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Abstract: Scattering theory is a standard tool for the
description of transport phenomena in mesoscopic sys-
tems. Here, we provide a detailed derivation of this method
for nano-scale conductors that are driven by oscillating
electric or magnetic fields. Our approach is based on an
extension of the conventional Lippmann-Schwinger for-
malism to systems with a periodically time-dependent
Hamiltonian. As a key result, we obtain a systematic per-
turbation scheme for the Floquet scattering amplitudes
that describes the transition of a transport carrier through
a periodically driven sample. Within a general multi-
terminal setup, we derive microscopic expressions for the
mean values and time-integrated correlation functions,
or zero-frequency noise, of matter and energy currents,
thus recovering the results of earlier studies in a unify-
ing framework. We show that this framework is inherently
consistent with the first and the second law of thermody-
namics and prove that the mean rate of entropy produc-
tion vanishes only if all currents in the system are zero.
As an application, we derive a generalized Green—-Kubo
relation, which makes it possible to express the response
of any mean currents to small variations of temperature
and chemical potential gradients in terms of time inte-
grated correlation functions between properly chosen cur-
rents. Finally, we discuss potential topics for future studies
and further reaching applications of the Floquet scattering
approach to quantum transport in stochastic and quantum
thermodynamics.
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1 Introduction

At room temperature, transport in macroscopic systems is
a stochastic process, where carriers undergo ceaseless col-
lisions that randomly change their velocity and direction
of motion. This irregular behavior is the microscopic origin
of both the finite resistance of a normal conductor and the
fluctuations of induced currents. The fundamental rela-
tionship between these two phenomena is described by
the fluctuation—dissipation theorem, a cornerstone result
of statistical mechanics, which goes back to the pioneer-
ing works of Einstein, Nyquist, and Onsager and was later
derived in a unified manner by Callen and Welton. Green
and Kubo further expanded this approach and showed
that, close to equilibrium, linear transport coefficients,
which describe the response of a system to a small exter-
nal field or thermal perturbation, can be expressed in
terms of time integrated correlation functions of the cor-
responding currents, i.e. the zero-frequency noise [1-3].
This universal structure can be recovered even for sys-
tems in non-equilibrium steady states by introducing more
general correlation functions that involve a current and a
suitably chosen conjugate variable [4].

Reducing the temperature of a conductor increases
the average distance that carriers can travel between two
consecutive collisions. Coherent transport sets in when
this mean free path becomes comparable to the dimen-
sions of the sample. In this regime, which is realized
in mesoscopic systems at millikelvin temperatures, the
transfer of carriers becomes a reversible process governed
by Schrédinger’s equation. As a result, the properties of
mesoscopic conductors are dominated by quantum effects
such as conductance quantization or coherent resistance
oscillations, which can no longer be understood in terms
of classical stochastic trajectories [5-7].

Scattering theory provides a quantum mechanical
description of open systems that are subject to a constant
in- and outflow of particles. Therefore, it is a well-suited
tool to explore the principles of coherent transport. This
approach was first proposed by Landauer and has since
then evolved into a powerful theoretical framework, which
has been extensively tested in experiments and shaped
our modern understanding of transport phenomena in
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small-scale conductors. At the core of this framework lies
the Landauer-Biittiker formula. It connects the scatter-
ing amplitudes of a mesoscopic sample, which describe
the elastic deflection of incoming carriers, with the mat-
ter and energy currents that emerge in the system under
external biases. Hence, it provides a direct link between
microscopic and macroscopic quantities [5-10].

As a key application, the scattering approach to
quantum transport enables systematic investigations of
the elementary principles that govern the thermody-
namics of mesoscopic conductors and the performance
of autonomous nano-machines such as thermoelectric
heat engines or refrigerators [11-14]. Cyclic machines like
charge pumps or quantum motors, however, require the
input or extraction of mechanical work; therefore, they
must be driven by time-dependent electric or magnetic
fields, which alter the energy of carriers inside the sample.
Floquet theory provides an elegant way to take this effect
into account by introducing a new type of scattering ampli-
tudes that describe inelastic transitions, where carriers
exchange photons with the external fields. This Flo-
quet scattering approach yields a generalized Landauer—
Biittiker formula for periodically driven systems [15-19].
Among other applications, this result enables quantitative
models for cyclic nano-machines, which can be used to
develop practical devices or to explore fundamental per-
formance limits, two central topics in the field of quantum
thermodynamics [20, 21].

The Floquet scattering approach also leads to
explicit microscopic expressions for the time integrated
correlation functions of matter and energy currents in peri-
odically driven quantum conductors [22-24]. It thus pro-
vides a powerful tool to investigate the complex interplay
between dissipation, thermal, and quantum fluctuations
in mesocopic systems. This topic includes the search for
generalizations of the well-established Green—Kubo rela-
tions as well as the quest for quantum extensions of the
recently discovered thermodynamic uncertainty relations
[25].

2 Objective and Outline

Our aim is to provide a thorough and general derivation of
the Floquet scattering approach to coherent transport in
mesoscopic conductors. This article is supposed to serve
as both a step-by-step introduction for new users of the
formalism and a compact reference text for experts in
the field. We do not attempt to give a complete overview
of the existing literature. Instead, our objective is to
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complement earlier works by focusing on the development
of an algebraic scattering theory for periodically driven
mesoscopic conductors and applications in stochastic and
quantum thermodynamics.

We proceed as follows. In Section 3, we set the stage for
our analysis by introducing the multi-terminal model as a
general basis for the discussion of coherent transport. This
section is followed by a brief recap of the algebraic scatter-
ing theory for autonomous systems in Section 4, which is
based on common textbooks [6, 7, 26, 27]. We then show
how the Floquet theorem makes it possible to extend this
framework to periodically driven systems in Section 5. Fol-
lowing the approach of earlier studies, we construct an
extended Hilbert space, which was originally proposed for
closed systems [28], to derive a generalized Lippmann—
Schwinger equation for Floquet scattering states [29-31].
This result naturally leads to a systematic perturbation
scheme for the crucial Floquet scattering amplitudes and
to explicit expressions for the corresponding scattering
wave functions, which enable a transparent physical inter-
pretation of the formalism.

