
For Peer Review
Bi-objective Optimization in Role Mining

Journal: ACM Transactions on Privacy and Security

Manuscript ID Draft

Manuscript Type: Full-Length Research Paper

Date Submitted by the
Author: n/a

Complete List of Authors: Crampton, Jason; Royal Holloway University of London, Mathematics
Eiben, Eduard; Royal Holloway University of London
Gutin, Gregory; Royal Holloway University of London, Computer Science
Karapetyan, Daniel; University of Nottingham
Majumdar, Diptapriyo ; Indraprastha Institute of Information Technology
Delhi

Keywords: Bi-objective optimization, Role Mining, Generalized Noise Role Mining,
Fixed-Parameter Tractability

ACM Transactions on information and System Security

For Peer Review

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

Bi-objective Optimization in Role Mining

JASON CRAMPTON, Royal Holloway University of London, United Kingdom

EDUARD EIBEN, Royal Holloway University of London, United Kingdom

GREGORY GUTIN, Royal Holloway University of London, United Kingdom

DANIEL KARAPETYAN, University of Nottingham, United Kingdom

DIPTAPRIYO MAJUMDAR, Indraprastha Institute of Information Technology Delhi, India

Role mining is a technique that is used to derive a role-based authorization policy from an existing policy. Given a set of users𝑈 , a set
of permissions 𝑃 and a user-permission authorization relation𝑈𝑃𝐴 ⊆ 𝑈 × 𝑃 , a role mining algorithm seeks to compute a set of roles
𝑅, a user-role authorization relation UA ⊆ U × R and a permission-role authorization relation PA ⊆ R × P , such that the composition
of UA and PA is close (in some appropriate sense) to UPA. Role mining is therefore a core problem in the specification of role-based
authorization policies. Role mining is known to be hard in general and exact solutions are often impossible to obtain, so there exists an
extensive literature on variants of the role mining problem that seek to find approximate solutions and algorithms that use heuristics
to find reasonable solutions efficiently.

In this paper, we first introduce the Generalized Noise Role Mining problem (GNRM) – a generalization of the MinNoise Role
Mining problem – which we believe has considerable practical relevance. In particular, GNRM can produce “security-aware” or
“availability-aware” solutions. Extending work of Fomin et al., we show that GNRM is fixed parameter tractable, with parameter 𝑟 + 𝑘 ,
where 𝑟 is the number of roles in the solution and 𝑘 is the number of discrepancies between UPA and the relation defined by the
composition of UA and PA. We further introduce a bi-objective optimization variant of GNRM, where we wish to minimize both 𝑟 and 𝑘
subject to upper bounds 𝑟 ≤ 𝑟 and 𝑘 ≤ 𝑘 , where 𝑟 and 𝑘 are constants. We show that the Pareto front of this bi-objective optimization
problem (BO-GNRM) can be computed in fixed-parameter tractable time with parameter 𝑟 + 𝑘 . From a practical perspective, a solution
to BO-GNRM gives security managers the opportunity to identify a mined policy offering the best trade-off between the number of
policy discrepancies and the number of roles.

We then report the results of our experimental work using the integer programming solver Gurobi to solve instances of BO-GNRM.
Our key findings are that (a) we obtained strong support that Gurobi’s performance is fixed-parameter tractable, (b) our results suggest
that our techniques may be useful for role mining in practice, based on our experiments in the context of three well-known real-world
authorization policies. We observed that, in many cases, our solver is capable of obtaining optimal solutions when the values of either
𝑘 or 𝑟 are small.

CCS Concepts: • Security and privacy→ Access control; Formal security models; • Theory of computation→ Parameterized
complexity and exact algorithms.

Additional Key Words and Phrases: Role Mining, Generalized Noise Role Mining, Fixed-Parameter Tractability

Authors’ addresses: Jason Crampton, jason.crampton@rhul.ac.uk, Royal Holloway University of London, Egham Hill, Egham, United Kingdom, TW200EX;
Eduard Eiben, Royal Holloway University of London, Egham Hill, Egham, United Kingdom, eduard.eiben@rhul.ac.uk; Gregory Gutin, Royal Holloway
University of London, Egham Hill, Egham, United Kingdom, g.gutin@rhul.ac.uk; Daniel Karapetyan, University of Nottingham, Nottingham, United
Kingdom, daniel.karapetyan@nottingham.ac.uk; Diptapriyo Majumdar, Indraprastha Institute of Information Technology Delhi, Okhla Industrial Estate
Phase-III, New Delhi, Delhi, India, 110020, diptapriyo@iiitd.ac.in.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
Manuscript submitted to ACM

Manuscript submitted to ACM 1

Page 1 of 22 ACM Transactions on information and System Security

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

2 Crampton et al.

ACM Reference Format:
Jason Crampton, Eduard Eiben, Gregory Gutin, Daniel Karapetyan, and Diptapriyo Majumdar. 2024. Bi-objective Optimization in Role
Mining. 1, 1 (March 2024), 21 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Role-based access control (RBAC) [19] is a mature, standardized [7] and widely deployed means of enforcing authoriza-
tion requirements in a multi-user computer system.

Authorization policies, in effect, specify which interactions are authorized between users of and resources provided
by a computer system. Such policies are used by the system’s access control mechanism to control interactions between
users and resources. RBAC policies authorize users for roles and roles for resources (usually referred to as “permissions”
in the context of RBAC). RBAC can significantly reduce the administrative burden of specifying and maintaining
authorization policies, provided the set of roles is small compared to the number of users and permissions.

The problem of identifying a suitable set of roles for an RBAC system has been studied extensively over the last 25
years. Role engineering is a top-down approach that seeks to identify roles by decomposing and analyzing business
processes [18]. This approach does not generally scale well and requires substantial human effort [16]. Role mining, the
bottom-up approach, attempts to discover a set of roles from a given authorization policy that associates users directly
with permissions. More formally, the Role Mining Problem is defined as follows:

Role Mining Problem (RMP)
Input: A set of users𝑈 , a set of permissions 𝑃 , a user-permission assignment relation UPA ⊆ 𝑈 × 𝑃 , and a natural
number 𝑟 .
Goal: Find a set 𝑅 of at most 𝑟 roles, a user-role relation UA ⊆ 𝑈 × 𝑅, a role-permission assignment relation
PA ⊆ 𝑅 × 𝑃 such that (𝑢, 𝑝) ∈ UPA if and only if there is 𝜌 ∈ 𝑅 such that (𝑢, 𝜌) ∈ UA and (𝜌, 𝑝) ∈ PA.

The value of 𝑟 , for solutions that are of practical use, will be small compared to the sizes of𝑈 and 𝑃 . However, it may
be impossible to find a solution to RMP in which 𝑟 is sufficiently small. Hence, approximate solutions are often sought,
in which 𝑟 is small and the composition of UA and PA is close, in some suitable sense, to UPA.

A substantial literature now exists on role mining. The problem is known to be hard in general and usually impossible
to solve exactly (assuming the number of roles must be small relative to the number of users), so many approximate
and heuristic techniques have been developed (see the survey paper of Mitra et al. [16]).

Recent work by Fomin et al. [8] has shown that a particlar, well-known variant of the role mining problem is
fixed-parameter tractable (FPT). Informally, this variant is NP-hard, like many role mining problems, so any exact
algorithm to solve the problem is unlikely to be polynomial in the size of the problem’s input, unless P = NP. However,
there exists an algorithm (an FPT algorithm) whose running time is exponential in some of the input parameters, but
polynomial in the others. Thus, this algorithm may well be effective if the relevant parameters are small in instances of
the problem that arise in practice.

Informally, the problem considered by Fomin et al. takes a relation UPA ⊆ 𝑈 ×𝑃 and natural numbers 𝑟 and 𝑘 as input.
The goal is to find a set of roles 𝑅 of cardinality less than or equal to 𝑟 , and relations UA ⊆ 𝑈 × 𝑅 and PA ⊆ 𝑅 × 𝑃 such
that |UPA Δ (UA ◦ PA) | ≤ 𝑘 (where UA ◦ PA denotes the composition of relations UA and PA and Δ denotes symmetric
set difference). In other words, the composition of UA and PA has to be similar (as defined by 𝑘) to UPA. The assumption
is that 𝑘 and 𝑟 will be small parameters. This problem has been studied by the RBAC community and is usually known
as the MinNoise Role Mining Problem (MNRP) [16].
Manuscript submitted to ACM

Page 2 of 22ACM Transactions on information and System Security

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

https://doi.org/10.1145/nnnnnnn.nnnnnnn

For Peer Review

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

Bi-objective Optimization in Role Mining 3

One potential problem with MNRP is that it doesn’t distinguish between (a) an element that is in UPA but not in
UA ◦ PA (which means some user is no longer authorized for some permission), and (b) an element that is in UA ◦ PA
and not in UPA (which means that some user is now incorrectly authorized for some permission). We believe that in
certain situations it will be important to insist that no additional authorizations are introduced by role mining (what we
will refer to as security-aware role mining), while in other situations we may require that no authorizations are lost by
role mining (availability-aware role mining).

In this paper, we introduce the GenNoise Role Mining (GNRM), of which MNRP is a special case. Moreover,
Security-aware Role Mining and Availability-aware Role Mining are also special cases. We extend the results of
Fomin et al. by proving that GNRM is also FPT with parameter 𝑘 + 𝑟 .

Our other theoretical contribution is to introduce a bi-objective optimization version of GNRM, called BO-GNRM,
where we wish to minimize both 𝑟 and 𝑘 subject to upper bounds 𝑟 and 𝑘 , respectively. We show that the BO-GNRM is
FPT with parameter 𝑟 + 𝑘 . Solving BO-GNRM would allow an organization to select an appropriate solution, based on
the needs to balance the number of roles against the number of deviations from the original authorization matrix. Note
that in order to solve BO-GNRM we use a one-objective optimization version of GNRM called OO-GNRM.

We designed a mixed-integer formulation of OO-GNRM and built a solution method based on the Gurobi solver. We
then showed that the performance of our solution method is well-aligned with the expectations for an FPT algorithm.
Furthermore, we tested our method on real-world instances; in many cases, it proved the optimality of solutions for
instances with small 𝑘 and/or 𝑟 .

The remainder of this section contains essential background material and defines GNRM and its bi-objective
optimization version.

