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Abstract: Scattering theory is a standard tool for the

description of transport phenomena in mesoscopic sys-

tems.Here,weprovide adetailedderivation of thismethod

for nano-scale conductors that are driven by oscillating

electric or magnetic fields. Our approach is based on an

extension of the conventional Lippmann–Schwinger for-

malism to systems with a periodically time-dependent

Hamiltonian. As a key result, we obtain a systematic per-

turbation scheme for the Floquet scattering amplitudes

that describes the transition of a transport carrier through

a periodically driven sample. Within a general multi-

terminal setup, we derive microscopic expressions for the

mean values and time-integrated correlation functions,

or zero-frequency noise, of matter and energy currents,

thus recovering the results of earlier studies in a unify-

ing framework. We show that this framework is inherently

consistent with the first and the second law of thermody-

namics and prove that the mean rate of entropy produc-

tion vanishes only if all currents in the system are zero.

As an application, we derive a generalized Green–Kubo

relation, which makes it possible to express the response

of any mean currents to small variations of temperature

and chemical potential gradients in terms of time inte-

grated correlation functions between properly chosen cur-

rents. Finally,wediscuss potential topics for future studies

and further reaching applications of the Floquet scattering

approach to quantum transport in stochastic andquantum

thermodynamics.
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1 Introduction
At room temperature, transport in macroscopic systems is

a stochastic process, where carriers undergo ceaseless col-

lisions that randomly change their velocity and direction

ofmotion. This irregular behavior is themicroscopic origin

of both the finite resistance of a normal conductor and the

fluctuations of induced currents. The fundamental rela-

tionship between these two phenomena is described by

the fluctuation–dissipation theorem, a cornerstone result

of statistical mechanics, which goes back to the pioneer-

ing works of Einstein, Nyquist, and Onsager and was later

derived in a unified manner by Callen and Welton. Green

and Kubo further expanded this approach and showed

that, close to equilibrium, linear transport coefficients,

which describe the response of a system to a small exter-

nal field or thermal perturbation, can be expressed in

terms of time integrated correlation functions of the cor-

responding currents, i.e. the zero-frequency noise [1–3].

This universal structure can be recovered even for sys-

tems innon-equilibriumsteady states by introducingmore

general correlation functions that involve a current and a

suitably chosen conjugate variable [4].

Reducing the temperature of a conductor increases

the average distance that carriers can travel between two

consecutive collisions. Coherent transport sets in when

this mean free path becomes comparable to the dimen-

sions of the sample. In this regime, which is realized

in mesoscopic systems at millikelvin temperatures, the

transfer of carriers becomes a reversible process governed

by Schrödinger’s equation. As a result, the properties of

mesoscopic conductors are dominated by quantum effects

such as conductance quantization or coherent resistance

oscillations, which can no longer be understood in terms

of classical stochastic trajectories [5–7].

Scattering theory provides a quantum mechanical

description of open systems that are subject to a constant

in- and outflow of particles. Therefore, it is a well-suited

tool to explore the principles of coherent transport. This

approach was first proposed by Landauer and has since

then evolved into a powerful theoretical framework,which

has been extensively tested in experiments and shaped

our modern understanding of transport phenomena in
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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small-scale conductors. At the core of this framework lies

the Landauer–Büttiker formula. It connects the scatter-

ing amplitudes of a mesoscopic sample, which describe

the elastic deflection of incoming carriers, with the mat-

ter and energy currents that emerge in the system under

external biases. Hence, it provides a direct link between

microscopic and macroscopic quantities [5–10].

As a key application, the scattering approach to

quantum transport enables systematic investigations of

the elementary principles that govern the thermody-

namics of mesoscopic conductors and the performance

of autonomous nano-machines such as thermoelectric

heat engines or refrigerators [11–14]. Cyclic machines like

charge pumps or quantum motors, however, require the

input or extraction of mechanical work; therefore, they

must be driven by time-dependent electric or magnetic

fields, which alter the energy of carriers inside the sample.

Floquet theory provides an elegant way to take this effect

into account by introducing anew typeof scattering ampli-

tudes that describe inelastic transitions, where carriers

exchange photons with the external fields. This Flo-

quet scattering approach yields a generalized Landauer–

Büttiker formula for periodically driven systems [15–19].

Among other applications, this result enables quantitative

models for cyclic nano-machines, which can be used to

develop practical devices or to explore fundamental per-

formance limits, two central topics in the field of quantum

thermodynamics [20, 21].

The Floquet scattering approach also leads to

explicit microscopic expressions for the time integrated

correlation functions ofmatter and energy currents in peri-

odically driven quantum conductors [22–24]. It thus pro-

vides a powerful tool to investigate the complex interplay

between dissipation, thermal, and quantum fluctuations

in mesocopic systems. This topic includes the search for

generalizations of the well-established Green–Kubo rela-

tions as well as the quest for quantum extensions of the

recently discovered thermodynamic uncertainty relations

[25].

2 Objective and Outline
Our aim is to provide a thorough and general derivation of

the Floquet scattering approach to coherent transport in

mesoscopic conductors. This article is supposed to serve

as both a step-by-step introduction for new users of the

formalism and a compact reference text for experts in

the field. We do not attempt to give a complete overview

of the existing literature. Instead, our objective is to

complement earlierworks by focusing on thedevelopment

of an algebraic scattering theory for periodically driven

mesoscopic conductors and applications in stochastic and

quantum thermodynamics.

Weproceedas follows. In Section 3,we set the stage for

our analysis by introducing the multi-terminal model as a

general basis for the discussion of coherent transport. This

section is followed by a brief recap of the algebraic scatter-

ing theory for autonomous systems in Section 4, which is

based on common textbooks [6, 7, 26, 27]. We then show

how the Floquet theorem makes it possible to extend this

framework to periodically driven systems in Section 5. Fol-

lowing the approach of earlier studies, we construct an

extendedHilbert space, whichwas originally proposed for

closed systems [28], to derive a generalized Lippmann–

Schwinger equation for Floquet scattering states [29–31].

This result naturally leads to a systematic perturbation

scheme for the crucial Floquet scattering amplitudes and

to explicit expressions for the corresponding scattering

wave functions,which enable a transparent physical inter-

pretation of the formalism.

In Section 6 we switch from the single-particle pic-

ture that had been used in the foregoing sections to a

many-particle description. To this end we first show how

the operators J

ρ
α,t and J

ε
α,t, which represent the matter and

energy currents in a multi-terminal conductor at the time

t, can be connected to the previously discussed Floquet

scattering states. We then derive microscopic expressions

for the mean currents and the time integrated current

correlation functions, or noise power, which are given

by

Jxα ≡ lim

t→∞

1

t

t∫︁

0

dt′ ⟨Jxα,t⟩ and (1a)

Pxyαβ ≡ lim

t→∞

1

t

t∫︁

0

dt′
t∫︁

0

dt′′⟨(Jxα,t′ − Jxα)(Jyβ,t′′ − Jyβ)⟩, (1b)

where angular brackets denote the average over all possi-

ble quantum sates of the system. We thereby recover the

results of earlier studies [15, 22, 24].

Moving on, in Section 7 we show how the Floquet

scattering approach can be furnished with a thermody-

namic structure. To this end, we formulate the first and

the second law and show that the scattering formal-

ism is inherently consistent with these constraints. As

an application of this theory, we derive a generalization

of the Green–Kubo relations for periodically driven sys-

tems far from equilibrium. Finally, we discuss open prob-

lems and potential starting points for future studies in

Section (8).
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1996; Peduzzi et al. 1996; King and Zeng 2001; Harrell 2001; Braitman and Rosenbaum 2002; Cepeda et al.
2003; Vittinghoff and McCulloch 2007). For example, simulations by Peduzzi et al. (1996) illustrated that
estimates could be biased and inference unreliable if the number of outcomes per independent variable in
the regression model was less than 10. The authors also found problems with estimator convergence,
statistical power and the validity of significance tests (i. e. type I error rates and confidence interval
coverage). Harrell et al. (1996) cautioned against over-fitting and encouraged the use of cross-validation
or bootstrapping for model validation. Moreover, King and Zeng (2001) found that standard logistic models
could substantially under-estimate the probability of the outcome and offered a bias correction with
accompanying software.

When dealing with rare events, several researchers have recommended estimators based on the
propensity score, which is the conditional probability of being exposed, given the covariates (Rosenbaum
and Rubin 1983). These methods avoid estimation of the conditional mean outcome and thereby are
expected to perform well when there are very few outcome events (e. g. Joffe and Rosenbaum 1999;
Braitman and Rosenbaum 2002; Patorno et al. 2014). Simulations by Cepeda et al. (2003) suggested that
propensity score methods were less biased and more efficient than logistic regression for the mean
outcome, when the number of events per independent variable in the regression model was less than 8.
The authors also cautioned that the performance of propensity score methods depended on the strength of
the relationship between the covariates and the exposure.

Targeted minimum loss-based estimation (TMLE) is a general methodology for the construction of
semiparametric, efficient substitution estimators (van der Laan and Rubin 2006; van der Laan and Rose
2011). A TMLE for a single time point exposure can be implemented as follows. First, the conditional
expectation of the outcome, given the exposure and covariates, is estimated with parametric regression or
with a more flexible approach, such as SuperLearner (van der Laan et al. 2007). Second, information on the
exposure-covariate relation (i. e. the propensity score) is incorporated to improve this initial estimator. The
propensity score can also be estimated parametrically or with a more flexible approach. Informally, this
“targeting” step helps remove some of the residual bias due to incomplete adjustment for confounding.
More formally, this targeting step serves to solve the efficient score equation. Finally, the targeted predic-
tions of the outcome under the exposure and under no exposure are averaged over the sample and
contrasted on the relevant scale.

Thereby, TMLE requires estimation of both the conditional mean outcome as well as the propensity
score, and achieves a number of desirable asymptotic properties (van der Laan and Rose; 2011). The
standardized estimator is asymptotically normal with mean 0 and variance given by the variance of its
influence curve. The TMLE is also double robust: if either the conditional mean outcome or the
propensity score is consistently estimated, we will have a consistent estimate of the parameter of
interest. If both functions are consistently estimated (at a fast enough rate), the TMLE will be efficient
and achieve the lowest possible asymptotic variance among a large class of estimators. Finally, TMLE is
a substitution estimator, providing robustness in the face of positivity violations (when there is no or
little variability in the exposure within certain covariate strata) and rare outcomes (e. g. Stitelman and
van der Laan 2010; Gruber and van der Laan 2010; Sekhon et al. 2011; Petersen et al. 2012; Gruber and
van der Laan 2013; Lendle et al. 2013). Building on the work of Gruber and van der Laan (2010), this
paper proposes a new TMLE for the semiparametric statistical model m, which imposes bounds on the
conditional mean of the outcome, given the exposure and measured confounders. We focus our
discussion on rare binary outcomes and rare bounded continuous outcomes (e. g. proportions). The
estimation problem and the theoretical motivation for the new TMLE are outlined in Section 2. In
particular, the causal parameter, the corresponding statistical parameter, the statistical model and the
efficient influence curve are discussed. Section 3 presents the rationale and procedure for the rare
outcomes TMLE. Simulations and the applied analysis are given in the Section 4. The article concludes
with a discussion of the advantages and disadvantages of the proposed method as well as areas for
future work.
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)

L. Balzer et al.: TMLE for Rare Outcomes 3

Authenticated | muthu@tnq.co.in
Download Date | 9/24/19 7:25 PM



2 | K. Brandner: Coherent Transport in Periodically Driven Mesoscopic Conductors

small-scale conductors. At the core of this framework lies

the Landauer–Büttiker formula. It connects the scatter-

ing amplitudes of a mesoscopic sample, which describe

the elastic deflection of incoming carriers, with the mat-

ter and energy currents that emerge in the system under

external biases. Hence, it provides a direct link between

microscopic and macroscopic quantities [5–10].

As a key application, the scattering approach to

quantum transport enables systematic investigations of

the elementary principles that govern the thermody-

namics of mesoscopic conductors and the performance

of autonomous nano-machines such as thermoelectric

heat engines or refrigerators [11–14]. Cyclic machines like

charge pumps or quantum motors, however, require the

input or extraction of mechanical work; therefore, they

must be driven by time-dependent electric or magnetic

fields, which alter the energy of carriers inside the sample.

Floquet theory provides an elegant way to take this effect

into account by introducing anew typeof scattering ampli-

tudes that describe inelastic transitions, where carriers

exchange photons with the external fields. This Flo-

quet scattering approach yields a generalized Landauer–

Büttiker formula for periodically driven systems [15–19].

Among other applications, this result enables quantitative

models for cyclic nano-machines, which can be used to

develop practical devices or to explore fundamental per-

formance limits, two central topics in the field of quantum

thermodynamics [20, 21].

The Floquet scattering approach also leads to

explicit microscopic expressions for the time integrated

correlation functions ofmatter and energy currents in peri-

odically driven quantum conductors [22–24]. It thus pro-

vides a powerful tool to investigate the complex interplay

between dissipation, thermal, and quantum fluctuations

in mesocopic systems. This topic includes the search for

generalizations of the well-established Green–Kubo rela-

tions as well as the quest for quantum extensions of the

recently discovered thermodynamic uncertainty relations

[25].

2 Objective and Outline
Our aim is to provide a thorough and general derivation of

the Floquet scattering approach to coherent transport in

mesoscopic conductors. This article is supposed to serve

as both a step-by-step introduction for new users of the

formalism and a compact reference text for experts in

the field. We do not attempt to give a complete overview

of the existing literature. Instead, our objective is to

complement earlierworks by focusing on thedevelopment

of an algebraic scattering theory for periodically driven

mesoscopic conductors and applications in stochastic and

quantum thermodynamics.

Weproceedas follows. In Section 3,we set the stage for

our analysis by introducing the multi-terminal model as a

general basis for the discussion of coherent transport. This

section is followed by a brief recap of the algebraic scatter-

ing theory for autonomous systems in Section 4, which is

based on common textbooks [6, 7, 26, 27]. We then show

how the Floquet theorem makes it possible to extend this

framework to periodically driven systems in Section 5. Fol-

lowing the approach of earlier studies, we construct an

extendedHilbert space, whichwas originally proposed for

closed systems [28], to derive a generalized Lippmann–

Schwinger equation for Floquet scattering states [29–31].

This result naturally leads to a systematic perturbation

scheme for the crucial Floquet scattering amplitudes and

to explicit expressions for the corresponding scattering

wave functions,which enable a transparent physical inter-

pretation of the formalism.

In Section 6 we switch from the single-particle pic-

ture that had been used in the foregoing sections to a

many-particle description. To this end we first show how

the operators J

ρ
α,t and J

ε
α,t, which represent the matter and

energy currents in a multi-terminal conductor at the time

t, can be connected to the previously discussed Floquet

scattering states. We then derive microscopic expressions

for the mean currents and the time integrated current

correlation functions, or noise power, which are given

by

Jxα ≡ lim

t→∞

1

t

t∫︁

0

dt′ ⟨Jxα,t⟩ and (1a)

Pxyαβ ≡ lim

t→∞

1

t

t∫︁

0

dt′
t∫︁

0

dt′′⟨(Jxα,t′ − Jxα)(Jyβ,t′′ − Jyβ)⟩, (1b)

where angular brackets denote the average over all possi-

ble quantum sates of the system. We thereby recover the

results of earlier studies [15, 22, 24].

Moving on, in Section 7 we show how the Floquet

scattering approach can be furnished with a thermody-

namic structure. To this end, we formulate the first and

the second law and show that the scattering formal-

ism is inherently consistent with these constraints. As

an application of this theory, we derive a generalization

of the Green–Kubo relations for periodically driven sys-

tems far from equilibrium. Finally, we discuss open prob-

lems and potential starting points for future studies in

Section (8).
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3 The Multi-Terminal Model
The multi-terminal model provides a universal platform

for the description of coherent transport in mesoscopic

systems. The key idea is thereby to divide the conduc-

tor into a scattering region, where carriers are affected by

the potential landscape of the sample and periodic driv-

ing fields, and a set of N ideal leads, which can be tra-

versed freely (Fig. 1). For the sake of simplicity, we assume

throughout this article that the leads are effectively one-

dimensional.¹

Each lead is connected to a thermochemical reservoir

with a fully transparent interface, which injects a contin-

uous beam of thermalized, non-interacting carriers into

the system. Inside the conductor, these carriers follow a

deterministic time evolution governed by Schrödinger’s

equation until they are absorbed again into one of the

reservoirs. Hence, all irreversible processes are relegated

to the reservoirs, while the transfer of carriers between

them is coherent. Once the system has reached a steady

state, each lead α is traversed by a periodically modulated

beamof incoming and outgoing carries, which gives rise to

a matter and an energy current. The corresponding mean

values and fluctuations are given by the formulas (1). As

we will see in the following sections, these quantities are

completely determined by the scattering amplitudes of the

driven sample and the energy distribution of the carriers

injected by the reservoirs.

Figure 1: Sketch of the multi-terminal model for a generic meso-
scopic conductor. A central scattering region, or sample, S is
connected via ideal, one-dimensional leads to N heat and parti-
cle reservoirs with temperatures T1 , . . . , TN and chemical potentials
µ1 , . . . , µN. The external driving fields Ft periodically change the
potential inside the scattering region.

1 Specifically,we assume that thewaveguides are so narrow that only

the lowest transversemodes contribute to the transport process in the

relevant range of energies, for details see [7].

4 Standard Scattering Theory

4.1 Scattering States

Without external driving, the carrier dynamics in a multi-

terminal system is governed by the Hamiltonian

H = P2/2M + U . (2)

Here P andM are the carriermomentumandmass and

U accounts for the potential landscape of the scattering

region as well as the coupling to external magnetic fields.