In Section 6 we switch from the single-particle pic-
ture that had been used in the foregoing sections to a
many-particle description. To this end we first show how
the operators J§ , and J; ;, which represent the matter and
energy currents in a multi-terminal conductor at the time
t, can be connected to the previously discussed Floquet
scattering states. We then derive microscopic expressions
for the mean currents and the time integrated current
correlation functions, or noise power, which are given
by

t

Ji = Jim 3 [de o) and (12)
0
t t
1 1 4 4
Py = lim ¢ [d¢ [ aeGhe - IOk, ). (o
0

0

where angular brackets denote the average over all possi-
ble quantum sates of the system. We thereby recover the
results of earlier studies [15, 22, 24].

Moving on, in Section 7 we show how the Floquet
scattering approach can be furnished with a thermody-
namic structure. To this end, we formulate the first and
the second law and show that the scattering formal-
ism is inherently consistent with these constraints. As
an application of this theory, we derive a generalization
of the Green—Kubo relations for periodically driven sys-
tems far from equilibrium. Finally, we discuss open prob-
lems and potential starting points for future studies in
Section (8).
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3 The Multi-Terminal Model

The multi-terminal model provides a universal platform
for the description of coherent transport in mesoscopic
systems. The key idea is thereby to divide the conduc-
tor into a scattering region, where carriers are affected by
the potential landscape of the sample and periodic driv-
ing fields, and a set of N ideal leads, which can be tra-
versed freely (Fig. 1). For the sake of simplicity, we assume
throughout this article that the leads are effectively one-
dimensional.!

Each lead is connected to a thermochemical reservoir
with a fully transparent interface, which injects a contin-
uous beam of thermalized, non-interacting carriers into
the system. Inside the conductor, these carriers follow a
deterministic time evolution governed by Schrodinger’s
equation until they are absorbed again into one of the
reservoirs. Hence, all irreversible processes are relegated
to the reservoirs, while the transfer of carriers between
them is coherent. Once the system has reached a steady
state, each lead a is traversed by a periodically modulated
beam of incoming and outgoing carries, which gives rise to
a matter and an energy current. The corresponding mean
values and fluctuations are given by the formulas (1). As
we will see in the following sections, these quantities are
completely determined by the scattering amplitudes of the
driven sample and the energy distribution of the carriers
injected by the reservoirs.

T Tn—1
H2 HUN—1
Ty Tn
M1 KN

Figure 1: Sketch of the multi-terminal model for a generic meso-
scopic conductor. A central scattering region, or sample, S is
connected via ideal, one-dimensional leads to N heat and parti-

cle reservoirs with temperatures Ty, . .., Ty and chemical potentials
U1, ..., HUn. The external driving fields F; periodically change the
potential inside the scattering region.

1 Specifically, we assume that the waveguides are so narrow that only
the lowest transverse modes contribute to the transport process in the
relevant range of energies, for details see [7].
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4 Standard Scattering Theory

4.1 Scattering States

Without external driving, the carrier dynamics in a multi-
terminal system is governed by the Hamiltonian

H = P?/2M + U. 2

Here P and M are the carrier momentum and mass and
U accounts for the potential landscape of the scattering
region as well as the coupling to external magnetic fields.
The scattering of individual carriers with fixed energy
E > 0 is described by solutions of the time-dependent
Schrédinger equation that have the form

Y&ty = expl—iEt/hl|p&E). 3)

The outgoing and incoming states, |p%") and |p§ ),
thereby represent carriers that enter and escape the sys-
tem through the terminal a, respectively. These scattering
states satisfy the stationary Schrédinger equation

H|p§™) = Elpg) (4)
and the boundary conditions
(rpl@E") = @E rgl = 8apwi lrgl + SF wiglrgl. (5)
Here, the plane waves
w [r] = ¢pexpl+ikgr] with kg = \/2ME/R?  (6)

describe the free propagation of carriers inside the leads
and the scattering amplitudes, Sgﬁ * and Sgﬁ T = Sg“,
account for transition between the terminals  and a2.
The coordinate rg > 0 parameterizes the lead § in radial
direction and the factor

& = /(dkg/dE)/2m = \/M/2nkgh? @)

has been introduced for normalization [32].
The outgoing and incoming states as defined by the
conditions (4) and (5) obey the orthogonality relations

(‘vai lp5") = 8apbE_F 8

and form two complete bases of the single-particle Hilbert
space J(; for simplicity, we assume throughout this article
that no bound states exist inside the scattering region?.

2 Throughout this article, bars indicate complex conjugation.

3 Note that the bound states generally affect the properties of meso-
scopic conductors although they do not contribute directly to the
transport process [33].
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The scattering states are not normalizable and carry a
finite probability current. Therefore, they cannot be inter-
preted in the same manner as bound states, whose wave
function corresponds to the probability amplitude for find-
ing a particle at a given position. Instead, we may regard
the scattering states as a quantum mechanical description
of a homogeneous sequence of carriers that emerge from a
distant source and travel through the system one by one
before being absorbed by a distant sink [26]. This inter-
pretation does not imply that the states |(pgi> represent
more than one particle; it rather entails that they describe
a large number of identical and independent scattering
experiments [34]. In this picture, the square modulus of
the scattering amplitude Sgﬁ T is the probability for a car-
rier with energy E that is injected into the terminal a to
leave the system through the terminal . Analogously, the
square modulus of Sgﬁ " is the probability for a carrier with
energy E that escapes through the terminal a to originate
form the terminal S.

4.2 Scattering Amplitudes

To ensure the conservation of probability currents, the
scattering amplitudes have to obey the unitarity condi-
tion [32]

> SEESET = bap. ©)

Furthermore, they provide a link between outgoing
and incoming states by means of the relation

95Ty =D, S lok ),

which can be easily verified in position representation
using the boundary conditions (5) and (9).

Upon applying the orthogonality relation (8), (10)
implies an algebraic expression for the scattering ampli-
tudes in terms of the scattering states given by

(ohT

This result makes it possible to establish a universal
symmetry, which follows from the observation that outgo-
ing and incoming states are connected by time reversal, i.e.

(10)

Q5 = SZ“ Op—p'.