1.1 Parameterized complexity

An instance of a parameterized problem Π is a pair (𝐼 , 𝜅) where 𝐼 is the main part and 𝜅 is the parameter; the latter is
usually a non-negative integer. A parameterized problem is fixed-parameter tractable (FPT) if there exists a computable
function 𝑓 such that any instance (𝐼 , 𝜅) can be solved in time O(𝑓 (𝜅) |𝐼 |𝑐), where |𝐼 | denotes the size of 𝐼 and 𝑐 is an
absolute constant. An algorithm to solve the problem with this running time is called an FPT algorithm. The class of all
fixed-parameter tractable decision problems is called FPT. The function 𝑓 (𝑥) may grow exponentially as 𝑥 increases,
but the running time may be acceptable if 𝜅 is small for problem instances that are of practical interest. We adopt the
usual convention of omitting the polynomial factor in O(𝑓 (𝜅) |𝐼 |𝑐) and write O∗ (𝑓 (𝜅)) instead.

1.2 Matrix decomposition and role mining

A Boolean matrix is a matrix in which all entries are either 0 or 1. Let ∨ and ∧ denote the usual logical operators on the
set {0, 1}. We extend these operators to Boolean matrices in the natural way [14]:

(1) the sum A ∨ B of Boolean matrices A and B is computed as usual with addition replaced by ∨;
(2) the product A ∧ B of Boolean matrices A and B is computed as usual with multiplication replaced by ∧ and

addition by ∨. Thus, if C = A ∧ B then

𝑐𝑖 𝑗 =

𝑛∨
𝑝=1

𝑎𝑖𝑝 ∧ 𝑏𝑝 𝑗 ,

where 𝑛 is the number of columns in A and the number of rows in B.

Henceforth all matrices are Boolean, unless specified otherwise.
Manuscript submitted to ACM

Page 3 of 22 ACM Transactions on information and System Security

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

4 Crampton et al.

Any binary relation 𝑋 ⊆ 𝑌 × 𝑍 may be represented by a matrix X with rows indexed by 𝑌 and columns indexed by
𝑍 , where X𝑖 𝑗 = 1 iff (𝑖, 𝑗) ∈ 𝑋 . Using matrices we can reformulate the Role Mining Problem (RMP) as follows. Given a
matrix UPA and an integer 𝑟 , find a matrix UA with 𝑟 columns and a matrix PA with 𝑟 rows such that UPA = UA ∧ PA.
Thus, role mining may be regarded as a matrix decomposition problem.

1.3 Generalized Noise Role Mining

As previously noted, there is often no solution to RMP if 𝑟 is small. In such cases, it is helpful to consider an extension
of RMP called Noise Role Mining [5, 8, 9, 15, 20], where the input includes a natural number 𝑘 and our aim is to find a
matrix UA with 𝑟 columns and a matrix UA with 𝑟 rows such that 𝑑H (UPA,UA ∧ PA) ≤ 𝑘 , where 𝑑H (UPA,UA ∧ PA)
is the number of entries in which UPA and UA ∧ PA differ (i.e., the Hamming distance between them).

Noise Role Mining could be seen as a rather crude approach to the problem of decomposing UPA, as it doesn’t
distinguish between zeroes in UPA being replaced with ones in UA ∧ PA and ones being replaced with zeroes. In the
first case, a user is assigned to a permission that they didn’t previously have – a potential security problem. In the
second case, a user no longer has a permission that they had been assigned, meaning the user may not be able to
perform some of their responsibilities – an availability problem.

Thus, it will be appropriate in many cases to find UA and PA such that either security or availability, as specified by
UPA is preserved. Informally, a refinement of Noise Role Mining, then, would be to define Availability-preserving
Role Mining, where we require UPA ≤ UA ∧ PA, in the sense that every entry in UPA is less than or equal to the
corresponding entry in UA ∧ PA. In other words, every permission authorized by UPA is also authorized by UA ∧ PA.
Similarly, we could define Security-preserving Role Mining, where we require UPA ≥ UA ∧ PA.

An even more fine-grained problem – the topic of this paper – is Generalized Noise Role Mining (GNRM), of
which Noise Role Mining, Availability-preserving Role Mining and Security-preserving Role Mining are all
special cases. In GNRM we specify at the user level whether the decomposition into UA and PA is security-preserving,
availability-preserving, neither, or both.

We now introduce some notation to enable us to express GNRM formally. For a positive integer 𝑡 , let [𝑡] denote
{1, 2, . . . , 𝑡}. Let A and B be𝑚 ×𝑛 Boolean matrices and F be an𝑚 ×𝑛 label matrix with entries f𝑖 𝑗 ∈ {⊤,⊥}. The matrix
F is used to define a generalized distance metric between A and B. For any (𝑖, 𝑗) ∈ [𝑚] × [𝑛] the 𝐹 -distance from entry
a𝑖 𝑗 to entry b𝑖 𝑗 of matrices A and B is

sdF (a𝑖 𝑗 , b𝑖 𝑗) =

∞ f𝑖 𝑗 = ⊥ and a𝑖 𝑗 ≠ b𝑖 𝑗 ,

|a𝑖 𝑗 − b𝑖 𝑗 | otherwise

In other words, if we are not allowed to change a𝑖 𝑗 in order to obtain b𝑖 𝑗 (symbol ⊥) and a𝑖 𝑗 ≠ b𝑖 𝑗 then the 𝐹 -distance
from a𝑖 𝑗 to b𝑖 𝑗 is∞. Otherwise, it is just |a𝑖 𝑗 − b𝑖 𝑗 |.

We define sdF (A,B) =
∑𝑚
𝑖=1

∑𝑛
𝑗=1 sdF (a𝑖 𝑗 , b𝑖 𝑗). Thus, the distance from A to B is finite if and only if for every

(𝑖, 𝑗) ∈ [𝑚] × [𝑛] such that a𝑖 𝑗 ≠ b𝑖 𝑗 we have f (𝑎𝑖 𝑗) = ⊤.
We now define Generalized Noise Role Mining as a parameterized problem.

Manuscript submitted to ACM

Page 4 of 22ACM Transactions on information and System Security

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

Bi-objective Optimization in Role Mining 5

Generalized Noise Role Mining (GNRM)
Input: An𝑚 × 𝑛 user-permission assignment matrix UPA, a label matrix F, and integers 𝑘 ≥ 0 and 𝑟 ≥ 1.
Parameter: 𝑘 + 𝑟
Goal: Is there an𝑚 × 𝑟 user-role assignment matrix UA, an 𝑟 ×𝑛 role-permission assignment matrix PA such that
sdF (UPA,UA ∧ PA) ≤ 𝑘? If the answer is yes, then return such matrices UA and PA.

Note that GNRM is parameterized by the sum 𝑘 + 𝑟 . This is because Noise Role Mining parameterized separately by
either 𝑘 or 𝑟 is intractable: in particular, for 𝑘 = 0 we have Exact Role Mining which is NP-hard [10]; and for 𝑟 = 1,
Noise Role Mining is NP-hard [5, 9].

Note also that GNRM reduces to:

• Noise Role Mining if f𝑖 𝑗 = ⊤ for all (𝑖, 𝑗) ∈ [𝑚] × [𝑛];
• Availability-preserving Role Mining if f𝑖 𝑗 = ⊤ if and only if UPA𝑖 𝑗 = 0; and
• Security-preserving Role Mining if f𝑖 𝑗 = ⊤ if and only if UPA𝑖 𝑗 = 1.

1.4 Bi-objective GNRM

Note that GNRM is a decision problem, but it is clear that in practice GNRM may be viewed as an optimization problem.
In such an optimization problem it is natural to minimize two objective functions 𝑟 and 𝑘 . It is also natural to impose
upper bounds on both 𝑟 and 𝑘 as if at least one of them too large then the solution may well be of no practical interest.
Thus, let 𝑟 and 𝑘 be upper bounds for 𝑟 and 𝑘 , respectively.

This leads to the following bi-objective GNRM problem (BO-GNRM): minimize 𝑟 and 𝑘 subject to 𝑟 ≤ 𝑟 and
𝑘 ≤ 𝑘 such that yes-answer matrices UA and PA for GNRM exist. To state BO-GNRM more formally, we will use the
terminology below, which is an adaptation of multi-objective optimization terminology, see e.g. [11], for BO-GNRM.
We call a pair (𝑟 ′, 𝑘′) of integers a feasible solution of BO-GNRM if given UPA, F and 𝑟 ′ (≥ 1) and 𝑘′ (≥ 0), the answer
for GNRM is yes. A feasible solution (𝑟 ′, 𝑘′) of BO-GNRM is Pareto optimal if there is no feasible solution (𝑟 ′′, 𝑘′′) such
that either 𝑟 ′′ < 𝑟 ′ and 𝑘′′ ≤ 𝑘′ or 𝑟 ′′ ≤ 𝑟 ′ and 𝑘′′ < 𝑘′ . Formally, the goal of BO-GNRM is to find the Pareto front,
which is the set of all Pareto optimal solutions.

Note that bi-objective optimization has already been used for other access control problems, see e.g. [3, 4].

Paper organization. The rest of the paper is organized in the following way. In Section 2 we describe our FPT
algorithms for solving GNRM and BO-GNRM. We describe and discuss our experimental results in Sections 3, 4, and 5.
Finally, in Section 6, we conclude the paper with a summary of our contributions and ideas for future work.

A preliminary version of this paper [2] has appeared in proceedings of SACMAT-2022. Sections 2.3, 3, 4 and 5 consist
of new material, not published in [2].

2 FPT ALGORITHMS FOR GNRM AND BO-GNRM

Fomin et al. [8] proved that Noise Role Mining parameterized by 𝑘 + 𝑟 is FPT. We will extend this result to GNRM by
reducing it to the Generalized P-matrix Approximation problem. The reduction is similar to the one used in [8].
However, Fomin et al. [8] solved Noise Role Mining as a decision problem where the aim is only to decide whether
the given instance is a yes- or no-instance. In contrast, we solve Generalized Noise Role Mining as a problem where
if the given instance is a yes-instance then a solution is also returned.

Manuscript submitted to ACM

Page 5 of 22 ACM Transactions on information and System Security

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

6 Crampton et al.

We first define Generalized P-matrix Approximation and prove that it is FPT. We then explain how this problem
is used to establish that GNRM is FPT.

