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Abstract 37 

Objectives 38 

Subchondral bone may contribute to knee osteoarthritis (OA) pain. Nerve growth factor 39 

(NGF) can stimulate nerve growth through TrkA. We aimed to identify how sensory nerve 40 

growth at the osteochondral junction in human and rat knees associates with OA pain. 41 

Methods 42 

Eleven symptomatic chondropathy cases were selected from people undergoing total knee 43 

replacement for OA. Twelve asymptomatic chondropathy cases who had not presented 44 

with knee pain were selected post-mortem. OA was induced in rat knees by meniscal 45 

transection (MNX) and sham-operated rats were used as controls. Twice-daily oral doses 46 

(30 mg/kg) of TrkA inhibitor (AR786) or vehicle were administered from before and up to 47 

28 days after OA induction. Joints were analysed for macroscopic appearances of articular 48 

surfaces, OA histopathology and calcitonin gene-related peptide-immunoreactive 49 

(CGRP-IR) sensory nerves in medial tibial plateaux, and rats were assessed for pain 50 

behaviors. 51 

Results 52 

The percentage of osteochondral channels containing CGRP-IR nerves in symptomatic 53 

chondropathy was higher than in asymptomatic chondropathy (difference: 2.5% [95% CI: 54 

1.1-3.7]), and in MNX- than in sham-operated rat knees (difference: 7.8% [95%CI: 55 

1.7-15.0]). Osteochondral CGRP-IR innervation was significantly associated with pain 56 

behavior in rats. Treatment with AR786 prevented the increase in CGRP-IR nerves in 57 

osteochondral channels and reduced pain behavior in MNX-operated rats. Structural OA 58 

was not significantly affected by AR786 treatment. 59 

Conclusions 60 

CGRP-IR sensory nerves within osteochondral channels are associated with pain in human 61 

and rat knee OA. Reduced pathological innervation of the osteochondral junction 62 

might contribute to analgesic effects of reduced NGF activity achieved by blocking 63 

TrkA. 64 
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 73 

Introduction  74 

Knee osteoarthritis (OA) is a common cause of pain and disability. Pain is the most 75 

common reason sufferers seek medical help. Recent human studies showed that 76 

subchondral bone marrow lesions (BMLs) detected on magnetic resonance imaging (MRI) 77 

in knee OA are associated with pain1-3. Microarray analysis of subchondral BMLs in OA 78 

demonstrated upregulation of genes implicated in neurogenesis, osteochondral turnover 79 

and inflammation that might contribute to OA pain4.  80 

Nerve growth factor (NGF) is localized in subchondral bone of the human tibial plateau5, 81 

cartilage5 and synovium6 in OA and rheumatoid arthritis and NGF plays a key role in the 82 

generation of knee OA pain through actions on its high affinity receptor tropomyosin 83 

receptor kinase A (TrkA). The NGF/TrkA pathway has emerged as an important 84 

therapeutic target for human OA pain. Antibodies that block NGF reduce pain in human 85 

and rodent knee OA7, and selective, allosteric inhibitors of TrkA such as AR786 can inhibit 86 

pain in rat OA models8, and in human OA9, although a randomized controlled trial did not 87 

suggest analgesic effects of TrkA inhibition in knee OA10.  88 

NGF/TrkA pathway inhibitors reduce pain through direct actions on peripheral sensory 89 

nerves. TrkA is expressed by peptidergic nerves which contain the neuropeptide calcitonin 90 

gene-related peptide (CGRP)11. CGRP-immunoreactive (IR) sensory nerves contribute to 91 

OA pain12
,
13. NGF increases pain by sensitizing nerves14. NGF can also stimulate sensory 92 

nerve growth15
,
16. Sensory nerve densities have been associated with pain in nonhealed 93 

bone fractures17, aging bone18 and breast pain19. However it is unclear whether sensory 94 

nerve growth contributes to OA pain and whether NGF/TrkA pathway inhibitors are 95 

effective against pathological sensory innervation in OA. In people with OA, CGRP-IR 96 



sensory nerves are colocalized with NGF within osteochondral channels5, and increased 97 

NGF expression in osteochondral channels was associated with symptomatic human knee 98 

OA20. In this study, CGRP-like immunoreactivity was used as a well-established marker of 99 

unmyelinated sensory nerves to confirm innervation at the osteochondral junction. 100 

