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Role mining is a technique that is used to derive a role-based authorization policy from an existing policy. Given a set of users𝑈 , a set
of permissions 𝑃 and a user-permission authorization relation𝑈𝑃𝐴 ⊆ 𝑈 × 𝑃 , a role mining algorithm seeks to compute a set of roles
𝑅, a user-role authorization relation UA ⊆ U × R and a permission-role authorization relation PA ⊆ R × P , such that the composition
of UA and PA is close (in some appropriate sense) to UPA. Role mining is therefore a core problem in the specification of role-based
authorization policies. Role mining is known to be hard in general and exact solutions are often impossible to obtain, so there exists an
extensive literature on variants of the role mining problem that seek to find approximate solutions and algorithms that use heuristics
to find reasonable solutions efficiently.

In this paper, we first introduce the Generalized Noise Role Mining problem (GNRM) – a generalization of the MinNoise Role
Mining problem – which we believe has considerable practical relevance. In particular, GNRM can produce “security-aware” or
“availability-aware” solutions. Extending work of Fomin et al., we show that GNRM is fixed parameter tractable, with parameter 𝑟 + 𝑘 ,
where 𝑟 is the number of roles in the solution and 𝑘 is the number of discrepancies between UPA and the relation defined by the
composition of UA and PA. We further introduce a bi-objective optimization variant of GNRM, where we wish to minimize both 𝑟 and 𝑘
subject to upper bounds 𝑟 ≤ 𝑟 and 𝑘 ≤ 𝑘 , where 𝑟 and 𝑘 are constants. We show that the Pareto front of this bi-objective optimization
problem (BO-GNRM) can be computed in fixed-parameter tractable time with parameter 𝑟 + 𝑘 . From a practical perspective, a solution
to BO-GNRM gives security managers the opportunity to identify a mined policy offering the best trade-off between the number of
policy discrepancies and the number of roles.

We then report the results of our experimental work using the integer programming solver Gurobi to solve instances of BO-GNRM.
Our key findings are that (a) we obtained strong support that Gurobi’s performance is fixed-parameter tractable, (b) our results suggest
that our techniques may be useful for role mining in practice, based on our experiments in the context of three well-known real-world
authorization policies. We observed that, in many cases, our solver is capable of obtaining optimal solutions when the values of either
𝑘 or 𝑟 are small.

CCS Concepts: • Security and privacy→ Access control; Formal security models; • Theory of computation→ Parameterized
complexity and exact algorithms.
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1 INTRODUCTION

Role-based access control (RBAC) [19] is a mature, standardized [7] and widely deployed means of enforcing authoriza-
tion requirements in a multi-user computer system.

Authorization policies, in effect, specify which interactions are authorized between users of and resources provided
by a computer system. Such policies are used by the system’s access control mechanism to control interactions between
users and resources. RBAC policies authorize users for roles and roles for resources (usually referred to as “permissions”
in the context of RBAC). RBAC can significantly reduce the administrative burden of specifying and maintaining
authorization policies, provided the set of roles is small compared to the number of users and permissions.

The problem of identifying a suitable set of roles for an RBAC system has been studied extensively over the last 25
years. Role engineering is a top-down approach that seeks to identify roles by decomposing and analyzing business
processes [18]. This approach does not generally scale well and requires substantial human effort [16]. Role mining, the
bottom-up approach, attempts to discover a set of roles from a given authorization policy that associates users directly
with permissions. More formally, the Role Mining Problem is defined as follows:

Role Mining Problem (RMP)
Input: A set of users𝑈 , a set of permissions 𝑃 , a user-permission assignment relation UPA ⊆ 𝑈 × 𝑃 , and a natural
number 𝑟 .
Goal: Find a set 𝑅 of at most 𝑟 roles, a user-role relation UA ⊆ 𝑈 × 𝑅, a role-permission assignment relation
PA ⊆ 𝑅 × 𝑃 such that (𝑢, 𝑝) ∈ UPA if and only if there is 𝜌 ∈ 𝑅 such that (𝑢, 𝜌) ∈ UA and (𝜌, 𝑝) ∈ PA.

The value of 𝑟 , for solutions that are of practical use, will be small compared to the sizes of𝑈 and 𝑃 . However, it may
be impossible to find a solution to RMP in which 𝑟 is sufficiently small. Hence, approximate solutions are often sought,
in which 𝑟 is small and the composition of UA and PA is close, in some suitable sense, to UPA.

A substantial literature now exists on role mining. The problem is known to be hard in general and usually impossible
to solve exactly (assuming the number of roles must be small relative to the number of users), so many approximate
and heuristic techniques have been developed (see the survey paper of Mitra et al. [16]).

Recent work by Fomin et al. [8] has shown that a particlar, well-known variant of the role mining problem is
fixed-parameter tractable (FPT). Informally, this variant is NP-hard, like many role mining problems, so any exact
algorithm to solve the problem is unlikely to be polynomial in the size of the problem’s input, unless P = NP. However,
there exists an algorithm (an FPT algorithm) whose running time is exponential in some of the input parameters, but
polynomial in the others. Thus, this algorithm may well be effective if the relevant parameters are small in instances of
the problem that arise in practice.

Informally, the problem considered by Fomin et al. takes a relation UPA ⊆ 𝑈 ×𝑃 and natural numbers 𝑟 and 𝑘 as input.
The goal is to find a set of roles 𝑅 of cardinality less than or equal to 𝑟 , and relations UA ⊆ 𝑈 × 𝑅 and PA ⊆ 𝑅 × 𝑃 such
that |UPA Δ (UA ◦ PA) | ≤ 𝑘 (where UA ◦ PA denotes the composition of relations UA and PA and Δ denotes symmetric
set difference). In other words, the composition of UA and PA has to be similar (as defined by 𝑘) to UPA. The assumption
is that 𝑘 and 𝑟 will be small parameters. This problem has been studied by the RBAC community and is usually known
as the MinNoise Role Mining Problem (MNRP) [16].
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Bi-objective Optimization in Role Mining 3

One potential problem with MNRP is that it doesn’t distinguish between (a) an element that is in UPA but not in
UA ◦ PA (which means some user is no longer authorized for some permission), and (b) an element that is in UA ◦ PA
and not in UPA (which means that some user is now incorrectly authorized for some permission). We believe that in
certain situations it will be important to insist that no additional authorizations are introduced by role mining (what we
will refer to as security-aware role mining), while in other situations we may require that no authorizations are lost by
role mining (availability-aware role mining).

In this paper, we introduce the GenNoise Role Mining (GNRM), of which MNRP is a special case. Moreover,
Security-aware Role Mining and Availability-aware Role Mining are also special cases. We extend the results of
Fomin et al. by proving that GNRM is also FPT with parameter 𝑘 + 𝑟 .

Our other theoretical contribution is to introduce a bi-objective optimization version of GNRM, called BO-GNRM,
where we wish to minimize both 𝑟 and 𝑘 subject to upper bounds 𝑟 and 𝑘 , respectively. We show that the BO-GNRM is
FPT with parameter 𝑟 + 𝑘 . Solving BO-GNRM would allow an organization to select an appropriate solution, based on
the needs to balance the number of roles against the number of deviations from the original authorization matrix. Note
that in order to solve BO-GNRM we use a one-objective optimization version of GNRM called OO-GNRM.

We designed a mixed-integer formulation of OO-GNRM and built a solution method based on the Gurobi solver. We
then showed that the performance of our solution method is well-aligned with the expectations for an FPT algorithm.
Furthermore, we tested our method on real-world instances; in many cases, it proved the optimality of solutions for
instances with small 𝑘 and/or 𝑟 .

The remainder of this section contains essential background material and defines GNRM and its bi-objective
optimization version.

1.1 Parameterized complexity

An instance of a parameterized problem Π is a pair (𝐼 , 𝜅) where 𝐼 is the main part and 𝜅 is the parameter; the latter is
usually a non-negative integer. A parameterized problem is fixed-parameter tractable (FPT) if there exists a computable
function 𝑓 such that any instance (𝐼 , 𝜅) can be solved in time O(𝑓 (𝜅) |𝐼 |𝑐 ), where |𝐼 | denotes the size of 𝐼 and 𝑐 is an
absolute constant. An algorithm to solve the problem with this running time is called an FPT algorithm. The class of all
fixed-parameter tractable decision problems is called FPT. The function 𝑓 (𝑥) may grow exponentially as 𝑥 increases,
but the running time may be acceptable if 𝜅 is small for problem instances that are of practical interest. We adopt the
usual convention of omitting the polynomial factor in O(𝑓 (𝜅) |𝐼 |𝑐 ) and write O∗ (𝑓 (𝜅)) instead.