The scattering of individual carriers with fixed energy

E > 0 is described by solutions of the time-dependent

Schrödinger equation that have the form

|ψα±
E,t ⟩ = exp[−iEt/ℏ]|φα±

E ⟩. (3)

The outgoing and incoming states, |φα+
E ⟩ and |φα−

E ⟩,
thereby represent carriers that enter and escape the sys-

tem through the terminal α, respectively. These scattering
states satisfy the stationary Schrödinger equation

H|φα±
E ⟩ = E|φα±

E ⟩ (4)

and the boundary conditions

⟨rβ|φα±
E ⟩ ≡ φα±

E [rβ] = δαβw∓
E [rβ] + Sαβ±E w±

E [rβ]. (5)

Here, the plane waves

w±
E [r] ≡ ξE exp[±ikEr] with kE ≡

√︀
2ME/ℏ2

(6)

describe the free propagation of carriers inside the leads

and the scattering amplitudes, Sαβ+E and Sαβ−E = ¯Sβα+E ,

account for transition between the terminals β and α².
The coordinate rβ ≥ 0 parameterizes the lead β in radial

direction and the factor

ξE ≡
√︀
(dkE/dE)/2π =

√︀
M/2πkEℏ2

(7)

has been introduced for normalization [32].

The outgoing and incoming states as defined by the

conditions (4) and (5) obey the orthogonality relations

⟨φβ±
E′ |φα±

E ⟩ = δαβδE−E′ (8)

and form two complete bases of the single-particle Hilbert

spaceH; for simplicity, we assume throughout this article

that no bound states exist inside the scattering region³.

2 Throughout this article, bars indicate complex conjugation.

3 Note that the bound states generally affect the properties of meso-

scopic conductors although they do not contribute directly to the

transport process [33].
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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The scattering states are not normalizable and carry a

finite probability current. Therefore, they cannot be inter-

preted in the same manner as bound states, whose wave

function corresponds to the probability amplitude for find-

ing a particle at a given position. Instead, we may regard

the scattering states as a quantummechanical description

of a homogeneous sequence of carriers that emerge from a

distant source and travel through the system one by one

before being absorbed by a distant sink [26]. This inter-

pretation does not imply that the states |φα±
E ⟩ represent

more than one particle; it rather entails that they describe

a large number of identical and independent scattering

experiments [34]. In this picture, the square modulus of

the scattering amplitude Sαβ+E is the probability for a car-

rier with energy E that is injected into the terminal α to

leave the system through the terminal β. Analogously, the
squaremodulus of Sαβ−E is the probability for a carrier with

energy E that escapes through the terminal α to originate

form the terminal β.

4.2 Scattering Amplitudes

To ensure the conservation of probability currents, the

scattering amplitudes have to obey the unitarity condi-

tion [32]

∑︁
γ
Sαγ±
E Sγβ∓

E = δαβ . (9)

Furthermore, they provide a link between outgoing

and incoming states by means of the relation

|φα±
E ⟩ =

∑︁
β
Sαβ±E |φβ∓

E ⟩, (10)

which can be easily verified in position representation

using the boundary conditions (5) and (9).

Upon applying the orthogonality relation (8), (10)

implies an algebraic expression for the scattering ampli-

tudes in terms of the scattering states given by

⟨φβ∓
E′ |φα±

E ⟩ = Sαβ±E δE−E′. (11)

This result makes it possible to establish a universal

symmetry, which follows from the observation that outgo-

ing and incoming states are connectedby time reversal, i.e.

|φα±
E ⟩ = Θ|φ̃α∓

E ⟩, (12)

where Θ denotes the anti-unitary time-reversal operator

[35] and tildes indicate the reversal of external magnetic

fields, see Figure 2. Consequently, we have

⟨φβ∓
E′ |φα±

E ⟩ = ⟨Θφ̃β±
E′ |Θφ̃α∓

E ⟩ = ⟨φ̃α∓
E |φ̃β±

E′ ⟩ = ˜Sβα±
E δE−E′

(13)

a b

Figure 2: Schematic representation of incoming and outgoing scat-
tering states. (a) The incoming state |φα+

E ⟩ consists of a plane
wave with energy E that approaches the sample in the terminal
α and decomposes into N escaping waves with the same energy
but smaller amplitude. (b) The outgoing state |φα−

E ⟩ describes
the time-reversed situation, where N approaching waves with the
same energy E combine into a single one that escapes through the
terminal α, cf. (5).

and therefore, given the (11),

Sαβ±E = ˜Sβα±
E . (14)

Hence, for systems without magnetic fields, the scat-

tering amplitudes for forward and backward transitions

between any two terminals α and β are identical.

4.3 Lippmann–Schwinger Theory I:
Autonomous Systems

The scattering states and amplitudes can, in principle, be

determined by rewriting the stationary Schrödiner equa-

tion (4) in position representation, calculating the wave

function inside the scattering region and matching it with

the boundary conditions (5). This procedure, however,

becomes impractical when the scattering wave functions

cannot be found exactly and perturbation methods must

be applied. It is then more convenient to follow an alge-

braic approach, which we develop next.

We first divide the Hamiltonian (2) into a free part H
0

and a perturbation V acting only on the scattering region,

H = H
0

+ V , (15)

where we assume that the scattering states for H
0
can

be determined exactly. Next, we combine the stationary

Schrödinger equations for the free and the perturbed scat-

tering states,

H
0
|φα±

0E ⟩ = E|φα±
0E ⟩ and H|φα±

E ⟩ = E|φα±
E ⟩ (16)

into a single inhomogeneous linear equation,

[E − H
0
][|φα±

E ⟩ − |φα±
0E ⟩] = V|φα±

E ⟩. (17)
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1996; Peduzzi et al. 1996; King and Zeng 2001; Harrell 2001; Braitman and Rosenbaum 2002; Cepeda et al.
2003; Vittinghoff and McCulloch 2007). For example, simulations by Peduzzi et al. (1996) illustrated that
estimates could be biased and inference unreliable if the number of outcomes per independent variable in
the regression model was less than 10. The authors also found problems with estimator convergence,
statistical power and the validity of significance tests (i. e. type I error rates and confidence interval
coverage). Harrell et al. (1996) cautioned against over-fitting and encouraged the use of cross-validation
or bootstrapping for model validation. Moreover, King and Zeng (2001) found that standard logistic models
could substantially under-estimate the probability of the outcome and offered a bias correction with
accompanying software.

When dealing with rare events, several researchers have recommended estimators based on the
propensity score, which is the conditional probability of being exposed, given the covariates (Rosenbaum
and Rubin 1983). These methods avoid estimation of the conditional mean outcome and thereby are
expected to perform well when there are very few outcome events (e. g. Joffe and Rosenbaum 1999;
Braitman and Rosenbaum 2002; Patorno et al. 2014). Simulations by Cepeda et al. (2003) suggested that
propensity score methods were less biased and more efficient than logistic regression for the mean
outcome, when the number of events per independent variable in the regression model was less than 8.
The authors also cautioned that the performance of propensity score methods depended on the strength of
the relationship between the covariates and the exposure.

Targeted minimum loss-based estimation (TMLE) is a general methodology for the construction of
semiparametric, efficient substitution estimators (van der Laan and Rubin 2006; van der Laan and Rose
2011). A TMLE for a single time point exposure can be implemented as follows. First, the conditional
expectation of the outcome, given the exposure and covariates, is estimated with parametric regression or
with a more flexible approach, such as SuperLearner (van der Laan et al. 2007). Second, information on the
exposure-covariate relation (i. e. the propensity score) is incorporated to improve this initial estimator. The
propensity score can also be estimated parametrically or with a more flexible approach. Informally, this
“targeting” step helps remove some of the residual bias due to incomplete adjustment for confounding.
More formally, this targeting step serves to solve the efficient score equation. Finally, the targeted predic-
tions of the outcome under the exposure and under no exposure are averaged over the sample and
contrasted on the relevant scale.

Thereby, TMLE requires estimation of both the conditional mean outcome as well as the propensity
score, and achieves a number of desirable asymptotic properties (van der Laan and Rose; 2011). The
standardized estimator is asymptotically normal with mean 0 and variance given by the variance of its
influence curve. The TMLE is also double robust: if either the conditional mean outcome or the
propensity score is consistently estimated, we will have a consistent estimate of the parameter of
interest. If both functions are consistently estimated (at a fast enough rate), the TMLE will be efficient
and achieve the lowest possible asymptotic variance among a large class of estimators. Finally, TMLE is
a substitution estimator, providing robustness in the face of positivity violations (when there is no or
little variability in the exposure within certain covariate strata) and rare outcomes (e. g. Stitelman and
van der Laan 2010; Gruber and van der Laan 2010; Sekhon et al. 2011; Petersen et al. 2012; Gruber and
van der Laan 2013; Lendle et al. 2013). Building on the work of Gruber and van der Laan (2010), this
paper proposes a new TMLE for the semiparametric statistical model m, which imposes bounds on the
conditional mean of the outcome, given the exposure and measured confounders. We focus our
discussion on rare binary outcomes and rare bounded continuous outcomes (e. g. proportions). The
estimation problem and the theoretical motivation for the new TMLE are outlined in Section 2. In
particular, the causal parameter, the corresponding statistical parameter, the statistical model and the
efficient influence curve are discussed. Section 3 presents the rationale and procedure for the rare
outcomes TMLE. Simulations and the applied analysis are given in the Section 4. The article concludes
with a discussion of the advantages and disadvantages of the proposed method as well as areas for
future work.
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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The scattering states are not normalizable and carry a

finite probability current. Therefore, they cannot be inter-

preted in the same manner as bound states, whose wave

function corresponds to the probability amplitude for find-

ing a particle at a given position. Instead, we may regard

the scattering states as a quantummechanical description

of a homogeneous sequence of carriers that emerge from a

distant source and travel through the system one by one

before being absorbed by a distant sink [26]. This inter-

pretation does not imply that the states |φα±
E ⟩ represent

more than one particle; it rather entails that they describe

a large number of identical and independent scattering

experiments [34]. In this picture, the square modulus of

the scattering amplitude Sαβ+E is the probability for a car-

rier with energy E that is injected into the terminal α to

leave the system through the terminal β. Analogously, the
squaremodulus of Sαβ−E is the probability for a carrier with

energy E that escapes through the terminal α to originate

form the terminal β.

4.2 Scattering Amplitudes

To ensure the conservation of probability currents, the

scattering amplitudes have to obey the unitarity condi-

tion [32]

∑︁
γ
Sαγ±
E Sγβ∓

E = δαβ . (9)

Furthermore, they provide a link between outgoing

and incoming states by means of the relation

|φα±
E ⟩ =

∑︁
β
Sαβ±E |φβ∓

E ⟩, (10)

which can be easily verified in position representation

using the boundary conditions (5) and (9).

Upon applying the orthogonality relation (8), (10)

implies an algebraic expression for the scattering ampli-

tudes in terms of the scattering states given by

⟨φβ∓
E′ |φα±

E ⟩ = Sαβ±E δE−E′. (11)

This result makes it possible to establish a universal

symmetry, which follows from the observation that outgo-

ing and incoming states are connectedby time reversal, i.e.

|φα±
E ⟩ = Θ|φ̃α∓

E ⟩, (12)

where Θ denotes the anti-unitary time-reversal operator

[35] and tildes indicate the reversal of external magnetic

fields, see Figure 2. Consequently, we have

⟨φβ∓
E′ |φα±

E ⟩ = ⟨Θφ̃β±
E′ |Θφ̃α∓

E ⟩ = ⟨φ̃α∓
E |φ̃β±

E′ ⟩ = ˜Sβα±
E δE−E′

(13)

a b

Figure 2: Schematic representation of incoming and outgoing scat-
tering states. (a) The incoming state |φα+

E ⟩ consists of a plane
wave with energy E that approaches the sample in the terminal
α and decomposes into N escaping waves with the same energy
but smaller amplitude. (b) The outgoing state |φα−

E ⟩ describes
the time-reversed situation, where N approaching waves with the
same energy E combine into a single one that escapes through the
terminal α, cf. (5).

and therefore, given the (11),

Sαβ±E = ˜Sβα±
E . (14)

Hence, for systems without magnetic fields, the scat-

tering amplitudes for forward and backward transitions

between any two terminals α and β are identical.

4.3 Lippmann–Schwinger Theory I:
Autonomous Systems

The scattering states and amplitudes can, in principle, be

determined by rewriting the stationary Schrödiner equa-

tion (4) in position representation, calculating the wave

function inside the scattering region and matching it with

the boundary conditions (5). This procedure, however,

becomes impractical when the scattering wave functions

cannot be found exactly and perturbation methods must

be applied. It is then more convenient to follow an alge-

braic approach, which we develop next.

We first divide the Hamiltonian (2) into a free part H
0

and a perturbation V acting only on the scattering region,

H = H
0

+ V , (15)

where we assume that the scattering states for H
0
can

be determined exactly. Next, we combine the stationary

Schrödinger equations for the free and the perturbed scat-

tering states,

H
0
|φα±

0E ⟩ = E|φα±
0E ⟩ and H|φα±

E ⟩ = E|φα±
E ⟩ (16)

into a single inhomogeneous linear equation,

[E − H
0
][|φα±

E ⟩ − |φα±
0E ⟩] = V|φα±

E ⟩. (17)
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This equation can be formally solved for the vector

|φα±
E ⟩− |φα±

0E ⟩ after making the operator E−H
0
invertible

by adding a small imaginary shift. Following these steps,

we arrive at the Lippmann–Schwinger equation

|φα±
E ⟩ = |φα±

0E ⟩ + [E − H
0

± iε]−1V|φα±
E ⟩, (18)

where ε > 0 and the limit ε → 0must be taken after phys-

ical observables have been calculated. Note that the sign

of the complex shift is important to ensure the correct

correspondence between free and perturbed outgoing and

incoming states, for details see [26].

By construction, the solutions |φα±
E ⟩ of (18) also

solve the corresponding stationary Schrödinger equation.

However, the Lippmann–Schwinger equation contains

more information, as it explicitly includes the continuity

condition

limV→0
|φα±

E ⟩ = |φα±
0E ⟩, (19)

which ensures that the perturbed states |φα±
E ⟩ obey the

boundary conditions (5). That is, for a given set of free

states |φα±
0E ⟩, the Lippmann–Schwinger equationuniquely

determines the outgoing and incoming states for the

full Hamiltonian H, while the solutions of the stationary
Schrödinger equation are unique only up to linear combi-

nations of scattering states with the same energy [26].

The Lippmann–Schwinger equation (18) can be for-

mally solved by iteration. This procedure yields

|φα±
E ⟩ =

∑︁
∞

l=0

[[E − H
0

± iε]−1V]
l
|φα±

0E ⟩

= [1 − [E − H
0

± iε]−1V]−1|φα±
0E ⟩

= |φα±
0E ⟩ + [E − H ± iε]−1V|φα±

0E ⟩ (20)

where the last line follows by noting that

[1 − [E − H
0

± iε]−1V]
−1

= [[E − H
0

± iε]−1

[E − H ± iε]]−1

= [E − H ± iε]−1

[E − H
0

± iε]

= 1 + [E − H + ±iε]−1V . (21)

The expression (20) provides a systematic expansion

of the scattering states |φα±
E ⟩ in terms of the perturbation

V.Moreover, it implies that the solutions of theLippmann–

Schwinger equation obey the same orthogonality relation

as the free states, as

⟨φβ±
E′ |φα±

E ⟩ = ⟨φβ±
0E′|φ

α±
E ⟩ +

⟨φβ±
0E′|V|φα±

E ⟩
E′ − E ∓ iε

= ⟨φβ±
0E′|φ

α±
0E ⟩ = δαβδE−E′. (22)

Here, we have first inserted (20) for |φβ±
E′ ⟩ and then (18) for

|φα±
E ⟩ in the first summand. Along the same lines, we find

⟨φβ∓
E′ |φα±

E ⟩ = ⟨φβ∓
0E′|φ

α±
E ⟩ +

⟨φβ∓
0E′|V|φα±

E ⟩
E′ − E ± iε

= ⟨φβ∓
0E′|φ

α±
0E ⟩ ∓ 2iε

(E − E′)2 + ε2
⟨φβ∓

0E′|V|φα±
E ⟩

= (Sαβ±
0E ∓ 2πi⟨φβ∓

0E′|V|φα±
E ⟩)δE−E′, (23)

where we have used the relation [36]

lim

ε→0

ε
a2 + ε2 = πδa , (24)

which must be understood in the sense of distributions,

and Sαβ±
0E denotes the scattering amplitudes for the free

Hamiltonian H
0
. Comparing (23) with (11) yields the for-

mula

Sαβ±E = Sαβ±
0E ∓ 2πi⟨φβ∓

0E |V|φα±
E ⟩, (25)

which makes it possible to calculate the full scattering

amplitudes order by order inV byusing the expansion (20)

of the scattering states |φα±
E ⟩. This perturbation scheme

is a key result of the Lippmann–Schwinger formalism and

will be developed further in the next section.

5 Floquet Scattering Theory

5.1 Floquet Theory

The carrier dynamics in a driven multi-terminal system is

governed by a Hamiltonian with the general form

Ht = P2/2M + U + Vt = H + Vt , (26)

where the dynamical potential Vt accounts for time-

dependent external fields acting on the scattering region.

If the driving is periodic with frequency ω ≡ 2π/τ,
according to the Floquet theorem, the time-dependent

Schrödinger equation admits a complete set of solutions

that have the structure

|ψα
E,t⟩ = exp[−iEt/ℏ]|ϕα

E,t⟩, (27)

where |ϕα
E,t+τ⟩ = |ϕα

E,t⟩, the parameter E here plays the

role of a continuous quantumnumber and α stands for any
discrete quantum number [28, 37, 38]. The Floquet states

|ϕα
E,t⟩ obey the Floquet–Schrödinger equation

[Ht − iℏ∂t]|ϕα
E,t⟩ = E|ϕα

E,t⟩ (28)
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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and form an orthogonal basis of the single-particle Hilbert

space H at every fixed time t.
In order to formulate a systematic scattering theory for

periodically driven systems, it is convenient to introduce

the extended Hilbert space [28]

^H ≡ H ⊗ Hτ , (29)

where Hτ denotes the Hilbert space of τ-periodic func-
tions. In time representation, the elements |ψ⟩⟩ of ^H are

τ-periodic single-particle state vectors, i.e.