2.1 Generalized P-matrix approximation

Let P be a 𝑝 × 𝑞 matrix (sometimes called a pattern matrix). We say that an𝑚 × 𝑛 matrix B is a P-matrix if there is a
partition {𝐼1, . . . , 𝐼𝑝 } of [𝑚] and a partition {𝐽1, . . . , 𝐽𝑞} of [𝑛] such that for every 𝑖 ∈ [𝑝], 𝑗 ∈ [𝑞], 𝑠 ∈ 𝐼𝑖 , 𝑡 ∈ 𝐽 𝑗 , we have
𝑏𝑠𝑡 = 𝑝𝑖 𝑗 . Note that, by definition, every set in the partitions of [𝑚] and [𝑛] is non-empty. (Thus, 𝑝 ≤ 𝑚 and 𝑞 ≤ 𝑛.) In
other words, B is a P-matrix if P can be obtained from B by first permuting rows and columns, then partitioning the
resulting matrix into blocks such that in each block L all entries are of the same value 𝑣 (L) and finally replacing every
block L by one entry of value 𝑣 (L).

For a example, let P =

[
1 0
1 1

]
. Then Q1 and Q2 below are both P-matrices: permuting columns 2 and 3 in each

matrix, then partitioning (into blocks of equal size for Q1, and between rows 1 and 2 and columns 2 and 3 for Q2) and
“contracting” gives us P.

Q1 =


1 0 1 0
1 0 1 0
1 1 1 1
1 1 1 1


Q2 =


1 0 1 0 0 0
1 1 1 1 1 1
1 1 1 1 1 1


Generalized P-Matrix Approximation
Input: An𝑚 × 𝑛 matrix A, a label matrix F, a 𝑝 × 𝑞 matrix P, and a nonnegative integer 𝑘 .
Goal: Is there an𝑚 × 𝑛 P-matrix B such that sd𝐹 (A,B) ≤ 𝑘? If the answer is yes, then return such a matrix B.

Very informally, this problem asks whether there exists a matrix B that is (almost) the same as A and contains
the rows and columns of P, and, if so, returns B. Fomin et al. [8] used the special case of Generalized P-Matrix
Approximation, where f𝑖 𝑗 = ⊤ for every (𝑖, 𝑗) ∈ [𝑚] × [𝑛] . It is called the P-Matrix Approximation problem. We
will use the following two results by Fomin et al. [8].

Observation 2.1. Let P be a 𝑝 × 𝑞 matrix. Then, every P-matrix B has at most 𝑝 pairwise distinct rows and at most 𝑞

pairwise distinct columns.

Proposition 2.2. Given an 𝑚 × 𝑛 matrix A and a 𝑝 × 𝑞 matrix P, there is an algorithm that runs in time

2𝑝 log𝑝+𝑞 log𝑞 (𝑛𝑚)O(1) and correctly outputs whether A is a P-matrix.

If A has at most 𝑝 − 1 rows or at most 𝑞 − 1 columns, then there is no 𝑚 × 𝑛 matrix B that is a P-matrix and
sdF (A,B) ≤ 𝑘 . In that case, the instance is a no-instance. Let us now assume that A has at least 𝑝 rows and at least 𝑞
columns.

The next lemma was proved in [8] for P-Matrix Approximation. Note that replacing ⊤ in f𝑖 𝑗 = ⊤ by ⊥ for some
entries f𝑖 𝑗 will only reduce the set of yes-instances of Generalized P-Matrix Approximation. Thus, the next lemma
follows from its special case in [8].

Lemma 2.3. If A has at least 𝑝 + 𝑘 + 1 pairwise distinct rows or at least 𝑞 + 𝑘 + 1 pairwise distinct columns, then output

that (A, F, P, 𝑘) is a no-instance of Generalized P-Matrix Approximation.

This lemma implies the following reduction/preprocessing rule.
Manuscript submitted to ACM

Page 6 of 22ACM Transactions on information and System Security

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

Bi-objective Optimization in Role Mining 7

Reduction Rule 1. Let A be a matrix. If A has at least 𝑝 + 𝑘 + 1 pairwise distinct rows or at least 𝑞 + 𝑘 + 1 pairwise

distinct columns, then output that (A, F, P, 𝑘) is a no-instance of Generalized P-Matrix Approximation.

To simplify an instance (A, F, P, 𝑘) of Generalized P-Matrix Approximation, we can apply the following reduction
rule exhaustively. If a row a𝑖 is deleted by the reduction rule, the label matrix F does not change for the other rows. This
means that for the reduced instance withmatrixA′, the label matrix is F restricted to the rows ofA′ i.e. {a1, . . . , a𝑚}\{a𝑖 }.
For simplicity of presentation, the label matrix for A′ will still be denoted by F.

We define a second reduction rule that is used to delete superfluous identical rows and columns.

Reduction Rule 2. If A has at least max{𝑝, 𝑘} + 2 identical rows, then delete one of these identical rows. Similarly, if A
has at least max{𝑞, 𝑘} + 2 identical columns, then delete one of these identical columns.

We say two instances of Generalized P-Matrix Approximation are equivalent if they are both either yes-instances
or no-instances. Fomin et al. proved that any application of Reduction Rule 2 to an instance of P-Matrix Approximation
returns an equivalent instance of the problem [8, Claim 7]. It is easy to verify that the arguments in their proof of Claim
7 also apply to Generalized P-Matrix Approximation.

Applications of the two reductions rules described above either determine that the input instance is a no-instance or
produce an equivalent instance with the following properties.

Lemma 2.4. Let (A, F, P, 𝑘) be an instance of Generalized P-Matrix Approximation. Then, there exists a polynomial-

time algorithm that either returns “no-instance” or transforms (A, F, P, 𝑘) into an equivalent instance (A′, F, P, 𝑘) of
Generalized P-Matrix Approximation. Moreover the following properties are satisfied.

(1) The matrix A′ has at least 𝑝 rows, at least 𝑞 columns, at most (max{𝑝, 𝑘} +1) (𝑝 +𝑘) rows and at most (max{𝑝, 𝑘} +
1) (𝑝 + 𝑘) columns.

(2) Given a P-matrix B′ such that sdF (A′,B′) ≤ 𝑘 , in polynomial time we can compute a P-matrix B such that

sdF (A,B) ≤ 𝑘 .

Proof. Let (A, P, 𝑘) be an input instance of Generalized P-Matrix Approximation. As𝑚 ≥ 𝑝 and 𝑛 ≥ 𝑞, if A has
at most 𝑝 − 1 rows or has at most 𝑞 − 1 columns, then there is no𝑚 × 𝑛 P-matrix B such that sdF (A,B) ≤ 𝑘 . In such a
case, we return “no-instance.” Next, we apply Reduction Rule 1 to check the number of pairwise distinct rows as well as
the number of pairwise distinct columns in A. If A has 𝑝 + 𝑘 + 1 pairwise distinct rows or 𝑞 + 𝑘 + 1 pairwise distinct
columns, then we return “no-instance”. After that, we apply Reduction Rule 2 exhaustively and let A′ be the obtained
matrix. We also obtain a stack 𝑆 which contains all deleted rows and columns.

We return (A′, F, P, 𝑘) as the output instance. Clearly, A′ has at most 𝑝 + 𝑘 pairwise distinct rows and at most
𝑞 + 𝑘 pairwise distinct columns. Moreover, A′ has at least 𝑝 rows and at least 𝑞 columns. Also, A′ can have at most
max{𝑝, 𝑘} + 1 pairwise identical rows and at most max{𝑞, 𝑘} + 1 pairwise identical columns. This means that A′ has at
most (max{𝑝, 𝑘} + 1) (𝑝 +𝑘) rows and at most (max{𝑞, 𝑘} + 1) (𝑞 +𝑘) columns. This completes the proof that property (1)
holds.

Suppose that B′ is a P-matrix such that sdF (A′,B′) ≤ 𝑘 . Note that at any intermediate stage, when a row r (a
column c, respectively) was deleted from A, there were at least (max{𝑝, 𝑘} + 1) additional rows identical to r (at least
(max{𝑞, 𝑘} + 1) additional columns identical to c, respectively). Hence, in A′, if a row r or a column c was deleted by
Reduction Rule 2, then there are exactly max{𝑝, 𝑘} + 1 rows identical to r (exactly max{𝑞, 𝑘} + 1 columns identical to c,
respectively). Since sdF (A′,B′) ≤ 𝑘 , at most 𝑘 entries with label ⊤ identical to r (c, respectively) were modified in B′.

Manuscript submitted to ACM

Page 7 of 22 ACM Transactions on information and System Security

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

8 Crampton et al.

Thus, B′ must have at least one row identical to r (at least one column identical to c, respectively) if r (c, respectively) was
deleted by Reduction Rule 2. Therefore, the deleted rows (columns, respectively) are identical to some rows (columns,
respectively) which are the same in in A′ and B′. Thus, reinstating the deleted rows and columns using stack 𝑆 , we
obtain matrices A and B such that B is a P-matrix and sdF (A,B) ≤ 𝑘 . □

Theorem 2.5. Generalized P-Matrix Approximation can be solved in time 2𝑝 log𝑝+𝑞 log𝑞 (𝑛𝑚)O(1) ((max{𝑝, 𝑘} +
1) (𝑝 + 𝑘) (max{𝑞, 𝑘} + 1) (𝑞 + 𝑘))𝑘 .