1.2 Matrix decomposition and role mining

A Boolean matrix is a matrix in which all entries are either 0 or 1. Let ∨ and ∧ denote the usual logical operators on the
set {0, 1}. We extend these operators to Boolean matrices in the natural way [14]:

(1) the sum A ∨ B of Boolean matrices A and B is computed as usual with addition replaced by ∨;
(2) the product A ∧ B of Boolean matrices A and B is computed as usual with multiplication replaced by ∧ and

addition by ∨. Thus, if C = A ∧ B then

𝑐𝑖 𝑗 =

𝑛∨
𝑝=1

𝑎𝑖𝑝 ∧ 𝑏𝑝 𝑗 ,

where 𝑛 is the number of columns in A and the number of rows in B.

Henceforth all matrices are Boolean, unless specified otherwise.
Manuscript submitted to ACM
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4 Crampton et al.

Any binary relation 𝑋 ⊆ 𝑌 × 𝑍 may be represented by a matrix X with rows indexed by 𝑌 and columns indexed by
𝑍 , where X𝑖 𝑗 = 1 iff (𝑖, 𝑗) ∈ 𝑋 . Using matrices we can reformulate the Role Mining Problem (RMP) as follows. Given a
matrix UPA and an integer 𝑟 , find a matrix UA with 𝑟 columns and a matrix PA with 𝑟 rows such that UPA = UA ∧ PA.
Thus, role mining may be regarded as a matrix decomposition problem.

1.3 Generalized Noise Role Mining

As previously noted, there is often no solution to RMP if 𝑟 is small. In such cases, it is helpful to consider an extension
of RMP called Noise Role Mining [5, 8, 9, 15, 20], where the input includes a natural number 𝑘 and our aim is to find a
matrix UA with 𝑟 columns and a matrix UA with 𝑟 rows such that 𝑑H (UPA,UA ∧ PA) ≤ 𝑘 , where 𝑑H (UPA,UA ∧ PA)
is the number of entries in which UPA and UA ∧ PA differ (i.e., the Hamming distance between them).

Noise Role Mining could be seen as a rather crude approach to the problem of decomposing UPA, as it doesn’t
distinguish between zeroes in UPA being replaced with ones in UA ∧ PA and ones being replaced with zeroes. In the
first case, a user is assigned to a permission that they didn’t previously have – a potential security problem. In the
second case, a user no longer has a permission that they had been assigned, meaning the user may not be able to
perform some of their responsibilities – an availability problem.

Thus, it will be appropriate in many cases to find UA and PA such that either security or availability, as specified by
UPA is preserved. Informally, a refinement of Noise Role Mining, then, would be to define Availability-preserving
Role Mining, where we require UPA ≤ UA ∧ PA, in the sense that every entry in UPA is less than or equal to the
corresponding entry in UA ∧ PA. In other words, every permission authorized by UPA is also authorized by UA ∧ PA.
Similarly, we could define Security-preserving Role Mining, where we require UPA ≥ UA ∧ PA.

An even more fine-grained problem – the topic of this paper – is Generalized Noise Role Mining (GNRM), of
which Noise Role Mining, Availability-preserving Role Mining and Security-preserving Role Mining are all
special cases. In GNRM we specify at the user level whether the decomposition into UA and PA is security-preserving,
availability-preserving, neither, or both.

We now introduce some notation to enable us to express GNRM formally. For a positive integer 𝑡 , let [𝑡] denote
{1, 2, . . . , 𝑡}. Let A and B be𝑚 ×𝑛 Boolean matrices and F be an𝑚 ×𝑛 label matrix with entries f𝑖 𝑗 ∈ {⊤,⊥}. The matrix
F is used to define a generalized distance metric between A and B. For any (𝑖, 𝑗) ∈ [𝑚] × [𝑛] the 𝐹 -distance from entry
a𝑖 𝑗 to entry b𝑖 𝑗 of matrices A and B is

sdF (a𝑖 𝑗 , b𝑖 𝑗 ) =

∞ f𝑖 𝑗 = ⊥ and a𝑖 𝑗 ≠ b𝑖 𝑗 ,

|a𝑖 𝑗 − b𝑖 𝑗 | otherwise

In other words, if we are not allowed to change a𝑖 𝑗 in order to obtain b𝑖 𝑗 (symbol ⊥) and a𝑖 𝑗 ≠ b𝑖 𝑗 then the 𝐹 -distance
from a𝑖 𝑗 to b𝑖 𝑗 is∞. Otherwise, it is just |a𝑖 𝑗 − b𝑖 𝑗 |.

We define sdF (A,B) =
∑𝑚
𝑖=1

∑𝑛
𝑗=1 sdF (a𝑖 𝑗 , b𝑖 𝑗 ). Thus, the distance from A to B is finite if and only if for every

(𝑖, 𝑗) ∈ [𝑚] × [𝑛] such that a𝑖 𝑗 ≠ b𝑖 𝑗 we have f (𝑎𝑖 𝑗 ) = ⊤.
We now define Generalized Noise Role Mining as a parameterized problem.
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Bi-objective Optimization in Role Mining 5

Generalized Noise Role Mining (GNRM)
Input: An𝑚 × 𝑛 user-permission assignment matrix UPA, a label matrix F, and integers 𝑘 ≥ 0 and 𝑟 ≥ 1.
Parameter: 𝑘 + 𝑟
Goal: Is there an𝑚 × 𝑟 user-role assignment matrix UA, an 𝑟 ×𝑛 role-permission assignment matrix PA such that
sdF (UPA,UA ∧ PA) ≤ 𝑘? If the answer is yes, then return such matrices UA and PA.

Note that GNRM is parameterized by the sum 𝑘 + 𝑟 . This is because Noise Role Mining parameterized separately by
either 𝑘 or 𝑟 is intractable: in particular, for 𝑘 = 0 we have Exact Role Mining which is NP-hard [10]; and for 𝑟 = 1,
Noise Role Mining is NP-hard [5, 9].

Note also that GNRM reduces to:

• Noise Role Mining if f𝑖 𝑗 = ⊤ for all (𝑖, 𝑗) ∈ [𝑚] × [𝑛];
• Availability-preserving Role Mining if f𝑖 𝑗 = ⊤ if and only if UPA𝑖 𝑗 = 0; and
• Security-preserving Role Mining if f𝑖 𝑗 = ⊤ if and only if UPA𝑖 𝑗 = 1.

1.4 Bi-objective GNRM

Note that GNRM is a decision problem, but it is clear that in practice GNRM may be viewed as an optimization problem.
In such an optimization problem it is natural to minimize two objective functions 𝑟 and 𝑘 . It is also natural to impose
upper bounds on both 𝑟 and 𝑘 as if at least one of them too large then the solution may well be of no practical interest.
Thus, let 𝑟 and 𝑘 be upper bounds for 𝑟 and 𝑘 , respectively.

This leads to the following bi-objective GNRM problem (BO-GNRM): minimize 𝑟 and 𝑘 subject to 𝑟 ≤ 𝑟 and
𝑘 ≤ 𝑘 such that yes-answer matrices UA and PA for GNRM exist. To state BO-GNRM more formally, we will use the
terminology below, which is an adaptation of multi-objective optimization terminology, see e.g. [11], for BO-GNRM.
We call a pair (𝑟 ′, 𝑘′) of integers a feasible solution of BO-GNRM if given UPA, F and 𝑟 ′ (≥ 1) and 𝑘′ (≥ 0), the answer
for GNRM is yes. A feasible solution (𝑟 ′, 𝑘′) of BO-GNRM is Pareto optimal if there is no feasible solution (𝑟 ′′, 𝑘′′) such
that either 𝑟 ′′ < 𝑟 ′ and 𝑘′′ ≤ 𝑘′ or 𝑟 ′′ ≤ 𝑟 ′ and 𝑘′′ < 𝑘′ . Formally, the goal of BO-GNRM is to find the Pareto front,
which is the set of all Pareto optimal solutions.

Note that bi-objective optimization has already been used for other access control problems, see e.g. [3, 4].

Paper organization. The rest of the paper is organized in the following way. In Section 2 we describe our FPT
algorithms for solving GNRM and BO-GNRM. We describe and discuss our experimental results in Sections 3, 4, and 5.
Finally, in Section 6, we conclude the paper with a summary of our contributions and ideas for future work.

A preliminary version of this paper [2] has appeared in proceedings of SACMAT-2022. Sections 2.3, 3, 4 and 5 consist
of new material, not published in [2].

2 FPT ALGORITHMS FOR GNRM AND BO-GNRM

Fomin et al. [8] proved that Noise Role Mining parameterized by 𝑘 + 𝑟 is FPT. We will extend this result to GNRM by
reducing it to the Generalized P-matrix Approximation problem. The reduction is similar to the one used in [8].
However, Fomin et al. [8] solved Noise Role Mining as a decision problem where the aim is only to decide whether
the given instance is a yes- or no-instance. In contrast, we solve Generalized Noise Role Mining as a problem where
if the given instance is a yes-instance then a solution is also returned.
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6 Crampton et al.