⟨t|ψ⟩⟩ = |ψt⟩ with |ψt+τ⟩ = |ψt⟩ ∈ H. (30)

The scalar product in
^H is defined as

⟨⟨ψ|χ⟩⟩ ≡ 1

τ

τ∫︁

0

dt ⟨ψt|χt⟩. (31)

This framework makes it possible to cast the Floquet–

Schrödinger equation (28) into the form of a stationary

Schrödinger equation given by

^H|ϕmα
E ⟩⟩ = Em|ϕmα

E ⟩⟩ with Em ≡ E + mℏω, (32)

wherem runs over all integers. The Floquet vectors |ϕmα
E ⟩⟩

are connected to the Floquet states according to

⟨t|ϕmα
E ⟩⟩ = umt |ϕα

E,t⟩ with umt ≡ exp[imωt] (33)

and the effective Hamiltonian
^H, which is defined as

⟨t| ^H|ψ⟩⟩ ≡ [Ht − iℏ∂t]|ψt⟩, (34)

is a self-adjoint operator on
^H with respect to the scalar

product (31). The additional Fourier factor in (33), which

is accounted for by the mode index m, was introduced to

ensure that the solutions of (32) are complete in
^H; this

property will be required to develop an algebraic scatter-

ing theory in the extended Hilbert space. Once the Flo-

quet vectors |ϕmα
E ⟩⟩ have been determined, a complete

set of Floquet states |ϕα
E,t⟩ that fulfill (28) is obtained by

setting the mode index to zero and returning to the time

representation.

5.2 Lippmann–Schwinger Theory II: Driven
Systems

Replacing the stationary Schrödinger equation (4) with

(32), we can now extend the Lippmann–Schwinger the-

ory of autonomous systems to systems with periodic driv-

ing. The dynamical potential Vt thereby plays the role of

the perturbation and the free states are replaced by the

Floquet vectors

⟨t|φmα±
E ⟩⟩ ≡ umt |φα±

E ⟩, (35)

where |φα±
E ⟩ are the scattering states for stationary part

H of the Hamiltonian (26). The free Floquet scattering

vectors |φmα±
E ⟩⟩ form a complete basis of the extended

Hilbert space
^H, for outgoing and incoming orientation,

respectively, and fulfill the Floquet–Schrödinger equation

^H
0
|φmα±

E ⟩⟩ = Em|φmα±
E ⟩⟩, (36)

where the free effective Hamiltonian is defined as

⟨t| ^H
0
|ψ⟩⟩ = [H − iℏ∂t]|ψt⟩. (37)

Furthermore, using (8) and (31), it is straightforward to

verify the orthogonality relation

⟨⟨φnβ±
E′ |φmα±

E ⟩⟩ = δmnδαβδE−E′. (38)

Note that the quantum numbers E and α have now been

identified with the energy and the terminal of either an

incident (+) or an escaping (−) carrier.

The full Floquet scattering vectors |ϕmα±
E ⟩⟩ are those

solutions of the Floquet–Schrödinger equation

^H|ϕmα±
E ⟩⟩ = Em|ϕmα±

E ⟩⟩ (39)

that reduce to the corresponding free vectors |φmα±
E ⟩⟩ in

the stationary limit Vt → 0. They are uniquely determined

by the Floquet–Lippmann–Schwinger equation

|ϕmα±
E ⟩⟩ = |φmα±

E ⟩⟩+ [Em − ^H
0

± iε]−1

^V|ϕmα±
E ⟩⟩, (40)

which can be derived along the same lines as (18); the

perturbation operator on the extended Hilbert space is

thereby defined as ⟨t|^V|ψ⟩⟩ = Vt|ψt⟩. The formal solution

of (40) can be found by iteration and reads

|ϕmα±
E ⟩⟩ =

∑︁
∞

k=0

[[Em − ^H
0

± iε]−1

^V]
k
|φmα±

E ⟩⟩

= [1 − [Em − ^H
0

± iε]
−1

^V]−1|φmα±
E ⟩⟩

= |φmα±
E ⟩⟩ + [Em − ^H ± iε]

−1

^V|φmα±
E ⟩⟩. (41)

Using the (40) and (41), we can now establish the

orthogonality relation for the Floquet scattering vectors,

⟨⟨ϕnβ±
E′ |ϕmα±

E ⟩⟩ = ⟨⟨φnβ±
E′ |ϕmα±

E ⟩⟩ +
⟨⟨φnβ±

E′ |^V|ϕmα±
E ⟩⟩

E′n − Em ∓ iε
= ⟨⟨φnβ±

E′ |φmα±
E ⟩⟩ = δnmδαβδE−E′,

(42)
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1996; Peduzzi et al. 1996; King and Zeng 2001; Harrell 2001; Braitman and Rosenbaum 2002; Cepeda et al.
2003; Vittinghoff and McCulloch 2007). For example, simulations by Peduzzi et al. (1996) illustrated that
estimates could be biased and inference unreliable if the number of outcomes per independent variable in
the regression model was less than 10. The authors also found problems with estimator convergence,
statistical power and the validity of significance tests (i. e. type I error rates and confidence interval
coverage). Harrell et al. (1996) cautioned against over-fitting and encouraged the use of cross-validation
or bootstrapping for model validation. Moreover, King and Zeng (2001) found that standard logistic models
could substantially under-estimate the probability of the outcome and offered a bias correction with
accompanying software.

When dealing with rare events, several researchers have recommended estimators based on the
propensity score, which is the conditional probability of being exposed, given the covariates (Rosenbaum
and Rubin 1983). These methods avoid estimation of the conditional mean outcome and thereby are
expected to perform well when there are very few outcome events (e. g. Joffe and Rosenbaum 1999;
Braitman and Rosenbaum 2002; Patorno et al. 2014). Simulations by Cepeda et al. (2003) suggested that
propensity score methods were less biased and more efficient than logistic regression for the mean
outcome, when the number of events per independent variable in the regression model was less than 8.
The authors also cautioned that the performance of propensity score methods depended on the strength of
the relationship between the covariates and the exposure.

Targeted minimum loss-based estimation (TMLE) is a general methodology for the construction of
semiparametric, efficient substitution estimators (van der Laan and Rubin 2006; van der Laan and Rose
2011). A TMLE for a single time point exposure can be implemented as follows. First, the conditional
expectation of the outcome, given the exposure and covariates, is estimated with parametric regression or
with a more flexible approach, such as SuperLearner (van der Laan et al. 2007). Second, information on the
exposure-covariate relation (i. e. the propensity score) is incorporated to improve this initial estimator. The
propensity score can also be estimated parametrically or with a more flexible approach. Informally, this
“targeting” step helps remove some of the residual bias due to incomplete adjustment for confounding.
More formally, this targeting step serves to solve the efficient score equation. Finally, the targeted predic-
tions of the outcome under the exposure and under no exposure are averaged over the sample and
contrasted on the relevant scale.

Thereby, TMLE requires estimation of both the conditional mean outcome as well as the propensity
score, and achieves a number of desirable asymptotic properties (van der Laan and Rose; 2011). The
standardized estimator is asymptotically normal with mean 0 and variance given by the variance of its
influence curve. The TMLE is also double robust: if either the conditional mean outcome or the
propensity score is consistently estimated, we will have a consistent estimate of the parameter of
interest. If both functions are consistently estimated (at a fast enough rate), the TMLE will be efficient
and achieve the lowest possible asymptotic variance among a large class of estimators. Finally, TMLE is
a substitution estimator, providing robustness in the face of positivity violations (when there is no or
little variability in the exposure within certain covariate strata) and rare outcomes (e. g. Stitelman and
van der Laan 2010; Gruber and van der Laan 2010; Sekhon et al. 2011; Petersen et al. 2012; Gruber and
van der Laan 2013; Lendle et al. 2013). Building on the work of Gruber and van der Laan (2010), this
paper proposes a new TMLE for the semiparametric statistical model m, which imposes bounds on the
conditional mean of the outcome, given the exposure and measured confounders. We focus our
discussion on rare binary outcomes and rare bounded continuous outcomes (e. g. proportions). The
estimation problem and the theoretical motivation for the new TMLE are outlined in Section 2. In
particular, the causal parameter, the corresponding statistical parameter, the statistical model and the
efficient influence curve are discussed. Section 3 presents the rationale and procedure for the rare
outcomes TMLE. Simulations and the applied analysis are given in the Section 4. The article concludes
with a discussion of the advantages and disadvantages of the proposed method as well as areas for
future work.
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Authenticated | muthu@tnq.co.in
Download Date | 9/24/19 7:25 PM

2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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and form an orthogonal basis of the single-particle Hilbert

space H at every fixed time t.
In order to formulate a systematic scattering theory for

periodically driven systems, it is convenient to introduce

the extended Hilbert space [28]

^H ≡ H ⊗ Hτ , (29)

where Hτ denotes the Hilbert space of τ-periodic func-
tions. In time representation, the elements |ψ⟩⟩ of ^H are

τ-periodic single-particle state vectors, i.e.

⟨t|ψ⟩⟩ = |ψt⟩ with |ψt+τ⟩ = |ψt⟩ ∈ H. (30)

The scalar product in
^H is defined as

⟨⟨ψ|χ⟩⟩ ≡ 1

τ

τ∫︁

0

dt ⟨ψt|χt⟩. (31)

This framework makes it possible to cast the Floquet–

Schrödinger equation (28) into the form of a stationary

Schrödinger equation given by

^H|ϕmα
E ⟩⟩ = Em|ϕmα

E ⟩⟩ with Em ≡ E + mℏω, (32)

wherem runs over all integers. The Floquet vectors |ϕmα
E ⟩⟩

are connected to the Floquet states according to

⟨t|ϕmα
E ⟩⟩ = umt |ϕα

E,t⟩ with umt ≡ exp[imωt] (33)

and the effective Hamiltonian
^H, which is defined as

⟨t| ^H|ψ⟩⟩ ≡ [Ht − iℏ∂t]|ψt⟩, (34)

is a self-adjoint operator on
^H with respect to the scalar

product (31). The additional Fourier factor in (33), which

is accounted for by the mode index m, was introduced to

ensure that the solutions of (32) are complete in
^H; this

property will be required to develop an algebraic scatter-

ing theory in the extended Hilbert space. Once the Flo-

quet vectors |ϕmα
E ⟩⟩ have been determined, a complete

set of Floquet states |ϕα
E,t⟩ that fulfill (28) is obtained by

setting the mode index to zero and returning to the time

representation.

5.2 Lippmann–Schwinger Theory II: Driven
Systems

Replacing the stationary Schrödinger equation (4) with

(32), we can now extend the Lippmann–Schwinger the-

ory of autonomous systems to systems with periodic driv-

ing. The dynamical potential Vt thereby plays the role of

the perturbation and the free states are replaced by the

Floquet vectors

⟨t|φmα±
E ⟩⟩ ≡ umt |φα±

E ⟩, (35)

where |φα±
E ⟩ are the scattering states for stationary part

H of the Hamiltonian (26). The free Floquet scattering

vectors |φmα±
E ⟩⟩ form a complete basis of the extended

Hilbert space
^H, for outgoing and incoming orientation,

respectively, and fulfill the Floquet–Schrödinger equation

^H
0
|φmα±

E ⟩⟩ = Em|φmα±
E ⟩⟩, (36)

where the free effective Hamiltonian is defined as

⟨t| ^H
0
|ψ⟩⟩ = [H − iℏ∂t]|ψt⟩. (37)

Furthermore, using (8) and (31), it is straightforward to

verify the orthogonality relation

⟨⟨φnβ±
E′ |φmα±

E ⟩⟩ = δmnδαβδE−E′. (38)

Note that the quantum numbers E and α have now been

identified with the energy and the terminal of either an

incident (+) or an escaping (−) carrier.

The full Floquet scattering vectors |ϕmα±
E ⟩⟩ are those

solutions of the Floquet–Schrödinger equation

^H|ϕmα±
E ⟩⟩ = Em|ϕmα±

E ⟩⟩ (39)

that reduce to the corresponding free vectors |φmα±
E ⟩⟩ in

the stationary limit Vt → 0. They are uniquely determined

by the Floquet–Lippmann–Schwinger equation

|ϕmα±
E ⟩⟩ = |φmα±

E ⟩⟩+ [Em − ^H
0

± iε]−1

^V|ϕmα±
E ⟩⟩, (40)

which can be derived along the same lines as (18); the

perturbation operator on the extended Hilbert space is

thereby defined as ⟨t|^V|ψ⟩⟩ = Vt|ψt⟩. The formal solution

of (40) can be found by iteration and reads

|ϕmα±
E ⟩⟩ =

∑︁
∞

k=0

[[Em − ^H
0

± iε]−1

^V]
k
|φmα±

E ⟩⟩

= [1 − [Em − ^H
0

± iε]
−1

^V]−1|φmα±
E ⟩⟩

= |φmα±
E ⟩⟩ + [Em − ^H ± iε]

−1

^V|φmα±
E ⟩⟩. (41)

Using the (40) and (41), we can now establish the

orthogonality relation for the Floquet scattering vectors,

⟨⟨ϕnβ±
E′ |ϕmα±

E ⟩⟩ = ⟨⟨φnβ±
E′ |ϕmα±

E ⟩⟩ +
⟨⟨φnβ±

E′ |^V|ϕmα±
E ⟩⟩

E′n − Em ∓ iε
= ⟨⟨φnβ±

E′ |φmα±
E ⟩⟩ = δnmδαβδE−E′,

(42)
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and the connecting relations between outgoing and

incoming vectors,

⟨⟨ϕnβ∓
E′ |ϕmα±

E ⟩⟩ = ⟨⟨φnβ∓
E′ |ϕmα±

E ⟩⟩

+
⟨⟨φnβ∓

E′ |^V|ϕmα±
E ⟩⟩

E′n − Em ± iε = ⟨⟨φnβ∓
E′ |φmα±

E ⟩⟩

∓ 2iε
(Em − E′n)2 + ε2

⟨⟨φnβ∓
E′ |^V|ϕmα±

E ⟩⟩

= (δmnSαβ±E ∓ 2πi⟨⟨φnβ∓
Em−n

|^V|ϕmα±
E ⟩⟩)δEm−E′n . (43)

Here, we followed the same steps as in the derivations of

the (22) and (23). In the (43), Sαβ±E denotes the scattering

amplitudes for the stationary Hamiltonian H.

5.3 Floquet Scattering Amplitudes I: General
Properties

The Floquet scattering amplitudes are defined as

⟨⟨ϕ0β∓
E′ |ϕmα±

E ⟩⟩ ≡ S
αβ±
m,E δEm−E′, (44)

where S
αβ−
m,E = ¯S

βα+
−m,Em . They satisfy the unitarity condi-

tions

∑︁
nγ

S
γβ∓
m−n,EnS

αγ±
n,E = δm0δαβ (45)

and the symmetry relation

S
αβ±
m,E =

≈

S
βα±
−m,Em , (46)

where the double tilde indicates the reversal of both exter-

nal magnetic fields and driving protocols. In the follow-

ing, we will show how these results can be derived within

the framework of Floquet scattering theory. Note that,

throughout this article, we understand that sums over the

mode index run over all integers and that the Floquet scat-

tering amplitudes are zero if their energy argument is not

positive.

The unitarity conditions (45) follow from the com-

pleteness relation for the Floquet scattering vectors,

∑︀∫︁

mα

dE|ϕmα±
E ⟩⟩⟨⟨ϕmα±

E | = 1, (47)

where 1 stands for the identity operator on the extended

Hilbert space and the symbolic notation

∑︀∫︁

mα

dE ≡
∑︁

mα

∞∫︁

0

dE (48)

has been introduced for convenience. We thus have⁴

⟨⟨ϕ0β±
E′ |ϕmα±

E ⟩⟩ = δm0δαβδEm−E′

=
∑︀∫︁

nγ

dE′′⟨⟨ϕ0β±
E′ |ϕnγ∓

E′′ ⟩⟩⟨⟨ϕnγ∓
E′′ |ϕmα±

E ⟩⟩

=
(︂∑︁

nγ
S

γβ∓
n,Em−n

Sαγ±
m−n,E

)︂
δEm−E′.

(49)

and shifting the summation index n yields the result (45).
To derive the symmetry relation (46), we first observe

that the free outgoing and incoming Floquet scattering

vectors are connected by time reversal, i.e.

^
Θ|φmα±

E ⟩⟩ = |φ̃mα∓
E ⟩⟩, (50)

as canbe easily verifiedwith thehelp of (35) and thedefini-

tion of the time-reversal operator on the extended Hilbert

space, ⟨t|^Θ|ψ⟩⟩ ≡ Θ|ψ−t⟩. Consequently, acting on the

solution of the Floquet–Lippmann–Schwinger equation,

(41), with
^
Θ yields⁵

^
Θ|ϕmα±

E ⟩⟩ = |
≈

ϕmα∓
E ⟩⟩, (51)

where we have used the identity
^
Θ
^V =

≈

V^Θ with the

time-reversed perturbation operator being defined as

⟨t|
≈

V|ψ⟩⟩ ≡ ˜V−t|ψt⟩. This result finally implies

⟨⟨ϕ0β∓
E′ |ϕmα±

E ⟩⟩ = ⟨⟨^Θ
≈

ϕ0β±
E′ |^Θ

≈

ϕmα∓
E ⟩⟩

= ⟨⟨
≈

ϕmα∓
E |

≈

ϕ0β±
E′ ⟩⟩ =

≈

Sβα±
−m,Em δEm−E′ (52)

and thus, by comparisonwith the definition (44), the sym-

metries (46).