The first objective of this study was to determine if CGRP-IR sensory nerves at the 101 

osteochondral junction are associated with OA pain in humans by comparing cases with 102 

similar OA structural change but with or without symptoms. One group had sought help for 103 

knee pain and undergone total knee replacement (TKR) surgery (symptomatic 104 

chondropathy), while the other group had not sought help for knee pain but had died from 105 

an unrelated illness (asymptomatic chondropathy). Our second objective was to identify 106 

the effects of blocking NGF activity by inhibiting TrkA on any OA-associated increase of 107 

CGRP-IR sensory nerves and pain behavior in rats with surgically-induced OA. We 108 

hypothesise that lower numbers of CGRP-IR sensory nerves within osteochondral channels, 109 

due either to pathological phenotype or TrkA inhibition, is associated with less OA pain. 110 

 111 

Material and Methods 112 

Human tissues 113 

Eleven symptomatic chondropathy cases were selected from people who had presented 114 

with severe knee pain and had undergone TKR for OA. Twelve asymptomatic 115 

chondropathy cases who had not presented with knee pain and 11 non-arthritic control 116 

cases who had macroscopically normal articular cartilage or only mild chondropathy were 117 

selected post-mortem (PM). One knee joint from each donor was included. All 118 

asymptomatic chondropathy cases had not sought medical attention for knee pain during 119 

the last year and are highly likely to have experienced less pain than the symptomatic 120 



chondropathy cases. Human tissues were selected according to predefined criteria from a 121 

human Joint Tissue Repository held by the University of Nottingham containing donations 122 

from >2,500 cases at arthroplasty and >400 cases collected post mortem 21. Informed 123 

consent was obtained from TKR cases, or from the next of kin of PM cases. Protocols were 124 

approved by Nottingham 1 Research Ethics Committee 05/Q2403/24 and Derby Research 125 

Ethics Committee 1 11/H0405/2. Symptomatic chondropathy samples were from people 126 

fulfilling American College of Rheumatology classification criteria for OA 22 at the time of 127 

TKR. 128 

Human sample processing 129 

Formalin-fixed coronal sections of the middle third of medial tibial plateaux - MTP (key 130 

weight-bearing area characteristically affected by OA) were decalcified in 10% 131 

ethylenediaminetetraacetic acid (EDTA) in 10mM Tris buffer (pH 6.95, 4°C) prior to wax 132 

embedding. Samples used for CGRP-IR nerves staining were fixed by the method of 133 

Zamboni23 (Supplementary text). Zamboni’s fixed tissues were decalcified, then immersed 134 

and frozen at an optimal cutting temperature and stored at 80°C. 135 

Macroscopic chondropathy score and radiographic OA severity score  136 

Following tissue harvesting, articular surfaces of the MTP were evaluated on the extent 137 

and severity of loss of surface integrity by a single assessor24. Articular surface defects 138 

were graded 0 [normal], 1 [swelling and softening], 2 [superficial fibrillation], 3 [deep 139 

fibrillation] and 4 [subchondral bone exposure]. The proportion of articular surface area 140 

corresponding to each grade was allocated to each severity grade to calculate a 141 

macroscopic chondropathy score;  142 

Macroscopic chondropathy score (0-100) = (Grade 1 x 0.14) + (Grade 2 x 0.34) + (Grade 3 143 

x 0.65) + Grade 424.  144 



Radiographic OA severity scores were derived using preoperative postero-anterior knee 145 

radiographs as previously described24. An atlas of line drawings of the knee joint was used 146 

to grade medial and lateral joint space narrowing and osteophytes25. Scores for 147 

tibiofemoral joint space narrowing (0–6) and osteophytes (0–12) were summed to provide 148 

a total radiographic OA severity score (0–18)24. 149 

Human histology and grading 150 

Tibial plateaux sections (5µm) were stained with H&E, or Safranin-O and fast green. OA 151 

articular cartilage changes were graded using the Mankin scoring system26 (Supplementary 152 

text). Subchondral bone marrow replacement was defined as replacement of bone marrow 153 

fat spaces with fibrovascular tissue, and assessed as either present or absent. Section width 154 

was measured by a digital electronic caliper (Mitutoyo, UK), and densities were calculated 155 

of osteochondral channels per mm in subchondral bone, calcified cartilage and 156 

non-calcified cartilage, and of channels breaching tidemark. 157 

Immunohistochemistry and quantification of CGRP-IR nerve 158 

Tibial plateaux sections (20µm) were blocked with 3% bovine serum albumin (BSA) for 159 

