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A B S T R A C T   

Image generation techniques, such as generative adversarial networks (GANs), have become sufficiently so
phisticated to cause growing concerns around the authenticity of images in the public domain. Although these 
generation techniques have been applied to a wide range of images, including images with objects and faces, 
there are comparatively few studies focused on their application to the generation and subsequent evaluation of 
Earth Observation (EO) data, such as aerial and satellite imagery. We examine the current state of aerial image 
generation by training state-of-the-art unconditional GAN models to generate realistic aerial imagery. We train 
PGGAN, StyleGAN2 and CoCoGAN models using the Inria Aerial Image benchmark dataset, and quantitatively 
assess the images they produce according to the Fréchet Inception Distance (FID) and the Kernel Inception 
Distance (KID). In a paired image human detection study we find that current synthesised EO images are capable 
of fooling humans and current performance metrics are limited in their ability to quantify the perceived visual 
quality of these images.   

1. Introduction 

With the rapid increase in the availability of image data and the 
continued development of computer vision technology, image synthesis 
has become an emerging area of research due to its many different ap
plications. These range from editing photographs, to creating syn
thesised datasets for training models and creating highly realistic fake 
imagery (Karras et al., 2019; Gui et al., 2020; Brock et al., 2016). Despite 
the wide variety of different public imagery available for training, much 
of the current research has focused on facial imagery for both editing 
existing photos and generating completely new and artificial faces 
(Wang et al., 2018; Yin et al., 2017; Tolosana et al., 2020). 

Due to the large amount of public personal photos on social media 
platforms, it is perhaps not surprising that faces have been the main 
focus of most of the research in image synthesis (Karras et al., 2018; 
Zhang et al., 2020), with object generation being a close second (Singh 
et al., 2019). An area less explored is that of the synthesis of Earth 
Observation (EO) data. With increasing concerns about the generation 
and spread of fake information (Shu et al., 2017; Scheufele and Krause, 
2019), commonly referred to as “fake news”, and with clear evidence on 
the effects that this misinformation has on the public (Cao et al., 2020), 

it is not unreasonable to think that it is a matter of time before these 
techniques for fake information generation start making use of addi
tional sources of data to expand their reach and impact. EO data is a 
prime candidate for these machinations, as its main uses rely on it being 
objective and trustworthy. Therefore obtaining an objective and thor
ough evaluation on the current capabilities of image synthesis methods 
for EO data is an important goal. 

Scientifically, EO data presents challenges that are not present in face 
or object image synthesis. Images containing faces or objects tend to 
require high levels of detail on centralised objects, indeed the majority 
of synthetic face generation solutions operate on aligned face images. 
Instead of having only one focus or feature that must be generated 
within the image, the challenge in EO imagery synthesis resides in 
generating a set of features and patterns that both individually and 
collectively can be deemed as “real”. The ability of Generative Adver
sarial Networks’ to generalise beyond object and face synthesis is under- 
explored. 

There are also practical reasons that EO data is an important target 
for image synthesis. There is extensive evidence on the benefits of using 
GAN-generated synthetic data for data augmentation purposes (Sandfort 
et al., 2019; Tanaka and Aranha, 2019). This has positively impacted the 
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performance of machine learning models in other areas, such as medical 
imaging (Waheed et al., 2020) and autonomous vehicles (Lee et al., 
2020). Synthetic image generation also improves performance in prob
lems with limited data (Zhang et al., 2019), or where data contains class 
imbalances (Mariani et al., 2018a). Synthesised EO data could be used to 
generate challenging datasets that are hard to obtain naturally, such as 
synthetic landscapes containing camouflaged buildings, structures or 
vehicles to be used to train models in the detection of these objects. 

The most successful approaches to image synthesis in recent years 
are based on deep learning, with the most popular and successful models 
using a Generative Adversarial Networks (GANs) framework (Good
fellow et al., 2014). These models require large amounts of image data to 
train, and often comprise two competing neural networks, a generator 
and a discriminator network, pitted against each other in a competitive 
zero-sum game. The reason for their popularity is that recent GAN 
models are able generate photo-realistic, high-resolution images across 
different image data sets (Gui et al., 2020). However much of the current 
research and testing of models relies on the use of large, popular 
benchmark datasets such as ImageNet (Donahue and Simonyan, 2019a) 
or FFHQ (Karras et al., 2019b). The reliance on using these datasets for 
testing models means that the generalisability of these approaches has 
not yet been proven. Quantitative and qualitative evaluation of the 
performance of image generation in more domain specific image types, 
such as those seen in EO image data, is required. It is also important to 
test the visual quality of the samples using user studies, rather than 
relying on common machine learning metrics alone. While popular 
metrics such as Fréchet Inception Distance (FID) are useful in deter
mining if the distributions of generated images are broadly similar to the 
original dataset, they do not necessarily reflect all the visual features 
needed for the human eye to perceive an image as realistic. 

Human perception of EO data is important; increasingly realistic fake 
imagery could present a security threat. In the last few years, there has 
been growing evidence for the use of machine learning and data science 
for fake information generation and communication (Bastos and Mer
cea, 2019). There has been a documented erosion in public trust of mass 
communication (Chesney and Citron, 2019). The injection of fake im
agery into this ecosystem, created with the sole purpose of “adding ve
racity” to this fake information, represents a real and long-term danger. 
There are particular risks in the earth imagery domain: it is a domain 
that typically promotes the re-use of open-source imagery that is both 
widely shared and shareable (Malarvizhi et al., 2016; Haslett and Wong, 
2019). These data sources are trusted by the public, and used extensively 
by organisations including news organisations, human rights organisa
tions and private industry. Synthetic EO data could also be used to 
negatively affect intelligent vehicles (Manderson et al., 2020), or to 
affect land-use (Oubrahim et al., 2018) or environmental-change policy 
through fake photographs with incorrect or misleading information. 
From a Human Right’s perspective, they could also be used to mask 
evidence of human rights violations and modern slavery, where detec
tion EO data has provided extremely useful in recent years (Boyd et al., 
2018). Even in closed systems working with a carefully sourced private 
data pipeline, there remain a myriad justifications (e.g. ideological, 
political, espionage, etc.) for tampering, insider threat, and in general 
inserting fake imagery as the goal of a cyber-security breach, as pointed 
out by Mirsky et al. (2019). 