We first define Generalized P-matrix Approximation and prove that it is FPT. We then explain how this problem
is used to establish that GNRM is FPT.

2.1 Generalized P-matrix approximation

Let P be a 𝑝 × 𝑞 matrix (sometimes called a pattern matrix). We say that an𝑚 × 𝑛 matrix B is a P-matrix if there is a
partition {𝐼1, . . . , 𝐼𝑝 } of [𝑚] and a partition {𝐽1, . . . , 𝐽𝑞} of [𝑛] such that for every 𝑖 ∈ [𝑝], 𝑗 ∈ [𝑞], 𝑠 ∈ 𝐼𝑖 , 𝑡 ∈ 𝐽 𝑗 , we have
𝑏𝑠𝑡 = 𝑝𝑖 𝑗 . Note that, by definition, every set in the partitions of [𝑚] and [𝑛] is non-empty. (Thus, 𝑝 ≤ 𝑚 and 𝑞 ≤ 𝑛.) In
other words, B is a P-matrix if P can be obtained from B by first permuting rows and columns, then partitioning the
resulting matrix into blocks such that in each block L all entries are of the same value 𝑣 (L) and finally replacing every
block L by one entry of value 𝑣 (L).

For a example, let P =

[
1 0
1 1

]
. Then Q1 and Q2 below are both P-matrices: permuting columns 2 and 3 in each

matrix, then partitioning (into blocks of equal size for Q1, and between rows 1 and 2 and columns 2 and 3 for Q2) and
“contracting” gives us P.

Q1 =


1 0 1 0
1 0 1 0
1 1 1 1
1 1 1 1


Q2 =


1 0 1 0 0 0
1 1 1 1 1 1
1 1 1 1 1 1


Generalized P-Matrix Approximation
Input: An𝑚 × 𝑛 matrix A, a label matrix F, a 𝑝 × 𝑞 matrix P, and a nonnegative integer 𝑘 .
Goal: Is there an𝑚 × 𝑛 P-matrix B such that sd𝐹 (A,B) ≤ 𝑘? If the answer is yes, then return such a matrix B.

Very informally, this problem asks whether there exists a matrix B that is (almost) the same as A and contains
the rows and columns of P, and, if so, returns B. Fomin et al. [8] used the special case of Generalized P-Matrix
Approximation, where f𝑖 𝑗 = ⊤ for every (𝑖, 𝑗) ∈ [𝑚] × [𝑛] . It is called the P-Matrix Approximation problem. We
will use the following two results by Fomin et al. [8].

Observation 2.1. Let P be a 𝑝 × 𝑞 matrix. Then, every P-matrix B has at most 𝑝 pairwise distinct rows and at most 𝑞

pairwise distinct columns.

Proposition 2.2. Given an 𝑚 × 𝑛 matrix A and a 𝑝 × 𝑞 matrix P, there is an algorithm that runs in time

2𝑝 log𝑝+𝑞 log𝑞 (𝑛𝑚)O(1) and correctly outputs whether A is a P-matrix.

If A has at most 𝑝 − 1 rows or at most 𝑞 − 1 columns, then there is no 𝑚 × 𝑛 matrix B that is a P-matrix and
sdF (A,B) ≤ 𝑘 . In that case, the instance is a no-instance. Let us now assume that A has at least 𝑝 rows and at least 𝑞
columns.

The next lemma was proved in [8] for P-Matrix Approximation. Note that replacing ⊤ in f𝑖 𝑗 = ⊤ by ⊥ for some
entries f𝑖 𝑗 will only reduce the set of yes-instances of Generalized P-Matrix Approximation. Thus, the next lemma
follows from its special case in [8].

Lemma 2.3. If A has at least 𝑝 + 𝑘 + 1 pairwise distinct rows or at least 𝑞 + 𝑘 + 1 pairwise distinct columns, then output

that (A, F, P, 𝑘) is a no-instance of Generalized P-Matrix Approximation.

This lemma implies the following reduction/preprocessing rule.
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Bi-objective Optimization in Role Mining 7

Reduction Rule 1. Let A be a matrix. If A has at least 𝑝 + 𝑘 + 1 pairwise distinct rows or at least 𝑞 + 𝑘 + 1 pairwise

distinct columns, then output that (A, F, P, 𝑘) is a no-instance of Generalized P-Matrix Approximation.

To simplify an instance (A, F, P, 𝑘) of Generalized P-Matrix Approximation, we can apply the following reduction
rule exhaustively. If a row a𝑖 is deleted by the reduction rule, the label matrix F does not change for the other rows. This
means that for the reduced instance withmatrixA′, the label matrix is F restricted to the rows ofA′ i.e. {a1, . . . , a𝑚}\{a𝑖 }.
For simplicity of presentation, the label matrix for A′ will still be denoted by F.

We define a second reduction rule that is used to delete superfluous identical rows and columns.

Reduction Rule 2. If A has at least max{𝑝, 𝑘} + 2 identical rows, then delete one of these identical rows. Similarly, if A
has at least max{𝑞, 𝑘} + 2 identical columns, then delete one of these identical columns.

We say two instances of Generalized P-Matrix Approximation are equivalent if they are both either yes-instances
or no-instances. Fomin et al. proved that any application of Reduction Rule 2 to an instance of P-Matrix Approximation
returns an equivalent instance of the problem [8, Claim 7]. It is easy to verify that the arguments in their proof of Claim
7 also apply to Generalized P-Matrix Approximation.

Applications of the two reductions rules described above either determine that the input instance is a no-instance or
produce an equivalent instance with the following properties.

Lemma 2.4. Let (A, F, P, 𝑘) be an instance of Generalized P-Matrix Approximation. Then, there exists a polynomial-

time algorithm that either returns “no-instance” or transforms (A, F, P, 𝑘) into an equivalent instance (A′, F, P, 𝑘) of
Generalized P-Matrix Approximation. Moreover the following properties are satisfied.

(1) The matrix A′ has at least 𝑝 rows, at least 𝑞 columns, at most (max{𝑝, 𝑘} +1) (𝑝 +𝑘) rows and at most (max{𝑝, 𝑘} +
1) (𝑝 + 𝑘) columns.

(2) Given a P-matrix B′ such that sdF (A′,B′) ≤ 𝑘 , in polynomial time we can compute a P-matrix B such that

sdF (A,B) ≤ 𝑘 .

Proof. Let (A, P, 𝑘) be an input instance of Generalized P-Matrix Approximation. As𝑚 ≥ 𝑝 and 𝑛 ≥ 𝑞, if A has
at most 𝑝 − 1 rows or has at most 𝑞 − 1 columns, then there is no𝑚 × 𝑛 P-matrix B such that sdF (A,B) ≤ 𝑘 . In such a
case, we return “no-instance.” Next, we apply Reduction Rule 1 to check the number of pairwise distinct rows as well as
the number of pairwise distinct columns in A. If A has 𝑝 + 𝑘 + 1 pairwise distinct rows or 𝑞 + 𝑘 + 1 pairwise distinct
columns, then we return “no-instance”. After that, we apply Reduction Rule 2 exhaustively and let A′ be the obtained
matrix. We also obtain a stack 𝑆 which contains all deleted rows and columns.

We return (A′, F, P, 𝑘) as the output instance. Clearly, A′ has at most 𝑝 + 𝑘 pairwise distinct rows and at most
𝑞 + 𝑘 pairwise distinct columns. Moreover, A′ has at least 𝑝 rows and at least 𝑞 columns. Also, A′ can have at most
max{𝑝, 𝑘} + 1 pairwise identical rows and at most max{𝑞, 𝑘} + 1 pairwise identical columns. This means that A′ has at
most (max{𝑝, 𝑘} + 1) (𝑝 +𝑘) rows and at most (max{𝑞, 𝑘} + 1) (𝑞 +𝑘) columns. This completes the proof that property (1)
holds.

Suppose that B′ is a P-matrix such that sdF (A′,B′) ≤ 𝑘 . Note that at any intermediate stage, when a row r (a
column c, respectively) was deleted from A, there were at least (max{𝑝, 𝑘} + 1) additional rows identical to r (at least
(max{𝑞, 𝑘} + 1) additional columns identical to c, respectively). Hence, in A′, if a row r or a column c was deleted by
Reduction Rule 2, then there are exactly max{𝑝, 𝑘} + 1 rows identical to r (exactly max{𝑞, 𝑘} + 1 columns identical to c,
respectively). Since sdF (A′,B′) ≤ 𝑘 , at most 𝑘 entries with label ⊤ identical to r (c, respectively) were modified in B′.
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8 Crampton et al.