1h at room temperature. The sections incubated in mouse anti-CGRP antibody (1:300 160 

TA309091; Acris Antibodies, Herford, Germany) were diluted in goat blocking serum 161 

overnight in a humid chamber at 4°C. The next day, secondary detection was performed 162 

with goat anti-mouse IgG conjugated with Alexa 488 (1:100 A32723; ThermoFisher 163 

scientific, Mississippi, USA) for CGRP for 2h at room temperature. Before, between, and 164 

after each incubation step, the sections were washed three times for 5min in PBS. 165 

CGRP-IR sensory nerves were measured as a proportion (%) of osteochondral channels in 166 

each case that displayed CGRP-IR sensory nerves. One section per each knee joint was 167 

used for analysis of CGRP-IR nerves. 168 



Animals and OA induction 169 

Male Sprague-Dawley rat knee joints (Charles River, Kent, UK), n=30, were collected for 170 

this study from our previous experiment8. The rats were used in accordance with UK Home 171 

Office regulations and followed the guidelines of the International Association for the 172 

Study of Pain. Rats weighing 200–250 g were anaesthetized briefly with isoflurane (2% in 173 

O2) and underwent transection of the medial meniscus (MNX; n=20)27. Non-osteoarthritic 174 

(Sham-operated; n=10) rats were used as controls. Rats were randomized to 3 groups 175 

(sham plus vehicle, MNX plus vehicle and MNX plus AR786) using a computer program, 176 

and mixed within cages. Data presented in this paper extend behavioural data and 177 

macroscopic chondropathy scores that have been reported previously from these rats8. All 178 

outcome measurements were carried out by an experimenter blinded to randomized 179 

treatments. 180 

TrkA inhibitor (AR786) administration 181 

AR786 (Array Biopharma, Boulder, Colorado, USA) was administered in a preventive 182 

protocol based on previous data28
,
29. Oral doses (30 mg/kg) of AR786 or vehicle (5% 183 

Gelucire 50/13) were administered 1h prior to and 8h following OA induction, and twice 184 

daily until the end of the study (28 days after OA induction).  185 

Rat knee joint pathology and quantification of CGRP-IR nerve 186 

Rats were sacrificed by an overdose of pentobarbital (intraperitoneal) (day 28). Macroscopic 187 

chondropathy scores based on the Guingamp classification30 have been previously published8. For 188 

the current report, histological assessment of cartilage and subchondral bone including osteophytes 189 

in medial tibial plateaux was undertaken based on the Osteoarthritis Research Society 190 

International recommendations31. Subchondral bone marrow replacement by fibrovascular 191 

tissue and osteochondral channel density were assessed in the same way as human samples. 192 



Immunohistochemistry and quantification of CGRP-IR nerve fibers in osteochondral 193 

channels in medial tibial plateaux were carried out in the same way as human samples. 194 

Width of the entire medial proximal tibial epiphysis was measured by a digital caliper and 195 

CGRP-IR nerve density per mm in the bone marrow space was calculated. Two sections 196 

containing weight-bearing area characteristically affected by OA per each knee joint were 197 

used for analysis of CGRP-IR nerves. 198 

Behavioral measurements of OA pain 199 

Pain behavior was assessed as weight-bearing asymmetry and as paw withdrawal threshold 200 

to punctate stimulation of the hind-paw. Baseline measurements were obtained 201 

immediately prior to intra-articular injection or surgery (day 0) and every 2–4 days from 202 

day 3 onwards to day 28 and have been previously reported8 . Weight-bearing asymmetry 203 

was assessed as percent difference in weight distribution between hind-limbs32. 204 

Image analysis 205 

All human and rat histological scoring and quantification of CGRP-IR nerve fibers were 206 

undertaken by a single observer (KA) who was blinded to the diagnostic group, using a 207 

Zeiss Axioscop-50 microscope (Carl Zeiss, Welwyn Garden City, UK).  208 

Statistical analysis 209 

Statistical analyses were performed with JMP, Version 10 (SAS Ins. Cary, NC), IBM SPSS 210 

version 26.0 software and IBM SPSS Bootstrapping (IBM Corp. Armonk, NY, USA). Data 211 

of age, gender, radiographic OA score, macroscopic chondropathy score, OA 212 

histopathology, CGRP sensory nerve and pain behaviours were analyzed using 213 

Kruskal-Wallis tests followed by post hoc Dunn’s comparisons. Estimates of mean 214 

differences of CGRP-IR nerve between groups with 95% confidence interval (CI) were 215 

derived from 2000 bootstrap resampling. Logistic regression was performed to adjust for 216 



age. Spearman’s rank correlation (r) assessed associations between pain behaviors and 217 