Understanding and testing the capabilities of current generation 
models on EO data as well as current metrics for analysis/detection of 
these synthetic images is an important step to address the rising problem 
of fake image generation. This paper evaluates the generation of Earth 
Observation images using recent GAN models with prior high-quality 
unconditional image synthesis in other domains. Synthesised image 
quality is measured using the FID, a standard GAN evaluation metric, 
and the more recent metric Kernel Inception Distance (KID). These 

metrics evaluate images by comparing the similarity between the fake 
and real image distributions using the feature maps of specific layers of 
the Inception V3 classifier (Szegedy et al., 2016). Typically lower FID 
and KID scores have been seen as an indicator of image generation 
performance, however such evaluation has only been performed on 
common domains such as face images. In this paper we also contribute 
an evaluation of these metrics against human perception, with a user 
study providing evidence that common metrics are not suitable as a 
measure of visual quality in Earth Observation. 

1.1. Contributions 

This paper explores the current state of synthetic aerial image gen
eration, and the extent to which these synthetic images can fool real 
human observers. We show that current synthetic aerial imagery can 
fool human perception, and highlight the limitations of current 
Inception-based GAN evaluation metrics when used as measures of 
human perception of visual verisimilitude. 

The contributions of this paper are:  

• A systematic evaluation of recent, state-of-the-art unconditional 
GAN models for the task of generating synthetic aerial imagery.  

• Paired image detection study showing that current synthetic aerial 
imagery can fool observers.  

• Comparison of human and mathematical metrics for visual quality.  
• Discussion on the impacts of urban/rural features in generated 

samples on human detection. 

2. Literature review 

2.1. Generative adversarial networks 

Since their inception in 2014, Generative Adversarial Networks 
(GANs) have been used for different computer vision tasks, such as style 
transfer (Park et al., 2019), super resolution (Wang et al., 2018) and 
image-to-image translation (Zhu et al., 2017). For each domain, there 
also exists many different variations (Pan et al., 2019). While early 
models could learn the distribution of a given dataset and generate new 
instances of data, these were often limited to low-resolution images, 
lacking variation and visual quality. Recent models are now used in a 
much wider context and can produce images of higher quality and res
olution (Wang et al., 2020). In addition to image synthesis, GANs have 
also been used with other data types such as audio (Donahue et al., 
2018) and video (Xiong et al., 2018). GANs can be trained by using 
supervised or unsupervised methods. Conditional GANs learn via su
pervised learning and require labelled data to train the generator and 
discriminator. Unconditional GANs do not require labels and learn un
supervised. In this paper we focus on unsupervised image generation, 
and evaluate the abilities of recent unconditional GAN models in the 
context of aerial imagery data via both statistical and human evaluation 
metrics. We compare the statistical, inception based metrics and human 
detection scores of different image features (rural/urban). 

GAN models share the same underlying principles of the adversarial 
training, comprising two opposing deep neural networks: a generator 
and a discriminator (Goodfellow et al., 2014). The generator network G 
generates “fake” images by up-sampling a random noise vector z. The 
produced image from G is then passed on to the discriminator network 
D. D is then tasked with classifying the given image G(z) as real or fake, 
based on the distribution of the training dataset. The result is then used 
to optimize both networks simultaneously. This process is given by the 
Eq. (1): 

minGmaxDV(D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pdata(z)[log(1 − D(G(z)))] (1) 
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2.1.1. PGGAN 
PGGAN is a popular unconditional GAN model for image synthesis 

and is one of the first GAN models to consistently produce high quality 
images at a resolution (1024×1024) (Karras et al., 2018). The images of 
faces generated by the authors of the model were also widely reported in 
the media (Vincent, 2017), giving exposure to the technology and 
stimulating discussion on the potential implications this technology 
could have. 

The original paper for the model presented State of the art Inception 
score results on a variety of commonly used object focused benchmark 
datasets (CIFAR10 (Krizhevsky et al., 2014), LSUN (Yu et al., 2015) and 
CelebA-HQ (Karras et al., 2018)). These datasets contain a wide array of 
images. While the images generated in the model are almost photo 
realistic, they do contain some noticeable image artefacts which are 
most obvious in the backgrounds. 

Since its release in 2017, PGGANs have been applied to a variety of 
different tasks in various areas of research. The main use for this model 
has been to generate faces, often for the purpose of testing fake image 
detection methods (Matern et al., 2019; Yu et al., 2019; Marra et al., 
2018b). These studies cover different approaches to trying to detect GAN 
generated images, using PGGAN and other unconditional models trained 
on benchmark datasets to test their detection methods. As well as being 
used in image generation, the key progressive growing architecture that 
underlies the model has also been successfully adapted for data types, 
such as music (Eklund, 2019) and 3D MR images of brain volumes 
(Eklund, 2019). 

When trying to distinguish whether an image is real or generated 
from PGGAN the most telling sign is the incomprehensible backgrounds 
behind the focal image object. For the task of generating convincing 
aerial imagery this could be a hindrance as it suggests the model 
struggles with generating cohesive images when there is no single focus 
(e.g. faces and objects). 

2.1.2. StyleGAN and StyleGAN2 
The original StyleGAN model is an update from PGGAN that enabled 

the model to learn unsupervised separation of image attributes. This 
lead to the network being able to have more control over the image 
output (Karras et al., 2019b). In addition to control over different “visual 
styles”, the model also achieved new state of the art Inception scores on 
benchmark datasets (CelebA HQ (Karras et al., 2018), FFHQ (Karras 
et al., 2019b)). 

StyleGAN has been used in many of the same areas as PGGAN, 
including detecting GAN fingerprints (Marra et al., 2018b; Kim et al., 
2019) and face generation (Wang et al., 2019). The main difference 
between PGGAN and StyleGAN is the latter’s ability to learn conditional 
data in addition to unconditional data, leading to it be used for a larger 
number of tasks such as style transfer and image editing (Yildirim et al., 
2019; Härkönen et al., 2020; Collins et al., 2020). StyleGAN has been 
trained to produce different types of images, with the most common test 
datasets being faces (FFHQ, CelebA Liu et al., 2015), as well as 
commonly used datasets containing different object categories (LSUN 
Yu et al., 2015. 

StyleGAN2 is the latest iteration to be released (Karras et al., 2019). 
It includes significant changes in the architecture which allow it to 
obtain state-of-the-art performance in image generation and style 
transfer tasks (Karras et al., 2019; Wang et al., 2019). Similarly to pre
vious models, StyleGAN2 has so far been used primarily for generating 
realistic faces and other object categories (Viazovetskyi et al., 2020) and 
has not been applied to the generation of aerial images. In comparison 
with previous versions (PGGAN, StyleGAN), StyleGAN2 is able to 
generate more photo realistic and varied images that lack GAN image 

artefacts that were present in past models. With the updates in archi
tecture bringing increased visual performance and output images which 
are more coherent across the entire image and not just on the main 
object, StyleGAN2 is likely one of the more suitable models for aerial 
image generation. 