Thus, B′ must have at least one row identical to r (at least one column identical to c, respectively) if r (c, respectively) was
deleted by Reduction Rule 2. Therefore, the deleted rows (columns, respectively) are identical to some rows (columns,
respectively) which are the same in in A′ and B′. Thus, reinstating the deleted rows and columns using stack 𝑆 , we
obtain matrices A and B such that B is a P-matrix and sdF (A,B) ≤ 𝑘 . □

Theorem 2.5. Generalized P-Matrix Approximation can be solved in time 2𝑝 log𝑝+𝑞 log𝑞 (𝑛𝑚)O(1) ((max{𝑝, 𝑘} +
1) (𝑝 + 𝑘) (max{𝑞, 𝑘} + 1) (𝑞 + 𝑘))𝑘 .

Proof. Let (A, F, P, 𝑘) be an instance of Generalized P-Matrix Approximation. First, we invoke the polynomial-
time algorithm of Lemma 2.4 to either determine that the input instance is a no-instance or generate an instance
(A′, F, P, 𝑘) satisfying properties (1) and (2). Recall that the first property says that A′ has at most (max{𝑝, 𝑘} + 1) (𝑝 +𝑘)
rows, and at most (max{𝑞, 𝑘} + 1) (𝑞 + 𝑘) columns. This means that A′ has at most (max{𝑝, 𝑘} + 1) (𝑝 + 𝑘) (max{𝑞, 𝑘} +
1) (𝑞 + 𝑘) entries. We then consider all possible sets of at most 𝑘 entries. For every entry of such a set, if the label of an
entry is ⊤, we will modify it. This results in a modified matrix B′. We then invoke Proposition 2.2 to check whether B′ is
a P-matrix or not. This checking takes 2𝑝 log𝑝+𝑞 log𝑞 (𝑛𝑚)O(1) -time. If B′ is a P-matrix, it is a solution to Generalized
P-Matrix Approximation for the instance (A′, F,B′, 𝑘) as sdF (A′,B′) ≤ 𝑘 (since we changed at most 𝑘 entries in A′).
Then, we make use of property (2) to construct B satisfying sdF (A,B) ≤ 𝑘 and return B as a solution of Generalized
P-Matrix Approximation for the instance (A, F,B, 𝑘). Recall that this step takes polynomial time. Hence, the overall
algorithm takes 2𝑝 log𝑝+𝑞 log𝑞 (𝑛𝑚)O(1) ((max{𝑝, 𝑘} + 1) (𝑝 + 𝑘) (max{𝑞, 𝑘} + 1) (𝑞 + 𝑘))𝑘 time. □

2.2 GNRM is FPT

We now explain how the algorithm for Generalized P-Matrix Approximation is used to solve GNRM and thus show
it is FPT. The basic strategy is to consider all possible pairs of matrices whose product P could provide the basis for
a solution to GNRM. The number of such pairs is bounded above by a function of 𝑟 . For each such P, we determine
whether the Generalized P-Matrix Approximation instance (UPA, F, P, 𝑘) has a solution, in which case we can then
compute a solution to the GNRM instance.

Lemma 2.6. Let P be a 𝑝 × 𝑞 matrix such that P = X ∧ Y for a 𝑝 × 𝑟 matrix X and an 𝑟 × 𝑞 matrix Y. Furthermore,

consider an𝑚 × 𝑛 matrix B which is a P-matrix. Then, we can in polynomial time obtain an𝑚 × 𝑟 matrix X∗, and 𝑟 × 𝑛

matrix Y∗ such that B = X∗ ∧ Y∗.

Proof. As B is a P-matrix, there are partitions {𝐼1, . . . , 𝐼𝑝 } of [𝑚] and {𝐽1, . . . , 𝐽𝑞} of [𝑛] such that for every 𝑖 ∈
[𝑝], 𝑗 ∈ [𝑞], 𝑠 ∈ 𝐼𝑖 , 𝑡 ∈ 𝐼 𝑗 , b𝑠𝑡 = p𝑖 𝑗 .

We initialize X∗ = X and Y∗ = Y. Consider an entry p𝑖 𝑗 . Let x𝑖 be the 𝑖’th row of X and y𝑗 the 𝑗 ’th column of Y; then
x𝑖 ∧ y𝑗 = p𝑖 𝑗 . Let 𝑐 ∈ [𝑝] and 𝑑 ∈ [𝑞] such that 𝑖 ∈ 𝐼𝑐 and 𝑗 ∈ 𝐽𝑑 . Then, for any 𝑠 ∈ 𝐼𝑐 and 𝑡 ∈ 𝐽𝑑 , set 𝑏𝑠𝑡 = p𝑖 𝑗 . Then,
for any 𝑠 ∈ 𝐼𝑐 and for any 𝑡 ∈ 𝐼𝑑 , we insert x𝑖 as the 𝑠’th row of X∗ and y𝑗 as the 𝑡 ’th column of Y∗. □

The Boolean rank of a matrix A, denoted BRank(A), is the minimum natural number 𝑟 such that A = B ∧ C, where
B and C are matrices such that the number of columns in B and the number of rows in C is 𝑟 . Thus, a matrix A has
Boolean rank 1 if and only if A = x ∧ y𝑇 for some column-vectors x and y. In fact, BRank(A) = 𝑟 if and only if 𝑟 is the
minimum natural number such that A = X(1) ∨ · · · ∨ X(𝑟 ) , where matrices X(1) , . . . ,X(𝑟 ) are of Boolean rank 1 [14].

Theorem 2.7. Generalized Noise Role Mining admits an O∗ (2O(𝑟2𝑟+𝑟𝑘 ) )-time algorithm.
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Bi-objective Optimization in Role Mining 9

Proof. Let B be an𝑚 × 𝑛-matrix and let 𝑟 be the Boolean rank of B. Thus, there are 𝑟 matrices B(1) , . . . ,B(𝑟 ) , each
of Boolean rank 1, such that B = B(1) ∨ · · · ∨B(𝑟 ) , where for each 𝑖 ∈ [𝑟 ], B(𝑖 ) = x𝑖 ∧ (y𝑖 )𝑇 for some column-vectors x𝑖

and y𝑖 . It can be shown by induction on 𝑟 that B has at most 2𝑟 distinct rows and at most 2𝑟 distinct columns.1 Therefore,
B is of Boolean rank at most 𝑟 if and only if there is a 𝑝 × 𝑞 matrix P of Boolean rank at most 𝑟 for 𝑝 = min{2𝑟 ,𝑚} and
𝑞 = min{2𝑟 , 𝑛} such as B is a P-matrix.

Moreover, an𝑚 × 𝑛-matrix B is of rank 𝑟 if 𝑟 is the minimum natural number such that B = C ∧ D, where C is an
𝑚 × 𝑟 -matrix and C is an 𝑟 ×𝑛-matrix. Hence, Generalized Noise Role Mining can be reformulated as follows: Decide
whether there is a 𝑝 × 𝑞-pattern matrix P of Boolean rank 𝑟 and an𝑚 × 𝑛 P-matrix B such that sdF (UPA,B) ≤ 𝑘 and if
B does exist then find matrices UA and PA of sizes𝑚 × 𝑟 and 𝑟 × 𝑛, respectively, such that B = UA ∧ PA.

Thus, to solve Generalized Noise Role Mining with input (UPA, F, 𝑘), we can use the following algorithm:

1. Generate all pairs (X,Y) of matrices of sizes 𝑝 × 𝑟 and 𝑟 × 𝑞, respectively, and for each such pair compute
P = X ∧ Y;

2. For each P, solve Generalized P-Matrix Approximation for the instance (UPA, F, P, 𝑘). If (UPA, F, P, 𝑘) is a
yes-instance, then using the algorithm of Lemma 2.6 return matrices UA and PA of sizes𝑚 × 𝑟 and 𝑟 × 𝑛 such
that B = UA ∧ PA, where B is the solution of the instance (UPA, F, P, 𝑘);

3. If all instances above are no-instances of Generalized P-Matrix Approximation, return “no-instance.”

It remains to evaluate the running time of the above algorithm. Since 𝑝 ≤ 2𝑟 and 𝑞 ≤ 2𝑟 , there are at most 2O(𝑟2𝑟 )

pairs (X,Y), and we can compute all matrices P in time 2O(𝑟2𝑟 ) . Thus, the running time of the algorithm is dominated
by that of Step 2. The running time of Step 2 is upper bounded by the number of matrices P (it is equal to 2O(𝑟2𝑟 ) )
times the maximum running time of solving Generalized P-Matrix Approximation on an instance (UPA, F, P, 𝑘) and
computing UA and PA, if the instance is a yes-instance. By Lemma 2.6, Theorem 2.5 and the bounds 𝑝 ≤ 2𝑟 , 𝑞 ≤ 2𝑟 , the
maximum running time is upper bounded by O∗ (2O(𝑟2𝑟+𝑟𝑘 ) ). It remains to observe that 2O(𝑟2𝑟 ) · O∗ (2O(𝑟2𝑟+𝑟𝑘 ) ) =
O∗ (2O(𝑟2𝑟+𝑟𝑘 ) ). □