Proof. Let (A, F, P, 𝑘) be an instance of Generalized P-Matrix Approximation. First, we invoke the polynomial-
time algorithm of Lemma 2.4 to either determine that the input instance is a no-instance or generate an instance
(A′, F, P, 𝑘) satisfying properties (1) and (2). Recall that the first property says that A′ has at most (max{𝑝, 𝑘} + 1) (𝑝 +𝑘)
rows, and at most (max{𝑞, 𝑘} + 1) (𝑞 + 𝑘) columns. This means that A′ has at most (max{𝑝, 𝑘} + 1) (𝑝 + 𝑘) (max{𝑞, 𝑘} +
1) (𝑞 + 𝑘) entries. We then consider all possible sets of at most 𝑘 entries. For every entry of such a set, if the label of an
entry is ⊤, we will modify it. This results in a modified matrix B′. We then invoke Proposition 2.2 to check whether B′ is
a P-matrix or not. This checking takes 2𝑝 log𝑝+𝑞 log𝑞 (𝑛𝑚)O(1) -time. If B′ is a P-matrix, it is a solution to Generalized
P-Matrix Approximation for the instance (A′, F,B′, 𝑘) as sdF (A′,B′) ≤ 𝑘 (since we changed at most 𝑘 entries in A′).
Then, we make use of property (2) to construct B satisfying sdF (A,B) ≤ 𝑘 and return B as a solution of Generalized
P-Matrix Approximation for the instance (A, F,B, 𝑘). Recall that this step takes polynomial time. Hence, the overall
algorithm takes 2𝑝 log𝑝+𝑞 log𝑞 (𝑛𝑚)O(1) ((max{𝑝, 𝑘} + 1) (𝑝 + 𝑘) (max{𝑞, 𝑘} + 1) (𝑞 + 𝑘))𝑘 time. □

2.2 GNRM is FPT

We now explain how the algorithm for Generalized P-Matrix Approximation is used to solve GNRM and thus show
it is FPT. The basic strategy is to consider all possible pairs of matrices whose product P could provide the basis for
a solution to GNRM. The number of such pairs is bounded above by a function of 𝑟 . For each such P, we determine
whether the Generalized P-Matrix Approximation instance (UPA, F, P, 𝑘) has a solution, in which case we can then
compute a solution to the GNRM instance.

Lemma 2.6. Let P be a 𝑝 × 𝑞 matrix such that P = X ∧ Y for a 𝑝 × 𝑟 matrix X and an 𝑟 × 𝑞 matrix Y. Furthermore,

consider an𝑚 × 𝑛 matrix B which is a P-matrix. Then, we can in polynomial time obtain an𝑚 × 𝑟 matrix X∗, and 𝑟 × 𝑛

matrix Y∗ such that B = X∗ ∧ Y∗.

Proof. As B is a P-matrix, there are partitions {𝐼1, . . . , 𝐼𝑝 } of [𝑚] and {𝐽1, . . . , 𝐽𝑞} of [𝑛] such that for every 𝑖 ∈
[𝑝], 𝑗 ∈ [𝑞], 𝑠 ∈ 𝐼𝑖 , 𝑡 ∈ 𝐼 𝑗 , b𝑠𝑡 = p𝑖 𝑗 .

We initialize X∗ = X and Y∗ = Y. Consider an entry p𝑖 𝑗 . Let x𝑖 be the 𝑖’th row of X and y𝑗 the 𝑗 ’th column of Y; then
x𝑖 ∧ y𝑗 = p𝑖 𝑗 . Let 𝑐 ∈ [𝑝] and 𝑑 ∈ [𝑞] such that 𝑖 ∈ 𝐼𝑐 and 𝑗 ∈ 𝐽𝑑 . Then, for any 𝑠 ∈ 𝐼𝑐 and 𝑡 ∈ 𝐽𝑑 , set 𝑏𝑠𝑡 = p𝑖 𝑗 . Then,
for any 𝑠 ∈ 𝐼𝑐 and for any 𝑡 ∈ 𝐼𝑑 , we insert x𝑖 as the 𝑠’th row of X∗ and y𝑗 as the 𝑡 ’th column of Y∗. □

The Boolean rank of a matrix A, denoted BRank(A), is the minimum natural number 𝑟 such that A = B ∧ C, where
B and C are matrices such that the number of columns in B and the number of rows in C is 𝑟 . Thus, a matrix A has
Boolean rank 1 if and only if A = x ∧ y𝑇 for some column-vectors x and y. In fact, BRank(A) = 𝑟 if and only if 𝑟 is the
minimum natural number such that A = X(1) ∨ · · · ∨ X(𝑟) , where matrices X(1) , . . . ,X(𝑟) are of Boolean rank 1 [14].

Theorem 2.7. Generalized Noise Role Mining admits an O∗ (2O(𝑟2𝑟+𝑟𝑘))-time algorithm.
Manuscript submitted to ACM

Page 8 of 22ACM Transactions on information and System Security

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

Bi-objective Optimization in Role Mining 9

Proof. Let B be an𝑚 × 𝑛-matrix and let 𝑟 be the Boolean rank of B. Thus, there are 𝑟 matrices B(1) , . . . ,B(𝑟) , each
of Boolean rank 1, such that B = B(1) ∨ · · · ∨B(𝑟) , where for each 𝑖 ∈ [𝑟], B(𝑖) = x𝑖 ∧ (y𝑖)𝑇 for some column-vectors x𝑖

and y𝑖 . It can be shown by induction on 𝑟 that B has at most 2𝑟 distinct rows and at most 2𝑟 distinct columns.1 Therefore,
B is of Boolean rank at most 𝑟 if and only if there is a 𝑝 × 𝑞 matrix P of Boolean rank at most 𝑟 for 𝑝 = min{2𝑟 ,𝑚} and
𝑞 = min{2𝑟 , 𝑛} such as B is a P-matrix.

Moreover, an𝑚 × 𝑛-matrix B is of rank 𝑟 if 𝑟 is the minimum natural number such that B = C ∧ D, where C is an
𝑚 × 𝑟 -matrix and C is an 𝑟 ×𝑛-matrix. Hence, Generalized Noise Role Mining can be reformulated as follows: Decide
whether there is a 𝑝 × 𝑞-pattern matrix P of Boolean rank 𝑟 and an𝑚 × 𝑛 P-matrix B such that sdF (UPA,B) ≤ 𝑘 and if
B does exist then find matrices UA and PA of sizes𝑚 × 𝑟 and 𝑟 × 𝑛, respectively, such that B = UA ∧ PA.

Thus, to solve Generalized Noise Role Mining with input (UPA, F, 𝑘), we can use the following algorithm:

1. Generate all pairs (X,Y) of matrices of sizes 𝑝 × 𝑟 and 𝑟 × 𝑞, respectively, and for each such pair compute
P = X ∧ Y;

2. For each P, solve Generalized P-Matrix Approximation for the instance (UPA, F, P, 𝑘). If (UPA, F, P, 𝑘) is a
yes-instance, then using the algorithm of Lemma 2.6 return matrices UA and PA of sizes𝑚 × 𝑟 and 𝑟 × 𝑛 such
that B = UA ∧ PA, where B is the solution of the instance (UPA, F, P, 𝑘);

3. If all instances above are no-instances of Generalized P-Matrix Approximation, return “no-instance.”

It remains to evaluate the running time of the above algorithm. Since 𝑝 ≤ 2𝑟 and 𝑞 ≤ 2𝑟 , there are at most 2O(𝑟2𝑟)

pairs (X,Y), and we can compute all matrices P in time 2O(𝑟2𝑟) . Thus, the running time of the algorithm is dominated
by that of Step 2. The running time of Step 2 is upper bounded by the number of matrices P (it is equal to 2O(𝑟2𝑟))
times the maximum running time of solving Generalized P-Matrix Approximation on an instance (UPA, F, P, 𝑘) and
computing UA and PA, if the instance is a yes-instance. By Lemma 2.6, Theorem 2.5 and the bounds 𝑝 ≤ 2𝑟 , 𝑞 ≤ 2𝑟 , the
maximum running time is upper bounded by O∗ (2O(𝑟2𝑟+𝑟𝑘)). It remains to observe that 2O(𝑟2𝑟) · O∗ (2O(𝑟2𝑟+𝑟𝑘)) =
O∗ (2O(𝑟2𝑟+𝑟𝑘)). □

2.3 Solving BO-GNRM

To design an algorithm for computing the Pareto front of BO-GNRM, let us consider a related problem, the one-objective
GNRM problem (OO-GNRM): compute the minimum value 𝑘min (𝑟) of 𝑘 for every 𝑟 ∈ [𝑟] such that 𝑘min (𝑟) ≤ 𝑘 . In
other words, given 𝑟 , 𝑘min (𝑟) is the smallest number of discrepancies for a solution containing 𝑟 roles. OO-GNRM
can be easily solved by running the O∗ (2O(𝑟2𝑟+𝑟𝑘))-time algorithm of Theorem 2.7 for 𝑘 ∈ {0, 1, . . . , 𝑘}.2 (Note that if
𝑘min (𝑟) > 𝑘 then there is no solution to BO-GNRM for that value of 𝑟 .) This allows us to compute the Pareto front 𝑃 of
BO-GNRM as follows:

𝑃 = {(𝑟, 𝑘min (𝑟)) : 𝑟 ∈ [𝑟], 0 ≤ 𝑘min (𝑟) ≤ 𝑘, 𝑘min (𝑟) < 𝑘min (𝑟 − 1) if 𝑟 ≥ 2} (1)

Figure 1 illustrates the notions introduced above for 𝑘 = 6 and 𝑟 = 11. In particular, there is no solution such that
𝑟 = 1 and 𝑘 is less than the maximum value allowed (6 in this case), and no solution for 𝑟 = 2. In contrast, we can
find solutions for 𝑟 ∈ {3, 4, 5} with 𝑘min (𝑟) = 5. Hence (3, 5) belongs to the Pareto front. Similarly (6, 3), (8, 2) and
(9, 0) belong to the Pareto front. An organization can decide which point on the Pareto front is preferable: for example,
1For 𝑟 = 1, since B(1) = x1 ∧ (y1)𝑇 , B(1) has at most two distinct rows, y1 and the all-zero row, and has at most two distinct columns, x1 and the all-zero
column. Now let 𝑟 ≥ 2. By induction hypothesis, B = B(≤𝑟−1) ∨ B(𝑟) , where B(≤𝑟−1) has at most 2𝑟−1 rows and columns and B(𝑟) at most two rows
and columns. Since every row (column, respectively) of B is the disjunction of the corresponding rows (columns, respectively) of B(≤𝑟−1) and B(𝑟) , the
number of distinct rows (columns, respectively) in B is at most 2𝑟−1 · 2 = 2𝑟 .
2We could introduce a different one-objective optimization version of GNRM, where we minimize 𝑟 . Our choice of minimizing 𝑘 is explained in Section 3.1.

Manuscript submitted to ACM

Page 9 of 22 ACM Transactions on information and System Security

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

10 Crampton et al.

𝑟𝑟 = 111

𝑘min

𝑘 = 6

1

Fig. 1. Solutions of OO-GNRM and BO-GNRM, where all the circles are solutions of OO-GNRM and all the large circles form 𝑃 . Note
that points (1, 𝑘min (1)) and (2, 𝑘min (2)) are not depicted since 𝑘min (2) > 𝑘 .

having no discrepancies between the original policy and the mined policy using nine roles versus only six roles but
accepting three discrepancies.