One potential flaw of StyleGAN2 that is noted by the authors is that 
despite generating images with higher levels of photo realism than 
previous models (PGGAN, StyleGAN) (Karras et al., 2019), these images 
are actually easier to detect as synthetic by image classifers trained to 
disinguish between real and GAN images. This discrepancy between 
perceived visual quality and performance against image classifiers 
suggests that there are inherent differences towards image realism and 
detection strategies between humans and deep learning based models. 

2.1.3. CoCoGAN 
Conditional Coordinate GAN (CoCoGAN) presents another novel 

GAN architecture with results that rival other state-of-the-art GANs 
(StyleGAN2, BigGAN) (Lin et al., 2019). Inspired from the human visual 
system’s ability to perceive an entire visual scene from eyesight despite 
the limitations of eyesight to only be able to look at a part of that scene at 
any given point in time, CoCoGAN generates high resolution, photo 
realistic images in parts by using the spatial coordinates of each part as a 
condition during training. The authors also put forward the model to be 
used for the novel task of “beyond boundary generation”. This is when 
the model is asked to extrapolate the image beyond the range that it has 
been trained on, generating output images that are larger than those in 
the training set and guaranteed to be novel, as they are not directly 
based on any real data. 

CoCoGAN has been tested on a few different datasets including ob
ject datasets such as CelebA and the LSUN256 dataset (Yu et al., 2015). 
As well as these standard benchmark datasets, the model was also able to 
achieve low FID scores for the panorama dataset Matterport3D (Chang 
et al., 2017). This presents a different challenge for image generation 
than in object focused dataset as in requires the model to learn how to 
create a coherent image with decentralised features, much like those 
seen in aerial images. 

2.1.4. BigGAN and BigBiGAN 
BigGAN is another recent GAN model which is capable of conditional 

and unconditional high resolution image generation (Brock et al., 2018). 
As the name suggests, BigGAN is a large-scale GAN model, trained using 
four times the number of parameters and eight times the batch size 
compared with prior models. The authors report that their results 
benefited greatly from upscaling the architecture (Brock et al., 2018). 
BigGAN managed to achieve similar levels of visual fidelity at high 
resolutions as PGGAN and StyleGAN on object and category datasets like 
ImageNet. BigBiGAN builds on the BigGAN model architecture with a 
series of updates in order to achieve greater variety and photo realism in 
the generated images (Donahue and Simonyan, 2019b). 

Despite being a recent model with competitive performance in 
generating realistic images (Wang et al., 2019; Donahue and Simonyan, 
2019b), neither BigGAN or BigBiGAN will be included in this survey. 
These models are much larger than the other models included in this 
comparison, with 340 million training parameters compared to 58 
million in the largest network included in this study (StyleGAN2). To 
train these models from scratch at the resolution of 256× 256 requires 
over 12 GB of video memory, which exceeds the resources expected to 
be available for researchers. The results presented in this paper focus on 
generally applicable techniques for the wider community. 
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2.2. Other generative models 

While GANs such as PGGAN and StyleGAN are the currently the most 
widely used models for unconditional images generation, other methods 
outside of the GAN architecture can also be applied. Non-GAN methods 
such as Transformers (Esser et al., 2021) and Diffusion Models (Sohl- 
Dickstein et al., 2015) may offer better scaliabliy, faster training times 
and more robust performance than their GAN counterparts. 

Transformers (Vaswani et al., 2017) are self-attention models which 
have become one of primary methods used for natural language pro
cessing (NLP) tasks. More recently, transformers have been applied to 
the field of image generation (Chen et al., 2020) with the resulting im
ages rivaling the quality of state-of-the-art GAN results. 

Another set of methods seen in the field of image generation are 
variational autoencoders (VAEs) (Kingma and Welling, 2013). These 
models work by encoding a given input, such as an image, and then 
reconstruct it using its learnt encoding. For image generation VAEs are 
notably easier and quicker to train than GANs but do not achieve the 
same image quality that GANs are capable of. This has led to the merging 
of these two architectures to create VAE-GANs (Xian et al., 2019) which 
take advantage of the useful features from both systems. 

More recently diffusion models (Sohl-Dickstein et al., 2015) have 
been applied to image generation. These are likelihood-based models 
which work by gradually removing noise from an input signal such as an 
image and in some cases can produce results which rival or even surpass 
those of GANs (Dhariwal and Nichol, 2021). 

2.3. Earth observation data 

Despite not being as prominent in deep learning research as other 
types of images such as faces or object datasets (ImageNet, LSUN256, 
CelebA), Earth Observation data such as satellite aerial imagery pro
vides an interesting challenge for testing the capabilities of models for 
tasks such as image synthesis and is justified by real world applications. 

Aerial and satellite imagery are used in for a range of tasks such as 
mapping and remote sensing and is found across multiple industry 
sectors from security and intelligence (Do et al., 2018), economic 
assessment of regions and disaster warnings (Bredemeyer et al., 2018; 
Chuvieco et al., 2010). 

Previous work involving both GANs and aerial image data is often 
concerned more with the problem of image to image translation (Isola 
et al., 2017) for mapping. Researchers have explored training condi
tional GAN models on satellite data for different image translation tasks. 
They have been used for generating maps from satellite data (Ganguli 
et al., 2019) and also for estimating ground level views (Deng et al., 
2019). The potential security threat from deep learning based aerial 
imagery was explored in one 2021 study (Zhao et al., 2021) which 
investigated detection methods with samples generated from image to 
image translation methods. 

Super-resolution models, where the model attempts to enhance and 
upscale blurry, low resolution data have also been applied to aerial data 
(Jiang et al., 2019). However, there has been much less research on the 
generation of novel photo-realistic, high-resolution aerial images. One 
of the closest papers in terms of use of Earth Observation data would be 
Cloud-GAN (Singh and Komodakis, 2018) which used satellite imagery 
as the training data for the purpose of creating a model to remove cloud 
coverage from images. Like other previous works surrounding GANs and 
Earth Observation data, this paper focused on image to image trans
lation rather than the unconditional synthesis of novel images. 

Although satellite imagery has not been the focus of unconditional 
image synthesis, artificial hyper-spectral data has been successfully 
generated (Audebert et al., 2018) to augment training datasets for tasks 
where which require more specific hyper-spectral data than is available. 