CGRP-IR nerve densities, macroscopic chondropathy score and OA istological changes in 218 

MNX plus vehicle and MNX plus AR786 models (n=20). The 95% CIs for Spearman's 219 

correlation were derived from 2000 bootstrap resampling. Bias-corrected and accelerated 220 

percentile method were used for estimation of CIs. P<0.05 indicated statistical 221 

significance. 222 

 223 

Results 224 

Patient characteristics and joint pathology 225 

Demographics and sample details of cases selected for this study are shown in Table 1. The 226 

asymptomatic chondropathy group was older than the non-arthritic control and 227 

symptomatic chondropathy groups. As expected from our selection criteria, 228 

macroscopic chondropathy scores were similar in asymptomatic and symptomatic 229 

chondropathy groups; and both were higher than in non-arthritic controls. Histological 230 

chondropathy scores were higher in chondropathy cases than in non-arthritic controls 231 

(Table 1 and Figure 1 A, B, C). Channels were present at the osteochondral junction in 232 

each group (Figure 1, D). Increased numbers of osteochondral channels breaching the 233 

tidemark (Figure 1 E), and the percentage of cases with subchondral bone marrow 234 

replacement by fibrovascular tissue did not reach statistical significance in chondropathy 235 

groups compared to non-arthritic controls (Table 1). 236 

CGRP-IR sensory nerve fibers in human medial tibial plateaux 237 

CGRP-IR nerve profiles were localized to osteochondral channels and subchondral bone 238 

marrow spaces (Figure 1 F, G, H). The percentage of osteochondral channels containing 239 

CGRP-IR sensory nerves did not significantly differ between chondropathy and 240 



non-arthritic control groups (median percentages (interquartile range (IQR)) of 241 

non-arthritic control, asymptomatic and symptomatic chondropathy were 1.2 (0, 2.9), 0 (0, 242 

1.9) and 3.6 (2.5, 4.7)) (Figure 2). Bootstrap estimates of mean differences between 243 

asymptomatic or symptomatic chondropathy and non-arthritic control were 0.8% [95% CI: 244 

-0.6 to 2.4%] and 1.3% [95%CI: -0.4 to 2.9%], respectively. The percentage of 245 

osteochondral channels containing CGRP-IR sensory nerves in the symptomatic 246 

chondropathy group was higher than in asymptomatic chondropathy group and this 247 

difference remained significant after adjusting for age (aOR=3.9 [95% CI: 1.5 to 31.3], 248 

p=0.01) (Figure 2). The bootstrap estimate of mean difference between symptomatic and 249 

asymptomatic chondropathy was 2.5% [95% CI: 1.1 to 3.7%]. 250 

MNX-induced OA and pain behavior in rats 251 

New data presented here extend previously published macroscopic chondropathy scores, 252 

paw withdrawal thresholds and weight-bearing asymmetry data from these experiments.8 253 

MNX surgery was associated with a greater OA structural change than was sham surgery 254 

(Table 2 and Figure 3A, B, C). Subchondral bone marrow replacement by fibrovascular 255 

tissue was observed in MNX- but not in sham-operated rats. Numbers of osteochondral 256 

channels did not differ between groups, and were not altered by AR786 treatment (Table 2 257 

and Figure 3D, E, F, C). Asymmetric weight distribution and reduced paw withdrawal 258 

thresholds were more severe in MNX-operated rats treated with vehicle than in 259 

sham-operated rats at day 28 after surgery, and AR786 reversed the OA-induced pain 260 

behavior (Table 2). 261 

CGRP-IR nerve fibers in rat knee joints 262 

CGRP-IR nerve profiles were localized to osteochondral channels and subchondral bone 263 

marrow spaces in rat knee joints (Figure 3G, H, K). The percentage of osteochondral 264 



channels containing CGRP-IR sensory nerves was higher in MNX-operated knees from 265 

rats treated with vehicle than in sham-operated knees (median percentages (IQR) of sham 266 

plus vehicle and MNX plus vehicle were 2.8 (0.5, 7.4) and 10 (8, 13.7)) (Figure 4A). The 267 

bootstrap estimate of mean difference between sham plus vehicle and MNX plus vehicle 268 

was 7.8% [95% CI: 1.7 to 15.0%]. Treatment with AR786 prevented this increase (Figure 269 