2.3 Solving BO-GNRM

To design an algorithm for computing the Pareto front of BO-GNRM, let us consider a related problem, the one-objective
GNRM problem (OO-GNRM): compute the minimum value 𝑘min (𝑟 ) of 𝑘 for every 𝑟 ∈ [𝑟 ] such that 𝑘min (𝑟 ) ≤ 𝑘 . In
other words, given 𝑟 , 𝑘min (𝑟 ) is the smallest number of discrepancies for a solution containing 𝑟 roles. OO-GNRM
can be easily solved by running the O∗ (2O(𝑟2𝑟+𝑟𝑘 ) )-time algorithm of Theorem 2.7 for 𝑘 ∈ {0, 1, . . . , 𝑘}.2 (Note that if
𝑘min (𝑟 ) > 𝑘 then there is no solution to BO-GNRM for that value of 𝑟 .) This allows us to compute the Pareto front 𝑃 of
BO-GNRM as follows:

𝑃 = {(𝑟, 𝑘min (𝑟 )) : 𝑟 ∈ [𝑟 ], 0 ≤ 𝑘min (𝑟 ) ≤ 𝑘, 𝑘min (𝑟 ) < 𝑘min (𝑟 − 1) if 𝑟 ≥ 2} (1)

Figure 1 illustrates the notions introduced above for 𝑘 = 6 and 𝑟 = 11. In particular, there is no solution such that
𝑟 = 1 and 𝑘 is less than the maximum value allowed (6 in this case), and no solution for 𝑟 = 2. In contrast, we can
find solutions for 𝑟 ∈ {3, 4, 5} with 𝑘min (𝑟 ) = 5. Hence (3, 5) belongs to the Pareto front. Similarly (6, 3), (8, 2) and
(9, 0) belong to the Pareto front. An organization can decide which point on the Pareto front is preferable: for example,
1For 𝑟 = 1, since B(1) = x1 ∧ (y1 )𝑇 , B(1) has at most two distinct rows, y1 and the all-zero row, and has at most two distinct columns, x1 and the all-zero
column. Now let 𝑟 ≥ 2. By induction hypothesis, B = B(≤𝑟−1) ∨ B(𝑟 ) , where B(≤𝑟−1) has at most 2𝑟−1 rows and columns and B(𝑟 ) at most two rows
and columns. Since every row (column, respectively) of B is the disjunction of the corresponding rows (columns, respectively) of B(≤𝑟−1) and B(𝑟 ) , the
number of distinct rows (columns, respectively) in B is at most 2𝑟−1 · 2 = 2𝑟 .
2We could introduce a different one-objective optimization version of GNRM, where we minimize 𝑟 . Our choice of minimizing 𝑘 is explained in Section 3.1.
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10 Crampton et al.

𝑟𝑟 = 111

𝑘min

𝑘 = 6

1

Fig. 1. Solutions of OO-GNRM and BO-GNRM, where all the circles are solutions of OO-GNRM and all the large circles form 𝑃 . Note
that points (1, 𝑘min (1) ) and (2, 𝑘min (2) ) are not depicted since 𝑘min (2) > 𝑘 .

having no discrepancies between the original policy and the mined policy using nine roles versus only six roles but
accepting three discrepancies.

By the arguments above, we have the following:

Theorem 2.8. There is an O∗ (2O(𝑟2𝑟+𝑟𝑘 ) )-time algorithm for constructing the Pareto front of BO-GNRM. Thus, BO-GNRM

is FPT with parameter 𝑟 + 𝑘.

3 GNRM SOLVER

To solve the BO-GNRM problem, we use a general-purpose solver. We could have implemented a bespoke FPT algorithm
to solve BO-GNRM, based on our results in the preceding sections. However, we believe using a general-purpose solver
is likely to be more useful in practice. First, the formulation of the problem as an integer program is quite intuitive, and
therefore easier to understand and maintain than a bespoke algorithm that relies on some relatively complex theory.
Second, general-purpose solvers may perform well on instances of a hard problem that is known to be FPT [13]. For
example, an intelligent general-purpose solver might be able to automatically identify and apply reductions during the
pre-solve process leading to an FPT-like behaviour.

In this section, we describe our approach to solving BO-GNRM, the integer programming formulation of OO-GNRM,
and in Section 4 we confirm that the empirical behaviour of this solver is consistent with that expected of an FPT
algorithm. We then apply our solver in Section 5 to real-world instances to solve BO-GNRM.

3.1 The choice of OO-GNRM

Our approach to solving the BO-GNRM is to decompose it into multiple OO-GNRM instances. We have two options: (i)
find 𝑘min (𝑟 ) for each 𝑟 , or (ii) find 𝑟min (𝑘) for each 𝑘 . (Here, 𝑟min (𝑘) is the smallest value of 𝑟 that makes the instance
of GNRM satisfiable for a given 𝑘 .)

Note that the solution size (the number of decision variables in the solution representation) depends on 𝑟 but does
not depend on 𝑘 . This makes it easier technically and computationally to fix 𝑟 and minimise 𝑘 . Also note that the value
of 𝑘min (𝑟 ) ∈ O(𝑚𝑛) whereas 𝑟min (𝑘) ∈ O(𝑚). Indeed, we observed in our experiments that 𝑘min (𝑟 ) can reach large
values for small 𝑟 whereas 𝑟min (𝑘) is relatively small even for 𝑘 = 0. Considering the above observations, we chose
approach (i), i.e. our solver takes 𝑟 as a parameter and searches for 𝑘min (𝑟 ). Then, to obtain the Pareto front for the
BO-GNRM, we use formula (1).
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3.2 Formulation of GNRM

We present a mixed integer programming formulation of the OO-GNRM in order to solve the problem using a general-
purpose solver. Our formulation consists of two matrices of Boolean variables ua𝑖,ℓ , 𝑖 ∈ [𝑚], ℓ ∈ [𝑟 ], and paℓ, 𝑗 , ℓ ∈ [𝑟 ],
𝑗 ∈ [𝑛]. We also use a matrix of auxiliary Boolean variables 𝑑𝑖, 𝑗 , 𝑖 ∈ [𝑚], 𝑗 ∈ [𝑛], representing the discrepancies
between UA ∧ PA and UPA. We use the values 0 and 1 to represent the values ⊥ and ⊤, respectively, in the F matrix.
Figure 2 describes the formulation in detail.

A naïve formulation of the problem would include a matrix of Boolean variables – to represent the product UA∧PA –
and link these variables to the ua𝑖,ℓ and paℓ, 𝑗 variables. Then it would be easy to formulate the constraints and link
the decision variables to variables 𝑑𝑖, 𝑗 . However, knowing the values of upa𝑖, 𝑗 and 𝑓𝑖, 𝑗 for a specific pair (𝑖, 𝑗), we can
formulate the constraints more compactly. Thus, the formulation described in Figure 2 defines the constraints separately
for each combination of values of upa𝑖, 𝑗 and 𝑓𝑖, 𝑗 .3

Minimise
∑︁

𝑖∈[𝑚]

∑︁
𝑗∈[𝑛]

𝑑𝑖, 𝑗 , (2) The objective is to minimise the discrepancies.

For all 𝑖 ∈ [𝑚] and 𝑗 ∈ [𝑛] such that 𝑓𝑖, 𝑗 = 0 and upa𝑖, 𝑗 = 0: Since the discrepancy is not allowed, either ua𝑖,ℓ
or paℓ, 𝑗 has to be zero for every ℓ .ua𝑖,ℓ + paℓ, 𝑗 ≤ 1 ∀ℓ ∈ [𝑟 ], (3)

For all 𝑖 ∈ [𝑚] and 𝑗 ∈ [𝑛] such that 𝑓𝑖, 𝑗 = 0 and upa𝑖, 𝑗 = 1:
We need ua𝑖,ℓ = paℓ, 𝑗 = 1 for some ℓ . We enforce
that at least one of 𝑥𝑖, 𝑗,1 ..𝑥𝑖, 𝑗,𝑟 is 1 and also if
𝑥𝑖, 𝑗,ℓ = 1 then ua𝑖,ℓ = paℓ, 𝑗 = 1.