By the arguments above, we have the following:

Theorem 2.8. There is an O∗ (2O(𝑟2𝑟+𝑟𝑘))-time algorithm for constructing the Pareto front of BO-GNRM. Thus, BO-GNRM

is FPT with parameter 𝑟 + 𝑘.

3 GNRM SOLVER

To solve the BO-GNRM problem, we use a general-purpose solver. We could have implemented a bespoke FPT algorithm
to solve BO-GNRM, based on our results in the preceding sections. However, we believe using a general-purpose solver
is likely to be more useful in practice. First, the formulation of the problem as an integer program is quite intuitive, and
therefore easier to understand and maintain than a bespoke algorithm that relies on some relatively complex theory.
Second, general-purpose solvers may perform well on instances of a hard problem that is known to be FPT [13]. For
example, an intelligent general-purpose solver might be able to automatically identify and apply reductions during the
pre-solve process leading to an FPT-like behaviour.

In this section, we describe our approach to solving BO-GNRM, the integer programming formulation of OO-GNRM,
and in Section 4 we confirm that the empirical behaviour of this solver is consistent with that expected of an FPT
algorithm. We then apply our solver in Section 5 to real-world instances to solve BO-GNRM.

3.1 The choice of OO-GNRM

Our approach to solving the BO-GNRM is to decompose it into multiple OO-GNRM instances. We have two options: (i)
find 𝑘min (𝑟) for each 𝑟 , or (ii) find 𝑟min (𝑘) for each 𝑘 . (Here, 𝑟min (𝑘) is the smallest value of 𝑟 that makes the instance
of GNRM satisfiable for a given 𝑘 .)

Note that the solution size (the number of decision variables in the solution representation) depends on 𝑟 but does
not depend on 𝑘 . This makes it easier technically and computationally to fix 𝑟 and minimise 𝑘 . Also note that the value
of 𝑘min (𝑟) ∈ O(𝑚𝑛) whereas 𝑟min (𝑘) ∈ O(𝑚). Indeed, we observed in our experiments that 𝑘min (𝑟) can reach large
values for small 𝑟 whereas 𝑟min (𝑘) is relatively small even for 𝑘 = 0. Considering the above observations, we chose
approach (i), i.e. our solver takes 𝑟 as a parameter and searches for 𝑘min (𝑟). Then, to obtain the Pareto front for the
BO-GNRM, we use formula (1).
Manuscript submitted to ACM

Page 10 of 22ACM Transactions on information and System Security

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

Bi-objective Optimization in Role Mining 11

3.2 Formulation of GNRM

We present a mixed integer programming formulation of the OO-GNRM in order to solve the problem using a general-
purpose solver. Our formulation consists of two matrices of Boolean variables ua𝑖,ℓ , 𝑖 ∈ [𝑚], ℓ ∈ [𝑟], and paℓ, 𝑗 , ℓ ∈ [𝑟],
𝑗 ∈ [𝑛]. We also use a matrix of auxiliary Boolean variables 𝑑𝑖, 𝑗 , 𝑖 ∈ [𝑚], 𝑗 ∈ [𝑛], representing the discrepancies
between UA ∧ PA and UPA. We use the values 0 and 1 to represent the values ⊥ and ⊤, respectively, in the F matrix.
Figure 2 describes the formulation in detail.

A naïve formulation of the problem would include a matrix of Boolean variables – to represent the product UA∧PA –
and link these variables to the ua𝑖,ℓ and paℓ, 𝑗 variables. Then it would be easy to formulate the constraints and link
the decision variables to variables 𝑑𝑖, 𝑗 . However, knowing the values of upa𝑖, 𝑗 and 𝑓𝑖, 𝑗 for a specific pair (𝑖, 𝑗), we can
formulate the constraints more compactly. Thus, the formulation described in Figure 2 defines the constraints separately
for each combination of values of upa𝑖, 𝑗 and 𝑓𝑖, 𝑗 .3

Minimise
∑︁

𝑖∈[𝑚]

∑︁
𝑗∈[𝑛]

𝑑𝑖, 𝑗 , (2) The objective is to minimise the discrepancies.

For all 𝑖 ∈ [𝑚] and 𝑗 ∈ [𝑛] such that 𝑓𝑖, 𝑗 = 0 and upa𝑖, 𝑗 = 0: Since the discrepancy is not allowed, either ua𝑖,ℓ
or paℓ, 𝑗 has to be zero for every ℓ .ua𝑖,ℓ + paℓ, 𝑗 ≤ 1 ∀ℓ ∈ [𝑟], (3)

For all 𝑖 ∈ [𝑚] and 𝑗 ∈ [𝑛] such that 𝑓𝑖, 𝑗 = 0 and upa𝑖, 𝑗 = 1:
We need ua𝑖,ℓ = paℓ, 𝑗 = 1 for some ℓ . We enforce
that at least one of 𝑥𝑖, 𝑗,1 ..𝑥𝑖, 𝑗,𝑟 is 1 and also if
𝑥𝑖, 𝑗,ℓ = 1 then ua𝑖,ℓ = paℓ, 𝑗 = 1.

𝑥𝑖, 𝑗,ℓ ≤ ua𝑖,ℓ ∀ℓ ∈ [𝑟], (4)
𝑥𝑖, 𝑗,ℓ ≤ paℓ, 𝑗 ∀ℓ ∈ [𝑟], (5)∑︁
ℓ∈[𝑟]

𝑥𝑖, 𝑗,ℓ ≥ 1 ∀ℓ ∈ [𝑟], (6)

For all 𝑖 ∈ [𝑚] and 𝑗 ∈ [𝑛] such that 𝑓𝑖, 𝑗 = 1 and upa𝑖, 𝑗 = 0: If both ua𝑖,ℓ and paℓ, 𝑗 are ones for some ℓ then
this is a discrepancy.ua𝑖,ℓ + paℓ, 𝑗 ≤ 1 + 𝑑𝑖, 𝑗 ∀ℓ ∈ [𝑟], (7)

For all 𝑖 ∈ [𝑚] and 𝑗 ∈ [𝑛] such that 𝑓𝑖, 𝑗 = 1 and upa𝑖, 𝑗 = 1: If either ua𝑖,ℓ = 0 or paℓ, 𝑗 = 0 for every ℓ , this is a
discrepancy. Auxiliary variable 𝑥𝑖, 𝑗,ℓ is forced to 0
if either ua𝑖,ℓ = 0 or paℓ, 𝑗 = 0. If 𝑥𝑖, 𝑗,ℓ = 0 for
every ℓ then we force 𝑑𝑖, 𝑗 = 1.

ua𝑖,ℓ ≥ 𝑥𝑖, 𝑗,ℓ ∀ℓ ∈ [𝑟], (8)
paℓ, 𝑗 ≥ 𝑥𝑖, 𝑗,ℓ ∀ℓ ∈ [𝑟], (9)∑︁
ℓ∈[𝑟]

𝑥𝑖, 𝑗,ℓ ≥ 1 − 𝑑𝑖, 𝑗 ∀ℓ ∈ [𝑟], (10)

𝑥𝑖, 𝑗,ℓ ∈ {0, 1} ∀𝑖 ∈ [𝑚], ∀𝑗 ∈ [𝑛], ∀ℓ ∈ [𝑟], (11) Auxiliary variables, see the cases where upa𝑖, 𝑗 = 1.
𝑑𝑖, 𝑗 ∈ {0, 1} ∀𝑖 ∈ [𝑚], ∀𝑗 ∈ [𝑛], (12) Indicates whether there is a discrepancy in the

corresponding element.
ua𝑖, 𝑗 ∈ {0, 1} ∀𝑖 ∈ [𝑚], ∀𝑗 ∈ [𝑟], (13) Defines the UA matrix.
pa𝑖, 𝑗 ∈ {0, 1} ∀𝑖 ∈ [𝑟], ∀𝑗 ∈ [𝑛]. (14) Defines the PA matrix.

Fig. 2. CSP formulation of GNRM.

3The compact formulation performed significantly better than the naïve formulation in our experiments, so we only report results for the compact
configuration.

Manuscript submitted to ACM

Page 11 of 22 ACM Transactions on information and System Security

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

12 Crampton et al.

3.3 The choice of the solver

For our conference paper, we used the CP-SAT solver from Google OR-Tools to solve the GNRM problem (the decision
version of BO-GNRM). For this paper, we considered three options:

(1) Solving GNRM using CP-SAT to identify the minimum value of 𝑘 that makes the instance satisfiable (https:
//developers.google.com/optimization/cp/cp_solver);

(2) Solving OO-GNRM using the linear optimisation solver from Google OR-Tools (https://developers.google.com/
optimization/lp); and

(3) Solving OO-GNRM using the Gurobi mixed integer programming solver (https://www.gurobi.com/solutions/
gurobi-optimizer).

Following experimentation, we concluded that Gurobi is considerably faster than the other approaches. For example,
for an instance of size𝑚 × 𝑛 = 25 × 25 and 𝑟 = 5 (with 𝑘min (5) = 22), the Gurobi solver was 86 times faster than the
CP-SAT-solver-based approach and 50 times faster than the linear optimisation solver from OR-Tools. Thus, all the
reported experiments in this paper are conducted with Gurobi. We also attempted a few modifications of the formulation
in Figure 2. Specifically, we tried several approaches to symmetry breaking as well as adding simple custom cuts. None
of these changes improved the performance though; we assume that the internal mechanisms of Gurobi are intelligent
enough to identify all the simple properties of our formulation and exploit them effectively. We also found the default
parameter values of Gurobi to be effective. Apart from the time limit, the only Gurobi parameter that we adjusted in
some experiments was MIPFocus; we set it to 1 to intensify the search for feasible solutions when the solver was used as
a heuristic.

4 DOES THE GUROBI-BASED SOLVER HAVE FPT-LIKE RUNTIME?

In this section, we test the hypothesis that the Gurobi-based solver is capable of exploiting the FPT structure of
GNRM. Since our solver addresses the OO-GNRM, we focus on testing if its running time is FPT-like with respect to
𝑘min = 𝑘min (𝑟) when 𝑟 is fixed.