4A and Figure 3G, H, I, J). The bootstrap estimate of mean difference between MNX plus 270 

vehicle and MNX plus AR786 groups was 7.7% [95% CI: 2.5 to 14.4%]. CGRP-IR 271 

sensory nerve density in subchondral bone marrow spaces did not differ between groups 272 

(Figure 4B). The percentage of osteochondral channels containing CGRP-IR sensory 273 

nerves in knees from rats 28 days after MNX surgery, treated with vehicle or AR786, was 274 

significantly associated with weight-bearing asymmetry (Spearman’s r=0.50 [95% CI: 0.07 275 

to 0.77], p=0.04), and with paw withdrawal threshold (Spearman’s r=-0.55 [95% CI: -0.82 276 

to -0.08], p=0.02). 277 

 278 

Discussion 279 

We have identified CGRP-IR sensory nerves within osteochondral channels, associated 280 

with symptoms in human knee OA and pain behaviour in MNX-induced rat knee OA. 281 

These new data support the view that CGRP-IR sensory nerves invade the osteochondral 282 

channels from bone marrow spaces in joints with OA cartilage damage. In rats, blocking 283 

NGF activity by inhibiting TrkA prevented the OA-induced growth of CGRP-IR sensory 284 

nerves in osteochondral channels. This was associated with, and might contribute to, 285 

reduced pain behaviour. Our findings support the hypothesis that NGF-induced growth of 286 

sensory nerves at the osteochondral junction might contribute to chronic pain in knee OA. 287 

In our previous studies on human tissues, we showed NGF-like immunoreactivity in 288 



multinucleate osteoclasts adherent to bone, osteochondral channels and synovium (but not 289 

mRNA expression) was associated with OA pain in human OA20,6,33. In the mouse OA 290 

model induced by destabilization of the medial meniscus, increased NGF messenger RNA 291 

in knee joints was also associated with pain behavior34. Increased NGF expression by 292 

osteoclasts might induce the invasion by CGRP-IR sensory nerves into osteochondral 293 

channels. Indeed, nerve fibers are increased in channels under areas of most damaged 294 

articular cartilage in osteoarthritic mouse knees35, and chondrocytes produce higher NGF 295 

levels in more severely damaged cartilage in human OA36,37,38 and in surgically-induced 296 

mouse knee OA39. However, chondrocyte-derived NGF was not significantly associated 297 

with pain in late-stage OA20. These findings suggest a more important contribution to the 298 

generation of pain from NGF in osteochondral channels and synovium than from 299 

chondrocytes, particularly in late-stage OA. Here we demonstrate that inhibition of the 300 

NGF/TrkA pathway with a specific TrkA inhibitor reduced osteochondral innervation in 301 

the rat. These data extend previous findings that NGF-blocking antibodies can reduce 302 

pathological sensory innervation in bone40 or skin41, to show similar effects of TrkA 303 

inhibition in osteochondral channels. NGF pathway inhibition did not, however, have 304 

detectable effects on mature sensory innervation, consistent with a lack of effect on mature 305 

innervation in other tissues from NGF-blockade42. Subchondral bone marrow lesions 306 

detected by MRI have been associated with OA pain1-3. We speculate that sensitization of 307 

pre-existing nerves in subchondral bone marrow lesions might contribute to OA pain, and 308 

that generation of neurotrophic factors by BMLs4 might contribute to osteochondral 309 

channel innervation. 310 

Nerve growth into articular cartilage occurs within vascular channels. Penetration of 311 

channels into non-calcified articular cartilage has been associated previously with OA 312 



disease, whereas total osteochondral channel densities in calcified and non-calcified 313 

cartilage differ little between OA and non-arthritic joints5. We found that CGRP-IR sensory 314 

nerve densities within osteochondral channels (but not osteochondral channel densities per 315 

se) were higher in symptomatic than in asymptomatic chondropathy. Also, channel 316 

innervation was significantly associated with weight-bearing asymmetry and paw 317 

withdrawal threshold in MNX-induced rat knee OA. These data suggest that rather than an 318 

increase in osteochondral channel densities, increased innervation contributes to OA pain. 319 

Increased NGF expression in osteochondral channels associated with symptomatic knee 320 

OA20, might further contribute to OA pain by sensitizing these osteochondral nerves. 321 

 As previously reported8, blocking NGF activity by oral administration of the specific 322 