5.4 Floquet Scattering Amplitudes II:
Perturbation Theory

The framework of our Floquet–Lippmann–Schwinger the-

ory makes it possible to derive a systematic expansion of

the Floquet scattering amplitudes in powers of the dynam-

ical potential. To this end, we first compare the defini-

tions (44) with the relations (43) to obtain the explicit

expressions

S
αβ±
m,E = δm0Sαβ±E ∓ 2πi⟨⟨φ0β∓

Em |^V|ϕmα±
E ⟩⟩. (53)

4 Note that ⟨⟨ϕnγ∓
E′′ |ϕmα±

E ⟩⟩ = ⟨⟨ϕ0γ∓
E′′ |ϕm−nα±

E ⟩⟩.
5 Recall that a single tilde indicates the reversal of magnetic fields

only and a double tilde includes the reversal of driving protocols.
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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Inserting the series representation (41) of the Floquet

scattering vector |ϕmα±
E ⟩⟩ into this formula now yields the

expansion

Sαβ±m,E = δm0Sαβ±E

∓ 2πi
∑︁

∞

l=0

⟨⟨φ0β∓
Em |^V[[Em − ^H

0
± iε]−1

^V]
l
|φmα±

E ⟩⟩,
(54)

This result is analogous to the Born series in standard

scattering theory [27]. Taking into account only first-order

corrections gives the Floquet–Born approximation

Sαβ±m,E ≃ δm0Sαβ±E ∓ 2πi⟨⟨φ0β∓
Em |^V|φmα±

E ⟩⟩

= δm0Sαβ±E ∓ 2πi
τ

τ∫︁

0

dt ⟨φβ∓
Em |Vt|φα±

E ⟩umt ,
(55)

which is justified if the amplitude of the external potential

variations are small compared to the carrier energy.

5.5 Scattering Wave Functions

The physical content of the Floquet scattering states can

be understood from their asymptotic wave functions. To

derive their structure,we first use the Floquet–Lippmann–

Schwinger (40) and the completeness relation for the free

Floquet scattering vectors,

∑︀∫︁

mα

dE|φmα±
E ⟩⟩⟨⟨φmα±

E | = 1, (56)

to connect the lead wave functions of the Floquet scatter-

ing stateswith the leadwave functions (5) of the stationary

scattering states,

ϕα±
E,t [rβ] ≡ ⟨rβ|ϕα±

E,t ⟩ = ⟨⟨rβ , t|ϕ0α±
E ⟩⟩

= ⟨⟨rβ , t|φ0α±
E ⟩⟩

+ ⟨⟨rβ , t|[E − ^H
0

± iε]−1

^V|ϕ0α±
E ⟩⟩

= φα±
E [rβ] +

∑︀∫︁

mγ

dE′φγ∓
E′ [rβ]u

m
t

⟨⟨φmγ∓
E′ |^V|ϕ0α±

E ⟩⟩
E − E′m ± iε .

(57)

This expression shows that the wave functions

ϕα±
E,t [rβ] are invariant under spatial translations by integer

multiples of the wave length λE ≡ 2π/kE. Therefore, we
can evaluate them in the far distance from the scattering

region. Plugging (5) into (57) thus yields

ϕα±
E,t [rβ] = δαβw∓

E [rβ] + Sαβ±E w±
E [rβ]

−
∑︀∫︁

mγ

dE′
δβγw±

E′[rβ] + Sγβ∓
E′ w∓

E′[rβ]
E′ − Em ∓ iε

× u−m
t ⟨⟨φ−mγ∓

E′ |^V|ϕ0α±
E ⟩⟩

≍ δαβw∓
E [rβ] +

∑︁
m
(δm0Sαβ±E

∓ 2πi⟨⟨φ0α∓
Em |^V|ϕmα±

E ⟩⟩) × w±
Em [rβ]u

−m
t (58)

Here, we have used Lemma 1c of App. 9 and the symbol ≍
indicates asymptotic equality in the limit rα → ∞. Finally,

inserting the expressions (53) for the Floquet scattering

amplitudes gives the wave function

ϕα±
E,t [rβ] = δαβw∓

E [rβ] +
∑︁

m
S
αβ±
m,E w

±
Em [rβ]u

−m
t . (59)

This result shows that the outgoing and incoming Flo-

quet scattering states, |ϕα+
E,t ⟩ and |ϕα−

E,t ⟩, respectively, con-
tain a single incident and escaping wave with wave length

λE in the lead α. Hence, they represent a carrier with

energyE that either enters or leaves the system through the

terminal α. The Floquet scattering amplitude Sαβ+m,E thus

corresponds to the probability amplitude for a transitions

from the terminal α to the terminal β under the absorp-

tion (m > 0) or emission (m < 0) ofm units of energy ℏω.
Analogously, Sαβ−m,E corresponds to the probability ampli-

tude for that an escaping carrier with energy E in the ter-

minal α was injected into the terminal β with an energy

surplus (m > 0) or deficit (m < 0) ofm quanta ℏω. In this
picture, the unitarity condition (45) ensures the conserva-

tion of probability currents. The symmetry relation (46)

implies that forward and backward processes occur with

the same probability amplitude provided that nomagnetic

field is applied to the system and the driving protocols are

invariant under time reversal [15, 24].

We stress that the lead wave functions (59) have

not been used to define the Floquet scattering states in

our approach; in fact, their structure results from the

continuity condition limVt→0
|ϕα±

E,t ⟩ = |φα±
E ⟩, which has

been built into the Floquet–Lippmann–Schwinger equa-

tion (40). In the same way, the quantization of the energy

flux between carriers and driving fields arises naturally

from the periodicity condition |ϕα±
E,t ⟩ = |ϕα±

E,t+τ⟩, which is
imposed by the Floquet theorem and encoded in structure

of the extended Hilbert space.

Note that the lead wave functions (59) can be used

as boundary conditions to determine the incoming and

outgoing solutions of the Floquet–Schrödinger equation
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1996; Peduzzi et al. 1996; King and Zeng 2001; Harrell 2001; Braitman and Rosenbaum 2002; Cepeda et al.
2003; Vittinghoff and McCulloch 2007). For example, simulations by Peduzzi et al. (1996) illustrated that
estimates could be biased and inference unreliable if the number of outcomes per independent variable in
the regression model was less than 10. The authors also found problems with estimator convergence,
statistical power and the validity of significance tests (i. e. type I error rates and confidence interval
coverage). Harrell et al. (1996) cautioned against over-fitting and encouraged the use of cross-validation
or bootstrapping for model validation. Moreover, King and Zeng (2001) found that standard logistic models
could substantially under-estimate the probability of the outcome and offered a bias correction with
accompanying software.

When dealing with rare events, several researchers have recommended estimators based on the
propensity score, which is the conditional probability of being exposed, given the covariates (Rosenbaum
and Rubin 1983). These methods avoid estimation of the conditional mean outcome and thereby are
expected to perform well when there are very few outcome events (e. g. Joffe and Rosenbaum 1999;
Braitman and Rosenbaum 2002; Patorno et al. 2014). Simulations by Cepeda et al. (2003) suggested that
propensity score methods were less biased and more efficient than logistic regression for the mean
outcome, when the number of events per independent variable in the regression model was less than 8.
The authors also cautioned that the performance of propensity score methods depended on the strength of
the relationship between the covariates and the exposure.

Targeted minimum loss-based estimation (TMLE) is a general methodology for the construction of
semiparametric, efficient substitution estimators (van der Laan and Rubin 2006; van der Laan and Rose
2011). A TMLE for a single time point exposure can be implemented as follows. First, the conditional
expectation of the outcome, given the exposure and covariates, is estimated with parametric regression or
with a more flexible approach, such as SuperLearner (van der Laan et al. 2007). Second, information on the
exposure-covariate relation (i. e. the propensity score) is incorporated to improve this initial estimator. The
propensity score can also be estimated parametrically or with a more flexible approach. Informally, this
“targeting” step helps remove some of the residual bias due to incomplete adjustment for confounding.
More formally, this targeting step serves to solve the efficient score equation. Finally, the targeted predic-
tions of the outcome under the exposure and under no exposure are averaged over the sample and
contrasted on the relevant scale.

Thereby, TMLE requires estimation of both the conditional mean outcome as well as the propensity
score, and achieves a number of desirable asymptotic properties (van der Laan and Rose; 2011). The
standardized estimator is asymptotically normal with mean 0 and variance given by the variance of its
influence curve. The TMLE is also double robust: if either the conditional mean outcome or the
propensity score is consistently estimated, we will have a consistent estimate of the parameter of
interest. If both functions are consistently estimated (at a fast enough rate), the TMLE will be efficient
and achieve the lowest possible asymptotic variance among a large class of estimators. Finally, TMLE is
a substitution estimator, providing robustness in the face of positivity violations (when there is no or
little variability in the exposure within certain covariate strata) and rare outcomes (e. g. Stitelman and
van der Laan 2010; Gruber and van der Laan 2010; Sekhon et al. 2011; Petersen et al. 2012; Gruber and
van der Laan 2013; Lendle et al. 2013). Building on the work of Gruber and van der Laan (2010), this
paper proposes a new TMLE for the semiparametric statistical model m, which imposes bounds on the
conditional mean of the outcome, given the exposure and measured confounders. We focus our
discussion on rare binary outcomes and rare bounded continuous outcomes (e. g. proportions). The
estimation problem and the theoretical motivation for the new TMLE are outlined in Section 2. In
particular, the causal parameter, the corresponding statistical parameter, the statistical model and the
efficient influence curve are discussed. Section 3 presents the rationale and procedure for the rare
outcomes TMLE. Simulations and the applied analysis are given in the Section 4. The article concludes
with a discussion of the advantages and disadvantages of the proposed method as well as areas for
future work.
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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Inserting the series representation (41) of the Floquet

scattering vector |ϕmα±
E ⟩⟩ into this formula now yields the

expansion

Sαβ±m,E = δm0Sαβ±E

∓ 2πi
∑︁

∞

l=0

⟨⟨φ0β∓
Em |^V[[Em − ^H

0
± iε]−1

^V]
l
|φmα±

E ⟩⟩,
(54)

This result is analogous to the Born series in standard

scattering theory [27]. Taking into account only first-order

corrections gives the Floquet–Born approximation

Sαβ±m,E ≃ δm0Sαβ±E ∓ 2πi⟨⟨φ0β∓
Em |^V|φmα±

E ⟩⟩

= δm0Sαβ±E ∓ 2πi
τ

τ∫︁

0

dt ⟨φβ∓
Em |Vt|φα±

E ⟩umt ,
(55)

which is justified if the amplitude of the external potential

variations are small compared to the carrier energy.

5.5 Scattering Wave Functions

The physical content of the Floquet scattering states can

be understood from their asymptotic wave functions. To

derive their structure,we first use the Floquet–Lippmann–

Schwinger (40) and the completeness relation for the free

Floquet scattering vectors,

∑︀∫︁

mα

dE|φmα±
E ⟩⟩⟨⟨φmα±

E | = 1, (56)

to connect the lead wave functions of the Floquet scatter-

ing stateswith the leadwave functions (5) of the stationary

scattering states,

ϕα±
E,t [rβ] ≡ ⟨rβ|ϕα±

E,t ⟩ = ⟨⟨rβ , t|ϕ0α±
E ⟩⟩

= ⟨⟨rβ , t|φ0α±
E ⟩⟩

+ ⟨⟨rβ , t|[E − ^H
0

± iε]−1

^V|ϕ0α±
E ⟩⟩

= φα±
E [rβ] +

∑︀∫︁

mγ

dE′φγ∓
E′ [rβ]u

m
t

⟨⟨φmγ∓
E′ |^V|ϕ0α±

E ⟩⟩
E − E′m ± iε .

(57)

This expression shows that the wave functions

ϕα±
E,t [rβ] are invariant under spatial translations by integer

multiples of the wave length λE ≡ 2π/kE. Therefore, we
can evaluate them in the far distance from the scattering

region. Plugging (5) into (57) thus yields

ϕα±
E,t [rβ] = δαβw∓

E [rβ] + Sαβ±E w±
E [rβ]

−
∑︀∫︁

mγ

dE′
δβγw±

E′[rβ] + Sγβ∓
E′ w∓

E′[rβ]
E′ − Em ∓ iε

× u−m
t ⟨⟨φ−mγ∓

E′ |^V|ϕ0α±
E ⟩⟩

≍ δαβw∓
E [rβ] +

∑︁
m
(δm0Sαβ±E

∓ 2πi⟨⟨φ0α∓
Em |^V|ϕmα±

E ⟩⟩) × w±
Em [rβ]u

−m
t (58)

Here, we have used Lemma 1c of App. 9 and the symbol ≍
indicates asymptotic equality in the limit rα → ∞. Finally,

inserting the expressions (53) for the Floquet scattering

amplitudes gives the wave function

ϕα±
E,t [rβ] = δαβw∓

E [rβ] +
∑︁

m
S
αβ±
m,E w

±
Em [rβ]u

−m
t . (59)

This result shows that the outgoing and incoming Flo-

quet scattering states, |ϕα+
E,t ⟩ and |ϕα−

E,t ⟩, respectively, con-
tain a single incident and escaping wave with wave length

λE in the lead α. Hence, they represent a carrier with

energyE that either enters or leaves the system through the

terminal α. The Floquet scattering amplitude Sαβ+m,E thus

corresponds to the probability amplitude for a transitions

from the terminal α to the terminal β under the absorp-

tion (m > 0) or emission (m < 0) ofm units of energy ℏω.
Analogously, Sαβ−m,E corresponds to the probability ampli-

tude for that an escaping carrier with energy E in the ter-

minal α was injected into the terminal β with an energy

surplus (m > 0) or deficit (m < 0) ofm quanta ℏω. In this
picture, the unitarity condition (45) ensures the conserva-

tion of probability currents. The symmetry relation (46)

implies that forward and backward processes occur with

the same probability amplitude provided that nomagnetic

field is applied to the system and the driving protocols are

invariant under time reversal [15, 24].

We stress that the lead wave functions (59) have

not been used to define the Floquet scattering states in

our approach; in fact, their structure results from the

continuity condition limVt→0
|ϕα±

E,t ⟩ = |φα±
E ⟩, which has

been built into the Floquet–Lippmann–Schwinger equa-

tion (40). In the same way, the quantization of the energy

flux between carriers and driving fields arises naturally

from the periodicity condition |ϕα±
E,t ⟩ = |ϕα±

E,t+τ⟩, which is
imposed by the Floquet theorem and encoded in structure

of the extended Hilbert space.

Note that the lead wave functions (59) can be used

as boundary conditions to determine the incoming and

outgoing solutions of the Floquet–Schrödinger equation
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(28) in position representation. For sufficiently simple

dynamical potentials, the Floquet scattering amplitudes

can thus be found by calculating the Floquet wave func-

tions inside the scattering region and solving a spatio-

temporal boundary value problem [39–41].

6 Matter and Energy Currents

6.1 Current Operators

On the single-particle level, the matter and energy cur-

rents that flow at the position rα of the lead α into a

multi-terminal conductor are represented by the operators

[42, 43]

jρα ≡ − 1

2M {P, δ[R − rα]} and (60a)

jεα ≡ − 1

8M {P2, {P, δ[R − rα]}}. (60b)

Here, R and P are the position and momentum

operators, M denotes the carrier mass and curly brackets

indicate the usual anti-commutator. Note that, for conve-

nience, we notationally suppress the dependence of the

current operators on the coordinate rα throughout.
As the transport carriers are indistinguishable, the

many-body quantum state of a mesoscopic conductor

must be either symmetric or antisymmetric under the

exchange of two arbitrary carriers. An elegant method to

take this constraint into account is provided by the lan-

guageof secondquantization,which canbeadopted to our

present setup as follows. We first introduce the scattering

field operators Φ

α
E,t and Φ

α†
E,t, which annihilate and cre-

ate a carrier in the outgoing Floquet scattering state |ϕα+
E,t ⟩,

respectively. For any fixed time t, these operators obey the
commutation relations

{Φβ
E′,t , Φ

α
E,t} = {Φβ†

E′,t , Φ
α†
E,t} = 0 and (61a)

{Φβ†
E′,t , Φ

α
E,t} = {Φβ

E′,t , Φ
α†
E,t} = δαβδE−E′, (61b)

where we focus on Fermions for the sake of concreteness;

the theory for Bosonic carriers can be developed analo-

gously. The many-particle current operators can now be

expresses as

J

x
α =

∑︀∫︁

β

dE
∑︀∫︁

γ

dE′ jxα,βγEE′,t Φ
β†
E,tΦ

γ
E′,t , (62)

where x ≡ ρ, ε and

jρα,βγEE′,t ≡ ⟨ϕβ+
E,t | j

ρ
α|ϕ

γ+
E′,t⟩

=
iℏ
2m

(︁
¯ϕβ
Eϕ

γ
E′;1 − ϕγ

E′
¯ϕβ
E;1

)︁⃒⃒
⃒
r=rα

(63a)

jεα,βγEE′,t ≡ ⟨ϕβ+
E,t | j

ε
α|ϕγ

E′,t⟩

=
iℏ3

8m2

(︁
ϕγ
E′
¯ϕβ
E;3 − ϕγ

E′;1
¯ϕβ
E;2

+ ¯ϕβ
E;1ϕ

γ
E′;2 − ¯ϕβ

Eϕ
γ
E′;3

)︁
|r=rα (63b)

with ϕα
E ≡ ϕα+

E,t [r] and ϕα
E;l ≡ ∂lrϕα+

E,t [r]. These matrix ele-

ments are τ-periodic functions of t and can thus be

expanded in a Fourier series,

jxα,βγEE′,t ≡
∑︁

m
kxα,βγEE′,m exp[imωt], (64)

where the coefficients kxα,βγEE′,m can be determined from

the Floquet scattering wave functions (59). Rather than

spelling out the corresponding expressions in full gener-

ality, we here provide only a specific set of Fourier compo-

nents thatwill be needed in the following sections and can

be written in the compact form

kxα,βγEEm ,m =
1

h (δαβδαγδm0ζ xE −
∑︁

n
Sγα+
n−m,Em

¯S
βα+
n,E ζ xEn )

with h ≡ 2πℏ, ζ ρE ≡ 1, ζ εE ≡ E. (65)

6.2 Mean Currents

Weare now ready to calculate the average steady-state cur-

rents of matter and energy in a periodically driven multi-

terminal conductor. To this end, we recall the general

formula (1a) for the mean currents,

Jxα ≡ lim

t→∞

1

t

t∫︁

0

dt′ ⟨Jxα,t′⟩. (66)

The Heisenberg-picture operator J

x
α,t thereby describes the

flow of particles (x = ρ) or energy (x = ε) at a given time

t and at a given position rα in the lead α; angular brack-
ets denote the ensemble average over all possible quantum

states of the system.