We say that a solver has FPT-like running time if its empirical running time scales polynomially with the size of the
problem instance. As we talk about empirical running time, we focus on ‘typical’ instances rather than the worst case.
However, the concept of a ‘typical’ instance is vague and brings difficulties to the experimental set-up. In the rest of
this section, we introduce a new methodology to identify the scaling of the empirical running time of an algorithm and
use it to show that the Gurobi-based solver has FPT-like running time.

Note that using real-world instances in such a study is generally impractical for the following reasons:

• Such a study requires a large number of instances whereas real-world benchmark sets are usually very limited;
• To draw conclusions about the scaling behaviour of a solver, we need instances with a wide range of parameters

which might not be present in real-world benchmark sets; and
• We need to ensure that the instances have consistent difficulty.

The first two points can easily be addressed by using synthetic instances produced by a pseudo-random instance
generator. The third point, however, remains a challenge even if we use a pseudo-random instance generator. Indeed,
changes in some parameters of the generator such as the instance size may affect the hardness of the instance. In
decision problems, this behaviour can often be explained by shifting between the under- and over-subscribed instance
regions. Then, to keep the hardness of the instances consistent, it is necessary to adjust some other generator parameters.
This approach was used in several other studies, e.g. [1, 12, 13] focusing on the phase-transition region (the region
Manuscript submitted to ACM

Page 12 of 22ACM Transactions on information and System Security

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

https://developers.google.com/optimization/cp/cp_solver
https://developers.google.com/optimization/cp/cp_solver
https://developers.google.com/optimization/lp
https://developers.google.com/optimization/lp
https://www.gurobi.com/solutions/gurobi-optimizer
https://www.gurobi.com/solutions/gurobi-optimizer

For Peer Review

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

Bi-objective Optimization in Role Mining 13

between the under- and over-subscribed instances). However, we could not use this approach in this study as phase
transition is undefined for optimisation problems.

Instead, our approach in this study relies on the median running times across wide ranges of diverse instances of
similar size and value of the parameter. Thus, we measure how the median running time scales with the instance size
and parameter value.

4.1 Pseudo-random instance generator

We adopted a pseudo-random instance generator used in earlier experimental work by Vaidya et al. [21]. The generator
takes an integer 𝑟0 > 0 as a parameter and produces an instance of UPA ∈ R𝑚×𝑛 by creating random UA ∈ R𝑚×𝑟0 and
PA ∈ R𝑟0×𝑛 matrices and multiplying them together: UPA = UA ∧ PA. This means that we know an upper bound on
the number of roles we need to mine. We used the following settings in our generator:

• the number of roles per user was randomly chosen for each user from the interval [0, 𝑟𝑢], where 𝑟𝑢 is an instance
generator parameter; and

• the number of permissions per role was randomly chosen for each role from [0, ⌊0.25𝑛⌋].

Thus, the parameters of our generator are as follows:

• 𝑚 is the number of users in the instance;
• 𝑛 is the number of permissions in the instance;
• 𝑟0 is the overall number of roles in the UA matrix used to produce the UPA matrix.
• 𝑟𝑢 is the maximum number of roles per user; 𝑟𝑢 ≤ 𝑟0; and
• 𝑟 is the number of roles that need to be mined; this value does not affect the UPA matrix but is used by the

solver.

4.2 Data collection process

All our computations were performed on a machine based on two Xeon E5-2630 v2 CPUs (2.60 GHz), with 32 GB of
RAM. We used Gurobi 10.0. It was restricted to one thread for the experiments in Section 4, with up to 12 experiments
running in parallel, whereas the number of threads was unrestricted for the experiments in Section 5 but only one
experiment was conducted at a time.

In order to prove that the Gurobi-based solver has FPT-like running time, we would need to generate instances of
various sizes but with fixed parameters 𝑟 and 𝑘min, and plot the running time against the instance size. It was easy to
fix the value of 𝑟 ; we set it to 5 for all the experiments in this section. However, 𝑘min is actually not a parameter of the
instance generator; it is the objective value. Thus, we developed the following methodology.

First, we generated a large set of instances for a wide range of instance generator parameters. By solving each
instance, we obtained the value of 𝑘min for that instance, which then allowed us to select instances based on their
values of 𝑘min. For example, we could see how the running time scaled with the size of the instance for instances with
𝑘min = 12.

This approach, however, has a fundamental issue. Since we used a wide range of instance parameters, it was inevitable
that some of the instances were prohibitively hard. We could put a time limit on the solver but that would skew the
results; the harder instances would not be represented in our set. Our workaround was to add a constraint to the solver
restricting 𝑘min to values up to 30; this made any instances with 𝑘min above 30 infeasible and so we disregarded them.
Note that this did not skew the results as the set of instances for each 𝑘min ≤ 30 was unrestricted.

Manuscript submitted to ACM

Page 13 of 22 ACM Transactions on information and System Security

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

14 Crampton et al.

As we expected that the hardness of an instance mainly depends on 𝑟 and 𝑘min but not as much on the other instance
generator parameters, restricting the values of 𝑟 and 𝑘min was sufficient to avoid overly hard instances thus making
data collection feasible.

As we mentioned above, the value of 𝑟 was fixed to 5. The values of the other instance generator parameters were
randomly sampled from the following ranges: 𝑛,𝑚 ∈ {10, 11, . . . , 70}, 𝑟0 ∈ {5, 6, . . . , 15}, and 𝑟𝑢 ∈ {1, 2, . . . , 5}. The
selection of the parameters was based on typical values used in the literature and to ensure that the authorisation density
(the proportion of non-zero entries in the UPA matrix) was mainly in the range 5–35%. (All but one of the real-world
datasets commonly used in role mining research have authorisation densities less than 20% [17, Table 1].)

We set 𝑓𝑖, 𝑗 = upa𝑖, 𝑗 to prioritise the security considerations; other settings of 𝑓𝑖, 𝑗 are studied in Section 5.2.
At most one instance per combination of parameters was generated. In total, we produced 110 697 instances of which

56 220 had 𝑘min ≤ 30 and, thus, were included in this study. For each instance, we recorded the running time of the
solver, thus our dataset included the instance parameters, the value of 𝑘min and the solver running time. In Section 4.3,
we describe how this dataset was used to build a model of the solver running time. This in turn was used to support our
hypothesis that the Gurobi-based solver has FPT-like running time.

4.3 Running time model

Our hypothesis is that the median running time of the Gurobi-based solver can be approximated as a product of two
functions: a function of 𝑘min only and a function of the instance size only (as we fixed 𝑟 in this experiment, it is not a
part of the model). If the second function is a polynomial then we can claim that the Gurobi-based solver has FPT-like
running time, meaning that it is suitable for reasonably large instances as long as the value of 𝑘min is small.

We came up with two candidates for the definition of the instance size:

• The size𝑚𝑛 of the UPA matrix; and
• The number of non-zero elements in the UPA matrix, which we denote by 𝜎 .

There are arguments for each of these candidate definitions; indeed, the size of the MIP formulation in Figure 2
depends, in various ways, on both𝑚𝑛 and 𝜎 . Thus, we tested both definitions when fitting running time models. In our
experience, the second definition gives a much better fit, hence we use 𝜎 as the definition of the instance size in the rest
of the paper.

Let 𝑓 (𝑘min, 𝜎) be our model of the median running time of the Gurobi-based solver. While it is possible to fit
𝑓 (𝑘min, 𝜎) to all the data points, the result would be affected by the imbalances in our set of instances; for example, the
lower values of 𝑘min are represented better in our dataset, and this would be reflected in the model. Thus, we designed
the following process to balance the dataset. For each 𝑘min ∈ {0, 1, . . . , 30} and 𝑗 ∈ {1, 2, . . .}, we calculated the median
running time 𝑡𝑘min, 𝑗 over all the instances of size 𝜎 such that 100(𝑗 − 1) ≤ 𝜎 < 100 𝑗 and with the given value of 𝑘 . We
then fit 𝑓 (𝑘min, 𝜎) to (𝑘min, 100 𝑗 − 50, 𝑡𝑘 𝑗) for all the combinations of 𝑘min and 𝑗 where the number of instances within
the corresponding range is at least 10.

The running times across our experiments vary frommilliseconds to minutes; a residual of a few seconds is acceptable
for larger and harder instances but is a poor approximation for small and easy instances. In other words, when fitting
𝑓 (𝑘min, 𝜎), we are concerned with the relative error, not the absolute error. Thus, we use the logarithmic scale for the
running times, i.e. we fit log 𝑓 (𝑘min, 𝜎) to log 𝑡𝑘min, 𝑗 .

According to our initial assumption, the model was a product of two functions: 𝑓 (𝑘min, 𝜎) = 𝑓𝑘 (𝑘min) · 𝑓𝜎 (𝜎). By
visualising the experimental data, we established that 𝑓𝑘 (𝑘min) was exponential in 𝑘min as can be clearly seen in Figure 5,
Manuscript submitted to ACM

Page 14 of 22ACM Transactions on information and System Security

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

Bi-objective Optimization in Role Mining 15

however the slope of the curves was different for different values of 𝜎 . In other words, 𝑓𝑘 turned out to be a function of
both 𝑘min and 𝜎 . By estimating the slopes, we established that a good model for 𝑓𝑘 was 𝑓𝑘 (𝑘min, 𝜎) = 𝑐1 · 2𝑘min/(𝑐2𝜎+𝑐3) .

A reasonable fit for 𝑓𝜎 (𝜎) could be a parabola or an exponential function with the base close to 1. We tested both
hypotheses and found that a quadratic function fits significantly better than exponential.

Thus, our final model is as follows:

𝑓 (𝑘min, 𝜎) = 𝑐1 · 2𝑘min/(𝑐2𝜎+𝑐3) · (𝜎2 + 𝑐4𝜎 + 𝑐5) , (15)

where 𝑐1, 𝑐2, . . . , 𝑐5 are coefficients. This model gives a close fit for the experimental data except for small values of 𝑘min.
Thus, we removed 𝑘min < 2 when fitting the data and obtained the following values of the coefficients: 𝑐1 ≈ 1.11 · 10−4,
𝑐2 ≈ 3.29 · 10−2, 𝑐3 ≈ 4.14, 𝑐4 ≈ −77.3 and 𝑐5 ≈ 7.23 · 103.