TrkA inhibitor AR786 prevented OA-associated pain behaviours in these rats. Inhibiting 323 

the NGF/TrkA pathway reduces peripheral sensitization43
,
44. We now also show that 324 

AR786 administration prevented the increase in CGRP-IR nerves within osteochondral 325 

channels that otherwise follows OA induction by MNX surgery, and that lower CGRP-IR 326 

nerve densities were significantly associated with less OA-induced pain behavior. 327 

OA is a multi-tissue disease involving many molecular mediators. Our cross sectional 328 

data from humans, and interventional studies in rats, suggest a contribution of NGF 329 

pathway-induced osteochondral innervation to OA pain. Further research should 330 

investigate whether osteochondral innervation might be a predominant cause of pain in 331 

some patients, and its relative importance compared to other pain mechanisms. CGRP-IR 332 

sensory nerves have also been localized to osteoarthritic synovium45
,
46, possibly in higher 333 

densities than in asymptomatic knees47, particularly in joint compartments displaying 334 

increased sensitivity45. Synovitis has also been associated with OA knee pain, both in 335 

humans6 and in the MNX-induced rat model48. However, we previously showed that 336 



AR786 did not significantly reduce either knee swelling or synovitis in rats with 337 

MNX-induced OA, and synovitis scores were not significantly associated with pain 338 

behaviors8. Other aspects of osteochondral pathology in OA might additionally contribute 339 

to OA pain. Loss of osteochondral integrity might increase osteochondral permeability, 340 

exposing subchondral nerves to chemical mediators from the cartilage or synovium and 341 

mechanical injury49. Osteoclast activity may also increase pain both by sensitizing 342 

osteochondral nerves and by increasing structural pathology50. Furthermore, NGF both 343 

influences nerve growth, as indicated by our findings, and quickly induces sensitization of 344 

peripheral nerves by multiple signalling pathways14. The rapid onset of analgesia 345 

associated with NGF blockade15 or TrkA inhibition is likely attributable to reduced 346 

peripheral sensitization, rather than to reduced nerve growth, which is a slow process 347 

occuring over a period of weeks51. However, our data indicate that osteochondral 348 

innervation might contribute to OA pain, and suggest that nerve growth might be a key 349 

target for structural disease modification in OA. Other approaches for structural disease 350 

modification in OA have been largely unsuccessful, in part due to the prolonged treatment 351 

required to demonstrate clinically important structural modification, and a lack of 352 

symptomatic benefit. Targeting aspects of OA structural pathology such as aberrant 353 

osteochondral innervation with treatments that also more immediately reduce pain is an 354 

attractive proposition. 355 

Limitations 356 

Quantification of nerves is limited by sensitivity of the immunohistochemical method, and 357 

by the challenge of detecting changes in nerve density in a tissue which normally contains 358 

nerves. CGRP-IR was used as a well-established marker of unmyelinated sensory nerves 359 

which express TrkA11. Half of neurons innervating the subchondral bone expressed CGRP 360 



and TrkA in normal rat knees, whereas all were isolectin B4-negative52. Sensitivity of 361 

CGRP to detect subchondral sensory nerves might be even higher in OA53. It is unclear 362 

whether CGRP is itself important for OA pain, and, unlike experience with NGF-blocking 363 

antibodies, an RCT of CGRP receptor blockade did not reveal clinically important benefit 364 

for OA pain54. However, different results might have been obtained using other neuronal 365 

markers, and we do not exclude biologically important changes in innervation in tissue 366 

compartments additional to osteochondral channels. We used non-parametric statistical 367 

methods in order to optimize validity depite inclusion of an outlying value for channel 368 

innervation in our per protocol analysis. Future research should seek to confirm our present 369 

findings. 370 

Characteristics other than osteochondral innervation, some unmeasured, might explain 371 

symptomatic and asymptomatic chondropathy classification. However, the groups had 372 

similar chondropathy scores and OA histopathology. Ageing might also influence sensory 373 

innervation in mice35
,
55, although differences in osteochondral innervation in our study 374 

persisted after adjustment for age. Some people in our `asymptomatic’ chondropathy group 375 

might have experienced chronic knee pain without their relatives knowing. However, all 376 

people undertaking TKR report severe knee pain, and it is highly likely that people who 377 

have not undergone surgery have less knee pain than those who do. Samples were from the 378 

mid-coronal section of the medial tibial plateau, a key weight-bearing area with the 379 

greatest amount of cartilage loss, but findings could differ for other joint regions such as 380 

femoral condyles. We here focused on NGF at the osteochondral junction, and further 381 

systematic studies of other molecules and in other articular tissues might reveal additional 382 

pathways contributing to OA pain. 383 

Conclusions 384 



Our data indicate a possible role of osteochondral innervation and TrkA in structural 385 

pathology which contributes to OA pain. Previous attempts at structural disease 386 

modification in OA have focused on radiographic features such as joint space narrowing 387 

and osteophytosis, features which are only weakly associated with OA pain severity56. 388 