The formula (66) can be evaluated in two steps. First,

transforming the current operators (62) into the Heisen-

berg picture yields

J

x
α,t ≡U

†

t J
x
αUt

=
∑︀∫︁

β

dE
∑︀∫︁

γ

dE′ jxα,βγEE′,t Φ
β†
E Φ

γ
E′ exp[i(E − E′)t/ℏ],

(67)
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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where the unitary operator Ut generates the evolution of

the many-particle system from the time 0 to the time t. The
second line in (67) follows from the time evolution laws for

the field operators,

U

†

tΦ
α
E,tUt = Φ

α
E exp[−iEt/ℏ] and (68a)

U

†

tΦ
α†
E,tUt = Φ

α
E exp[iEt/ℏ], (68b)

which, in turn, are a consequence of the fact that the out-

going scattering states |ϕα+
E,t ⟩ are solutions of the Floquet

Schrödinger equation (28) and thus fulfill⁶

Ut|ϕα+
E ⟩ = exp[−iEt/ℏ]|ϕα+

E,t ⟩. (69)

Here, Ut is the single-particle time evolution operator.

Note that the time argument 0 is omitted throughout for

simplicity.

Second, to evaluate the ensemble average in (66), we

recall that the outgoing Floquet scattering states |ϕα+
E,t ⟩ are

populatedwith non-interacting carriers by a thermochem-

ical reservoir with temperature Tα and chemical potential

µα. Hence, provided that all reservoirs are mutually inde-

pendent, the quantum-statistical average of an ordered

pair of one creation and one anihilation operator is given

by the grand canonical rule

⟨Φα†
E Φ

β
E′⟩ = δαβδE−E′f αE ,

where f αE ≡ 1

1 + exp[(E − µα)/Tα]
(70)

denotes the Fermi function of the reservoir α and

Boltzmann’s constant is set to 1 throughout; averages of

products that contain different numbers of creation and

annihilation are zero [8, 9, 24].

Inserting (67) into the formula (66) and using (70)

yields

Jxα = lim

t→∞

1

t

t∫︁

0

dt′
∑︀∫︁

β

dE jxα,ββEE,t f βE

=
∑︀∫︁

β

dE kxα,ββEE,0 f βE , (71)

where we have used the Fourier expansion (64) for the

second identity. Upon recalling the matrix elements (65),

6 To verify the time evolution laws for the scattering field operators,

construct a basis of the many-particle Fock space from the incom-

ing Floquet scattering states |ϕα+
E ⟩ and evaluate the corresponding

matrix elements of both sides of the (68a) and (68b) with the help of

the relation (69).

the mean currents can now be expressed in terms of the

Floquet scattering amplitudes of the conductor and the

Fermi functions of the attached reservoirs,

Jxα =
1

h
∑︀∫︁

β

dE (δαβζ xE −
∑︁

m
|Sβα+

m,E |2ζ xEm )f
β
E . (72)

This formula, which holds arbitrary far from equilib-

rium, shows that the conductance properties of a coherent

multi-terminal system are fully determined by its Floquet

scattering amplitudes. In the limit Vt → 0, where the Flo-

quet scattering amplitudes become equal to the station-

ary ones according to (53), it reduces to the standard

Landauer–Büttiker formula.

The physical consistency of the current formula (72)

derives from the sum rules

∑︁
mα

|Sαβ+
−m,Em |2 = 1 and

∑︁
mα

|Sβα+
m,E |2 = 1, (73)

which follow directly from the unitarity conditions for the

Floquet scattering amplitudes, (45). By using the first of

these relations, (72) can be rewritten in the form

Jxα =
1

h
∑︀∫︁

mβ

dE |Sβα+
m,E |2ζ xEm (f

α
Em − f βE ). (74)

This result shows that the mean currents indeed van-

ish in equilibrium, i.e. if all reservoirs are at the same tem-

perature and chemical potential and the external driving

fields are turned off. Furthermore, by summing both sides

of (72) over the terminal index and using the second sum

rule in (73), we recover the fundamental conservation laws

for matter and energy,

∑︁
α
Jρα = 0 and

∑︁
α
Jεα = −Π

ac . (75)

The average power that is injected into the system

through the external driving, Π
ac, thereby admits the

microscopic expression

Π
ac ≡ 1

τ
∑︀∫︁

mαβ

dE |Sβα+
m,E |2mf βE . (76)

6.3 Zero-Frequency Noise

The zero-frequency noise, or noise power, of the matter

and energy currents in amulti-terminal conductor is given

by the general formula

Pxyαβ ≡ lim

t→∞

1

t

t∫︁

0

dt′
t∫︁

0

dt′′ ⟨(Jxα,t′ − Jxα)(Jyβ,t′′ − Jyβ)⟩

= lim

t→∞

1

t

t∫︁

0

dt′
t∫︁

0

dt′′ ⟨⟨Jxα,t′; J
y
β,t′′⟩⟩ (77)
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1996; Peduzzi et al. 1996; King and Zeng 2001; Harrell 2001; Braitman and Rosenbaum 2002; Cepeda et al.
2003; Vittinghoff and McCulloch 2007). For example, simulations by Peduzzi et al. (1996) illustrated that
estimates could be biased and inference unreliable if the number of outcomes per independent variable in
the regression model was less than 10. The authors also found problems with estimator convergence,
statistical power and the validity of significance tests (i. e. type I error rates and confidence interval
coverage). Harrell et al. (1996) cautioned against over-fitting and encouraged the use of cross-validation
or bootstrapping for model validation. Moreover, King and Zeng (2001) found that standard logistic models
could substantially under-estimate the probability of the outcome and offered a bias correction with
accompanying software.

When dealing with rare events, several researchers have recommended estimators based on the
propensity score, which is the conditional probability of being exposed, given the covariates (Rosenbaum
and Rubin 1983). These methods avoid estimation of the conditional mean outcome and thereby are
expected to perform well when there are very few outcome events (e. g. Joffe and Rosenbaum 1999;
Braitman and Rosenbaum 2002; Patorno et al. 2014). Simulations by Cepeda et al. (2003) suggested that
propensity score methods were less biased and more efficient than logistic regression for the mean
outcome, when the number of events per independent variable in the regression model was less than 8.
The authors also cautioned that the performance of propensity score methods depended on the strength of
the relationship between the covariates and the exposure.

Targeted minimum loss-based estimation (TMLE) is a general methodology for the construction of
semiparametric, efficient substitution estimators (van der Laan and Rubin 2006; van der Laan and Rose
2011). A TMLE for a single time point exposure can be implemented as follows. First, the conditional
expectation of the outcome, given the exposure and covariates, is estimated with parametric regression or
with a more flexible approach, such as SuperLearner (van der Laan et al. 2007). Second, information on the
exposure-covariate relation (i. e. the propensity score) is incorporated to improve this initial estimator. The
propensity score can also be estimated parametrically or with a more flexible approach. Informally, this
“targeting” step helps remove some of the residual bias due to incomplete adjustment for confounding.
More formally, this targeting step serves to solve the efficient score equation. Finally, the targeted predic-
tions of the outcome under the exposure and under no exposure are averaged over the sample and
contrasted on the relevant scale.

Thereby, TMLE requires estimation of both the conditional mean outcome as well as the propensity
score, and achieves a number of desirable asymptotic properties (van der Laan and Rose; 2011). The
standardized estimator is asymptotically normal with mean 0 and variance given by the variance of its
influence curve. The TMLE is also double robust: if either the conditional mean outcome or the
propensity score is consistently estimated, we will have a consistent estimate of the parameter of
interest. If both functions are consistently estimated (at a fast enough rate), the TMLE will be efficient
and achieve the lowest possible asymptotic variance among a large class of estimators. Finally, TMLE is
a substitution estimator, providing robustness in the face of positivity violations (when there is no or
little variability in the exposure within certain covariate strata) and rare outcomes (e. g. Stitelman and
van der Laan 2010; Gruber and van der Laan 2010; Sekhon et al. 2011; Petersen et al. 2012; Gruber and
van der Laan 2013; Lendle et al. 2013). Building on the work of Gruber and van der Laan (2010), this
paper proposes a new TMLE for the semiparametric statistical model m, which imposes bounds on the
conditional mean of the outcome, given the exposure and measured confounders. We focus our
discussion on rare binary outcomes and rare bounded continuous outcomes (e. g. proportions). The
estimation problem and the theoretical motivation for the new TMLE are outlined in Section 2. In
particular, the causal parameter, the corresponding statistical parameter, the statistical model and the
efficient influence curve are discussed. Section 3 presents the rationale and procedure for the rare
outcomes TMLE. Simulations and the applied analysis are given in the Section 4. The article concludes
with a discussion of the advantages and disadvantages of the proposed method as well as areas for
future work.

2 L. Balzer et al.: TMLE for Rare Outcomes
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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where the unitary operator Ut generates the evolution of

the many-particle system from the time 0 to the time t. The
second line in (67) follows from the time evolution laws for

the field operators,

U

†

tΦ
α
E,tUt = Φ

α
E exp[−iEt/ℏ] and (68a)

U

†

tΦ
α†
E,tUt = Φ

α
E exp[iEt/ℏ], (68b)

which, in turn, are a consequence of the fact that the out-

going scattering states |ϕα+
E,t ⟩ are solutions of the Floquet

Schrödinger equation (28) and thus fulfill⁶

Ut|ϕα+
E ⟩ = exp[−iEt/ℏ]|ϕα+

E,t ⟩. (69)

Here, Ut is the single-particle time evolution operator.

Note that the time argument 0 is omitted throughout for

simplicity.

Second, to evaluate the ensemble average in (66), we

recall that the outgoing Floquet scattering states |ϕα+
E,t ⟩ are

populatedwith non-interacting carriers by a thermochem-

ical reservoir with temperature Tα and chemical potential

µα. Hence, provided that all reservoirs are mutually inde-

pendent, the quantum-statistical average of an ordered

pair of one creation and one anihilation operator is given

by the grand canonical rule

⟨Φα†
E Φ

β
E′⟩ = δαβδE−E′f αE ,

where f αE ≡ 1

1 + exp[(E − µα)/Tα]
(70)

denotes the Fermi function of the reservoir α and

Boltzmann’s constant is set to 1 throughout; averages of

products that contain different numbers of creation and

annihilation are zero [8, 9, 24].

Inserting (67) into the formula (66) and using (70)

yields

Jxα = lim

t→∞

1

t

t∫︁

0

dt′
∑︀∫︁

β

dE jxα,ββEE,t f βE

=
∑︀∫︁

β

dE kxα,ββEE,0 f βE , (71)

where we have used the Fourier expansion (64) for the

second identity. Upon recalling the matrix elements (65),

6 To verify the time evolution laws for the scattering field operators,

construct a basis of the many-particle Fock space from the incom-

ing Floquet scattering states |ϕα+
E ⟩ and evaluate the corresponding

matrix elements of both sides of the (68a) and (68b) with the help of

the relation (69).

the mean currents can now be expressed in terms of the

Floquet scattering amplitudes of the conductor and the

Fermi functions of the attached reservoirs,

Jxα =
1

h
∑︀∫︁

β

dE (δαβζ xE −
∑︁

m
|Sβα+

m,E |2ζ xEm )f
β
E . (72)

This formula, which holds arbitrary far from equilib-

rium, shows that the conductance properties of a coherent

multi-terminal system are fully determined by its Floquet

scattering amplitudes. In the limit Vt → 0, where the Flo-

quet scattering amplitudes become equal to the station-

ary ones according to (53), it reduces to the standard

Landauer–Büttiker formula.

The physical consistency of the current formula (72)

derives from the sum rules

∑︁
mα

|Sαβ+
−m,Em |2 = 1 and

∑︁
mα

|Sβα+
m,E |2 = 1, (73)

which follow directly from the unitarity conditions for the

Floquet scattering amplitudes, (45). By using the first of

these relations, (72) can be rewritten in the form

Jxα =
1

h
∑︀∫︁

mβ

dE |Sβα+
m,E |2ζ xEm (f

α
Em − f βE ). (74)

This result shows that the mean currents indeed van-

ish in equilibrium, i.e. if all reservoirs are at the same tem-

perature and chemical potential and the external driving

fields are turned off. Furthermore, by summing both sides

of (72) over the terminal index and using the second sum

rule in (73), we recover the fundamental conservation laws

for matter and energy,

∑︁
α
Jρα = 0 and

∑︁
α
Jεα = −Π

ac . (75)

The average power that is injected into the system

through the external driving, Π
ac, thereby admits the

microscopic expression

Π
ac ≡ 1

τ
∑︀∫︁

mαβ

dE |Sβα+
m,E |2mf βE . (76)

6.3 Zero-Frequency Noise

The zero-frequency noise, or noise power, of the matter

and energy currents in amulti-terminal conductor is given

by the general formula

Pxyαβ ≡ lim

t→∞

1

t

t∫︁

0

dt′
t∫︁

0

dt′′ ⟨(Jxα,t′ − Jxα)(Jyβ,t′′ − Jyβ)⟩

= lim

t→∞

1

t

t∫︁

0

dt′
t∫︁

0

dt′′ ⟨⟨Jxα,t′; J
y
β,t′′⟩⟩ (77)
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for x = ρ, ε and y = ρ, ε. Here, the notation

⟨⟨A; B⟩⟩ ≡ ⟨AB⟩ − ⟨A⟩⟨B⟩ (78)

has been introduced for the correlation function of the

observables A and B. The quantity Pxyαβ can be calculated

with the same techniques as the mean currents. In the

first step, we use (67) to express the time-dependent cur-

rent operators in termsof the scattering field operators and

obtain

Pxyαβ = lim

t→∞

1

t

t∫︁

0

dt′
t∫︁

0

dt′′
∑︀∫︁

γ
1

dE
1
· · ·

∑︀∫︁

γ
4

dE
4

jxα,γ1γ2E
1
E
2
,t′ · j

yβ,γ
3
γ
4

E
3
E
4
,t′′⟨⟨Φ

γ
1
†

E
1

Φ

γ
2

E
2

;Φ

γ
3
†

E
3

Φ

γ
4

E
4

⟩⟩

× exp[i(E
1

− E
2
)t′/ℏ] exp[i(E

3
− E

4
)t′′/ℏ] (79)

with dots being inserted to improve readability. The cor-

relation function of the scattering field operators in (79)

can be evaluated using the finite-temperature version of

Wick’s theorem [44], which implies

⟨⟨Φγ
1
†

E
1

Φ

γ
2

E
2

;Φ

γ
3
†

E
3

Φ

γ
4

E
4

⟩⟩ = ⟨Φγ
1
†

E
1

Φ

γ
4

E
4

⟩⟨Φγ
2

E
2

Φ

γ
3
†

E
3

⟩

= δγ
1
γ
4

δE
1
−E

4

f γE
1

· δγ
2
γ
3

δE
2
−E

3

(1 − f δE
2

). (80)

Here, we have used the commutation rules (61) and the

grand canonical averaging rule (70) for the last identity.

After inserting (80) and the Fourier expansion of the cur-

rent matrix elements (64) into (79), we can carry out the

time integrals. This step yields

Pxyαβ = lim

t→∞

∑︀∫︁

mγ

dE
∑︀∫︁

nδ

dE′ kxα,γδEE′,m · kyβ,δγE′E,−n · f
γ
E (1 − f δE′)

× t · exp[−i(E′ − Em)t/ℏ] − 1

(E′ − Em)t/ℏ
exp[i(E′ − En)t/ℏ] − 1

(E′ − En)t/ℏ
.

(81)

Upon taking the limit t → ∞ with the help of Lemma 2 of
App. 9, this expression simplifies to the compact result

Pxyαβ = h
∑︀∫︁

mγδ

dE kxα,γδEEm ,m ·
¯kyβ,γδEEm ,m · f γE (1 − f δEm ), (82)

where we have applied the relation kyβ,δγEmE,−m = ¯kyβ,γδEEm ,m.

The zero-frequency noise can now be expressed in

terms of the Floquet scattering amplitudes of the driven

conductor and the Fermi functions of the reservoirs. To

this end, we insert the matrix elements (65) into (82). After

some algebra, we thus obtain the explicit formula

Pxyαβ =
1

h
∑︀∫︁

m

dE
(︁
δm0δαβζ xE ζ

y
E f ′

α
E

− |Sαβ+
m,E |2ζ xE ζ

y
Em f ′

α
E − |Sβα+

m,E |2ζ xEm ζ
y
E f ′

β
E

+
∑︁

γδ
Wxα,γδ

m,E
¯W

yβ,γδ
m,E f γE (1 − f δEm )

)︁
, (83)

where we have introduced the abbreviations

f ′αE ≡ f αE (1− f αE ), Wxα,γδ
m,E ≡

∑︁
n
¯Sγα+
n,E Sδα+

n−m,Em ζ
x
En (84)

for convenience.⁷

In order to analyze the physical content of the key

result (83), it is instructive to divide the noise power into

two contributions, Pxyαβ ≡ Qxy
αβ + Nxy

αβ, that are given by

Qxy
αβ ≡ Rxy

αβ + Ryx
αβ and N

xy
αβ ≡ Wxy

αβ + Cxyαβ with⁸

Rxy
αβ ≡ 1

h
∑︀∫︁

m

dE (δm0δαβζ xE − |Sβα+
m,E |2ζ xEm )ζ

y
E f ′

β
E , (85a)

Wxy
αβ ≡ 1

2h
∑︀∫︁

mγδ

dE Wxα,γδ
m,E

¯W
yβ,γδ
m,E (f γE − f δEm )

2

, (85b)

Cxyαβ ≡ δαβ
1

h
∑︀∫︁

mγ

dE |Sγα+
m,E |2ζ xEm ζ

y
Em (f ′

γ
E − f ′αEm ). (85c)

Here, the thermal noise, or Nyquist–Johnson noise, Qxy
αβ,

results from thermal fluctuations in the incoming beams

of carriers that emerge from the reservoirs. It remains

finite in equilibrium but vanishes at zero temperature,

where thermal fluctuations are frozen out and f ′αE =
0⁹. By contrast, the non-equilibrium noise Nxy

αβ vanishes

if no external driving is applied to the conductor and

all reservoirs have the same temperature and chemical

potential. Its first component, the shot noise Wxy
αβ, which

persists in the zero-temperature limit, describes fluctu-

ations in the matter and energy currents due to the

probabilistic nature of carrier transmissions and photon

exchange between carriers and driving fields in the quan-

tum regime. Finally, the non-equilibrium correction, Cxyαβ,
which vanishes at zero temperature, accounts for modu-

lations of the thermal fluctuations in the outgoing beams

of carriers due to thermochemical biases and periodic

driving.