(11)

p5") = 0|pET), (12)

where © denotes the anti-unitary time-reversal operator
[35] and tildes indicate the reversal of external magnetic
fields, see Figure 2. Consequently, we have

(BT 105%) = (0G5 1098T) = (P57 |phF) = 8065
(13)
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Figure 2: Schematic representation of incoming and outgoing scat-
tering states. (a) The incoming state |@% ") consists of a plane
wave with energy E that approaches the sample in the terminal

a and decomposes into N escaping waves with the same energy
but smaller amplitude. (b) The outgoing state |@f ~) describes

the time-reversed situation, where N approaching waves with the
same energy E combine into a single one that escapes through the
terminal a, cf. (5).

and therefore, given the (11),

+ _ gBat
SUE — 3, (14)

Hence, for systems without magnetic fields, the scat-
tering amplitudes for forward and backward transitions
between any two terminals a and f3 are identical.

4.3 Lippmann-Schwinger Theory I:
Autonomous Systems

The scattering states and amplitudes can, in principle, be
determined by rewriting the stationary Schrodiner equa-
tion (4) in position representation, calculating the wave
function inside the scattering region and matching it with
the boundary conditions (5). This procedure, however,
becomes impractical when the scattering wave functions
cannot be found exactly and perturbation methods must
be applied. It is then more convenient to follow an alge-
braic approach, which we develop next.
We first divide the Hamiltonian (2) into a free part Hy
and a perturbation V acting only on the scattering region,
H=Hy+ 7V, (15)
where we assume that the scattering states for Hy can
be determined exactly. Next, we combine the stationary
Schrodinger equations for the free and the perturbed scat-
tering states,

HoloGs) = E|logy) and H|pi") = Elpg*)  (16)
into a single inhomogeneous linear equation,
[E - Holllp§*) — lo6i)] = Vigg™).  a7)
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This equation can be formally solved for the vector
|p3E) — |l ) after making the operator E — H invertible
by adding a small imaginary shift. Following these steps,
we arrive at the Lippmann—-Schwinger equation

|05*) = l9Gz) + [E— Ho + ie] 'VigE*),  (18)
where ¢ > 0 and the limit ¢ — 0 must be taken after phys-
ical observables have been calculated. Note that the sign
of the complex shift is important to ensure the correct
correspondence between free and perturbed outgoing and
incoming states, for details see [26].

By construction, the solutions |(p§i> of (18) also
solve the corresponding stationary Schrédinger equation.
However, the Lippmann-Schwinger equation contains
more information, as it explicitly includes the continuity
condition

limy_o @) = |95 ). (19)
which ensures that the perturbed states |(piﬁi) obey the
boundary conditions (5). That is, for a given set of free
states |<pg,:3t ), the Lippmann—-Schwinger equation uniquely
determines the outgoing and incoming states for the
full Hamiltonian H, while the solutions of the stationary
Schrédinger equation are unique only up to linear combi-
nations of scattering states with the same energy [26].

The Lippmann-Schwinger equation (18) can be for-
mally solved by iteration. This procedure yields

[} R 1
@) = > [E—Ho + el V] |ofg)
=[1 —[E — Ho + ig] ' V] }|plE)

= |Q&5) + [E — H + ie] " V|p%E) (20)

where the last line follows by noting that

[1—[E—Ho+iel V] "
—[[E = Ho + ie] Y[E — H+ ie]] "
= [E— H + ie] '[E — Ho =+ i€]

—1+[E—H+ +ie] V. (21)

The expression (20) provides a systematic expansion
of the scattering states |(pgi) in terms of the perturbation
V. Moreover, it implies that the solutions of the Lippmann-—
Schwinger equation obey the same orthogonality relation
as the free states, as

+
(@op|VIPE")
E'— EFie

+
= (phplodE) = 6480E—E-

(@5 105%) = (@B it +

(22)
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Here, we have first inserted (20) for |(plé,i> and then (18) for
|(pgi> in the first summand. Along the same lines, we find

+
I3 — (ol + LETE)

E'— E +ie
= (phFlotE) F L«pﬁﬂvwgﬂ
OF (E_E) +e2 OF
= (So8" F 2mi(@hEIVIQE NS p, (23
where we have used the relation [36]
. €
lim ———— = n6a, (24)

e-0 a2 + g2

which must be understood in the sense of distributions,
and Sggi denotes the scattering amplitudes for the free
Hamiltonian Hy. Comparing (23) with (11) yields the for-
mula

ST = Sk ¥ 2mi(off I VIoE"), (25)
which makes it possible to calculate the full scattering
amplitudes order by order in V by using the expansion (20)
of the scattering states |<pgi>. This perturbation scheme
is a key result of the Lippmann—-Schwinger formalism and
will be developed further in the next section.

5 Floquet Scattering Theory

5.1 Floquet Theory

The carrier dynamics in a driven multi-terminal system is
governed by a Hamiltonian with the general form
Hi=P*/2M + U+ V; = H + Vi, (26)
where the dynamical potential V; accounts for time-
dependent external fields acting on the scattering region.
If the driving is periodic with frequency w = 27/7,
according to the Floquet theorem, the time-dependent
Schrodinger equation admits a complete set of solutions
that have the structure
WE,) = exp[—iEt/hl|}E,), @7)
where |¢% ., ;) = |$E (), the parameter E here plays the
role of a continuous quantum number and a stands for any
discrete quantum number [28, 37, 38]. The Floquet states
| ¢) obey the Floquet-Schrédinger equation

[He — ihoe)|@E ) = E|dE,e) (28)
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and form an orthogonal basis of the single-particle Hilbert
space JH at every fixed time ¢.

In order to formulate a systematic scattering theory for
periodically driven systems, it is convenient to introduce
the extended Hilbert space [28]

H = H o Hy, (29)
where JH; denotes the Hilbert space of r-periodic func-
tions. In time representation, the elements [1)) of 9 are
T-periodic single-particle state vectors, i.e.

(thp)) = [¥e) with  [theic) = [Pe) € H. 30)
The scalar product in 7 is defined as
(o) = 3 [ de il 61
0

This framework makes it possible to cast the Floquet—
Schrédinger equation (28) into the form of a stationary
Schrodinger equation given by

H|PEY)) = Em|pF®)) with Em = E+ mhw, (32)

where m runs over all integers. The Floquet vectors |z %))
are connected to the Floquet states according to

(tIPE™)) = uf'|PpE,) with uf" = explimwt]  (33)
and the effective Hamiltonian H, which is defined as
(t|H|p)) = [He — ihdd|Pe), (34)

is a self-adjoint operator on J with respect to the scalar
product (31). The additional Fourier factor in (33), which
is accounted for by the mode index m, was introduced to
ensure that the solutions of (32) are complete in FC; this
property will be required to develop an algebraic scatter-
ing theory in the extended Hilbert space. Once the Flo-
quet vectors |¢pF*)) have been determined, a complete
set of Floquet states |¢% () that fulfill (28) is obtained by
setting the mode index to zero and returning to the time
representation.