Figure 3 shows the fit of 𝑓 (𝑘min, 𝜎) in three dimensions, whereas Figures 4 and 5 show slices through the space of
𝑘min and 𝜎 . Except for small 𝑘min, the model accurately predicts the aggregated running times. It even predicts that, for
small 𝜎 and large 𝑘min, the running time slightly decreases as 𝜎 increases, see Figure 4.

5

10

15

20

250 100 200 300 400 500 600 700 800

100

101

102

𝑘min

𝜎

Ti
m
e,
se
c

Fig. 3. This graph demonstrates how our model 𝑓 (𝑘min, 𝜎) (surface) fits the data aggregated into 𝑡𝑘min, 𝑗 (scatter plot). The colour
represents the time (the value along the vertical axis).

So far, we focused on the median running times. To see how far the actual running times fall from the predicted
ones, we produced one more visualisation, see Figure 6. It is designed to demonstrate that our 𝑓𝜎 (𝜎) is a good fit for
the data across all values of 𝑘min ≥ 2. To compensate for the differences caused by the variation of 𝑘min, we divided
the running times by 𝑓𝑘 (𝑘min, 𝜎). One can see that all the instances fall into a relatively narrow interval around our
model 𝑓𝜎 (𝜎), except for small 𝜎 . Similarly to the case of small 𝑘min, we assume that small 𝜎 may significantly change
the behaviour of Gurobi.

Manuscript submitted to ACM

Page 15 of 22 ACM Transactions on information and System Security

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

16 Crampton et al.

0 500 1,00010−1

100

101

102
Ti
m
e ,
se
c

𝑘 = 0

0 500 1,00010−1

100

101

102

𝑘 = 1

0 500 1,00010−1

100

101

102

𝑘 = 2

0 500 1,00010−1

100

101

102

Ti
m
e,
se
c

𝑘 = 3

0 500 1,00010−1

100

101

102

𝑘 = 4

0 500 1,00010−1

100

101

102

𝑘 = 6

0 500 1,00010−1

100

101

102

𝜎

Ti
m
e,
se
c

𝑘 = 10

0 500 1,00010−1

100

101

102

𝜎

𝑘 = 20

0 500 1,00010−1

100

101

102

𝜎

𝑘 = 30

Median times 𝑡𝑘,𝑗 𝑓 (𝑘, 𝜎)

Fig. 4. The aggregated data 𝑡𝑘,𝑗 and the best fit model 𝑓 (𝑘, 𝜎) sliced along the 𝑘 axis.

Nevertheless, it is clear from this visualisation that a good model for 𝑓𝜎 (𝜎) has to be a polynomial; an exponential
dependence would be a straight line in this semi-logarithmic plot. Our model accurately approximates the data for all 𝜎
and 𝑘min except for several smallest values.

4.4 Conclusions about the FPT-like behaviour

We conclude that (15) is a good fit to the experimental data for 𝑘min ≥ 2. The instances for 𝑘min < 2 are being solved
notably faster than our model predicts. We hypothesise that this behaviour is linked to the use of heuristics within the
Gurobi solver, however further investigation is needed to confirm this.

An algorithm is formally called FPT if its worst-case time complexity is O(𝑓𝑘 (𝑘min) · 𝑓𝜎 (𝜎)), where 𝑓𝜎 (𝜎) is a
polynomial. In our model of the median running times, 𝑓𝜎 (𝜎) is indeed polynomial but 𝑓𝑘 depends not only on 𝑘min
but also on 𝜎 . However, the dependence on 𝜎 is inverted; the larger the 𝜎 , the smaller the 𝑓𝑘 (𝑘min, 𝜎). Thus, we can
substitute 𝜎 = 1 to (15) to obtain an upper bound for the median running times of the Gurobi solver of the standard FPT
form: 𝑓 (𝑘min, 𝜎) = O(2𝑘min/(𝑐2+𝑐3) · (𝜎2 + 𝑐4𝜎 + 𝑐5)).

An interesting research question is to understand why the exponent in 𝑓𝑘 (𝑘min, 𝜎) is inversely proportional to 𝜎 . If
we ignore 𝑐3, we see that the exponent in 𝑓𝑘 (𝑘min, 𝜎) is the proportion of values in the UPA matrix that are adjusted by
the role mining: 𝑘min/𝜎 . Our theory does not explain this phenomenon but it is an interesting observation that deserves
future research; for example, there could be parameterisation of the problem based on this ratio.

Overall, these results confirm that general-purpose solvers can be effective on FPT problems. Moreover, they suggest
that our solver might be appropriate for relatively large instances, provided the value of the parameter 𝑘min is small
Manuscript submitted to ACM

Page 16 of 22ACM Transactions on information and System Security

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

Bi-objective Optimization in Role Mining 17

0 10 20 3010−1

100

101

102

Ti
m
e ,
se
c

𝜎 ∈ [0, 99]

0 10 20 3010−1

100

101

102

𝜎 ∈ [100, 199]

0 10 20 3010−1

100

101

102

𝜎 ∈ [200, 299]

0 10 20 3010−1

100

101

102

𝑘min

Ti
m
e ,
se
c

𝜎 ∈ [300, 399]

0 10 20 3010−1

100

101

102

𝑘min

𝜎 ∈ [500, 599]

0 10 20 3010−1

100

101

102

𝑘min

𝜎 ∈ [700, 799]

Median times 𝑡𝑘,𝑗 𝑓 (𝑘, 𝜎)

Fig. 5. The aggregated data 𝑡𝑘min, 𝑗 and the best fit model 𝑓 (𝑘min, 𝜎) sliced along the 𝜎 axis.

100 200 300 400 500 600 700 800 900 1,000 1,100 1,200
103

104

105

106

𝜎

Ti
m
e
ov
er

𝑓 𝑘
(𝑘

m
in
,𝜎
),
se
c.

5–95% confidence interval
10–90% confidence interval
25–75% confidence interval
Median running time
𝑓 (𝑘min, 𝜎)

Fig. 6. This graph demonstrates the fit of 𝑓𝜎 (𝜎) to the data for all 2 ≤ 𝑘min ≤ 30. The times are divided by 𝑓𝑘 (𝑘min, 𝜎) to compensate
for the varying 𝑘min. Blue areas show the distribution of the data; blue lines are percentiles of the running times.

enough. Further research may build a model of the solver’s running time as a function of three parameters: 𝜎 , 𝑘min and
𝑟 .

5 COMPUTATIONAL EXPERIMENTS WITH REAL-WORLD INSTANCES

To test our solver and study the trade-off between 𝑘min and 𝑟 in BO-GNRM, we use a set of real-world benchmark
instances [6]. This set includes nine instances of various sizes. The largest instance americas large has 𝑚 = 3 485,

Manuscript submitted to ACM

Page 17 of 22 ACM Transactions on information and System Security

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

18 Crampton et al.

𝑛 = 10 127, 𝜎 = 185 294 and around 400 roles according to the best heuristical solutions in the literature. Our approach is
impractical for such large instances as the size of the formulation would be prohibitive. However, some other instances
in this benchmark set are more manageable. The details of the instances we use in this section are given in Table 1.

Instance 𝑚 𝑛 𝜎 density 𝑟min

Domino 79 231 730 4.0% 20
Firewall 2 325 590 36 428 19.0% 10
Healthcare 46 46 1 486 70.2% 14

Table 1. Real-world instances used in this section. The last column gives the minimum number of roles 𝑟min [6]; this is for RMP (i.e.,
𝑘min = 0).

In classic role mining, the UPA matrix is sufficient to define the instance. In GNRM, we also need to define the value
of 𝑟 (the number of roles to be extracted) and the matrix F.

In our experiments, we use three types of the F matrix:

Security: 𝑓𝑖, 𝑗 = upa𝑖, 𝑗 ; the new roles may remove a permission from a user but can never add a new permission;
Availability: 𝑓𝑖, 𝑗 = 1 − upa𝑖, 𝑗 ; the new roles may add a permission to a user but can never remove an existing

permission;
Noise: 𝑓𝑖, 𝑗 = 1 for every 𝑖 and 𝑗 ; the new roles may both remove and add permissions.

In Section 5.1, we focus on the Security instances. We compare all three types of the F matrix in Section 5.2.
Our Gurobi-based solver can be used as an exact solver, but it can also serve as a heuristic if we specify the time

budget. In this section, we use it as a heuristic, however in some cases it proves the optimality of the solutions within
the provided time budget.

5.1 Performance of the solver

Figure 7 shows the trade-off between 𝑘min and 𝑟 for several real-world instances. We experimented with three time
budgets: 100 sec, 1 000 sec and 10 000 sec. All the solutions that were proven optimal by Gurobi within the time budget
were marked with circles. Thus, for example, being given 10000 seconds, the solver proved optimality of solutions for
𝑘min = 1, 2, 3, 4, 19 for the Domino instance. Note that the vertical axes in these plots are logarithmic while 𝑘min can
take any integer value starting from 𝑘min = 0. Thus, we added value 𝑘min = 0 to the logarithmic scale.

Generally, increasing the value of 𝑟 decreases the value of 𝑘 ; indeed, the optimal value of 𝑘min (𝑟) is a monotonically
decreasing function of 𝑟 . However, there are exceptions to this rule in Figure 7, particularly for smaller time budgets. In
many cases, increasing the value of 𝑟 makes the problem harder as the formulation size increases, and the solver might
not be able to find a near-optimal solution within the time budget. In extreme cases, the solver only finds the trivial
solution ua𝑖,ℓ = uaℓ, 𝑗 = 0 for every 𝑖 , 𝑗 and ℓ .

Note that, formally speaking, Figure 7 does not show solutions to BO-GNRM. In practice, one would want to remove
the dominated solutions to obtain the Pareto front and set the upper bounds 𝑘 and 𝑟 . These steps, however, would hide
some of the aspects of the solver’s behaviour, hence we decided to include all the solutions here and below.