7 The formula (83) shows that the noise power Pxyαβ is real and

obeys the symmetry Pxyαβ = Pyxβα . These properties cannot be a priori
expected as the current correlation function in (77) is, in general,

not symmetric with respect to the current operators. In fact, the anti-

symmetric, imaginary part of this correlation function is wiped out

only when the limit t → ∞ is taken in (81). The finite-frequency noise

must therefore be derived from symmeterized correlation functions,

for details see [9, 22, 24].

8 To prove that the quantities Qxy
αβ and N

xy
αβ indeed sumup to the total

noise power (83), use the sum rules (73), the unitarity conditions (45)

and shift the integration variables as needed.

9 To be precise, we have f ′αE → 0 for E ̸= µα and f ′αE → 1/4 for E =
µα in the limit Tα → 0. Note that f ′αE is the negative derivative of the
Fermi function f αE with respect to (E − µa)/Tα .
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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As a final remark for this section, we note that,

although we have focused here on matter and energy cur-

rents, our analysis applies to any set of generalized cur-

rents that can be represented by operators of the form

J′

x
α =

∑︁
yβ
cxyαβJ

y
β (86)

with real coefficients cxyαβ. Specifically, the correspond-

ing mean currents and the zero-frequency noise can be

obtained directly from the formulas (72) and (83) through

the transformation rules

J′xα ≡ lim

t→∞

1

t

t∫︁

0

dt′ ⟨J′xα,t⟩ =
∑︁

yβ
cxyαβJ

y
β , (87a)

P′xyαβ ≡ lim

t→∞

1

t

t∫︁

0

dt′
t∫︁

0

dt′′ ⟨⟨J′xα,t′; J′
y
β,t′′⟩⟩

=
∑︁

uγ

∑︁
vδ
cxuαγcyvβδP

uv
γδ , (87b)

where u = ρ, ε, v = ρ, ε. The thermal and quantum com-

ponents of the transformed noise power, P′xyαβ ≡ Q′xyαβ +
N′xyαβ ≡ R′xyαβ + R′yxβα + W ′

xy
αβ + C′xyαβ, can thus be identified

by analogy as

A′xyαβ =
∑︁

uγ

∑︁
vδ
cxuαγcyvβδA

uv
γδ (88)

for A = Q, N, R,W , C.

7 Thermodynamics

7.1 The First Law

The first law for periodically drivenmulti-terminal conduc-

tors follows directly from the conservation laws (75) and

can be formulated as

∑︁
α
Jqα + Π

ac − Π
el = 0 (89)

with Jqα ≡ Jεα − µαJρα and Π
el ≡

∑︁
α
(µ − µα)Jρα ,

where µ denotes the base level of the chemical poten-

tial. It governs the balance between the thermal energy

that is injected into the system by the reservoirs through

the heat currents Jqα, the mechanical power provided by

the time dependent driving fields, Π
ac, and the electri-

cal power generated through the redistribution of carriers

between the reservoirs, Π
el. Within the Floquet scattering

approach, the first law (89) is an immediate consequence

of the sum rules (73).

7.2 The Second Law

The second law requires that the average rate of entropy

production that is caused by the transport process is non-

negative, that is [45]

σ ≡ −
∑︁

α
Jqα/Tα ≥ 0. (90)

A simple demonstration that the Floquet scattering

approach is consistent with this constraint uses only the

sumrules (73) and the fact that theFermidistribution is the

derivative of a convex function, for details see [46, 47]. In

the following, we provide an alternative proof, which also

shows that the dissipation rate σ can only become zero if

all currents in the system vanish.

Our proof is inspired by methods that are usually

employed to derive bounds on quantum entropy func-

tions, for details see [48]. The key idea is to express the

rate of entropy production in terms of the binary entropy

function

η[a] ≡ −a ln[a] − (1 − a) ln[1 − a], (91)

and its first derivative,where0 ≤ a ≤ 1. Aquadratic lower

bound on σ can then be obtained from a simple argument

involving Taylor’s theorem. We proceed as follows. First,

we use the formula (72) for the mean currents and the sum

rules (73) to rewrite σ as

hσ =
∑︀∫︁

mαβ

dE |Sβα+
m,E |2((Em − µα)/Tα − (E − µβ)/Tβ)f

β
E

=
∑︀∫︁

mαβ

dE |Sβα+
m,E |2((ln[f βE ] − ln[f αEm ])f

β
E

+(ln[1 − f βE ] − ln[1 − f αEm ])(1 − f βE ))

=
∑︀∫︁

mαβ

dE |Sβα+
m,E |2(η[f αEm ] − η[f βE ] + η

1
[f αEm ](f

β
E − f αEm ))

(92)

with ηl[a] ≡ ∂laη[a]. By Taylor’s theorem, there now exists

a g between f βE and f
α
Em such that

η[f αEm ] − η[f βE ] + η
1
[f αEm ](f

β
E − f αEm )

= −η
2
[g](f βE − f αEm )

2

/2. (93)

Since the Fermi function takes only values between 0 and

1, the number g must also lie in this interval. Hence, we

have −η
2
[g] = 1/g + 1/(1 − g) ≥ 4 and therefore

σ ≥ 2

h
∑︀∫︁

mαβ

dE |Sβα+
m,E |2(f αEm − f βE )

2

(94)

upon combining the (92) and (93).
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1996; Peduzzi et al. 1996; King and Zeng 2001; Harrell 2001; Braitman and Rosenbaum 2002; Cepeda et al.
2003; Vittinghoff and McCulloch 2007). For example, simulations by Peduzzi et al. (1996) illustrated that
estimates could be biased and inference unreliable if the number of outcomes per independent variable in
the regression model was less than 10. The authors also found problems with estimator convergence,
statistical power and the validity of significance tests (i. e. type I error rates and confidence interval
coverage). Harrell et al. (1996) cautioned against over-fitting and encouraged the use of cross-validation
or bootstrapping for model validation. Moreover, King and Zeng (2001) found that standard logistic models
could substantially under-estimate the probability of the outcome and offered a bias correction with
accompanying software.

When dealing with rare events, several researchers have recommended estimators based on the
propensity score, which is the conditional probability of being exposed, given the covariates (Rosenbaum
and Rubin 1983). These methods avoid estimation of the conditional mean outcome and thereby are
expected to perform well when there are very few outcome events (e. g. Joffe and Rosenbaum 1999;
Braitman and Rosenbaum 2002; Patorno et al. 2014). Simulations by Cepeda et al. (2003) suggested that
propensity score methods were less biased and more efficient than logistic regression for the mean
outcome, when the number of events per independent variable in the regression model was less than 8.
The authors also cautioned that the performance of propensity score methods depended on the strength of
the relationship between the covariates and the exposure.

Targeted minimum loss-based estimation (TMLE) is a general methodology for the construction of
semiparametric, efficient substitution estimators (van der Laan and Rubin 2006; van der Laan and Rose
2011). A TMLE for a single time point exposure can be implemented as follows. First, the conditional
expectation of the outcome, given the exposure and covariates, is estimated with parametric regression or
with a more flexible approach, such as SuperLearner (van der Laan et al. 2007). Second, information on the
exposure-covariate relation (i. e. the propensity score) is incorporated to improve this initial estimator. The
propensity score can also be estimated parametrically or with a more flexible approach. Informally, this
“targeting” step helps remove some of the residual bias due to incomplete adjustment for confounding.
More formally, this targeting step serves to solve the efficient score equation. Finally, the targeted predic-
tions of the outcome under the exposure and under no exposure are averaged over the sample and
contrasted on the relevant scale.

Thereby, TMLE requires estimation of both the conditional mean outcome as well as the propensity
score, and achieves a number of desirable asymptotic properties (van der Laan and Rose; 2011). The
standardized estimator is asymptotically normal with mean 0 and variance given by the variance of its
influence curve. The TMLE is also double robust: if either the conditional mean outcome or the
propensity score is consistently estimated, we will have a consistent estimate of the parameter of
interest. If both functions are consistently estimated (at a fast enough rate), the TMLE will be efficient
and achieve the lowest possible asymptotic variance among a large class of estimators. Finally, TMLE is
a substitution estimator, providing robustness in the face of positivity violations (when there is no or
little variability in the exposure within certain covariate strata) and rare outcomes (e. g. Stitelman and
van der Laan 2010; Gruber and van der Laan 2010; Sekhon et al. 2011; Petersen et al. 2012; Gruber and
van der Laan 2013; Lendle et al. 2013). Building on the work of Gruber and van der Laan (2010), this
paper proposes a new TMLE for the semiparametric statistical model m, which imposes bounds on the
conditional mean of the outcome, given the exposure and measured confounders. We focus our
discussion on rare binary outcomes and rare bounded continuous outcomes (e. g. proportions). The
estimation problem and the theoretical motivation for the new TMLE are outlined in Section 2. In
particular, the causal parameter, the corresponding statistical parameter, the statistical model and the
efficient influence curve are discussed. Section 3 presents the rationale and procedure for the rare
outcomes TMLE. Simulations and the applied analysis are given in the Section 4. The article concludes
with a discussion of the advantages and disadvantages of the proposed method as well as areas for
future work.
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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As a final remark for this section, we note that,

although we have focused here on matter and energy cur-

rents, our analysis applies to any set of generalized cur-

rents that can be represented by operators of the form

J′

x
α =

∑︁
yβ
cxyαβJ

y
β (86)

with real coefficients cxyαβ. Specifically, the correspond-

ing mean currents and the zero-frequency noise can be

obtained directly from the formulas (72) and (83) through

the transformation rules

J′xα ≡ lim

t→∞

1

t

t∫︁

0

dt′ ⟨J′xα,t⟩ =
∑︁

yβ
cxyαβJ

y
β , (87a)

P′xyαβ ≡ lim

t→∞

1

t

t∫︁

0

dt′
t∫︁

0

dt′′ ⟨⟨J′xα,t′; J′
y
β,t′′⟩⟩

=
∑︁

uγ

∑︁
vδ
cxuαγcyvβδP

uv
γδ , (87b)

where u = ρ, ε, v = ρ, ε. The thermal and quantum com-

ponents of the transformed noise power, P′xyαβ ≡ Q′xyαβ +
N′xyαβ ≡ R′xyαβ + R′yxβα + W ′

xy
αβ + C′xyαβ, can thus be identified

by analogy as

A′xyαβ =
∑︁

uγ

∑︁
vδ
cxuαγcyvβδA

uv
γδ (88)

for A = Q, N, R,W , C.

7 Thermodynamics

7.1 The First Law

The first law for periodically drivenmulti-terminal conduc-

tors follows directly from the conservation laws (75) and

can be formulated as

∑︁
α
Jqα + Π

ac − Π
el = 0 (89)

with Jqα ≡ Jεα − µαJρα and Π
el ≡

∑︁
α
(µ − µα)Jρα ,

where µ denotes the base level of the chemical poten-

tial. It governs the balance between the thermal energy

that is injected into the system by the reservoirs through

the heat currents Jqα, the mechanical power provided by

the time dependent driving fields, Π
ac, and the electri-

cal power generated through the redistribution of carriers

between the reservoirs, Π
el. Within the Floquet scattering

approach, the first law (89) is an immediate consequence

of the sum rules (73).

7.2 The Second Law

The second law requires that the average rate of entropy

production that is caused by the transport process is non-

negative, that is [45]

σ ≡ −
∑︁

α
Jqα/Tα ≥ 0. (90)

A simple demonstration that the Floquet scattering

approach is consistent with this constraint uses only the

sumrules (73) and the fact that theFermidistribution is the

derivative of a convex function, for details see [46, 47]. In

the following, we provide an alternative proof, which also

shows that the dissipation rate σ can only become zero if

all currents in the system vanish.

Our proof is inspired by methods that are usually

employed to derive bounds on quantum entropy func-

tions, for details see [48]. The key idea is to express the

rate of entropy production in terms of the binary entropy

function

η[a] ≡ −a ln[a] − (1 − a) ln[1 − a], (91)

and its first derivative,where0 ≤ a ≤ 1. Aquadratic lower

bound on σ can then be obtained from a simple argument

involving Taylor’s theorem. We proceed as follows. First,

we use the formula (72) for the mean currents and the sum

rules (73) to rewrite σ as

hσ =
∑︀∫︁

mαβ

dE |Sβα+
m,E |2((Em − µα)/Tα − (E − µβ)/Tβ)f

β
E

=
∑︀∫︁

mαβ

dE |Sβα+
m,E |2((ln[f βE ] − ln[f αEm ])f

β
E

+(ln[1 − f βE ] − ln[1 − f αEm ])(1 − f βE ))

=
∑︀∫︁

mαβ

dE |Sβα+
m,E |2(η[f αEm ] − η[f βE ] + η

1
[f αEm ](f

β
E − f αEm ))

(92)

with ηl[a] ≡ ∂laη[a]. By Taylor’s theorem, there now exists

a g between f βE and f
α
Em such that

η[f αEm ] − η[f βE ] + η
1
[f αEm ](f

β
E − f αEm )

= −η
2
[g](f βE − f αEm )

2

/2. (93)

Since the Fermi function takes only values between 0 and

1, the number g must also lie in this interval. Hence, we

have −η
2
[g] = 1/g + 1/(1 − g) ≥ 4 and therefore

σ ≥ 2

h
∑︀∫︁

mαβ

dE |Sβα+
m,E |2(f αEm − f βE )

2

(94)

upon combining the (92) and (93).
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The bound (94) shows that, first, the rate of entropy

production can indeed not become negative within the

Floquet scattering approach and, second, that σ is zero

if and only if the integrand in (94) vanishes for all ener-

gies E and all combinations of the indices m, α, β. Under
this condition, however, all energy and particle currents

must also be zero according to (74). We stress that this

result, which was obtained here without any assumptions

on the behavior of the system under time reversal, should,

though intuitively expectable, not be regarded as trivial. In

fact, the question whether or not dissipationless currents

can exist in normal conducting mesoscopic systems with

broken time reversal symmetry has been the subject of an

active debate in recent years [11].

Finally, we note that the rate or entropy production

(90) is in fact the mean value of a generalized current that

is represented by the operator

Jσ ≡ −
∑︁

α
(J

ε
α − µαJρα)/Tα . (95)

Therefore, the formalism developed in Section 6.3 can be

applied to investigate whether not only the average but

also the fluctuations, or even higher-oder cumulants, of

the entropy production are subject to universal bounds.

This problem has recently been studied for stationary

mesoscopic conductors [49, 50]. We leave it to future

research to extend this approach to periodically driven

systems.

7.3 Green–Kubo Relations

The Green–Kubo relations are a cornerstone result of non-

equilibrium statistical mechanics. They make it possible

to express the linear response coefficients that quantify

the variations of mean currents due to a small changes

of the thermodynamic forces that drive the system away

from equilibrium in terms of integrated equilibrium corre-

lation functions of the involved currents [2, 45]. As our final

topic in this article, wewill now show how this fundamen-

tal relationship arises naturally within the framework of

Floquet scattering theory.

The thermodynamic forces, or affinities, for a trans-

port process are defined as gradients in the thermody-

namic variables that formentropy-conjugatepairswith the

conserved quantities of the system. For a multi-terminal

conductor, these objects can be identified with the ther-

mochemical biases between the external reservoirs,

Fρα ≡ µα/Tα − µ/T and Fεα ≡ 1/T − 1/Tα , (96)

where, µ and T denote the base chemical potential and

temperature. Using these definitions, the rate of entropy

production (90) can be divided into a mechanical part,

σ
ac ≡ Π

ac/T, and a thermal one, σ
th

≡ σ−σ
ac, which now

assumes the characteristic bilinear form of irreversible

thermodynamics [45],

σ
th

=
∑︁

α
FραJ

ρ
α + FεαJεα . (97)

Several proposals were made to extend this structure

to the total rate of entropy production by associating the

mechanical perturbation with an effective current and a

generalized affinity, which, depending on the scheme,

corresponds to the mean applied work [51] or either the

amplitude [52–54] or the frequency [47, 55] of the periodic

driving fields. For the purpose of our analysis, however, it

is sufficient to focus on the conventional thermal currents

and affinities appearing in (97).