5.2 Lippmann-Schwinger Theory Il: Driven
Systems

Replacing the stationary Schrodinger equation (4) with
(32), we can now extend the Lippmann-Schwinger the-
ory of autonomous systems to systems with periodic driv-
ing. The dynamical potential V; thereby plays the role of
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the perturbation and the free states are replaced by the
Floquet vectors

(tloF™)) = u'log™), (35
where |(pgi> are the scattering states for stationary part
H of the Hamiltonian (26). The free Floquet scattering
vectors |(pg”‘i>> form a complete basis of the extended
Hilbert space 9, for outgoing and incoming orientation,

respectively, and fulfill the Floquet—Schrodinger equation

Hol@}*®)) = Em|@p*®)), 36)
where the free effective Hamiltonian is defined as
(t|Hol)) = [H — ihdd[1he). 37)

Furthermore, using (8) and (31), it is straightforward to
verify the orthogonality relation

nf+

{oF “|QF")) = Smnbapbp_p. (38)

Note that the quantum numbers E and a« have now been
identified with the energy and the terminal of either an
incident (+) or an escaping (—) carrier.

The full Floquet scattering vectors |qb]’5"“i>> are those
solutions of the Floquet-Schrodinger equation

H|PF*E)) = Em|pE)) (39)

that reduce to the corresponding free vectors |<p§5"“i>> in
the stationary limit V; — 0. They are uniquely determined
by the Floquet-Lippmann-Schwinger equation

) = |@EE)) + [Em — Ho = ie] L T|p1°5)), (40)

which can be derived along the same lines as (18); the
perturbation operator on the extended Hilbert space is
thereby defined as (t|V|)) = V¢|i)¢). The formal solution
of (40) can be found by iteration and reads

5N =Y [[Em— Ho+ ie] 101 o))
= [1 — [Em — Ho £ ie] U] @%%))
= |@RE)) + [Em — B ie] V]gpe®)). (1)

Using the (40) and (41), we can now establish the
orthogonality relation for the Floquet scattering vectors,

(R V| pimecty)
E'y —EnFic
OFF)) = SnmBupbE_ps

(PP 1pmE)) = (9t |pmeE)) +

— ((phP*

(42)
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and the connecting relations between outgoing and
incoming vectors,

(DT 1pmeE)) = (9T |pmet))
nﬁ:F ma+
+ <<En 7|‘;'|n¢:|: l£>> <<(pEI$|(pmai>>
2ie

nﬁ:F ma+
o (WE TV

= (BmnSE* F 211 (LT V|97 )0k, -k, (43)
Here, we followed the same steps as in the derivations of

the (22) and (23). In the (43), Sgﬁ * denotes the scattering
amplitudes for the stationary Hamiltonian H.

5.3 Floquet Scattering Amplitudes I: General
Properties
The Floquet scattering amplitudes are defined as

(PR FIPF)) = 895 6k, _p, (44)

where 8%, = 8ft
tions

. They satisfy the unitarity condi-

> Smn g, Su = Bmodap (45)
and the symmetry relation
B+ _ oBat
S:Xn E — S am JEm? (46)

where the double tilde indicates the reversal of both exter-
nal magnetic fields and driving protocols. In the follow-
ing, we will show how these results can be derived within
the framework of Floquet scattering theory. Note that,
throughout this article, we understand that sums over the
mode index run over all integers and that the Floquet scat-
tering amplitudes are zero if their energy argument is not
positive.

The unitarity conditions (45) follow from the com-
pleteness relation for the Floquet scattering vectors,

iqubmai

mtx:i:‘ -1, (47)

where 1 stands for the identity operator on the extended
Hilbert space and the symbolic notation

idE = Zma/dE
ma 0

(48)
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has been introduced for convenience. We thus have*

(YT |DF*)) = BmoBapbi,—r
yde" o) ()

_ (Z
(49)

and shifting the summation index n yields the result (45).

To derive the symmetry relation (46), we first observe
that the free outgoing and incoming Floquet scattering
vectors are connected by time reversal, i.e.

HOE))

vBF ay+
8n Em_ ,,Sm n E) 6Em—E

OlpF™)) = 15" )), (50)
as can be easily verified with the help of (35) and the defini-
tion of the time-reversal operator on the extended Hilbert
space, (t|®|)) = O[p_¢). Consequently, acting on the
solution of the Floquet-Lippmann—-Schwinger equation,

(41), with © yields®

BB = |prF)), (51)

where we have used the identity OV = VO with the
time-reversed perturbation operator being defined as

t :[/ l/) = ~[/ —t l/)t . This result flnally 1mphes
<<® t Oﬂi |® ? ma:F>>

= (¢ |p%Ey)

(T IppE)) =
= .§lia,7:l.:’Em SEM—E' (52)

and thus, by comparison with the definition (44), the sym-
metries (46).

5.4 Floquet Scattering Amplitudes Il:
Perturbation Theory

The framework of our Floquet-Lippmann-Schwinger the-
ory makes it possible to derive a systematic expansion of
the Floquet scattering amplitudes in powers of the dynam-
ical potential. To this end, we first compare the defini-
tions (44) with the relations (43) to obtain the explicit
expressions

aﬁ:l:

= SmoSP T F 2mi((9L T VIF ). (53)

4 Note that ((pp/T |95 ) = (9T |dF ).
5 Recall that a single tilde indicates the reversal of magnetic fields
only and a double tilde includes the reversal of driving protocols.
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Inserting the series representation (41) of the Floquet
scattering vector \(j)""”‘i )) into this formula now yields the
expansion

aﬁ:l: — 6m0S aﬁ:l:

F 2mi Zz:

This result is analogous to the Born series in standard
scattering theory [27]. Taking into account only first-order
corrections gives the Floquet—-Born approximation

(@Y T |VI[Em — Ho + €] 19 maty),

(54)

SEP o BmoSET F 2mi (92T | V|oFeE))

T
2mi (55)
= 8uosP 5 2 [ de (ol Vil
0

which is justified if the amplitude of the external potential
variations are small compared to the carrier energy.