𝑥𝑖, 𝑗,ℓ ≤ ua𝑖,ℓ ∀ℓ ∈ [𝑟 ], (4)
𝑥𝑖, 𝑗,ℓ ≤ paℓ, 𝑗 ∀ℓ ∈ [𝑟 ], (5)∑︁
ℓ∈[𝑟 ]

𝑥𝑖, 𝑗,ℓ ≥ 1 ∀ℓ ∈ [𝑟 ], (6)

For all 𝑖 ∈ [𝑚] and 𝑗 ∈ [𝑛] such that 𝑓𝑖, 𝑗 = 1 and upa𝑖, 𝑗 = 0: If both ua𝑖,ℓ and paℓ, 𝑗 are ones for some ℓ then
this is a discrepancy.ua𝑖,ℓ + paℓ, 𝑗 ≤ 1 + 𝑑𝑖, 𝑗 ∀ℓ ∈ [𝑟 ], (7)

For all 𝑖 ∈ [𝑚] and 𝑗 ∈ [𝑛] such that 𝑓𝑖, 𝑗 = 1 and upa𝑖, 𝑗 = 1: If either ua𝑖,ℓ = 0 or paℓ, 𝑗 = 0 for every ℓ , this is a
discrepancy. Auxiliary variable 𝑥𝑖, 𝑗,ℓ is forced to 0
if either ua𝑖,ℓ = 0 or paℓ, 𝑗 = 0. If 𝑥𝑖, 𝑗,ℓ = 0 for
every ℓ then we force 𝑑𝑖, 𝑗 = 1.

ua𝑖,ℓ ≥ 𝑥𝑖, 𝑗,ℓ ∀ℓ ∈ [𝑟 ], (8)
paℓ, 𝑗 ≥ 𝑥𝑖, 𝑗,ℓ ∀ℓ ∈ [𝑟 ], (9)∑︁
ℓ∈[𝑟 ]

𝑥𝑖, 𝑗,ℓ ≥ 1 − 𝑑𝑖, 𝑗 ∀ℓ ∈ [𝑟 ], (10)

𝑥𝑖, 𝑗,ℓ ∈ {0, 1} ∀𝑖 ∈ [𝑚], ∀𝑗 ∈ [𝑛], ∀ℓ ∈ [𝑟 ], (11) Auxiliary variables, see the cases where upa𝑖, 𝑗 = 1.
𝑑𝑖, 𝑗 ∈ {0, 1} ∀𝑖 ∈ [𝑚], ∀𝑗 ∈ [𝑛], (12) Indicates whether there is a discrepancy in the

corresponding element.
ua𝑖, 𝑗 ∈ {0, 1} ∀𝑖 ∈ [𝑚], ∀𝑗 ∈ [𝑟 ], (13) Defines the UA matrix.
pa𝑖, 𝑗 ∈ {0, 1} ∀𝑖 ∈ [𝑟 ], ∀𝑗 ∈ [𝑛]. (14) Defines the PA matrix.

Fig. 2. CSP formulation of GNRM.

3The compact formulation performed significantly better than the naïve formulation in our experiments, so we only report results for the compact
configuration.
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12 Crampton et al.

3.3 The choice of the solver

For our conference paper, we used the CP-SAT solver from Google OR-Tools to solve the GNRM problem (the decision
version of BO-GNRM). For this paper, we considered three options:

(1) Solving GNRM using CP-SAT to identify the minimum value of 𝑘 that makes the instance satisfiable (https:
//developers.google.com/optimization/cp/cp_solver);

(2) Solving OO-GNRM using the linear optimisation solver from Google OR-Tools (https://developers.google.com/
optimization/lp); and

(3) Solving OO-GNRM using the Gurobi mixed integer programming solver (https://www.gurobi.com/solutions/
gurobi-optimizer).

Following experimentation, we concluded that Gurobi is considerably faster than the other approaches. For example,
for an instance of size𝑚 × 𝑛 = 25 × 25 and 𝑟 = 5 (with 𝑘min (5) = 22), the Gurobi solver was 86 times faster than the
CP-SAT-solver-based approach and 50 times faster than the linear optimisation solver from OR-Tools. Thus, all the
reported experiments in this paper are conducted with Gurobi. We also attempted a few modifications of the formulation
in Figure 2. Specifically, we tried several approaches to symmetry breaking as well as adding simple custom cuts. None
of these changes improved the performance though; we assume that the internal mechanisms of Gurobi are intelligent
enough to identify all the simple properties of our formulation and exploit them effectively. We also found the default
parameter values of Gurobi to be effective. Apart from the time limit, the only Gurobi parameter that we adjusted in
some experiments was MIPFocus; we set it to 1 to intensify the search for feasible solutions when the solver was used as
a heuristic.

4 DOES THE GUROBI-BASED SOLVER HAVE FPT-LIKE RUNTIME?

In this section, we test the hypothesis that the Gurobi-based solver is capable of exploiting the FPT structure of
GNRM. Since our solver addresses the OO-GNRM, we focus on testing if its running time is FPT-like with respect to
𝑘min = 𝑘min (𝑟 ) when 𝑟 is fixed.

We say that a solver has FPT-like running time if its empirical running time scales polynomially with the size of the
problem instance. As we talk about empirical running time, we focus on ‘typical’ instances rather than the worst case.
However, the concept of a ‘typical’ instance is vague and brings difficulties to the experimental set-up. In the rest of
this section, we introduce a new methodology to identify the scaling of the empirical running time of an algorithm and
use it to show that the Gurobi-based solver has FPT-like running time.

Note that using real-world instances in such a study is generally impractical for the following reasons:

• Such a study requires a large number of instances whereas real-world benchmark sets are usually very limited;
• To draw conclusions about the scaling behaviour of a solver, we need instances with a wide range of parameters

which might not be present in real-world benchmark sets; and
• We need to ensure that the instances have consistent difficulty.

The first two points can easily be addressed by using synthetic instances produced by a pseudo-random instance
generator. The third point, however, remains a challenge even if we use a pseudo-random instance generator. Indeed,
changes in some parameters of the generator such as the instance size may affect the hardness of the instance. In
decision problems, this behaviour can often be explained by shifting between the under- and over-subscribed instance
regions. Then, to keep the hardness of the instances consistent, it is necessary to adjust some other generator parameters.
This approach was used in several other studies, e.g. [1, 12, 13] focusing on the phase-transition region (the region
Manuscript submitted to ACM
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between the under- and over-subscribed instances). However, we could not use this approach in this study as phase
transition is undefined for optimisation problems.

Instead, our approach in this study relies on the median running times across wide ranges of diverse instances of
similar size and value of the parameter. Thus, we measure how the median running time scales with the instance size
and parameter value.

4.1 Pseudo-random instance generator

We adopted a pseudo-random instance generator used in earlier experimental work by Vaidya et al. [21]. The generator
takes an integer 𝑟0 > 0 as a parameter and produces an instance of UPA ∈ R𝑚×𝑛 by creating random UA ∈ R𝑚×𝑟0 and
PA ∈ R𝑟0×𝑛 matrices and multiplying them together: UPA = UA ∧ PA. This means that we know an upper bound on
the number of roles we need to mine. We used the following settings in our generator:

• the number of roles per user was randomly chosen for each user from the interval [0, 𝑟𝑢 ], where 𝑟𝑢 is an instance
generator parameter; and

• the number of permissions per role was randomly chosen for each role from [0, ⌊0.25𝑛⌋].

Thus, the parameters of our generator are as follows:

• 𝑚 is the number of users in the instance;
• 𝑛 is the number of permissions in the instance;
• 𝑟0 is the overall number of roles in the UA matrix used to produce the UPA matrix.
• 𝑟𝑢 is the maximum number of roles per user; 𝑟𝑢 ≤ 𝑟0; and
• 𝑟 is the number of roles that need to be mined; this value does not affect the UPA matrix but is used by the

solver.

4.2 Data collection process

All our computations were performed on a machine based on two Xeon E5-2630 v2 CPUs (2.60 GHz), with 32 GB of
RAM. We used Gurobi 10.0. It was restricted to one thread for the experiments in Section 4, with up to 12 experiments
running in parallel, whereas the number of threads was unrestricted for the experiments in Section 5 but only one
experiment was conducted at a time.

In order to prove that the Gurobi-based solver has FPT-like running time, we would need to generate instances of
various sizes but with fixed parameters 𝑟 and 𝑘min, and plot the running time against the instance size. It was easy to
fix the value of 𝑟 ; we set it to 5 for all the experiments in this section. However, 𝑘min is actually not a parameter of the
instance generator; it is the objective value. Thus, we developed the following methodology.

First, we generated a large set of instances for a wide range of instance generator parameters. By solving each
instance, we obtained the value of 𝑘min for that instance, which then allowed us to select instances based on their
values of 𝑘min. For example, we could see how the running time scaled with the size of the instance for instances with
𝑘min = 12.