To establish the Green–Kubo relations for multi-

terminal systems we first calculate the response coeffi-

cients

Lxyαβ = ∂yβJ
x
α =

1

h
∑︀∫︁

m

dE (δm0δαβζ xE − |Sβα+
m,E |2ζ xEm )ζ

y
E f ′

β
E ,

(98)

where we have used the current formula (72) and the

symbol ∂yβ indicates the derivativewith respect to the affin-
ity Fyβ. Upon comparing this expression with the compo-

nents of the current noise given in the (85), we find that

Lxyαβ = Rxy
αβ and thus

Lxyαβ + Lyxβα = Qxy
αβ = Pxyαβ − Nxy

αβ . (99)

Hence, the symmetric part of the response coefficients

(98) is identical to the thermal noise, even if the transport

process takes place far from equilibrium. In equilibrium,

i.e. for Fxα = 0 and Vt = 0, the non-equilibrium noise Nxy
αβ

vanishes and the relation (99) becomes (Lxyαβ + Lyxβα)|eq =
Pxyαβ|eq. Moreover, provided that no magnetic fields are

applied to the sample, we recover the Onsager symmetry

Lxyαβ|eq = Lyxβα|eq, as can be easily verified from the property

(14) of the stationary scattering amplitudes [45]. We thus

arrive at the standard form of the Green–Kubo relations for

multi-terminal conductors,

2Lxyαβ|eq = lim

t→∞

1

t

t∫︁

0

dt′
t∫︁

0

dt′′ ⟨⟨Jxα,t′; J
y
β,t′′⟩⟩|eq. (100)

In order to extend the result (100) to non-equilibrium

situations and systems with broken time-reversal symme-

try, we have to express the coefficient Lxyαβ as an integrated
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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correlation function that involves the current operator Jxα.
That is, we look for an observable Ixα that fulfills

Lxyαβ = lim

t→∞

1

t

t∫︁

0

dt′
t∫︁

0

dt′′ ⟨⟨Jxα,t′; I
y
β,t′′⟩⟩. (101)

A minimal choice for such a variable is given by

I

x
α ≡

∞∫︁

0

dE
∞∫︁

0

dE′ ixαEE′Φα†
E,tΦ

α
E′,t , (102)

where the energy dependent weights,

iραEE′ ≡ 1

2h [kEkE′]
− 1

2

(kE + kE′), (103a)

iεαEE′ ≡ 1

4h [kEkE′]
− 1

2

(kE + kE′)(E + E′), (103b)

are found by replacing the scattering wave functions

ϕα+
E,t [r] in (63a) and (63b) with the plane waves w−

E [r];
recall (6) for the definition of w−

E [r] and kE. This opera-
tor can be easily shown to satisfy the condition (101) by

following the lines of Section 6.3. It describes the gross

influx of matter (x = ρ) or energy (x = ε) from the reser-

voir α and thus provides a physically transparent non-

equilibrium generalization of the Green–Kubo relation

(100), which covers even systems with broken time rever-

sal symmetry. From a practical perspective, the result (101)

makes it possible to infer the time-integrated correlation

function between net currents and gross influx, which are

otherwise hard to access, by measuring the variations of

mean currents in response to small changes of the ther-

mochemical biases (96).

We conclude this sectionbypointing out that thebilin-

ear decomposition (97) of σ
th
into affinities and currents is

not unique. In fact, for any set of generalized currents and

affinities,

J′xα =
∑︁

yβ
= cxyαβJ

y
β and F′xα =

∑︁
yβ
d

xy
αβF

y
β

with

∑︁
uγ
cuxγαd

uy
γβ = δxyδαβ , (104)

the thermal rate of entropy production assumes the stan-

dard form σ
th =

∑︀
xα J′

x
αF′xα. In particular, for the spe-

cific choice cρxαβ = δαβδxρ and cεxαβ = δαβ(δxε − µαδxρ), the
energy currents are replaced by the heat current; that is,

we have J′εα = Jεα − µαJρα = Jqα and F′εα = (µα − µ)/T ≡
Fqα. The Green–Kubo relations (100) and their generalized
counterparts (101) are invariant under such linear trans-

formations provided that the generalized influx operators

are identified as I′

x
α =

∑︀
yβ c

xy
αβI

x
α. This result follows from

the fact that the response coefficients (98) obey the same

transformation rules as the zero-frequency current noise

and its components, which are given in the (87b) and (88).

Specifically, we have

L′xyαβ ≡ ∂′yβJ′
x
α =

∑︁
uγ

∑︁
vδ
cxuαγcyuβδL

uv
γδ (105)

as can be easily verified by inspection.

8 Perspectives and Challenges

8.1 Adiabatic Perturbation Theory

In Section 5.4, we have shown how the Floquet scatter-

ing amplitudes can be calculated order by order in the

dynamical potential. This approach is well justified if the

periodic variations of the scattering potential are small

compared to the typical carrier energies. For practical pur-

poses, however, an adiabatic perturbation scheme, where

the frequency rather than the amplitude of the driving

fields plays the role of the expansion parameter, is often

more suitable.

Such a theory can be developed as follows. Consider

anapproachingor escaping carrierwith energyE in the ter-
minal α. If the dynamical potential is practically constant

during the dwell time of this carrier inside the sample, its

transition through the system at the time t is described by
the frozen scattering states |κα±

E,t ⟩ [56, 57]. These states are
solutions of the stationary Schrödinger equation

Ht|κα±
E,t ⟩ = E|κα±

E,t ⟩ (106)

and satisfy the boundary conditions

⟨rβ|κα±
E ⟩ ≡ κα±

E [rβ] = δαβw∓
E [rβ] + Sαβ±E,t w±

E [rβ] (107)

with the frozen scattering amplitudes given by

⟨κβ∓E′,t|κ
α±
E,t ⟩ = Sαβ±E,t δE−E′. (108)

The corresponding quasi-static Floquet scattering

amplitudes are the Fourier components of these

objects, i.e.

S
αβ±
0m,E =

1

τ

τ∫︁

0

dt Sαβ±E,t umt . (109)

This result follows by comparing (107) with (59) and

assuming that the carrier energy is practically constant

during the transition through the sample.

The expression (109) can be interpreted as the zeroth

order of an expansion of the Floquet scattering amplitudes
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1996; Peduzzi et al. 1996; King and Zeng 2001; Harrell 2001; Braitman and Rosenbaum 2002; Cepeda et al.
2003; Vittinghoff and McCulloch 2007). For example, simulations by Peduzzi et al. (1996) illustrated that
estimates could be biased and inference unreliable if the number of outcomes per independent variable in
the regression model was less than 10. The authors also found problems with estimator convergence,
statistical power and the validity of significance tests (i. e. type I error rates and confidence interval
coverage). Harrell et al. (1996) cautioned against over-fitting and encouraged the use of cross-validation
or bootstrapping for model validation. Moreover, King and Zeng (2001) found that standard logistic models
could substantially under-estimate the probability of the outcome and offered a bias correction with
accompanying software.

When dealing with rare events, several researchers have recommended estimators based on the
propensity score, which is the conditional probability of being exposed, given the covariates (Rosenbaum
and Rubin 1983). These methods avoid estimation of the conditional mean outcome and thereby are
expected to perform well when there are very few outcome events (e. g. Joffe and Rosenbaum 1999;
Braitman and Rosenbaum 2002; Patorno et al. 2014). Simulations by Cepeda et al. (2003) suggested that
propensity score methods were less biased and more efficient than logistic regression for the mean
outcome, when the number of events per independent variable in the regression model was less than 8.
The authors also cautioned that the performance of propensity score methods depended on the strength of
the relationship between the covariates and the exposure.

Targeted minimum loss-based estimation (TMLE) is a general methodology for the construction of
semiparametric, efficient substitution estimators (van der Laan and Rubin 2006; van der Laan and Rose
2011). A TMLE for a single time point exposure can be implemented as follows. First, the conditional
expectation of the outcome, given the exposure and covariates, is estimated with parametric regression or
with a more flexible approach, such as SuperLearner (van der Laan et al. 2007). Second, information on the
exposure-covariate relation (i. e. the propensity score) is incorporated to improve this initial estimator. The
propensity score can also be estimated parametrically or with a more flexible approach. Informally, this
“targeting” step helps remove some of the residual bias due to incomplete adjustment for confounding.
More formally, this targeting step serves to solve the efficient score equation. Finally, the targeted predic-
tions of the outcome under the exposure and under no exposure are averaged over the sample and
contrasted on the relevant scale.

Thereby, TMLE requires estimation of both the conditional mean outcome as well as the propensity
score, and achieves a number of desirable asymptotic properties (van der Laan and Rose; 2011). The
standardized estimator is asymptotically normal with mean 0 and variance given by the variance of its
influence curve. The TMLE is also double robust: if either the conditional mean outcome or the
propensity score is consistently estimated, we will have a consistent estimate of the parameter of
interest. If both functions are consistently estimated (at a fast enough rate), the TMLE will be efficient
and achieve the lowest possible asymptotic variance among a large class of estimators. Finally, TMLE is
a substitution estimator, providing robustness in the face of positivity violations (when there is no or
little variability in the exposure within certain covariate strata) and rare outcomes (e. g. Stitelman and
van der Laan 2010; Gruber and van der Laan 2010; Sekhon et al. 2011; Petersen et al. 2012; Gruber and
van der Laan 2013; Lendle et al. 2013). Building on the work of Gruber and van der Laan (2010), this
paper proposes a new TMLE for the semiparametric statistical model m, which imposes bounds on the
conditional mean of the outcome, given the exposure and measured confounders. We focus our
discussion on rare binary outcomes and rare bounded continuous outcomes (e. g. proportions). The
estimation problem and the theoretical motivation for the new TMLE are outlined in Section 2. In
particular, the causal parameter, the corresponding statistical parameter, the statistical model and the
efficient influence curve are discussed. Section 3 presents the rationale and procedure for the rare
outcomes TMLE. Simulations and the applied analysis are given in the Section 4. The article concludes
with a discussion of the advantages and disadvantages of the proposed method as well as areas for
future work.
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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correlation function that involves the current operator Jxα.
That is, we look for an observable Ixα that fulfills

Lxyαβ = lim

t→∞

1

t

t∫︁

0

dt′
t∫︁

0

dt′′ ⟨⟨Jxα,t′; I
y
β,t′′⟩⟩. (101)

A minimal choice for such a variable is given by

I

x
α ≡

∞∫︁

0

dE
∞∫︁

0

dE′ ixαEE′Φα†
E,tΦ

α
E′,t , (102)

where the energy dependent weights,

iραEE′ ≡ 1

2h [kEkE′]
− 1

2

(kE + kE′), (103a)

iεαEE′ ≡ 1

4h [kEkE′]
− 1

2

(kE + kE′)(E + E′), (103b)

are found by replacing the scattering wave functions

ϕα+
E,t [r] in (63a) and (63b) with the plane waves w−

E [r];
recall (6) for the definition of w−

E [r] and kE. This opera-
tor can be easily shown to satisfy the condition (101) by

following the lines of Section 6.3. It describes the gross

influx of matter (x = ρ) or energy (x = ε) from the reser-

voir α and thus provides a physically transparent non-

equilibrium generalization of the Green–Kubo relation

(100), which covers even systems with broken time rever-

sal symmetry. From a practical perspective, the result (101)

makes it possible to infer the time-integrated correlation

function between net currents and gross influx, which are

otherwise hard to access, by measuring the variations of

mean currents in response to small changes of the ther-

mochemical biases (96).

We conclude this sectionbypointing out that thebilin-

ear decomposition (97) of σ
th
into affinities and currents is

not unique. In fact, for any set of generalized currents and

affinities,

J′xα =
∑︁

yβ
= cxyαβJ

y
β and F′xα =

∑︁
yβ
d

xy
αβF

y
β

with

∑︁
uγ
cuxγαd

uy
γβ = δxyδαβ , (104)

the thermal rate of entropy production assumes the stan-

dard form σ
th =

∑︀
xα J′

x
αF′xα. In particular, for the spe-

cific choice cρxαβ = δαβδxρ and cεxαβ = δαβ(δxε − µαδxρ), the
energy currents are replaced by the heat current; that is,

we have J′εα = Jεα − µαJρα = Jqα and F′εα = (µα − µ)/T ≡
Fqα. The Green–Kubo relations (100) and their generalized
counterparts (101) are invariant under such linear trans-

formations provided that the generalized influx operators

are identified as I′

x
α =

∑︀
yβ c

xy
αβI

x
α. This result follows from

the fact that the response coefficients (98) obey the same

transformation rules as the zero-frequency current noise

and its components, which are given in the (87b) and (88).

Specifically, we have

L′xyαβ ≡ ∂′yβJ′
x
α =

∑︁
uγ

∑︁
vδ
cxuαγcyuβδL

uv
γδ (105)

as can be easily verified by inspection.

8 Perspectives and Challenges

8.1 Adiabatic Perturbation Theory

In Section 5.4, we have shown how the Floquet scatter-

ing amplitudes can be calculated order by order in the

dynamical potential. This approach is well justified if the

periodic variations of the scattering potential are small

compared to the typical carrier energies. For practical pur-

poses, however, an adiabatic perturbation scheme, where

the frequency rather than the amplitude of the driving

fields plays the role of the expansion parameter, is often

more suitable.

Such a theory can be developed as follows. Consider

anapproachingor escaping carrierwith energyE in the ter-
minal α. If the dynamical potential is practically constant

during the dwell time of this carrier inside the sample, its

transition through the system at the time t is described by
the frozen scattering states |κα±

E,t ⟩ [56, 57]. These states are
solutions of the stationary Schrödinger equation

Ht|κα±
E,t ⟩ = E|κα±

E,t ⟩ (106)

and satisfy the boundary conditions

⟨rβ|κα±
E ⟩ ≡ κα±

E [rβ] = δαβw∓
E [rβ] + Sαβ±E,t w±

E [rβ] (107)

with the frozen scattering amplitudes given by

⟨κβ∓E′,t|κ
α±
E,t ⟩ = Sαβ±E,t δE−E′. (108)

The corresponding quasi-static Floquet scattering

amplitudes are the Fourier components of these

objects, i.e.

S
αβ±
0m,E =

1

τ

τ∫︁

0

dt Sαβ±E,t umt . (109)

This result follows by comparing (107) with (59) and

assuming that the carrier energy is practically constant

during the transition through the sample.

The expression (109) can be interpreted as the zeroth

order of an expansion of the Floquet scattering amplitudes
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in the photon energy ℏω. The first-order term of this series

can be determined from a phenomenological ansatz of the

form [16]

S
αβ±
1m,E =

ℏω
τ

τ∫︁

0

dt m∂ESαβ±E,t umt ± ℏωA
αβ±
m,E . (110)

Here, the first term accounts for small changes in the car-

rier energy during the transition and the correction A
αβ±
m,E

is chosen such that the approximated Floquet scattering

amplitudes obey the unitarity conditions (45).

This scheme proved quite effective for various practi-

cal applications [15, 24]. How it can be derived from a sys-

tematic perturbation theory, whichwouldmake it possible

to also calculate higher-order terms, however, is not imme-

diately clear. As a first attempt, we might try to adapt the

Lippmann–Schwinger formalism of Section 5.2 by mim-

icking the adiabatic perturbation theory for systems with

discrete spectrum [34, 58, 59]. To this end, the free scat-

tering vectors (35) have to be replaced with their frozen

counterparts,

⟨t|κmα±
E ⟩⟩ ≡ umt |κα±

Em ,t⟩. (111)

The roles of the free effective Hamiltonian and the per-

turbation are then assumed by the operators
^K and

^D,
respectively, which are defined as ⟨t|^K|ψ⟩⟩ ≡ Ht|ψt⟩ and
⟨t|^D|ψ⟩⟩ ≡ −iℏ∂t|ψt⟩. Upon repeating the derivations of

Sec. 5.2, we thus find that the Floquet scattering ampli-

tudes, up to second-order contributions in
^D, read

S
αβ±
m,E =

1

τ

τ∫︁

0

dt Sαβ±Em ,t u
m
t ∓ 2πi⟨⟨κ0β∓Em |^D|κmα±

E ⟩⟩

=
1

τ

τ∫︁

0

dt Sαβ±Em ,t u
m
t ± ℏω

τ∫︁

0

dt ⟨κ̇β∓Em ,t|κ
α±
Em ,t⟩u

m
t

=
1

τ

τ∫︁

0

dt Sαβ±E,t umt +
ℏω
τ

τ∫︁

0

dt m∂ESαβ±E,t umt

± ℏω
τ∫︁

0

dt ⟨κ̇β±E,t |κ
α±
E,t ⟩u

m
t + O[(ℏω)2].

(112)

Hence, we indeed recover the zeroth- and fist-order terms

(109) and (110). However, this result must be taken with a

grain of salt, as the correction term in (112), which involves

the time derivative of the frozen scattering state |κβ±E,t ⟩, is
generally divergent. Therefore, the expression (112) should

not be regarded as a proper expansion of the Floquet

scattering amplitudes.

The singular behavior of the last term in (112) arises

because the time derivative
^D, in contrast to the dynamical

potential
^V, which vanishes outside the scattering region,

constitutes an unbounded operator on
^H. To overcome

this problem, it might be necessary to invoke techniques

of singular perturbation theory, adiabatic gauge potentials

[60, 61] or a transformation of the scattering amplitudes

into the time domain; the latter approach lead to a consis-

tent first-order expansion in [62].We leave it as a challenge

for future studies toderive a systematic adiabatic perturba-

tion theory by further developing the formalism presented

in this article.

8.2 Thermal Machines

The Floquet scattering formalism provides a general plat-

form to explore the performance of thermal nano-devices.

As a concrete example, wemight consider a quantum heat

engine that consists of a driven sample and two reservoirs

with equal chemical potential µ and different tempera-

tures T
1

≡ T
c
and T

2
≡ T

h
> T

c
. Here, we imagine that

the variations of the scattering potential are caused by

the motion of mechanical degrees of freedom like a meso-

scopic paddle wheel, which perform work against some

external load [63–65]. The thermodynamic performance of

such a machine is determined by two benchmark parame-

ters, its mean power output −Π
ac and its efficiency η ≡

−Π
ac/Jq

h

. The latter figure is thereby subject the Carnot

bound

η ≤ η
C

≡ 1 − T
c
/T

h
, (113)

which follows from the second law, σ = Jq
h

Fq
h

+ Π
ac/Tc ≥

0, and can be attained only in the quasi-static limit, where

−Π
ac goes to zero¹⁰.