5.5 Scattering Wave Functions

The physical content of the Floquet scattering states can
be understood from their asymptotic wave functions. To
derive their structure, we first use the Floquet-Lippmann-—
Schwinger (40) and the completeness relation for the free
Floquet scattering vectors,

i dE|(pma:|:

to connect the lead wave functions of the Floquet scatter-
ing states with the lead wave functions (5) of the stationary
scattering states,

ma:t| =1, (56)

(rplops) = ((rp, tb2"*))
= ({rg, t]@P*))
+ {{rg, t][E — Ho + ie] "' 7|¢p3™*))

+ , (@B T IV|pg**))
_ gt [rﬁ]+¢dE(py[rﬁ]u§" by e

¢Et[rl3

(57)

This expression shows that the wave functions
qbg [rg] are invariant under spatial translations by integer
multiples of the wave length Ar = 271/kg. Therefore, we
can evaluate them in the far distance from the scattering
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region. Plugging (5) into (57) thus yields
¥ [rpl = Sapwi [rg] + S Wi [rg]
idE'dﬁy [Tﬁ] + SVB]FWﬂYﬁ]
— Em Fic

< uy " (o™ T V| )
= 6aﬁWE [I’ﬁ] + Z (6mosgﬁi
F 2mi((@¥F |V 9F*E))) x wit [rglu; ™ (58)

Here, we have used Lemma Ic of App. 9 and the symbol =<
indicates asymptotic equality in the limit r4 — oo. Finally,
inserting the expressions (53) for the Floquet scattering
amplitudes gives the wave function

¢,‘§ [rp] = 6aﬁwE [rg] + Z Szﬁ}twﬁn [rplus ™. (59)

This result shows that the outgoing and incoming Flo-
quet scattering states, \(],’)Zﬁf) and |¢7 ), respectively, con-
tain a single incident and escaping wave with wave length
Ag in the lead a. Hence, they represent a carrier with
energy E that either enters or leaves the system through the
terminal a. The Floquet scattering amplitude anﬂ ; thus
corresponds to the probability amplitude for a transitions
from the terminal « to the terminal 8 under the absorp-
tion (m > 0) or emission (m < 0) of m units of energy Aw.
Analogously, S% ap— m.p corresponds to the probability ampli-
tude for that an escaping carrier with energy E in the ter-
minal a was injected into the terminal  with an energy
surplus (m > 0) or deficit (m < 0) of m quanta Aw. In this
picture, the unitarity condition (45) ensures the conserva-
tion of probability currents. The symmetry relation (46)
implies that forward and backward processes occur with
the same probability amplitude provided that no magnetic
field is applied to the system and the driving protocols are
invariant under time reversal [15, 24].

We stress that the lead wave functions (59) have
not been used to define the Floquet scattering states in
our approach; in fact, their structure results from the
continuity condition limy, o |¢35) = [@5"), which has
been built into the Floquet-Lippmann-Schwinger equa-
tion (40). In the same way, the quantization of the energy
flux between carriers and driving fields arises naturally
from the periodicity condition |¢>g’t> |5 +r> which is
imposed by the Floquet theorem and encoded in structure
of the extended Hilbert space.

Note that the lead wave functions (59) can be used
as boundary conditions to determine the incoming and
outgoing solutions of the Floquet-Schrédinger equation
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(28) in position representation. For sufficiently simple
dynamical potentials, the Floquet scattering amplitudes
can thus be found by calculating the Floquet wave func-
tions inside the scattering region and solving a spatio-
temporal boundary value problem [39-41].

6 Matter and Energy Currents

6.1 Current Operators

On the single-particle level, the matter and energy cur-
rents that flow at the position rq of the lead a into a
multi-terminal conductor are represented by the operators
[42, 43]

jh = ,7{13 6[R —rq]} and (60a)

jo= - g (PLAPGIR —nl}). (60b)

Here, R and P are the position and momentum
operators, M denotes the carrier mass and curly brackets
indicate the usual anti-commutator. Note that, for conve-
nience, we notationally suppress the dependence of the
current operators on the coordinate r, throughout.

As the transport carriers are indistinguishable, the
many-body quantum state of a mesoscopic conductor
must be either symmetric or antisymmetric under the
exchange of two arbitrary carriers. An elegant method to
take this constraint into account is provided by the lan-
guage of second quantization, which can be adopted to our
present setup as follows. We first introduce the scattering
field operators ®% , and ®$',, which annihilate and cre-
ate a carrier in the outgoing Floquet scattering state | ¢gt )s
respectively. For any fixed time ¢, these operators obey the
commutation relations

{©f, , ©%,} = {D} ,0f} =0 and (61a)

T t
{(Dlgj’,p (D%,t} = {(Dg',t’ (:D%,t} = SzxﬁSEfE', (61b)
where we focus on Fermions for the sake of concreteness;
the theory for Bosonic carriers can be developed analo-
gously. The many-particle current operators can now be
expresses as

X = idEi dE’ jeslr ol @, (62)
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where x = p, € and

ol = (o oIk
I (G, - apah)| | @
= 0 ﬂﬂfﬁl% )
- 8m2 (¢E¢ ¢E';1‘i)§;2
B s — Bohs) by, (63D)

with ¢§ = (;b% [r] and ¢%,; = ol @5t [r]. These matrix ele-
ments are t-periodic functions of t and can thus be
expanded in a Fourier series,

]gﬁt" = Zm kgﬁr}’l explimwt], (64)
where the coefficients kﬁ-ﬁ r}', can be determined from
the Floquet scattering wave functions (59). Rather than
spelling out the corresponding expressions in full gener-
ality, we here provide only a specific set of Fourier compo-
nents that will be needed in the following sections and can
be written in the compact form

1
k)};%fym = ﬁ(5aﬂ5av5m0(g - Zn S%atn Em ﬁaEJr(En
with h=2rh, (=1, (f=E (65)

6.2 Mean Currents

We are now ready to calculate the average steady-state cur-
rents of matter and energy in a periodically driven multi-
terminal conductor. To this end, we recall the general
formula (1a) for the mean currents,

t
1,
]ﬁztlln;? dt’ (Ja,¢)-
0

(66)

The Heisenberg-picture operator J;  thereby describes the
flow of particles (x = p) or energy (x = €) at a given time
t and at a given position r, in the lead a; angular brack-
ets denote the ensemble average over all possible quantum
states of the system.