Using Earth Observation images as the training data for GANs is also 
useful for testing their generalization capabilities beyond the common 
benchmark datasets. Although there are instances of these models being 

trained on more novel datasets, the majority of benchmark dataset that 
get used are of objects and faces, these images all have centralized 
features that need to be learnt to be able to successfully mimic. Data- 
decentralized features such as aerial images, which have a larger dis
tribution of defining visual features present, could provide a challenge 
for architectures fine tuned to generate objects. This difficulty with 
images lacking a central object can be observed in the results of PGGAN 
were the images generated from the LSUN bedrooms dataset have much 
less convincing image realism compared to the results from the CelebA- 
HQ dataset (Karras et al., 2018). 

3. Methodology 

3.1. Experimental setup 

We tested the performance of the PGGAN,1 StyleGAN22 and CoCo
GAN3 networks and, for comparison, also evaluated a baseline DCGAN4 

In all experiments, the official implementations of the networks were 
used. 

These networks were chosen due to their reported SotA uncondi
tional performance on common GAN benchmark datasets. PGGAN was 
also selected for comparison as, despite being superseded by StyleGAN2, 
it remains one of the best performing and also most commonly used GAN 
architectures for the task of unconditional image synthesis. As 
mentioned above, despite achieving similar performance, BigGAN has 
not been included due to the large VRAM requirement during training 
for resolution of 256× 256 pixel images (>12 GB GPU Memory). Other 
unconditional GAN models (e.g. FineGAN Singh et al., 2019, AutoGAN 
Gong et al., 2019, SRNGAN Sanyal et al., 2019) were not included as 
they could not scale to the target resolution while others did not have 
official code repositories at the time of research. 

A basic deep convolutional generative adversarial network (DCGAN) 
serves as a baseline model during this study, chosen as it is still able to 
produce 256× 256 pixel images, but lacks any of the innovations and 
updates in structure found in more recent models, using the GAN base 
architecture described by Ian Goodfellow (Goodfellow et al., 2014). 
DCGAN uses simple convolutional neural networks for its adversarial 
training. The generator network G up samples the random noise vector z 
though 7 convolutional blocks to produce an image that is given to the 
discriminator D,G also uses Relu as its activation function for each layer. 
D itself is a CNN classifier made up of 6 convolutional layers and a single 
dense layer. D uses average pooling between each convolutional block 
and a leaky relu activation function. A Minimax (Goodfellow et al., 
2014) loss function is used for training both networks. 

Each model was trained until they achieved model convergence, and 
for each trained model, a sample dataset of synthesised images was 
generated for evaluation purposes. Each test generated dataset was of 
the same size as the training set, and each model was evaluated by 
comparing 10 random subsets of 10,000 generated images with 10 
random subsets of real images of the same number. These comparisons 
measured the mean and standard deviation for the metrics Fréchet 
Inception Distance and Kernel Inception Distance for each model. 

Samples from the best performing model were then further explored 
in a user study which measured participant accuracy in correctly iden
tifying which image is synthetic in a series of image pairs each consisting 
of a real image of aerial satellite photography (INRIA Dataset Maggiori 
et al., 2017) and a generated sample. 

1 https://github.com/tkarras/progressive_growing_of_gans (Karras et al., 
2018).  

2 https://github.com/NVlabs/stylegan2 (Karras et al., 2019).  
3 https://github.com/hubert0527/COCO-GAN (Lin et al., 2019)  
4 https://github.com/t0nberryking/DCGAN256. 
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3.2. Dataset 

Most of the published research in the area of deep learning methods 
with Earth Observation data use map2sat as a baseline dataset (Marra 
et al., 2018b). This dataset is mostly used due to its ease of access: it is 
included in TensorFlow 2.0. Map2Sat was created for the purpose of 
demonstrating the performance of CycleGAN (Zhu et al., 2017), and 
contains 2,000 satellite images with road data extracted from Google 
Earth. While the image pairs are useful for style transfer tasks, its rela
tively small size, lack of diversity and low resolution make it unsuitable 
for the unconditional generation task we address here. 

In this paper we evaluate the models using the INRIA Aerial Imagery 
Dataset (Maggiori et al., 2017), which contains a large number of high- 
definition images of varied environments. The INRIA dataset contains 
open access, high resolution aerial images in GeoTIFF format. Originally 
created for building detection, it covers 810 km2 and is comprised of 
aerial orthorectified colour imagery at a spatial resolution of 0.3 m per 
pixel. It includes images from urban settlements from a wide range of 
geographic locations and with a wide range of characteristics, from 
densely-populated areas such as San Francisco, to alpine towns in 
Austria. The variety of images offered in this dataset make it an ideal 
target to evaluate GAN-based EO image synthesis. 

3.2.1. Data pre-processing 
The original version of the Inria dataset includes 180 colour tiles of 

5000x5000 pixels covering a surface of 1500 m x 1500 m. These tiles 
were then resized to 4096x4096 and each split into 8 tiles of 512x512. 
Fig. 1 shows a random sample of images extracted from the dataset after 
being split and resized to 256× 256. There was roughly a 50/50 split in 
terms of rural and urban features present in the final tiles. 

Data augmentation techniques have been successfully applied in 
deep learning problems to improve performance (Taylor et al., 2017). In 
our case, we applied both horizon and horizonal flipping trans
formations to the original dataset (Perez and Wang, 2017). A mirrored, 
duplicate dataset was added to the training set, and all of the images 
were also rotated by 180◦and 90◦. 

After data augmentation, our dataset is comprised of 34,600 256×

256 images. We chose this resolution because it was the highest reso
lution shared by each of the tested models. Furthermore, we created an 
additional training dataset for the evaluation of StyleGAN2. This dataset 
contains 16,500 images at a resolution of 1024×1024 pixels. In addition 
to the previous augmentations, a sliding window was used to create 
more tiles to further increase the dataset size. StyleGAN2 was selected 
for additional evaluation as it is the most widely used out of all the 

benchmark models and was built specifically for the generation of high 
resolution images. 

3.3. Metrics 

To assess the performance of each model we use Fréchet Inception 
Distance (Borji, 2018) (FID) and the Kernel Inception Distance 
(Bińkowski et al., 2018) (KID). The Fréchet Inception Distance has 
become one of the most widely used metrics (Lucic et al., 2018) for 
evaluating the performance of GAN models. Its purpose is to measure the 
statistical similarities between the original data and the generated data. 
A lower FID indicates that the two groups of samples are more similar, 
with a score of 0 indicating both groups are identical. 