Naturally, lower time budgets produce worse solutions in general. However, the difference between the 1 000 sec
time budget and the 10 000 sec time budget is often insignificant. This hints at the proximity of the obtained solutions
to the optimal solutions.
Manuscript submitted to ACM

Page 18 of 22ACM Transactions on information and System Security

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

Bi-objective Optimization in Role Mining 19

0 5 10 15 20 250

100

101

102

𝑟

𝑘
m

in

Domino

0 5 10 150

100

101

102

103

104

105

𝑟

Firewall 2

0 5 10 150

100

101

102

103

𝑟

Healthcare

Time budget 100 sec Time budget 1 000 sec Time budget 10 000 sec
Proven (100 sec) Proven (1 000 sec) Proven (10 000 sec)

Fig. 7. The trade-off between 𝑘min and 𝑟 for several real-world instances (Security type). Each line corresponds to the values obtained
by our Gurobi-based solver within the given time budget (100, 1000 or 10000 seconds). When the time budget was sufficient to prove
optimality of the solution, a corresponding mark was added. Note that we added value 𝑘 = 0 to the vertical axis.

5.2 Comparison of instance types

So far, we experimented with the Security instances only. In this section, we will study how changing the instance type
(Security, Availability, and Noise) affects the properties of the instances. We will use the same real-world UPA matrices
but we will solve instances with various F matrices.

Figure 8 shows the trade-off between 𝑟 and 𝑘 for each instance type, for several real-world instances. As in Section 5.1,
the vertical axes are logarithmic with added 𝑘 = 0. We use the 10 000 seconds time budget for this experiment to be as
close to the optimal solutions as we can.

Noise instances are most flexible, hence, as expected, their 𝑘 does not exceed that of the Security and Availability
instances. The gap between Noise instances and Security/Availability instances depends on the UPAmatrix. For Domino,
the gap between Security and Noise instances is minimal (the ratio between their values of 𝑘min does not exceed 1.025)
whereas the gap between Availability and Noise instances is often significant (the ratio goes up to 53 for small 𝑟).
Intuitively, this makes sense considering that the Domino UPA matrix is very sparse; to ensure that every value ‘1’ is
preserved, one may need to sacrifice many ‘0’s. For the Healthcare instances, we observe that solutions to both Security
and Availability instances are relatively close to the solutions to the Noise instances; the ratio never exceeds 2.3. This is
consistent with the observation that the Healthcare UPAmatrix is relatively dense. It is difficult to make any conclusions
for the Firewall 2 UPA matrix as some of the solutions are likely to be relatively far from optimal; this is evident from
the jumps in the Security and Availability curves.

Finally, judging by the ability of the solver to prove optimality within the 10 000 seconds time budget, the instances
with small 𝑟 or 𝑘min are easier than the instances with both 𝑟 and 𝑘min being relatively large. In other words, we found
that the solver performs well on instances with either of the parameters being small whereas our theoretical results
suggest that parameterisation by either of them is not efficient. Our interpretation of these results is that the problem is
hard even for small 𝑘min or 𝑟 but it is particularly hard (from the practical point of view) when both 𝑘min and 𝑟 are large.

Manuscript submitted to ACM

Page 19 of 22 ACM Transactions on information and System Security

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

20 Crampton et al.

0 5 10 15 20 250

100

101

102

103

104

𝑟

𝑘
m

in

Domino

0 5 10 150

100

101

102

103

104

105

𝑟

Firewall 2

0 5 10 150

100

101

102

103

𝑟

Healthcare

Security Availability Noise
Proven (Security) Proven (Availability) Proven (Noise)

Fig. 8. The effect of the instance type (Security, Availability or Noise) on the trade-off between 𝑘min and 𝑟 . The time budget is
10 000 sec. Note that we added value 𝑘min = 0 to the vertical axis.

6 CONCLUDING REMARKS

This paper introduces the Generalized Noise Role Mining problem (GNRM). We believe this is a useful contribution
to the literature on role mining, not least because it allows us to define security- and availability-aware role mining
problems. We extended GNRM to BO-GNRM, a bi-objective optimization variant of GNRM that allows us to find an
optimal balance between the number of roles 𝑟 and the number 𝑘 of deviations from the original authorization matrix.

We have shown that GNRM and BO-GNRM are fixed-parameter tractable, which means that they can be solved in a
reasonable amount of time, provided problem instances only require solutions in which 𝑟 + 𝑘 (𝑟 + 𝑘, respectively) are
relatively small. Algorithms for role mining do not need to be particularly fast, but they cannot be exponential in the
size of the input, given the size of typical instances. Knowing that algorithms exist that do solve role mining problems,
subject to certain constraints on the solution, provides grounds for cautious optimism about the feasibility of solving
real-world role mining problems.

Our experimental work provides further cause for optimism. In particular, we show that our solution method based
on a general-purpose solver efficiently exploits the FPT structure of the problem allowing us to solve several real-world
instances, sometimes even proving solution optimality. Also, the results on security-aware role mining suggest that
it is possible to find solutions relatively quickly if we require those solutions to preserve the security of the original
configuration, something that is generally desirable.

The work in this paper provides plenty of scope for future work. In particular, we would like to explore whether our
work on matrix decomposition and FPT results can be extended to other variants of role mining (see [16, Section 2]).
More generally, this paper along with [3, 4] demonstrates usefulness of multi-objective optimization in access control.
Thus, it may be useful to apply multi-objective optimization to other problems in the area.

REFERENCES
[1] Crampton, J., Eiben, E., Gutin, G., Karapetyan, D., and Majumdar, D. Valued authorization policy existence problem. In the 26th ACM Symposium

on Access Control Models and Technologies (2021).

Manuscript submitted to ACM

Page 20 of 22ACM Transactions on information and System Security

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

Bi-objective Optimization in Role Mining 21

[2] Crampton, J., Eiben, E., Gutin, G. Z., Karapetyan, D., and Majumdar, D. Generalized noise role mining. In SACMAT ’22: The 27th ACM
Symposium on Access Control Models and Technologies, New York, NY, USA, June 8 - 10, 2022 (2022), S. Dietrich, O. Chowdhury, and D. Takabi, Eds.,
ACM, pp. 91–102.

[3] Crampton, J., Gutin, G. Z., Karapetyan, D., and Watrigant, R. The bi-objective workflow satisfiability problem and workflow resiliency. J.
Comput. Secur. 25, 1 (2017), 83–115.

[4] Currey, J., McKinstry, R., Dadgar, A., and Gritter, M. Informed privilege-complexity trade-offs in RBAC configuration. In Proceedings of the
25th ACM Symposium on Access Control Models and Technologies, SACMAT 2020, Barcelona, Spain, June 10-12, 2020 (2020), J. Lobo, S. D. Stoller, and
P. Liu, Eds., ACM, pp. 119–130.

[5] Dan, C., Hansen, K. A., Jiang, H., Wang, L., and Zhou, Y. Low rank approximation of binary matrices: Column subset selection and generalizations.
In 43rd International Symposium on Mathematical Foundations of Computer Science, MFCS 2018 (2018), I. Potapov, P. G. Spirakis, and J. Worrell, Eds.,
vol. 117 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 41:1–41:16.

[6] Ene, A., Horne, W., Milosavljevic, N., Rao, P., Schreiber, R., and Tarjan, R. E. Fast exact and heuristic methods for role minimization problems.
In Proceedings of the 13th ACM Symposium on Access Control Models and Technologies (New York, NY, USA, 2008), SACMAT ’08, Association for
Computing Machinery, p. 1–10.

[7] Ferraiolo, D. F., Sandhu, R. S., Gavrila, S. I., Kuhn, D. R., and Chandramouli, R. Proposed NIST standard for role-based access control. ACM
Trans. Inf. Syst. Secur. 4, 3 (2001), 224–274.

[8] Fomin, F. V., Golovach, P. A., and Panolan, F. Parameterized low-rank binary matrix approximation. Data Min. Knowl. Discov. 34, 2 (2020),
478–532.

[9] Gillis, N., and Vavasis, S. A. On the complexity of robust PCA and ℓ1-norm low-rank matrix approximation. Mathematics of Operations Research
43, 4 (2018), 1072–1084.

[10] Gregory, D. A., Pullman, N. J., Jones, K. F., and Lundgren, J. R. Biclique coverings of regular bigraphs and minimum semiring ranks of regular
matrices. J. Comb. Theory, Ser. B 51, 1 (1991), 73–89.

[11] Kaisa, M. Nonlinear Multiobjective Optimization, vol. 12 of International Series in Operations Research & Management Science. Kluwer Academic
Publishers, Boston, USA, 1999.

[12] Karapetyan, D., and Gutin, G. Solving the workflow satisfiability problem using general purpose solvers. IEEE Transactions on Dependable and
Secure Computing (2022).

[13] Karapetyan, D., Parkes, A. J., Gutin, G., and Gagarin, A. Pattern-based approach to the workflow satisfiability problem with user-independent
constraints. Journal of Artificial Intelligence Research 66 (2019), 85–122.

[14] Kim, K. H. Boolean Matrix Theory and Applications, vol. 70 of Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker, New York,
1982.

[15] Lu, H., Vaidya, J., and Atluri, V. Optimal boolean matrix decomposition: Application to role engineering. In ICDE (2008), IEEE Computer Society,
pp. 297–306.

[16] Mitra, B., Sural, S., Vaidya, J., and Atluri, V. A survey of role mining. ACM Comput. Surv. 48, 4 (2016), 50:1–50:37.
[17] Molloy, I. M., Li, N., Li, T., Mao, Z., Wang, Q., and Lobo, J. Evaluating role mining algorithms. In SACMAT (2009), ACM, pp. 95–104.
[18] Neumann, G., and Strembeck, M. A scenario-driven role engineering process for functional RBAC roles. In SACMAT (2002), ACM, pp. 33–42.
[19] Sandhu, R. S., Coyne, E. J., Feinstein, H. L., and Youman, C. E. Role-based access control models. Computer 29, 2 (1996), 38–47.
[20] Uzun, E., Atluri, V., Lu, H., and Vaidya, J. An optimization model for the extended role mining problem. In DBSec (2011), vol. 6818 of Lecture

Notes in Computer Science, Springer, pp. 76–89.
[21] Vaidya, J., Atluri, V., Warner, J., and Guo, Q. Role engineering via prioritized subset enumeration. IEEE Transactions on Dependable and Secure

Computing 7, 3 (2010), 300–314.

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

Manuscript submitted to ACM

Page 21 of 22 ACM Transactions on information and System Security

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Cover Letter

Dear editors,

I’d like to submit my paper entitled “Bi-objective Optimization in Role Mining” for possible
publication in TOPS.

Yours sincerely,

Gregory Gutin

Page 22 of 22ACM Transactions on information and System Security

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