The formula (66) can be evaluated in two steps. First,
transforming the current operators (62) into the Heisen-
berg picture yields

Ve =URU
;édEgﬁ dE’ jysl @' @Y, expli(E — E')t/h],

(67)
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where the unitary operator U; generates the evolution of
the many-particle system from the time O to the time ¢. The
second line in (67) follows from the time evolution laws for
the field operators,

UtCDEtUt ®% exp[—iEt/h] and (68a)

Ui 04 Uy = ©F expliEt/ ], (68h)
which, in turn, are a consequence of the fact that the out-
going scattering states |¢§j> are solutions of the Floquet
Schrédinger equation (28) and thus fulfill

Uil ) = expl—iEt/h]| 5 ). (69)

Here, U; is the single-particle time evolution operator.
Note that the time argument O is omitted throughout for
simplicity.

Second, to evaluate the ensemble average in (66), we
recall that the outgoing Floquet scattering states |¢gj§) are
populated with non-interacting carriers by a thermochem-
ical reservoir with temperature Ty and chemical potential
Ua. Hence, provided that all reservoirs are mutually inde-
pendent, the quantum-statistical average of an ordered
pair of one creation and one anihilation operator is given
by the grand canonical rule

(OF ©F) = 84365 pfF,
1

1+ exp[(E — pa)/Tal (70)

where ff =

denotes the Fermi function of the reservoir @« and
Boltzmann’s constant is set to 1 throughout; averages of
products that contain different numbers of creation and
annihilation are zero [8, 9, 24].

Inserting (67) into the formula (66) and using (70)
yields

Ix hm

t—oo

ar idE ]’2_‘2

- ;ﬁdE kggﬁﬁ fﬁ, (71)

where we have used the Fourier expansion (64) for the
second identity. Upon recalling the matrix elements (65),

6 To verify the time evolution laws for the scattering field operators,
construct a basis of the many-particle Fock space from the incom-
ing Floquet scattering states \d)g*) and evaluate the corresponding
matrix elements of both sides of the (68a) and (68b) with the help of
the relation (69).
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the mean currents can now be expressed in terms of the
Floquet scattering amplitudes of the conductor and the
Fermi functions of the attached reservoirs,

= G -3 sk 02
B

This formula, which holds arbitrary far from equilib-
rium, shows that the conductance properties of a coherent
multi-terminal system are fully determined by its Floquet
scattering amplitudes. In the limit V; — 0, where the Flo-
quet scattering amplitudes become equal to the station-
ary ones according to (53), it reduces to the standard
Landauer-Biittiker formula.

The physical consistency of the current formula (72)
derives from the sum rules

Zma 2_-1 and Z

which follow directly from the unitarity conditions for the
Floquet scattering amplitudes, (45). By using the first of
these relations, (72) can be rewritten in the form

x _ 1 «
i = 3 B 8t P, G2, 1.

|Saﬁ+

ﬂa+
7m,E 17

(73)

(74)

This result shows that the mean currents indeed van-
ish in equilibrium, i.e. if all reservoirs are at the same tem-
perature and chemical potential and the external driving
fields are turned off. Furthermore, by summing both sides
of (72) over the terminal index and using the second sum
rule in (73), we recover the fundamental conservation laws
for matter and energy,

Y Je=0 and Y Jo= Tl

The average power that is injected into the system
through the external driving, Ilac, thereby admits the
microscopic expression

(75)

1
Moo =+ yf dE [85<F 2yt (76)

map

6.3 Zero-Frequency Noise

The zero-frequency noise, or noise power, of the matter
and energy currents in a multi-terminal conductor is given
by the general formula

t t
' 1 ’ 4
Py = lim * / ¢ [ der (O - FO0L T
0 0
tlgg ar / At (T35 ) (77)
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for x = p, eand y = p, €. Here, the notation

((4;B)) = (AB) — (A)(B) (78)

has been introduced for the correlation function of the
observables A and B. The quantity Pz’/; can be calculated
with the same techniques as the mean currents. In the
first step, we use (67) to express the time-dependent cur-
rent operators in terms of the scattering field operators and
obtain

t t
1 1 4 4
PZ’I;:[IEEO?/dt/dt idE1¢dE4
0 0 Y1 Ya

Xa,y1V2 | sYBsY3va yitepY2. vt pvs
]ElEz,[' ]E3E4,t"<<q)E1 (DEz’ (DE3 (DE4>>

x expli(E1 — Ex)t’/h]expli(E5 — E4)t”[R]  (79)

with dots being inserted to improve readability. The cor-
relation function of the scattering field operators in (79)
can be evaluated using the finite-temperature version of
Wick’s theorem [44], which implies

t t 1t t
(0F 0F 0p O )) = (@ o) (@ 0

= 5y1v46E1—E4f}}/1 * 5V2y3 6E2—E;(1 7fgz)- (80)

Here, we have used the commutation rules (61) and the
grand canonical averaging rule (70) for the last identity.
After inserting (80) and the Fourier expansion of the cur-
rent matrix elements (64) into (79), we can carry out the
time integrals. This step yields

P = lim dEgé dE" k5" - K™ - Y — fR)

lXﬁ t—o0

my né
¢ EXPI=i(E" — Em)t/h] — 1 expli(E' — En)t/h] — 1
(E' — Em)t/h (E' — En)t/h

(81)
Upon taking the limit t — oo with the help of Lemma 2 of
App. 9, this expression simplifies to the compact result

Py =h 3 AE K, R, 0 -, @)
myé
where we have applied the relation k’éﬁ ,g"yi m= f(%%fm.

The zero-frequency noise can now be expressed in
terms of the Floquet scattering amplitudes of the driven
conductor and the Fermi functions of the reservoirs. To
this end, we insert the matrix elements (65) into (82). After
some algebra, we thus obtain the explicit formula

1
PZ}[; = E #dE<5m05aﬁ(g(g ,%
m
—|SEPEPORGy fra — |SBeE2ex v

RCRY Y/ BT 5
£ WRPWIP RO R)). 6)
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where we have introduced the abbreviations
E=EA-fD, Wit =3 8 s g, 0, (84)

for convenience.”