This metric is measured by embedding a set of generated samples 
into the feature space of a specific convolutional layer of the Inception 
CNN model(Szegedy et al., 2016). Then, the distance between the mean 
and co-variance of each group (real and fake images) is calculated. The 
Fréchet distance between the two Gaussians is then used as a quantita
tive measure for visual quality of the generated samples. It is given by 2: 

FID(r, g) = ‖μr − μg‖
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Where μr,
∑

r are the mean and co-variance of the real data distribution, 
with μg,

∑
g being that for the generated data distribution. FID super

seded the previous GAN evaluation standard, Inception Score (Salimans 
et al., 2016) as it has been shown to be a more robust measurement of 
image quality (Heusel et al., 2017). The Inception score has also been 
shown to inadequately detect overfitting (Barratt and Sharma, 2018), as 
it only uses the generated samples while ignoring the training set, and is 
also sensitive to image resolution (Borji, 2018). 

Kernel Inception Distance (Bińkowski et al., 2018) measures the 
maximum mean discrepancy (MMD) between two probability distribu
tions (Pr and Pg) for some fixed characteristic kernel function k. MMD is 
a two-sample testing measure that computes the dissimilarity between 
Pr and Pg using independent samples from each. This metric has been 
found to be more sensitive to overfitting than FID scores, although as 
with FID due to sampling variance M(X,Y) it may not be 0 even when 
Pr = Pg (Gui et al., 2020). It is calculated as shown in equation in 3: 

Mk(Pr,Pg) = Ex,x′∼Pr [k(x, x
′)] − 2Ex∼Pr ,y∼Pg [k(x, y)] +Ey,y′∼Pg [k(y, y

′)] (3)  

where k is a fixed kernel function (e.g. Polynomial Kernel k(x, y) =

Fig. 1. Random selection of images from the INRIA Aerial Imagery Benchmark Dataset (Maggiori et al., 2017).  

M. Yates et al.                                                                                                                                                                                                                                   



ISPRS Journal of Photogrammetry and Remote Sensing 190 (2022) 231–251

236

(1
dx

Ty + 1)3, with d being the dimension of the Inception representation) 
and (x,y) refer to the real and generated sample. KID has been found to 
converge to its true value faster than FID (Bińkowski et al., 2018), also 
requiring less n samples. 

One problem which is present in all GAN evaluation metrics is that 
they try and quantify the very subjective factor of image realism, 
something which is often measured using human evaluation measures 
(Kolchinski et al., 2019; Fan et al., 2017). FID has been found correlate 
with measures of human perception towards assessing image realism 
and image quality in GAN samples (Heusel et al., 2017). This suggests 
that FID and its iteration KID can be used as metrics for the quantitative 
analysis of GAN image quality. However no studies have been performed 
evaluating the fitness of these functions for EO image synthesis. FID and 

KID suitability as quality metrics has been questioned in the results from 
Zhou (2019) (Zhou et al., 2019). When measuring GAN face generation 
(CelebA, FFHQ, Cifar-10) using their own human perception metrics 
(HYPE) they found that there was no significant correlation between 
humans and the automated metrics. It is important also to note that 
these Inception score based metrics are derived using a pretrained 
network which was is trained on Imagenet (Deng et al., 2009). For the 
main evaluation of GAN models we use the pretrained Inception model 
that is the standard practice in many GAN papers (Karras et al., 2019b; 
Donahue and Simonyan, 2019b). 

As EO data comprises different features beyond common images with 
objects usually centred, the use of an Inception model trained on 
ImageNet does raise additional questions on the reliability of these 

Fig. 2. Screenshot from the forced choice study. One image is real and the other is synthetic. Participants are asked to indicate which one is synthetic.  

Table 1 
Number of trainable parameters and training time for each tested network.  

Model Number of Trainable Parameters Training Time 

DCGAN (920 K generator, 1.8 m discriminator) 2 days 
PGGAN (23 m generator, 23 m discriminator) 4 days 

StyleGAN2(256) (30 m generator, 28 m discriminator) 10 days 
CoCoGAN (24 m generator, 29 m discriminator) 7 days 

StyleGAN2(1024) (32 m generator, 30 m discriminator) 13 days  

Table 2 
Metrics for Baseline and state-of-the-art models. Best performance is shown in bold (lower values are better).  

Model FID (Mean ± SD) KID (Mean ± SD) 

DCGAN 283.72 ± 1.32 312.32 ± 2.21 
PGGAN 27.24 ± 0.30 12.45 ± 0.63 

StyleGAN2 16.59 ± 0.18 7.28 ± 0.61 
CoCoGAN 141.10 ± 0.56 104.39 ± 0.09  

Table 3 
Metrics for StyleGAN2 at 1024×1024 resolution (lower is better).  

Model FID (Mean ± SD) KID (Mean ± SD) 

StyleGAN2 (256) 16.59 ± 0.18 7.28 ± 0.61 
StyleGAN2 (1024) 32.70 ± 0.254 16.36 ± 0.59  
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benchmark metrics beyond ImageNet models (Barratt and Sharma, 
2018; Kynkäänniemi et al., 2022). In addition to the standard Inception 
Network we also present FID scores using an instance of this Inception 
model after fine-tuning on a section of the Open Cities Dataset (Global 
Facility for Disaster Reduction and Recovery (GFDRR) Labs, 2020), 
which consists of high quality urban and rural images of African cities. 

3.4. User study 

To further assess both the abilities to generate photo realistic aerial 
imagery from the best performing model, and also to explore the rele
vancy of FID and KID as measurements of image quality, an image 

detection study was run with human participants using samples gener
ated from StyleGAN2. 

A within groups, 2-alternative forced choice design was used for the 
study. This choice was made as it is an reputable and established 
experimental design (Hautus et al., 2021) for decision based visual 
search studies. The experiment was created using PsychoPy3 (Peirce 
et al., 2019) and hosted on Pavlovia.org (Peirce and MacAskill, 2018). 
Participation was open to all but the final population (N= 94) was 
generally made up of students, academics and data scientists based in 
the UK. 

Participants were given a set of image pairs (2) and for each pair 
asked to identify which image is fake. Each pair consisted of 1 

Table 4 
Metrics table for urban and rural generated samples.  

Image Type Correct Response FID KID 

All Images 68% 17.51 43.01 
Urban 70% 13.54 36.88 
Rural 66% 17.48 43.65  

Fig. 7. Random selection of results from trained GANs.  
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Fig. 8. Random selection of images from the StyleGAN2 1024×1024 model.  

Fig. 9. Four pairs of real (right) images and their associated latent-space image (left) from the trained StyleGAN2 1024 model.  

Fig. 10. Distribution of scores for groups of different experience levels.  

Table 5 
Experience level statistics from User study  

Experience level N Accuracy 

All 94 68.9% 
Low 60 62.9% 
Moderate 24 77.2% 
High 8 83.8%  

Table 6 
Pearson’s Correlation Coefficient for StyleGAN2 images and participant 
Accuracy.  