From a practical perspective, it is therefore important

to determine the maximum efficiency, at which a nano-

engine can deliver a given power output. For autonomous,

i.e. thermoelectric, heat engines such bounds have been

found by seeking constraints on the total rate of entropy

production that go beyond the second law [66–70], or by

explicitly optimizing the scattering amplitudes of the sam-

ple [71–75]. The first strategy has also been applied in

studies of piston-type heat engines, which use a closed

working system, and lead to the general trade-off relation

η(η
C

− η) ≥ −Π/Θ (114)

10 This result follows from the fact that the rate of entropy produc-

tion σ vanishes only if all currents are zero, see Section 7.2.
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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between efficiency η and power output −Π; here, Θ > 0

is a system-specific constant [52, 53, 68, 69]. First steps

towards an extension of this bound to paddle-wheel type

quantum engines, which are driven by a continuous flow

of carriers, have been made under the assumptions of

slowly varying driving fields and small thermochemical

biases [47, 55]. A universal and physically transparent per-

formance bound that covers also devices operating far

from equilibrium is, however, still lacking.

8.3 Thermodynamic Uncertainty Relations

Thermodynamic uncertainty relations describe a trade-

off between dissipation and precision in non-equilibrium

processes. Specifically, for a time-homogeneous Markov

process that obeys detailed balance, the inequality

σε2 ≥ 2 with ε ≡
√︀
P/J2 (115)

holds for arbitrary currents with mean value J and fluctu-
ations, or noise power, P, where σ denotes the total rate

of entropy production and ε the relative uncertainty of

the current J [76, 77]. This bound, which was first discov-

ered for biomolecular processes, does, however, not apply

to periodically driven systems, systems with broken time-

reversal symmetry or in the quantum regime [78–84]. In

order to close these gaps, a whole variety of generalized

thermodynamic uncertainty relations have been proposed

over the last years, see for instance [25, 85–93].

A particularly transparent result was recently

obtained in [89], where the frequency dependent bound

σωε2ω ≥ 2[1 − ω(∂ωJω)/Jω]2 (116)

was derived for periodically driven Markov jump pro-

cesses.Whether or not this result canbe extended to coher-

ent mesoscopic conductors, or whether the relation (115)

can be generalized for such systems by other means are

compelling questions, which can be systematically inves-

tigated within the theoretical framework presented in this

article. Further research in this direction promises valu-

able insights on how quantum effects can be exploited

to control the thermodynamic cost of precision in trans-

port processes. However, this endeavor can be expected to

be challenging, as general properties of the Floquet scat-

tering amplitudes that go beyond the ones discussed in

Section 5 are hard to establish and specific models for

which they can be determined exactly are scarce.
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A Appendix: Some Helpful Lemmas
Lemma 1a: Let F±

z be a complex function that is bounded
and holomorphic on the stripe D± ≡ [0,∞)× [0,±iR]with
R > 0. Then, for any v > 0, we have

lim

ε→0

∞∫︁

0

du exp[±ixu]
u2 − v2 ∓ iε F

±
u ≍±πi exp[±ixv]

v F±
v , (117a)

lim

ε→0

∞∫︁

0

du exp[±ixu]
u2 + v2 ∓ iε F

±
u ≍ 0 (117b)

in the limit x → ∞.

Proof. Weproceed in two steps. First, we close the integra-

tion path in the complex plane as shown in Figure 3 and

observe that

∫︁

Γ

±
r

dz exp[±ixz]
z2 − v2 ∓ iε F

±
z ≍

∞∫︁

0

du exp[±ixu]
u2 − v2 ∓ iε F

±
u ,

∫︁

Γ

±
r

dz exp[±ixz]
z2 + v2 ∓ iε F

±
z ≍

∞∫︁

0

du exp[±ixu]
u2 + v2 ∓ iε F

±
u (118)

for x → ∞, since the integrand on the left-hand side is

exponentially suppressed in x on either the upper (+) or

a b

Figure 3: Graphical illustration of the integration contours used in
the proof of Lemma 1. (a) The contour Γ+r encircles a rectangle with
height r and infinite width, whose lower edge falls on the positive
real axis. Crosses indicate the singularities of the integrands in the
(119a) and (119b). (b) The same picture for the contour Γ−

r .
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1996; Peduzzi et al. 1996; King and Zeng 2001; Harrell 2001; Braitman and Rosenbaum 2002; Cepeda et al.
2003; Vittinghoff and McCulloch 2007). For example, simulations by Peduzzi et al. (1996) illustrated that
estimates could be biased and inference unreliable if the number of outcomes per independent variable in
the regression model was less than 10. The authors also found problems with estimator convergence,
statistical power and the validity of significance tests (i. e. type I error rates and confidence interval
coverage). Harrell et al. (1996) cautioned against over-fitting and encouraged the use of cross-validation
or bootstrapping for model validation. Moreover, King and Zeng (2001) found that standard logistic models
could substantially under-estimate the probability of the outcome and offered a bias correction with
accompanying software.

When dealing with rare events, several researchers have recommended estimators based on the
propensity score, which is the conditional probability of being exposed, given the covariates (Rosenbaum
and Rubin 1983). These methods avoid estimation of the conditional mean outcome and thereby are
expected to perform well when there are very few outcome events (e. g. Joffe and Rosenbaum 1999;
Braitman and Rosenbaum 2002; Patorno et al. 2014). Simulations by Cepeda et al. (2003) suggested that
propensity score methods were less biased and more efficient than logistic regression for the mean
outcome, when the number of events per independent variable in the regression model was less than 8.
The authors also cautioned that the performance of propensity score methods depended on the strength of
the relationship between the covariates and the exposure.

Targeted minimum loss-based estimation (TMLE) is a general methodology for the construction of
semiparametric, efficient substitution estimators (van der Laan and Rubin 2006; van der Laan and Rose
2011). A TMLE for a single time point exposure can be implemented as follows. First, the conditional
expectation of the outcome, given the exposure and covariates, is estimated with parametric regression or
with a more flexible approach, such as SuperLearner (van der Laan et al. 2007). Second, information on the
exposure-covariate relation (i. e. the propensity score) is incorporated to improve this initial estimator. The
propensity score can also be estimated parametrically or with a more flexible approach. Informally, this
“targeting” step helps remove some of the residual bias due to incomplete adjustment for confounding.
More formally, this targeting step serves to solve the efficient score equation. Finally, the targeted predic-
tions of the outcome under the exposure and under no exposure are averaged over the sample and
contrasted on the relevant scale.

Thereby, TMLE requires estimation of both the conditional mean outcome as well as the propensity
score, and achieves a number of desirable asymptotic properties (van der Laan and Rose; 2011). The
standardized estimator is asymptotically normal with mean 0 and variance given by the variance of its
influence curve. The TMLE is also double robust: if either the conditional mean outcome or the
propensity score is consistently estimated, we will have a consistent estimate of the parameter of
interest. If both functions are consistently estimated (at a fast enough rate), the TMLE will be efficient
and achieve the lowest possible asymptotic variance among a large class of estimators. Finally, TMLE is
a substitution estimator, providing robustness in the face of positivity violations (when there is no or
little variability in the exposure within certain covariate strata) and rare outcomes (e. g. Stitelman and
van der Laan 2010; Gruber and van der Laan 2010; Sekhon et al. 2011; Petersen et al. 2012; Gruber and
van der Laan 2013; Lendle et al. 2013). Building on the work of Gruber and van der Laan (2010), this
paper proposes a new TMLE for the semiparametric statistical model m, which imposes bounds on the
conditional mean of the outcome, given the exposure and measured confounders. We focus our
discussion on rare binary outcomes and rare bounded continuous outcomes (e. g. proportions). The
estimation problem and the theoretical motivation for the new TMLE are outlined in Section 2. In
particular, the causal parameter, the corresponding statistical parameter, the statistical model and the
efficient influence curve are discussed. Section 3 presents the rationale and procedure for the rare
outcomes TMLE. Simulations and the applied analysis are given in the Section 4. The article concludes
with a discussion of the advantages and disadvantages of the proposed method as well as areas for
future work.
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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between efficiency η and power output −Π; here, Θ > 0

is a system-specific constant [52, 53, 68, 69]. First steps

towards an extension of this bound to paddle-wheel type

quantum engines, which are driven by a continuous flow

of carriers, have been made under the assumptions of

slowly varying driving fields and small thermochemical

biases [47, 55]. A universal and physically transparent per-

formance bound that covers also devices operating far

from equilibrium is, however, still lacking.

8.3 Thermodynamic Uncertainty Relations

Thermodynamic uncertainty relations describe a trade-

off between dissipation and precision in non-equilibrium

processes. Specifically, for a time-homogeneous Markov

process that obeys detailed balance, the inequality

σε2 ≥ 2 with ε ≡
√︀
P/J2 (115)

holds for arbitrary currents with mean value J and fluctu-
ations, or noise power, P, where σ denotes the total rate

of entropy production and ε the relative uncertainty of

the current J [76, 77]. This bound, which was first discov-

ered for biomolecular processes, does, however, not apply

to periodically driven systems, systems with broken time-

reversal symmetry or in the quantum regime [78–84]. In

order to close these gaps, a whole variety of generalized

thermodynamic uncertainty relations have been proposed

over the last years, see for instance [25, 85–93].

A particularly transparent result was recently

obtained in [89], where the frequency dependent bound

σωε2ω ≥ 2[1 − ω(∂ωJω)/Jω]2 (116)

was derived for periodically driven Markov jump pro-

cesses.Whether or not this result canbe extended to coher-

ent mesoscopic conductors, or whether the relation (115)

can be generalized for such systems by other means are

compelling questions, which can be systematically inves-

tigated within the theoretical framework presented in this

article. Further research in this direction promises valu-

able insights on how quantum effects can be exploited

to control the thermodynamic cost of precision in trans-

port processes. However, this endeavor can be expected to

be challenging, as general properties of the Floquet scat-

tering amplitudes that go beyond the ones discussed in

Section 5 are hard to establish and specific models for

which they can be determined exactly are scarce.
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A Appendix: Some Helpful Lemmas
Lemma 1a: Let F±

z be a complex function that is bounded
and holomorphic on the stripe D± ≡ [0,∞)× [0,±iR]with
R > 0. Then, for any v > 0, we have

lim

ε→0

∞∫︁

0

du exp[±ixu]
u2 − v2 ∓ iε F

±
u ≍±πi exp[±ixv]

v F±
v , (117a)

lim

ε→0

∞∫︁

0

du exp[±ixu]
u2 + v2 ∓ iε F

±
u ≍ 0 (117b)

in the limit x → ∞.

Proof. Weproceed in two steps. First, we close the integra-

tion path in the complex plane as shown in Figure 3 and

observe that

∫︁

Γ

±
r

dz exp[±ixz]
z2 − v2 ∓ iε F

±
z ≍

∞∫︁

0

du exp[±ixu]
u2 − v2 ∓ iε F

±
u ,

∫︁

Γ

±
r

dz exp[±ixz]
z2 + v2 ∓ iε F

±
z ≍

∞∫︁

0

du exp[±ixu]
u2 + v2 ∓ iε F

±
u (118)

for x → ∞, since the integrand on the left-hand side is

exponentially suppressed in x on either the upper (+) or

a b

Figure 3: Graphical illustration of the integration contours used in
the proof of Lemma 1. (a) The contour Γ+r encircles a rectangle with
height r and infinite width, whose lower edge falls on the positive
real axis. Crosses indicate the singularities of the integrands in the
(119a) and (119b). (b) The same picture for the contour Γ−

r .
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the lower (−) half plane. Second, using Cauchy’s theorem

to evaluate the contour integral yields

lim

ε→0

∫︁

Γ

±
R

dz exp[±ixz]
z2 − v2 ∓ iε F

±
z

= lim

ε→0

∫︁

Γ

±
R

dz
[︂

1

z − v ∓ iε − 1

z + v ± iε

]︂
exp[±ixz]

2v F±
z

= ±πi exp[±ixv]
v F±

v and (119a)

lim

ε→0

∫︁

Γ

±
r

dz exp[±ixz]
z2 + v2 ∓ iε F

±
z

= lim

ε→0

∫︁

Γ

±
r

dz
[︂

1

z − iv ∓ iε − 1

z + iv ± iε

]︂

exp[±ixz]
2v F±

z = 0, (119b)

where we set r = R in (119a) and 0 < r < v in (119b).

Lemma 1b: For F±
z as in Lemma 1a and w ̸= 0 being real,

we have

lim

ε→0

∞∫︁

0

du exp[∓ixu]
u2 + w ∓ iε F

±
u ≍ 0 (120)

in the limit x → ∞.

Proof. Set w = −v2 for w < 0 and w = v2 for w > 0 and

repeat the steps of the proof of Lemma 1.

Lemma 1c: For F±
z as in Lemma 1a, G±

z ≡ F±√
z and w ̸= 0

being real, we have

lim

ε→0

∞∫︁

0

du exp[±ix
√
u]

u − w ∓ iε
G±
u√
u

≍ ±2πi exp[±ix
√
w]G±

w√
w

, (121a)

lim

ε→0

∞∫︁

0

du exp[∓ix
√
u]

u − w ∓ iε
G±
u√
u

≍ 0 (121b)

in the limit x → ∞.

Proof. Change the integration variable to s ≡
√
u and

apply the Lemmas 1a and 1b.

Lemma 2: Let Fu be a test function on the real axis and
define θu ≡ (1 − exp[−iu])/(iu). Then, for any integers m
and n, we have

lim

x→∞

∫︁
du x · θ

(u−m)x¯θ(u−n)xFu = 2πδmnFm . (122)

Proof. We first rewrite the left-hand side of (122) as

lim

x→∞

∫︁
du x · |θ

(u−m)x|
2

¯θ
(u−n)x

¯θ
(u−m)x

Fu

= lim

x→∞

∫︁
du x · sinc2[(u − m)x/2]

¯θ
(u−n)x

¯θ
(u−m)x

Fu , (123)

where sinc[u] ≡ sin[u]/u. Next, we observe that the func-
tion sinc2[u] assumes only non-negative values and obeys

lim

x→∞

∫︁

|u|≤ε

du x · sinc2[ux] = π and (124a)

lim

x→∞

x · sinc2[ux] = 0 for ε < |u| < 1/ε, (124b)

where ε > 0. Consequently, we have [36]

lim

x→∞

∫︁
du x · sinc2[(u − m)x/2]

¯θ
(u−n)x

¯θ
(u−m)x

Fu

= 2π lim

x→∞

¯θ
(m−n)xFm = 2πδmnFm , (125)

where we used that limu→0
θu = 1 and limx→∞

θmx = 0

for any m ̸= 0.
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
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known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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1996; Peduzzi et al. 1996; King and Zeng 2001; Harrell 2001; Braitman and Rosenbaum 2002; Cepeda et al.
2003; Vittinghoff and McCulloch 2007). For example, simulations by Peduzzi et al. (1996) illustrated that
estimates could be biased and inference unreliable if the number of outcomes per independent variable in
the regression model was less than 10. The authors also found problems with estimator convergence,
statistical power and the validity of significance tests (i. e. type I error rates and confidence interval
coverage). Harrell et al. (1996) cautioned against over-fitting and encouraged the use of cross-validation
or bootstrapping for model validation. Moreover, King and Zeng (2001) found that standard logistic models
could substantially under-estimate the probability of the outcome and offered a bias correction with
accompanying software.

When dealing with rare events, several researchers have recommended estimators based on the
propensity score, which is the conditional probability of being exposed, given the covariates (Rosenbaum
and Rubin 1983). These methods avoid estimation of the conditional mean outcome and thereby are
expected to perform well when there are very few outcome events (e. g. Joffe and Rosenbaum 1999;
Braitman and Rosenbaum 2002; Patorno et al. 2014). Simulations by Cepeda et al. (2003) suggested that
propensity score methods were less biased and more efficient than logistic regression for the mean
outcome, when the number of events per independent variable in the regression model was less than 8.
The authors also cautioned that the performance of propensity score methods depended on the strength of
the relationship between the covariates and the exposure.

Targeted minimum loss-based estimation (TMLE) is a general methodology for the construction of
semiparametric, efficient substitution estimators (van der Laan and Rubin 2006; van der Laan and Rose
2011). A TMLE for a single time point exposure can be implemented as follows. First, the conditional
expectation of the outcome, given the exposure and covariates, is estimated with parametric regression or
with a more flexible approach, such as SuperLearner (van der Laan et al. 2007). Second, information on the
exposure-covariate relation (i. e. the propensity score) is incorporated to improve this initial estimator. The
propensity score can also be estimated parametrically or with a more flexible approach. Informally, this
“targeting” step helps remove some of the residual bias due to incomplete adjustment for confounding.
More formally, this targeting step serves to solve the efficient score equation. Finally, the targeted predic-
tions of the outcome under the exposure and under no exposure are averaged over the sample and
contrasted on the relevant scale.

Thereby, TMLE requires estimation of both the conditional mean outcome as well as the propensity
score, and achieves a number of desirable asymptotic properties (van der Laan and Rose; 2011). The
standardized estimator is asymptotically normal with mean 0 and variance given by the variance of its
influence curve. The TMLE is also double robust: if either the conditional mean outcome or the
propensity score is consistently estimated, we will have a consistent estimate of the parameter of
interest. If both functions are consistently estimated (at a fast enough rate), the TMLE will be efficient
and achieve the lowest possible asymptotic variance among a large class of estimators. Finally, TMLE is
a substitution estimator, providing robustness in the face of positivity violations (when there is no or
little variability in the exposure within certain covariate strata) and rare outcomes (e. g. Stitelman and
van der Laan 2010; Gruber and van der Laan 2010; Sekhon et al. 2011; Petersen et al. 2012; Gruber and
van der Laan 2013; Lendle et al. 2013). Building on the work of Gruber and van der Laan (2010), this
paper proposes a new TMLE for the semiparametric statistical model m, which imposes bounds on the
conditional mean of the outcome, given the exposure and measured confounders. We focus our
discussion on rare binary outcomes and rare bounded continuous outcomes (e. g. proportions). The
estimation problem and the theoretical motivation for the new TMLE are outlined in Section 2. In
particular, the causal parameter, the corresponding statistical parameter, the statistical model and the
efficient influence curve are discussed. Section 3 presents the rationale and procedure for the rare
outcomes TMLE. Simulations and the applied analysis are given in the Section 4. The article concludes
with a discussion of the advantages and disadvantages of the proposed method as well as areas for
future work.
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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