In order to analyze the physical content of the key
result (83), it is instructive to divide the noise power into
two contributions, P;?/; = Q;?/; + N;%, that are given by

Qyp = Ry + Rigand N = Wy + Cop with®

1
R = 1 L AE Guobopti — ISIL PRI, (850
m

1 Y0787
Wap = 31 ?f dE Wit WiRC (Y — £2,)°, (85b)
myé
cY =56 1 dE Sya-‘r 20X ¥V (fFrY ,Q
ap = by ‘ m,E| (Em(Em(fE - Em)- (85¢)
my

Here, the thermal noise, or Nyquist-Johnson noise, Qz’;;,

results from thermal fluctuations in the incoming beams
of carriers that emerge from the reservoirs. It remains
finite in equilibrium but vanishes at zero temperature,
where thermal fluctuations are frozen out and f’¢ =
0°. By contrast, the non-equilibrium noise Nﬁ,y; vanishes
if no external driving is applied to the conductor and
all reservoirs have the same temperature and chemical
potential. Its first component, the shot noise W;‘;;, which
persists in the zero-temperature limit, describes fluctu-
ations in the matter and energy currents due to the
probabilistic nature of carrier transmissions and photon
exchange between carriers and driving fields in the quan-
tum regime. Finally, the non-equilibrium correction, C;’l;,
which vanishes at zero temperature, accounts for modu-
lations of the thermal fluctuations in the outgoing beams
of carriers due to thermochemical biases and periodic
driving.

7 The formula (83) shows that the noise power P’;Z is real and
obeys the symmetry P’;{i = Pé’; These properties cannot be a priori
expected as the current correlation function in (77) is, in general,
not symmetric with respect to the current operators. In fact, the anti-
symmetric, imaginary part of this correlation function is wiped out
only when the limit t — oo is taken in (81). The finite-frequency noise
must therefore be derived from symmeterized correlation functions,
for details see [9, 22, 24].

8 To prove that the quantities Q,; and N,; indeed sum up to the total
noise power (83), use the sum rules (73), the unitarity conditions (45)
and shift the integration variables as needed.

9 To be precise, we have f’§ — 0 for E # yq and f'§ — 1/4 for E =
M in the limit T, — 0. Note that f’§ is the negative derivative of the
Fermi function f§ with respect to (E — pq)/ Ta.
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As a final remark for this section, we note that,
although we have focused here on matter and energy cur-
rents, our analysis applies to any set of generalized cur-
rents that can be represented by operators of the form

X Xy 1Y

Va= 2 Caply
with real coefficients c’;’l’; Specifically, the correspond-
ing mean currents and the zero-frequency noise can be
obtained directly from the formulas (72) and (83) through
the transformation rules

(86)

t
s 1 7 /X _
= tlgllo t dt’ o) = Zyﬁ

0

/dt’/dt" (% T o)

- Zuy Zvé Cay B& y6’

where u = p, €, v = p, €. The thermal and quantum com-

ponents of the transformed noise power, P’z)l; = Q’Xy
Xy — prXy 7YX Xy Xy

Naﬂ =R ap +R ba + W ap + C ap> €aN thus be 1dent1f1ed

by analogy as

N

P = lim =
aﬁ t—oo

(87b)

(88)

'?//; = Zuy Z CayC [36

forA=Q,N,R,W,C.

7 Thermodynamics

7.1 The First Law

The first law for periodically driven multi-terminal conduc-
tors follows directly from the conservation laws (75) and
can be formulated as

> Ji+Hac — Ty =0 (89)

with J§=Jo—paJo and M=) (4~ paa

where u denotes the base level of the chemical poten-
tial. It governs the balance between the thermal energy
that is injected into the system by the reservoirs through
the heat currents JI, the mechanical power provided by
the time dependent driving fields, Ilac, and the electri-
cal power generated through the redistribution of carriers
between the reservoirs, I1,;. Within the Floquet scattering
approach, the first law (89) is an immediate consequence
of the sum rules (73).
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7.2 The Second Law

The second law requires that the average rate of entropy
production that is caused by the transport process is non-
negative, that is [45]

o=—% JilTa>0. (90)

A simple demonstration that the Floquet scattering
approach is consistent with this constraint uses only the
sumrules (73) and the fact that the Fermi distribution is the
derivative of a convex function, for details see [46, 47]. In
the following, we provide an alternative proof, which also
shows that the dissipation rate ¢ can only become zero if
all currents in the system vanish.

Our proof is inspired by methods that are usually
employed to derive bounds on quantum entropy func-
tions, for details see [48]. The key idea is to express the
rate of entropy production in terms of the binary entropy
function

nlal = —alnlal] — (1 — a)In[1 — a], (91)

and its first derivative, where 0 < a < 1. A quadratic lower
bound on o can then be obtained from a simple argument
involving Taylor’s theorem. We proceed as follows. First,
we use the formula (72) for the mean currents and the sum
rules (73) to rewrite o as

ho = ;édmsﬁ“ﬂ (Em — pa)/ Ta — (E — up) | To)fE

maf

_ ;éous |85 P(nlfE] - inlr Dt

map
+(n[1 — B —n[1 — f& D1 — By
- yf dE |85 2p1F2. ] — nlrf] + malFE 10— £8)

map

(92)
with n[a] = aén[a]. By Taylor’s theorem, there now exists
a g between fg and f,‘.:"m such that

nlfg. 1 — el + malfE, J(FE — £2.)

= —nalgl(ff — FE )2 /2. (93)

Since the Fermi function takes only values between 0 and
1, the number g must also lie in this interval. Hence, we
have —n,[g] = 1/g + 1/(1 — g) > 4 and therefore

yf dE |8PL (e, — fAY

maf

(94)

upon combining the (92) and (93).
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The bound (94) shows that, first, the rate of entropy
production can indeed not become negative within the
Floquet scattering approach and, second, that o is zero
if and only if the integrand in (94) vanishes for all ener-
gies E and all combinations of the indices m, a, 8. Under
this condition, however, all energy and particle currents
must also be zero according to (74). We stress that this
result, which was obtained here without any assumptions
on the behavior of the system under time reversal, should,
though intuitively expectable, not be regarded as trivial. In
fact, the question whether or not dissipationless currents
can exist in normal conducting mesoscopic systems with
broken time reversal symmetry has been the subject of an
active debate in recent years [11].

Finally, we note that the rate or entropy production
(90) is in fact the mean value of a generalized current that
is represented by the operator

=3 05— Half)/ Te.