This approach, however, has a fundamental issue. Since we used a wide range of instance parameters, it was inevitable
that some of the instances were prohibitively hard. We could put a time limit on the solver but that would skew the
results; the harder instances would not be represented in our set. Our workaround was to add a constraint to the solver
restricting 𝑘min to values up to 30; this made any instances with 𝑘min above 30 infeasible and so we disregarded them.
Note that this did not skew the results as the set of instances for each 𝑘min ≤ 30 was unrestricted.
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As we expected that the hardness of an instance mainly depends on 𝑟 and 𝑘min but not as much on the other instance
generator parameters, restricting the values of 𝑟 and 𝑘min was sufficient to avoid overly hard instances thus making
data collection feasible.

As we mentioned above, the value of 𝑟 was fixed to 5. The values of the other instance generator parameters were
randomly sampled from the following ranges: 𝑛,𝑚 ∈ {10, 11, . . . , 70}, 𝑟0 ∈ {5, 6, . . . , 15}, and 𝑟𝑢 ∈ {1, 2, . . . , 5}. The
selection of the parameters was based on typical values used in the literature and to ensure that the authorisation density
(the proportion of non-zero entries in the UPA matrix) was mainly in the range 5–35%. (All but one of the real-world
datasets commonly used in role mining research have authorisation densities less than 20% [17, Table 1].)

We set 𝑓𝑖, 𝑗 = upa𝑖, 𝑗 to prioritise the security considerations; other settings of 𝑓𝑖, 𝑗 are studied in Section 5.2.
At most one instance per combination of parameters was generated. In total, we produced 110 697 instances of which

56 220 had 𝑘min ≤ 30 and, thus, were included in this study. For each instance, we recorded the running time of the
solver, thus our dataset included the instance parameters, the value of 𝑘min and the solver running time. In Section 4.3,
we describe how this dataset was used to build a model of the solver running time. This in turn was used to support our
hypothesis that the Gurobi-based solver has FPT-like running time.

4.3 Running time model

Our hypothesis is that the median running time of the Gurobi-based solver can be approximated as a product of two
functions: a function of 𝑘min only and a function of the instance size only (as we fixed 𝑟 in this experiment, it is not a
part of the model). If the second function is a polynomial then we can claim that the Gurobi-based solver has FPT-like
running time, meaning that it is suitable for reasonably large instances as long as the value of 𝑘min is small.

We came up with two candidates for the definition of the instance size:

• The size𝑚𝑛 of the UPA matrix; and
• The number of non-zero elements in the UPA matrix, which we denote by 𝜎 .

There are arguments for each of these candidate definitions; indeed, the size of the MIP formulation in Figure 2
depends, in various ways, on both𝑚𝑛 and 𝜎 . Thus, we tested both definitions when fitting running time models. In our
experience, the second definition gives a much better fit, hence we use 𝜎 as the definition of the instance size in the rest
of the paper.

Let 𝑓 (𝑘min, 𝜎) be our model of the median running time of the Gurobi-based solver. While it is possible to fit
𝑓 (𝑘min, 𝜎) to all the data points, the result would be affected by the imbalances in our set of instances; for example, the
lower values of 𝑘min are represented better in our dataset, and this would be reflected in the model. Thus, we designed
the following process to balance the dataset. For each 𝑘min ∈ {0, 1, . . . , 30} and 𝑗 ∈ {1, 2, . . .}, we calculated the median
running time 𝑡𝑘min, 𝑗 over all the instances of size 𝜎 such that 100( 𝑗 − 1) ≤ 𝜎 < 100 𝑗 and with the given value of 𝑘 . We
then fit 𝑓 (𝑘min, 𝜎) to (𝑘min, 100 𝑗 − 50, 𝑡𝑘 𝑗 ) for all the combinations of 𝑘min and 𝑗 where the number of instances within
the corresponding range is at least 10.

The running times across our experiments vary frommilliseconds to minutes; a residual of a few seconds is acceptable
for larger and harder instances but is a poor approximation for small and easy instances. In other words, when fitting
𝑓 (𝑘min, 𝜎), we are concerned with the relative error, not the absolute error. Thus, we use the logarithmic scale for the
running times, i.e. we fit log 𝑓 (𝑘min, 𝜎) to log 𝑡𝑘min, 𝑗 .

According to our initial assumption, the model was a product of two functions: 𝑓 (𝑘min, 𝜎) = 𝑓𝑘 (𝑘min) · 𝑓𝜎 (𝜎). By
visualising the experimental data, we established that 𝑓𝑘 (𝑘min) was exponential in 𝑘min as can be clearly seen in Figure 5,
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however the slope of the curves was different for different values of 𝜎 . In other words, 𝑓𝑘 turned out to be a function of
both 𝑘min and 𝜎 . By estimating the slopes, we established that a good model for 𝑓𝑘 was 𝑓𝑘 (𝑘min, 𝜎) = 𝑐1 · 2𝑘min/(𝑐2𝜎+𝑐3 ) .

A reasonable fit for 𝑓𝜎 (𝜎) could be a parabola or an exponential function with the base close to 1. We tested both
hypotheses and found that a quadratic function fits significantly better than exponential.

Thus, our final model is as follows:

𝑓 (𝑘min, 𝜎) = 𝑐1 · 2𝑘min/(𝑐2𝜎+𝑐3 ) · (𝜎2 + 𝑐4𝜎 + 𝑐5) , (15)

where 𝑐1, 𝑐2, . . . , 𝑐5 are coefficients. This model gives a close fit for the experimental data except for small values of 𝑘min.
Thus, we removed 𝑘min < 2 when fitting the data and obtained the following values of the coefficients: 𝑐1 ≈ 1.11 · 10−4,
𝑐2 ≈ 3.29 · 10−2, 𝑐3 ≈ 4.14, 𝑐4 ≈ −77.3 and 𝑐5 ≈ 7.23 · 103.

Figure 3 shows the fit of 𝑓 (𝑘min, 𝜎) in three dimensions, whereas Figures 4 and 5 show slices through the space of
𝑘min and 𝜎 . Except for small 𝑘min, the model accurately predicts the aggregated running times. It even predicts that, for
small 𝜎 and large 𝑘min, the running time slightly decreases as 𝜎 increases, see Figure 4.
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Fig. 3. This graph demonstrates how our model 𝑓 (𝑘min, 𝜎 ) (surface) fits the data aggregated into 𝑡𝑘min, 𝑗 (scatter plot). The colour
represents the time (the value along the vertical axis).

So far, we focused on the median running times. To see how far the actual running times fall from the predicted
ones, we produced one more visualisation, see Figure 6. It is designed to demonstrate that our 𝑓𝜎 (𝜎) is a good fit for
the data across all values of 𝑘min ≥ 2. To compensate for the differences caused by the variation of 𝑘min, we divided
the running times by 𝑓𝑘 (𝑘min, 𝜎). One can see that all the instances fall into a relatively narrow interval around our
model 𝑓𝜎 (𝜎), except for small 𝜎 . Similarly to the case of small 𝑘min, we assume that small 𝜎 may significantly change
the behaviour of Gurobi.
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Fig. 4. The aggregated data 𝑡𝑘,𝑗 and the best fit model 𝑓 (𝑘, 𝜎 ) sliced along the 𝑘 axis.

Nevertheless, it is clear from this visualisation that a good model for 𝑓𝜎 (𝜎) has to be a polynomial; an exponential
dependence would be a straight line in this semi-logarithmic plot. Our model accurately approximates the data for all 𝜎
and 𝑘min except for several smallest values.

4.4 Conclusions about the FPT-like behaviour

We conclude that (15) is a good fit to the experimental data for 𝑘min ≥ 2. The instances for 𝑘min < 2 are being solved
notably faster than our model predicts. We hypothesise that this behaviour is linked to the use of heuristics within the
Gurobi solver, however further investigation is needed to confirm this.

An algorithm is formally called FPT if its worst-case time complexity is O(𝑓𝑘 (𝑘min) · 𝑓𝜎 (𝜎)), where 𝑓𝜎 (𝜎) is a
polynomial. In our model of the median running times, 𝑓𝜎 (𝜎) is indeed polynomial but 𝑓𝑘 depends not only on 𝑘min
but also on 𝜎 . However, the dependence on 𝜎 is inverted; the larger the 𝜎 , the smaller the 𝑓𝑘 (𝑘min, 𝜎). Thus, we can
substitute 𝜎 = 1 to (15) to obtain an upper bound for the median running times of the Gurobi solver of the standard FPT
form: 𝑓 (𝑘min, 𝜎) = O(2𝑘min/(𝑐2+𝑐3 ) · (𝜎2 + 𝑐4𝜎 + 𝑐5)).

An interesting research question is to understand why the exponent in 𝑓𝑘 (𝑘min, 𝜎) is inversely proportional to 𝜎 . If
we ignore 𝑐3, we see that the exponent in 𝑓𝑘 (𝑘min, 𝜎) is the proportion of values in the UPA matrix that are adjusted by
the role mining: 𝑘min/𝜎 . Our theory does not explain this phenomenon but it is an interesting observation that deserves
future research; for example, there could be parameterisation of the problem based on this ratio.