Metrics Correlation Coefficient P value 

FID/KID 0.959 0.001 
Accuracy/KID − 0.031 0.625 
Accuracy/FID − 0.078 0.270  
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StyleGAN2 generated image and 1 real INRIA satellite image. It was 
made clear to the participants that for these pairs there would always be 
one real and one fake image. The images from both sets (fake/real) were 
a mix of urban and rural images and presented at random. After 
answering they were then given feedback if they were right or wrong. At 
the start of the experiment participants were asked to give their level of 
previous experience (low, moderate or high) at looking at similar types 
of EO data and images. 

After an initial practice round, the main task consisted of 100 image 
pairs in blocks of 25, with no feedback given after answering. The image 
pairs were generated randomly for each trial from a dataset of 250 
StyleGAN2 images and 250 INRIA images, all at a resolution of 256×

256. These pairs consisted of random combinations of urban and rural 
images. Participants were given as much time as they would like to 
answer. Previous works (Zhou et al., 2019; Elsayed et al., 2018) have 
opted to implement time constraints for participants. In this case we are 
measuring the participants’ ability to distinguish between real and fake 
images regardless of a time taken. The only time variable that is 
controlled is that the images are shown for 500 ms before the participant 
is allowed to answer, this is to avoid mis-clicks or the participant making 
guesses without looking at the stimuli first. 

H1: Participants will not be able to consistently distinguish real EO 
images from generated images. This will be reflected in a low task ac
curacy (e.g. less than 75% accuracy average). 

H2: Participants with that self-perceive to have higher expertise will 
show higher accuracy than lower expertise. 

4. Results 

In this section we provide a quantitative and qualitative analysis of 
our results, before presenting further evaluation in the discussion (5). 

4.1. Model performance 

FID and KID was compared for each model across 10 subsets of 
10,000 generated images. Each subset was compared against the same 
number of randomly selected real images, the mean and standard de
viation was then recorded for each model. The results of the comparison 
can be found in Table 2. Additional sample images from each model can 
be found in the Appendix. FID and KID was calculated separately for the 
250 image dataset that was used as the stimulus in the user study. (4). 

When comparing performance across models, it is first important to 
note that comparing FID scores between papers can be difficult due to 
the FID’s sensitivity towards the number of test samples (Bińkowski 
et al., 2018), meaning that FID can only be fairly compared in tests with 
an equal n value. 

Table 2 shows the FID and KID scores for the various models trained 
on the INRIA dataset, a random selection of generated samples visual 
image quality can be seen in Fig. 7, with additional images found in 
Appendix B. 

StyleGAN2 was found to produce the highest quality images, both in 
terms of metrics, as shown in Table 2, and in terms of visual results in 
Fig. 7. The generated samples were more detailed than those from the 

other networks tested, with the updates in architecture from previous 
iterations (PGGAN) improving its general generation ability beyond the 
face datasets (CelebHQ) tested by its original authors. Despite the 
generate images being of poorer quality than those in the original paper 
(Karras et al., 2019b), they demonstrate that aerial images can be suc
cessfully generated with high levels of photo realism. The warping ar
tefacts we notice in other approaches are much less pronounced in these 
images, with roads and roofs being realistically rendered. Overall the 
images are also much more detailed and clearer, giving them a much 
more photo realistic look. The model manages to render both rural and 
urban features reasonably well, although there are more noticeable ar
tifacts in the urban imagery. This is perhaps simply due to the additional 
challenge of rendering buildings rather than foliage. Warping around 
straight edges can be seen in other instances of GAN image generation 
(Chai et al., 2020) as the models struggle on replicating hard boundaries 
between images. The abundance of such features in urban images may 
explain the differences in visual quality between the generated urban/ 
rural scenes. 

The results from PGGAN showed a noticeable dip in visual quality in 
comparison to the more recent StyleGAN2, but still achieve fairly real
istic looking images. The images produced were visually better than 
those by the baseline DCGAN which was also reflected in the FID and 
KID metrics. Results look visually more “realistic”, as shown in Appendix 
Fig. B.13, with details such as trees and houses present. There are, 
however, some noticable artifacts such as warping issues that can be 
seen where roads and rooftops which should appear uniform and 
straight do not. The warping issues are most present in the images that 
depict more urban area and are less noticeable in images with higher 
amounts of foliage. PGGAN’s performance is especially interesting when 
compared with CoCoGAN. Although CoCoGAN is a more recent archi
tecture, PGGAN outperformed CocoGAN in both metrics and visual fi
delity. This suggests PGGAN has a much more robust architecture, better 
suited to generalisation beyond face and object synthesis. 

The FID scores presented in the original paper (Lin et al., 2019) 
suggested that CoCoGAN would outperform the other networks. How
ever, CoCoGAN produced less visually realistic images, and lower metric 
scores. FID results dropped by 131.5 between the CelebHQ dataset, 
which was reportedly used in Lin et al. (2019), and the INRIA Dataset. 
This is a surprising result, as the network has been reported as out
performing other networks on high resolution, non-object focused 
datasets such as the Matterport 3D panorama dataset (Lin et al., 2019). 
We trained with a reduced batch size of 64, compared to the original 
128, due to memory constraints on the large INRIA dataset, but this is 
unlikely to have caused a notable drop in quality. 

Similar to the PGGAN results, the images from CoCoGAN managed to 
capture the more basic geometry and colours in the image, but without 
the detail and clarity of those from StyleGAN2. CoCoGAN struggled with 
generating convincing urban environments with some images being 
incoherent. The most prominent image artifact found in the generated 
CoCoGAN images was a visible grid pattern of the seams between the 
different macro patches. This grid pattern could be an indication that the 
model has failed to learn the distribution of features in EO data, causing 
difficulty in its attempts to merge micro-patches. In the original paper 

Table 7 
FID metrics for different Inception models (lower values are better).  

Model FID (ImageNet) FID (Maps) 

DCGAN 283.45 193.45 
PGGAN 25.51 0.90 

StyleGAN2 16.59 0.69 
CoCoGAN 136.35 27.35  
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this was noted as being a problem that was possible, and this is partic
ularly noticeable in our experiments. In less cluttered images of fields 
and vegetation the effect is most pronounced. Further tuning of the 
hyper-parameters, or using a larger dataset could potentially diminish 
the prominence of these and result in higher image clarity. 

