target region M = 200  (the 
mean over the MNS is 193), and that REA,HH = 30, then the 
optimum number of HH per EA, given the variance com-
ponents estimated for serum zinc in the EMNS, is 14

Conclusions

Design-based surveys, such as those used in national-scale 
micronutrient surveys (MNS) may depart in practice from 
the sample design due to one or more problems encountered 

during the sampling exercise. In such cases, the specified 
inclusion probabilities, from which sample weights are cal-
culated no longer hold. If the original sample weights are 
used, then we can no longer be sure that population param-
eters are estimated without bias. Alternatively, linear mixed 
models (LMM), with covariance structures specified to 
reflect the nested structure of the sample and the estimated 
variance parameters at each level, can be used to make 
model-based parameter estimates.

In this paper, we demonstrated the use of LMM to 
make estimates (region means), and mean predictions 
(EA, HH and individual means) of Zn in blood serum of 
WRA using the Ethiopia National Micronutrient Survey 
(EMNS) in which the actual sampling practice departed 
from the design for which sample weights were available. 
We first checked for evidence that the sample weights 
were informative for the target variable. There was no evi-
dence that this was the case. The BLUEs for regional 
mean serum Zn concentration for women of reproductive 
age (WRA) in the Ethiopian regions ranged from 
57µg dL-1 (Oromia) to 69.2µg dL-1  (Addis Ababa). The 
Addis Ababa estimate 69.2�g dL-1� �  was the only region 
with a mean serum Zn concentration that was above the 
threshold cut-off for sufficiency of 65µg dL-1. These esti-
mates, although generally slightly higher (by 0.02 to 
4.75), were generally close to the design-based estimates 
on Table 2 of Belay et al.12 However, except for Addis 
Ababa and Oromia regions, the ranking of the regional 
means were changed. The largest changes in rank were 
Dire Dawa (dropped 5 positions), and Harari and Amhara 
regions (both gained five positions). The second largest 

Figure 3. Parametric bootstrapped standard error for the 
BLUE of a regional mean based on sampling within the region 
based on different total sample sizes, and numbers of EA within 
the sample. The vertical lines show the 95% confidence interval 
of the bootstrap estimates (which in many cases is narrower 
than the plotting symbol).

Table 7. Probability enumeration area (EA) mean is 
< 65µg dL-1.

Region Probability 
EA is 
< 65µg dL-1

Interpretation

Addis Ababa 0.16 Unlikely
Afar 0.85 Likely
Amhara 0.74 Likely
Benishangul-Gumuz 0.89 Likely
Dire Dawa 0.88 Likely
Gambella 0.74 Likely
Harari 0.82 Likely
Oromia 0.96 Very likely
SNNPR 0.96 Very likely
Somali 0.82 Likely
Tigray 0.88 Likely



Pswarayi et al. 11

changes were Benishangul-Gumuz, which lost three posi-
tions, and SNNPR which lost two positions. Two of the 
remaining four regions lost a position each while the other 
two gained a position each. The differences in ranking 
could be due to differences in weighting, with the LMM 
weighting according to actual number of individuals 
within units (e.g. HH), correlated individuals. The stan-
dard errors for the BLUEs varied between 0.96 and 1.5. 
The BLUP error variances were at least an order of mag-
nitude larger than the estimation error variance of the 
BLUEs. This is because the BLUPs were for smaller units 
within the regions (EA, HH or individuals). The variance 
of the BLUP is also larger for an unsampled unit than for 
one which contains some of the sample data.

The regional mean serum Zn concentration was likely 
to very likely to be smaller than the threshold concentration 
for deficiency in all regions, except Addis Ababa. These 
calibrated expressions are used to communicate the under-
lying probability of the specified state, computed from the 
fitted LMM.

The variance components from the ENMS could be 
used to explore options for future micronutrient surveys 
(MNS) in Ethiopia. Some general conclusions could be 
drawn. For example, if a total sample size of 200 or more 
is used, then there are limited marginal gains in precision 
of estimates of the regional mean from sampling more than 
50 EA in total. It is also possible to draw more specific 
conclusions about optimal sampling schemes if the mar-
ginal costs of an additional sample EA in the survey, and 
an additional HH within a sampled EA, or at least their 
ratio, could be approximated.

To conclude, these sampling issues also apply to esti-
mation of other micronutrient deficiencies. Thus, many 
micronutrient surveys, including those capturing multiple 
MNs, and other surveys involving MSS would benefit 
from LMM when sampling weights are no longer valid 
due to changes in sampling practice.
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Appendix 1

Sampling weights in design-based sampling and analy-
sis. Mathematically, sampling weights are the reciprocal 
of the inclusion probabilities for the basic sample units.33 
For example, in a survey where we sample one individ-
ual per HH, if the inclusion probability for the i  th HH 
is ( )π i , then the sample weight for a measurement from 
that individual is ( ) 1� i

� . This weight wi� � , is the number 
of population units represented by the i th sampled 
unit.23 The sampling weight of a lower stage that is 
nested in an upper stage is a product of the weight of that 
lower stage with the weight of the upper stage in which 
it is nested.34 For example, if ( ),π EA i  is the inclusion 
probability over all EAs of the i  th EA and ( ),π EA i  is 
the inclusion probability of the j  th HH in the i  th EA, 
then the overall inclusion probability for the sampled 
individual is ( ),π EA i ( ),πHH ij .

To calculate design-unbiased population estimates, for 
example, E � �� � � , using sampling weights, the inclu-
sion probability ( )π i  multiplied by the sampling weight 
( )wi  should equal one (1): that is, π i  ×  wi =1 .35 This 
holds when the sampling weight ( )wi  is the inverse of the 

inclusion probability (� i
�1 ): π i  ×  � i

�1  =  1 .35 Hence, if 
an observation in a design based sample has inclusion 
probability π i , and, therefore, sample weight � i

�1 , then 
the unbiased design-based estimate for the mean of vari-
able z  for observations in region j  would be

  
�

�

i i j ii

n

i i ji

N

I z

I

�

�

�
�

1
,=1

1
,=1

,  (7)

where Ii j,  is an indicator variable which takes value 1 if 
observation i  belongs to region j  and 0  otherwise. In 
effect

�

�

i i j

i

N

i i j

I

I

�

��

1
,

=1

1
,

,

is a weight applied to observation zi  to obtain its con-
tribution to the design-based estimate of the regional 
mean. As mentioned above, these weights sum to 1  over 
all the observations in the region.

https://www.R-project.org/
https://www.R-project.org/
https://CRAN.R-project.org/package=PropCIs
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Figure A1. Histogram with boxplot (left) and QQ-plot (right) for sample data. The vertical red broken line on the histogram 
shows the upper outer fence for the observations,30 and probable outliers are shown by red symbols on the QQ plot.

Figure A2. Histograms with boxplots for random effects from exploratory fit of model.