Overall, these results confirm that general-purpose solvers can be effective on FPT problems. Moreover, they suggest
that our solver might be appropriate for relatively large instances, provided the value of the parameter 𝑘min is small
Manuscript submitted to ACM
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Fig. 6. This graph demonstrates the fit of 𝑓𝜎 (𝜎 ) to the data for all 2 ≤ 𝑘min ≤ 30. The times are divided by 𝑓𝑘 (𝑘min, 𝜎 ) to compensate
for the varying 𝑘min. Blue areas show the distribution of the data; blue lines are percentiles of the running times.

enough. Further research may build a model of the solver’s running time as a function of three parameters: 𝜎 , 𝑘min and
𝑟 .

5 COMPUTATIONAL EXPERIMENTS WITH REAL-WORLD INSTANCES

To test our solver and study the trade-off between 𝑘min and 𝑟 in BO-GNRM, we use a set of real-world benchmark
instances [6]. This set includes nine instances of various sizes. The largest instance americas large has 𝑚 = 3 485,
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𝑛 = 10 127, 𝜎 = 185 294 and around 400 roles according to the best heuristical solutions in the literature. Our approach is
impractical for such large instances as the size of the formulation would be prohibitive. However, some other instances
in this benchmark set are more manageable. The details of the instances we use in this section are given in Table 1.

Instance 𝑚 𝑛 𝜎 density 𝑟min

Domino 79 231 730 4.0% 20
Firewall 2 325 590 36 428 19.0% 10
Healthcare 46 46 1 486 70.2% 14

Table 1. Real-world instances used in this section. The last column gives the minimum number of roles 𝑟min [6]; this is for RMP (i.e.,
𝑘min = 0).

In classic role mining, the UPA matrix is sufficient to define the instance. In GNRM, we also need to define the value
of 𝑟 (the number of roles to be extracted) and the matrix F.

In our experiments, we use three types of the F matrix:

Security: 𝑓𝑖, 𝑗 = upa𝑖, 𝑗 ; the new roles may remove a permission from a user but can never add a new permission;
Availability: 𝑓𝑖, 𝑗 = 1 − upa𝑖, 𝑗 ; the new roles may add a permission to a user but can never remove an existing

permission;
Noise: 𝑓𝑖, 𝑗 = 1 for every 𝑖 and 𝑗 ; the new roles may both remove and add permissions.

In Section 5.1, we focus on the Security instances. We compare all three types of the F matrix in Section 5.2.
Our Gurobi-based solver can be used as an exact solver, but it can also serve as a heuristic if we specify the time

budget. In this section, we use it as a heuristic, however in some cases it proves the optimality of the solutions within
the provided time budget.

5.1 Performance of the solver

Figure 7 shows the trade-off between 𝑘min and 𝑟 for several real-world instances. We experimented with three time
budgets: 100 sec, 1 000 sec and 10 000 sec. All the solutions that were proven optimal by Gurobi within the time budget
were marked with circles. Thus, for example, being given 10000 seconds, the solver proved optimality of solutions for
𝑘min = 1, 2, 3, 4, 19 for the Domino instance. Note that the vertical axes in these plots are logarithmic while 𝑘min can
take any integer value starting from 𝑘min = 0. Thus, we added value 𝑘min = 0 to the logarithmic scale.

Generally, increasing the value of 𝑟 decreases the value of 𝑘 ; indeed, the optimal value of 𝑘min (𝑟 ) is a monotonically
decreasing function of 𝑟 . However, there are exceptions to this rule in Figure 7, particularly for smaller time budgets. In
many cases, increasing the value of 𝑟 makes the problem harder as the formulation size increases, and the solver might
not be able to find a near-optimal solution within the time budget. In extreme cases, the solver only finds the trivial
solution ua𝑖,ℓ = uaℓ, 𝑗 = 0 for every 𝑖 , 𝑗 and ℓ .

Note that, formally speaking, Figure 7 does not show solutions to BO-GNRM. In practice, one would want to remove
the dominated solutions to obtain the Pareto front and set the upper bounds 𝑘 and 𝑟 . These steps, however, would hide
some of the aspects of the solver’s behaviour, hence we decided to include all the solutions here and below.

Naturally, lower time budgets produce worse solutions in general. However, the difference between the 1 000 sec
time budget and the 10 000 sec time budget is often insignificant. This hints at the proximity of the obtained solutions
to the optimal solutions.
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Fig. 7. The trade-off between 𝑘min and 𝑟 for several real-world instances (Security type). Each line corresponds to the values obtained
by our Gurobi-based solver within the given time budget (100, 1000 or 10000 seconds). When the time budget was sufficient to prove
optimality of the solution, a corresponding mark was added. Note that we added value 𝑘 = 0 to the vertical axis.

5.2 Comparison of instance types

So far, we experimented with the Security instances only. In this section, we will study how changing the instance type
(Security, Availability, and Noise) affects the properties of the instances. We will use the same real-world UPA matrices
but we will solve instances with various F matrices.

Figure 8 shows the trade-off between 𝑟 and 𝑘 for each instance type, for several real-world instances. As in Section 5.1,
the vertical axes are logarithmic with added 𝑘 = 0. We use the 10 000 seconds time budget for this experiment to be as
close to the optimal solutions as we can.

Noise instances are most flexible, hence, as expected, their 𝑘 does not exceed that of the Security and Availability
instances. The gap between Noise instances and Security/Availability instances depends on the UPAmatrix. For Domino,
the gap between Security and Noise instances is minimal (the ratio between their values of 𝑘min does not exceed 1.025)
whereas the gap between Availability and Noise instances is often significant (the ratio goes up to 53 for small 𝑟 ).
Intuitively, this makes sense considering that the Domino UPA matrix is very sparse; to ensure that every value ‘1’ is
preserved, one may need to sacrifice many ‘0’s. For the Healthcare instances, we observe that solutions to both Security
and Availability instances are relatively close to the solutions to the Noise instances; the ratio never exceeds 2.3. This is
consistent with the observation that the Healthcare UPAmatrix is relatively dense. It is difficult to make any conclusions
for the Firewall 2 UPA matrix as some of the solutions are likely to be relatively far from optimal; this is evident from
the jumps in the Security and Availability curves.

Finally, judging by the ability of the solver to prove optimality within the 10 000 seconds time budget, the instances
with small 𝑟 or 𝑘min are easier than the instances with both 𝑟 and 𝑘min being relatively large. In other words, we found
that the solver performs well on instances with either of the parameters being small whereas our theoretical results
suggest that parameterisation by either of them is not efficient. Our interpretation of these results is that the problem is
hard even for small 𝑘min or 𝑟 but it is particularly hard (from the practical point of view) when both 𝑘min and 𝑟 are large.
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Fig. 8. The effect of the instance type (Security, Availability or Noise) on the trade-off between 𝑘min and 𝑟 . The time budget is
10 000 sec. Note that we added value 𝑘min = 0 to the vertical axis.

6 CONCLUDING REMARKS

This paper introduces the Generalized Noise Role Mining problem (GNRM). We believe this is a useful contribution
to the literature on role mining, not least because it allows us to define security- and availability-aware role mining
problems. We extended GNRM to BO-GNRM, a bi-objective optimization variant of GNRM that allows us to find an
optimal balance between the number of roles 𝑟 and the number 𝑘 of deviations from the original authorization matrix.

We have shown that GNRM and BO-GNRM are fixed-parameter tractable, which means that they can be solved in a
reasonable amount of time, provided problem instances only require solutions in which 𝑟 + 𝑘 (𝑟 + 𝑘, respectively) are
relatively small. Algorithms for role mining do not need to be particularly fast, but they cannot be exponential in the
size of the input, given the size of typical instances. Knowing that algorithms exist that do solve role mining problems,
subject to certain constraints on the solution, provides grounds for cautious optimism about the feasibility of solving
real-world role mining problems.

Our experimental work provides further cause for optimism. In particular, we show that our solution method based
on a general-purpose solver efficiently exploits the FPT structure of the problem allowing us to solve several real-world
instances, sometimes even proving solution optimality. Also, the results on security-aware role mining suggest that
it is possible to find solutions relatively quickly if we require those solutions to preserve the security of the original
configuration, something that is generally desirable.

The work in this paper provides plenty of scope for future work. In particular, we would like to explore whether our
work on matrix decomposition and FPT results can be extended to other variants of role mining (see [16, Section 2]).
More generally, this paper along with [3, 4] demonstrates usefulness of multi-objective optimization in access control.
Thus, it may be useful to apply multi-objective optimization to other problems in the area.
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