Osteochondral innervation might be a key structural change that contributes to human and 389 

rat OA pain. Most analgesic drugs alter sensory nerve function rather than structure. 390 

Inhibiting pathological nerve growth in osteochondral channels may reduce chronic OA 391 

pain and herald a step change for structural pain modification. 392 
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              Figure 1: Histopathologic features in cartilage and subchondral bone from humans 

A; non-arthritic control. B; Asymptomatic chondropathy. C; Symptomatic chondropathy 

Osteochondral channels were found in the subchondral bone plate in sections from 

non-arthritic control cases (D). Osteochondral channels breaching the tidemark and 

entering non-calcified cartilage in sections from symptomatic chondropathy cases (E). 

CGRP-IR nerves were found in osteochondral channels under the areas of damaged 

cartilage (asterisk) in sections from symptomatic chondropathy cases (white arrow head) (F, 

G). CGRP-IR sensory nerves (arrow) were found in bone marrow space (arrow) (H). (I) 



explains where these images are located within the knee joint. Black arrow heads indicate 

tide mark. CGRP-IR; calcitonin gene-related peptide-immunoreactive. Scale bars = 100 

µm 

 

Figure 2: Percentage of osteochondral channels containing CGRP-IR sensory nerves 

in non-arthritic control, symptomatic and asymptomatic chondropathy cases. 

Scatterplots illustrate the differences among non-arthritic control, symptomatic and 

asymptomatic chondropathy cases. Lines represent medians and IQR. Data were 

analysed using Kruskal-Wallis test followed by post hoc Dunn’s comparison. 

*p=0.007 versus asymptomatic chondropathy.  

 

Figure 3: Histopathologic features in cartilage and subchondral bone from rats 

A; Sham + vehicle. B; MNX + vehicle. C; MNX + AR786 

Osteochondral channels (black arrow head) were found in the subchondral bone plate in 

sections from Sham + vehicle (A, D), MNX + vehicle (B, E) and MNX + AR786 group (C, 

F). CGRP-IR sensory nerves invading osteochondral channels from bone marrow space 

(white arrow head) under areas of damaged cartilage (asterisk) in MNX + vehicle group (G, 

H). The increase in CGRP-IR nerves within osteochondral channels under areas of 

damaged cartilage (asterisk) was prevented in MNX + AR786 group (I, J). CGRP-IR 

sensory nerves (arrow) were found in bone marrow space (K). MNX; meniscal transection, 

CGRP-IR; calcitonin gene-related peptide-immunoreactive. Scale bars = 100 µm 

 

Figure 4: Percentage of osteochondral channels containing CGRP-IR sensory nerves 

and nerve density in bone marrow space from sham plus vehicle, MNX plus vehicle 

and MNX plus AR786 models. 

Lines represent medians and IQR. *p=0.02 versus Sham + vehicle and *p=0.03 versus 

MNX + AR786. Data were analysed using Kruskal-Wallis test followed by post hoc 

Dunn’s comparison. MNX; meniscal transection, CGRP; calcitonin gene-related 

peptide-immunoreactive, IR; immunoreactive. 

 

 

 Non-arthritic 

control 

Asymptomatic 

chondropathy 

Symptomatic 

chondropathy 

Age 50 (47, 65) 86 (78, 89) 61 (58, 73) 

Gender (Male, %) 70 50 67 



Macroscopic chondropathy score (0-100) 20 (17, 26) 68 (62, 83) ***** 73 (66, 79) **** 

Total radiographic OA severity score (0-18) NA NA 12 (10.5 13) 

    Tibiofemoral JSN score (0-6) NA NA 5 (5, 5) 

    Medial tibiofemoral JSN score (0-3) NA NA 3 (3, 3) 

    Osteophyte score (0-12) NA NA 7 (5.5, 8) 

    Medial tibial osteophyte score (0-3) NA NA 2 (1.5, 2) 