As expected, DCGAN offered the lowest performance of all methods. 
It produced average FID and KID scores of 283.7 and 300 respectively. 
DCGAN is the simplest GAN network, not incorporating modern network 
design elements present in the other works. Its inclusion in this com
parison is still useful in providing baseline results against which we can 
compare. Visually, as shown in Fig. B.12 in Appendix B, the limitations 
of the network are clear. The model has learned to capture the low level 
features int he training data, such as broad shapes and colours, but has 
struggled to capture the finer details and textures. Earlier GAN models 
such as this one are known to struggle with producing realistic looking 
images at resolutions higher than that of toy datasets such as MNIST and 
ImageNet, producing unclear and blurry images (Wu et al., 2017). 
Certainly, the differences in image realism between StyleGAN2 and 
DCGAN highlight just how rapidly automated image generation tech
niques have evolved in a short space of time. The DCGAN images do not 
contain the detail in the StyleGAN2 images which manage to replicate 
aerial image features to a much higher level of visual fidelity. 

As StyleGAN2 achieved the best performance at generating images at 
256× 256 pixels by a wide margin (Table 2), we decided to further test 
its capabilities by generating high-definition aerial images. As can be 
observed, at 1024×1024 pixels, there is a drop in performance in 
comparison to lower-resolution models (Table 3) with images appearing 
blurry and features less fully rendered (Fig. 8). This larger model took 
longer to train than the 256× 256 model but the difference was not 
overly substantial as seen in Table 1. 

4.2. StyleGAN2 latent space analysis 

As the highest performing network, we performed an analysis of the 
embedded features in StyleGAN2’s latent space. This can give us a 
further understanding to what extent the model has learnt the more 
uncommon features in the training dataset. We first generate an output 
image from the StyleGAN2 generator given a starting latent vector z 
(Karras et al., 2019b). The output images and a target real image are 
then both placed in a pretrained feature extractor (VGG16 Simonyan 
and Zisserman, 2014) which then computes the loss between the fea
tures of the images. Using gradient descent the loss is then used to 
optimize the latent space to generate an approximation of the target 
image. 

The latent space images show a noticeable disparity between the 
learned representations and the target images 9. While the model can 
approximate the general rural landscape from the target images, it has 
failed to replicate the building estates in the bottom two examples. The 
model can be seen to effectively replicate the more global features and 
repetitive patterns in the aerial images, such as type of terrain or 
vegetation, but struggles to add local features such as buildings and 
more fully completed roads and trees. If the model had managed to learn 
the datasets distribution more accurately then their would be fewer 
differences in the images. Additionally, irregular and unique features 
such as landmarks specific to that are not produced in the generated 
samples as these represent anomalies in the data distribution that 
StyleGAN2 is attempting to mimic. In distinguishing between a well 
generated urban scene, looking for unique landmarks such as a sports 
stadium could help to quickly determine if the image is authentic or not. 

4.3. StyleGAN2 user study results 

We performed a user detection study, aiming to discern the extent to 
which users are fooled by state of the art, synthetic EO images, and the 
extent to which FID and KID are useful predictors of human performance 
on this task. We found that participants (N = 94) were able to correctly 
identify the fake image from each image pair shown on average 68% of 
the time, the distribution of user scores can be found in Fig. 10. This 
indicates We did find that self-reported user experience did have a 
positive correlation with accuracy (Table 5) but no significant conclu
sions can be drawn from this due to the low sample size of users 
answering ’High’ experience. The data was found to be non-parametric 
as it did not follow as normal distribution so a Kruskal-Wallis H test 
carried out. The test found ε2 = 0.223 (p < 0.001) indicating only a 
weak positive correlation. the pairwise comparison can be found in the 
appendices (C.19). 

While these results may initially suggest that synthetic aerial imag
ery is not yet at a level to cause concern, it is important to note that this 
was under specific forced choice conditions in which participants were 
aware that exactly one of the pair of images was synthetic. If fake images 
were deployed in the wild against a less prepared users, we might expect 
a lower level of detection. 

The participant accuracy results show favour for H1, that participants 
have difficulty in consistently distinguishing the fake EO images from 
the real ones. H2 is also favoured as the results show a small but sig
nificant correlation between expertise and task accuracy. 

For analysis, we manually separated the synthetic images into two 
groups, containing urban or rural scenes. We defined a rural scene as 
containing natural features such as forest across the majority (50%) of 
the image. We found that participants were able to better identify syn
thetic images that contained urban environments than those that con
sisted of primarily rural features. This is likely due to the fact that rural 
aerial imagery has less obvious and distinct features than those in urban 
scenes, making it harder to tell if the scene is naturally blurry or is a GAN 
image artefact. Errors in the generation of straight features such as roads 
and building edges is perhaps more obvious. 

The FID and KID were calculated for each image that was shown to 
participants (250 StyleGAN2 generated images). The average FID of the 
images shown was 4.02 and the average KID was 4.31. 

Correlations between the GAN metrics (FID/KID/ACC) were 
explored as seen in Table 6 using Pearson’s correlation coefficient. The 
results found that while KID and FID had a strong positive correlation 
against each other, there was no significant correlation found between 
participant accuracy and either GAN metric. A comparison of means 
between human accuracy and FID/KID when split into rural and urban 
found that there was a significant difference between metrics showing 
that urban images achieved better FID/KID scores on average than rural 
images but where more easily identified by participants (4). This shows 
that on the level of an individual image there is a disconnect between 
Inception distance based metrics (FID/KID) and the human perception 
of photo-realism. This implies that image generation algorithms do not 
necessarily require low scores for FID and KID for certain image types 
when the goal is to achieve photo realism as judged by the human eye. It 
should be noted that FID and KID are more unreliable when comparing 
the distributions of a single sample dataset and a real dataset as each 
samples distribution may be very different to the full dataset. This high 
variance and uncertainty can be seen as the FID/KID scores for each 
image are much higher than the dataset as a whole. 
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4.4. FID comparisons between inception models 

As previously discussed in (Metrics 3), one concern with Inception 
model based metrics (e.g. FID, KID) is that the standard way of calcu
lating the metric is to use a model pretrained on the ImageNet (Deng 
et al., 2009) dataset. In our main evaluation of the GAN models we also 
use this instance of the Inception network, keeping in line with the 
standard practices in current GAN literature. To further explore the 
consequences of using an Inception network trained on a different image 
type (objects vs EO data) we calculate a second set of FID metrics using a 
ImageNet pretrained Inception Network fine-tuned on an EO dataset 
(OpenCities Global Facility for Disaster Reduction and Recovery 
(GFDRR) Labs, 2020). These results can be seen in Table 7. For this 
comparison both sets of FID scores for each dataset were calculated 
using the official Pytorch implementation of the Inception Network 
which accounts for a slight variation in scores from the previously re
ported scores which used the Tensorflow model. The results show that 
FID changes significantly when using a model fine tuned on EO data. The 
resulting scores being much lower, which indicate closer features found 
in the distributions between the real and generated datasets. 

5. Discussion 

The aim of this paper has been to evaluate the generation of Earth 
Observation (EO) data using current state-of-the-art GAN models. We 
have also evaluated the extent to which human observers can spot 
synthetic images, and whether metric are a meaningful predictor of 
human visual perception in the EO domain. EO data presents a novel 
challenge, since these models are usually fine-tuned towards the gen
eration of objects and faces. The main motivation behind our work came 
from the increasing prominence of sophisticated image-generation al
gorithms, the lack of current literature and scientific evidence towards 
their use for generating aerial image data, and the potential concerns 
associated with malicious use of image synthesis tools which could be 
connected with fake information generation. 

Results of this evaluation are both promising and concerning for 
those addressing the problem of fake EO image generation. When 
comparing the performance of all models together, all were found to 
perform worse quantitatively for the purpose of EO generation, than in 
results reported for their original implementations on other domains. 
While this comparison was not expected to find the same levels of state- 
of-the-art scores that were achieved on the various benchmark datasets, 
the drops in performance, which average to 61% in terms of FID, are 
large enough to raise questions over the generality of GANs for image 
synthesis. One explanation that can be hypothesised is that the data 
these models were designed with were primarily face and object datasets 
(e.g. CelebA, FFHQ). These image types are quite different that aerial 
imagery in terms of features and the spatial relationships between them. 
Unlike the defining features in facial data (nose, mouth and eyes), which 
are very central and have defined spatial relationships with each other, 
the features unique to aerial imagery (roads, foliage, buildings) are 
much more decentralized presenting a different spatial relationship of 
features. The importance of differences between image types can be seen 
in the disparity of FID scores (Table 7). The lower scores for the EO 
trained Inception Model show that even without being trained from 
scratch, the addition of fine tuning on domain specific data forces the 
network to embed different predictive features than those in the stan
dard ImageNet model. 

Another contributing factor is that the dataset used to train the 
models was relatively low at 36.4 K samples, in contrast, many 
commonly used datasets have well over 50 k samples. This does, how
ever, highlight the ability for some models such as PGGAN and Style
GAN2 to be able to generate reasonably realistic looking images from a 
smaller-than-normal training sets. 

This ability to perform well in terms of KID and FID with smaller 
datasets makes these models suitable for tasks were existing data for 

training is limited or unbalanced. As discussed in the Introduction, this 
provides further evidence of the advantages of GANs as a data 
augmentation tool to extend training sets for classifiers which may need 
larger or more balanced training datasets. 

StyleGAN2 produced visually impressive samples despite a smaller 
training set. This model is sufficiently capable on EO data to merit 
further research, both as a tool for generating training data for detection 
systems, and also in assessing the level of threat that it poses towards 
current systems. This ability to generate data that could potentially fool 
detection systems, both automated and human presents an immediate 
concern, especially when this technology is developing at a rapid pace as 
seen in the improvements between current models (StyleGAN2, CoCo
GAN) and ones from only a few years prior (DCGAN). Our user study 
confirms that these networks are capable of tricking humans into mis
identifying synthetic images as real, but also that common GAN evalu
ation metrics are often a poor reflection of human visual perception 
within the EO domain. While these metrics may provide a good indicator 
of how well generated samples match the distribution of the ground 
truth dataset, they do not necessarily account for image artefacts that 
may stand out more to the human eye. This disparity between auto
mated and human evaluation metrics is supported by previous com
parisons (Zhou et al., 2019) which found that correlations between 
human metrics and KID/FID varied between model, dataset and training 
instances. The differences we found in FID when using a different 
dataset for the Inception model support the concerns that these are 
flawed metrics for measuring GAN image quality, especially the industry 
standard to rely on Imagenet based models regardless of the generated 
image type (Kynkäänniemi et al., 2022). 

5.1. User study limitations and future work 

The psychometric study we present here shows that current gener
ative aerial images are at a point where they are becoming harder to 
distinguish from real images. The level of difficulty for detection varies 
depending on the level of experience of the participant. Further work 
into what specific expertise is useful for detection is needed to form a 
more comprehensive approach to tackling the potential issues that could 
arise with the use of fake satellite imagery for misinformation. Based on 
our results we speculate the differences in the rural/urban evaluations 
may arise from attention differences between methods, although the 
experimental design we have used does not allow us to confirm this. 

Building on our results, future studies using additional measures 
focusing on visual attention during detection could provide more clarity 
and insight into this. Additionally the FID results (Table 7) obtained 
from the OpenCities Inception Model show how these scores are sub
jective to the types of image data being used and making score com
parisons between GAN papers unreliable. The Exploration of new 
metrics that are better able to reflect the visual quality of this type of 
image should be explored. 

6. Conclusion 

In this paper, we presented a thorough study on the generation of 
fake aerial imagery using unconditional generative adversarial net
works. Results from GAN evaluation metrics and user studies show that 
state-of-the-art GAN models, such as StyleGAN2, can successfully 
generate realistic examples of EO imagery to the point were they are 
hard to distinguish from real images to the naked human eye. We also 
demonstrate that Inception-based GAN evaluation metrics, namely FID 
and KID, are flawed measures of the visual quality of samples, as their 
correlation with human visual perception is dependant on the types of 
features present in the images. 

The accurate generation of Earth Observation data such as photo- 
realistic aerial imagery presents concerning implications regarding the 
security and validity of digital imagery. The ability to rapidly generate 
large quantities of false information gives Security and Defense research 
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a unique challenge to tackle. Future work should include training 
models on a wider range of aerial image datasets, as well as other 
sources of EO data, such as hyper-spectral imagery. It will also be 
important to design and evaluate new metrics for measuring quality of 
generated images that are more strongly aligned with judgement from 
human visual perception. 
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Appendix A. Inria benchmark dataset 

Fig. A.11 

Fig. A.11. Randomly selected real images from the Inria Benchmark Aerial Imagery Dataset (256× 256).  
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Appendix B. Additional results 

Figs. B.12–B.18 

Fig. B.12. Randomly selected images generated from baseline DCGAN (256× 256).  
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Fig. B.13. Randomly selected images generated from PGGAN (256× 256).  
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Fig. B.14. Randomly selected images generated from StyleGAN2 (256× 256).  
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Fig. B.15. Randomly selected images generated from CoCoGAN (256× 256).  
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Fig. B.16. Randomly selected images generated from StyleGAN2 (1024×1024).  
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Fig. B.17. Randomly selected images generated from StyleGAN2 (1024×1024).  
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Appendix C. Kruskal-Wallis test between experience groups 

Fig. C.19 
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