Total Mankin score (0-14) 6 (5, 8) 9 (6, 11) 11 (9, 12) * 

   Loss of cartilage surface integrity (0-6) 3 (2, 3) 5 (3, 6) *** 6 (4, 6) ** 

   Chondrocyte appearance (0-3) 2 (2, 3) 3 (3, 3) 3 (3, 3) 

   Loss of tidemark integrity (Yes, %) 45 70 70 

   Proteoglycan loss (0-4) 1 (1, 1) 2 (1, 2) 2 (2, 2) 

Subchondral bone marrow replacement 

(Yes, %) 

45 67 64 

Density of channels breaching tidemark 

(/mm) 

0.00 (0.00, 0.00) 0.03 (0, 0.10) 0.07 (0.00, 0.13) 

Total osteochondral channel density (/mm) 4.4 (3.9, 4.7) 3.7 (3.0, 5.0) 4.1 (3.3, 6.6) 

 

Table 1: Details of demographics, radiographic OA severity and OA pathology 

Data displayed as median (IQR). Total radiographic OA severity score is a summation of 

tibiofemoral joint space narrowing (JSN) and osteophyte scores. Tibiofemoral JSN score is a 

summation of medial and lateral tibiofemoral JSN scores. Osteophyte score is a summation of 

medial and lateral tibial and femoral osteophyte scores. Data were analysed using Kruskal-Wallis 

test followed by post hoc Dunn’s comparison. *p=0.01, **p=0.007, ***p=0.006, ****p=0.003, 

*****p=0.0002 versus non-arthritic control. JSN; joint space narrowing, NA = Not available. 



 

 SHAM + Vehicle MNX + Vehicle MNX + AR786 

Macroscopic chondropathy score 0 (0, 0.8) 3 (3, 3)** 3 (3, 4)**** 

Cartilage damage score (0-15) 0 (0, 0) 5 (3, 8) 6 (5, 10)* 

Osteophyte score (0-3) 0 (0, 0) 1 (0, 3) 1 (0, 2) 

Osteochondral channel density (/mm) 3.1 (2.9, 3.3) 2.5 (2.2, 3.6) 3.5 (2.5, 4.6) 

Subchondral bone marrow replacement (%) 0 50 66.7* 

Paw withdrawal threshold (g) 15 (11, 15) 6 (5, 6) *** , # 13 (10, 15) 

Weight-bearing asymmetry (%) 1.2 (0.1, 1.9) 25.2 (20.6, 27.4) ***, ## 1.5 (0.6, 3.8) 

 

Table 2: Histology and pain behavior 28 days after knee surgery in rats  

Data displayed as median (IQR) and 95 confidence interval (CI) for median. Data were analysed 

using Kruskal-Wallis test followed by post hoc Dunn’s comparison. *p=0.003, **p=0.002, 

***p=0.0001, ****p<0.0001 versus SHAM+Vehicle. #p=0.003, ##p=0.002 versus MNX + AR786. 

MNX; meniscal transection. Weight-bearing asymmetry is given as percent difference in 

distribution between hindlimbs.  

¥; Macroscopic chondropathy score, paw withdrawal threshold and weight-bearing asymmetry 

have been previously published8. 

 

Supplementary text 

Method of Zamboni23 

Samples were fixed using a solution of 2% (w/v) paraformaldehyde, 15% (v/v) picric acid in 

phosphate buffer (pH 7.3, 4°C) overnight, and then transferred to 15% (w/v) sucrose in phosphate 

buffered saline (4°C) solution for 5 days. 

 

Mankin scoring system26 

Cartilage surface integrity (0 [normal] to 6 [complete disorganisation]), tidemark integrity (0 

[intact] or 1 [crossed by vessels]), chondrocyte morphology (0 [normal] to 3 [hypocellular]) and 

proteoglycan loss (0 [normal, no loss of Safranin-O stain] to 4 [complete loss of stain]).



 

Figure 1: Histopathologic features in cartilage and subchondral bone from humans 

 



 

Figure 2: Percentage of osteochondral channels containing CGRP-IR sensory 

nerves in non-arthritic control, symptomatic and asymptomatic chondropathy 

cases. 

 

 
Figure 3: Histopathologic features in cartilage and subchondral bone from rats 



 

Figure 4: Percentage of osteochondral channels containing CGRP-IR sensory 

nerves and nerve density in bone marrow space from sham plus vehicle, MNX plus 

vehicle and MNX plus AR786 models. 

 