Therefore, the formalism developed in Section 6.3 can be
applied to investigate whether not only the average but
also the fluctuations, or even higher-oder cumulants, of
the entropy production are subject to universal bounds.
This problem has recently been studied for stationary
mesoscopic conductors [49, 50]. We leave it to future
research to extend this approach to periodically driven
systems.

(95)

7.3 Green-Kubo Relations

The Green—Kubo relations are a cornerstone result of non-
equilibrium statistical mechanics. They make it possible
to express the linear response coefficients that quantify
the variations of mean currents due to a small changes
of the thermodynamic forces that drive the system away
from equilibrium in terms of integrated equilibrium corre-
lation functions of the involved currents [2, 45]. As our final
topic in this article, we will now show how this fundamen-
tal relationship arises naturally within the framework of
Floquet scattering theory.

The thermodynamic forces, or affinities, for a trans-
port process are defined as gradients in the thermody-
namic variables that form entropy-conjugate pairs with the
conserved quantities of the system. For a multi-terminal
conductor, these objects can be identified with the ther-

mochemical biases between the external reservoirs,
Fo = ua/Ta —u/T and F3=1/T—1/Ta, (96)

where, yu and T denote the base chemical potential and
temperature. Using these definitions, the rate of entropy
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production (90) can be divided into a mechanical part,
Oac = Ila¢/ T, and a thermal one, 0y, = 0— 0ac, which now
assumes the characteristic bilinear form of irreversible
thermodynamics [45],

E 1€

on = FoJo+Faa 97)

Several proposals were made to extend this structure
to the total rate of entropy production by associating the
mechanical perturbation with an effective current and a
generalized affinity, which, depending on the scheme,
corresponds to the mean applied work [51] or either the
amplitude [52-54] or the frequency [47, 55] of the periodic
driving fields. For the purpose of our analysis, however, it
is sufficient to focus on the conventional thermal currents
and affinities appearing in (97).

To establish the Green—Kubo relations for multi-
terminal systems we first calculate the response coeffi-
cients

LY = oy = ;édE (6mo8apCE — [SECF 12 CE )OUF S,

(98)

where we have used the current formula (72) and the
symbol a; indicates the derivative with respect to the affin-
ity F;’g Upon comparing this expression with the compo-
nents of the current noise given in the (85), we find that
L’;’I; = R’Z} and thus

— N

yX
+ Ly = Qg = Pog — Nog-

Y (99)

ap T

Hence, the symmetric part of the response coefficients
(98) is identical to the thermal noise, even if the transport
process takes place far from equilibrium. In equilibrium,
i.e. for FX = 0 and V; = 0, the non-equilibrium noise NZ%
vanishes and the relation (99) becomes (LZg + L%’;)|eq =
Pz’/;\eq. Moreover, provided that no magnetic fields are
applied to the sample, we recover the Onsager symmetry
Lypleq = Ligy|eq, as can be easily verified from the property
(14) of the stationary scattering amplitudes [45]. We thus
arrive at the standard form of the Green—Kubo relations for
multi-terminal conductors,

2Lygleq = Jim =~ / dt’ / dt” ((Ja,e3Jp ). (100)

In order to extend the result (100) to non-equilibrium
situations and systems with broken time-reversal symme-
try, we have to express the coefficient L’;{, as an integrated
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correlation function that involves the current operator J5.
That is, we look for an observable I}y that fulfills

LY = hm

v = lim [ ar / ae” (5l (o)

0

A minimal choice for such a variable is given by

;/dE
0

where the energy dependent weights,

dE it} OF O, (102)

0\8

. 1 1

ifp = 57 lkeke] ? (kg + k), (103a)
. 1 1
i} = o7 keke] 2 (kg + kp)(E + EY), (103b)

are found by replacing the scattering wave functions

gj[r] in (63a) and (63b) with the plane waves w; [r];
recall (6) for the definition of wy [r] and kg. This opera-
tor can be easily shown to satisfy the condition (101) by
following the lines of Section 6.3. It describes the gross
influx of matter (x = p) or energy (x = ¢€) from the reser-
voir a« and thus provides a physically transparent non-
equilibrium generalization of the Green—-Kubo relation
(100), which covers even systems with broken time rever-
sal symmetry. From a practical perspective, the result (101)
makes it possible to infer the time-integrated correlation
function between net currents and gross influx, which are
otherwise hard to access, by measuring the variations of
mean currents in response to small changes of the ther-
mochemical biases (96).

We conclude this section by pointing out that the bilin-
ear decomposition (97) of oy, into affinities and currents is
not unique. In fact, for any set of generalized currents and
affinities,

E=), o and Fi=) dir
with 3 cledyy =

the thermal rate of entropy production assumes the stan-
dard form oy, = >, JaF'%. In particular, for the spe-
cific choice ¢f; = 8qp6xp and czf = 64p(Sxe — Habxp), the
energy currents are replaced by the heat current; that is,
we have J'5 =J§ — uoJh =J¢ and F§ = (ua — p)/T =
FI. The Green—Kubo relations (100) and their generalized
counterparts (101) are invariant under such linear trans-
formations provided that the generalized influx operators
are identified as I’y = 3, % I%. This result follows from

yB Capla
the fact that the response coefficients (98) obey the same

6xy 6(1/3 ) (104)
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transformation rules as the zero-frequency current noise
and its components, which are given in the (87b) and (88).
Specifically, we have

LY=o =Y, 3, cichiLy

as can be easily verified by inspection.

(105)

8 Perspectives and Challenges

8.1 Adiabatic Perturbation Theory

In Section 5.4, we have shown how the Floquet scatter-
ing amplitudes can be calculated order by order in the
dynamical potential. This approach is well justified if the
periodic variations of the scattering potential are small
compared to the typical carrier energies. For practical pur-
poses, however, an adiabatic perturbation scheme, where
the frequency rather than the amplitude of the driving
fields plays the role of the expansion parameter, is often
more suitable.

Such a theory can be developed as follows. Consider
an approaching or escaping carrier with energy E in the ter-
minal a. If the dynamical potential is practically constant
during the dwell time of this carrier inside the sample, its
transition through the system at the time ¢ is described by
the frozen scattering states |K%,it> [56, 57]. These states are
solutions of the stationary Schrédinger equation

H|k§5) = E|x) (106)
and satisfy the boundary conditions
<rﬁ|xg~ )= KEi[rﬁ] = 8awi [rgl + S“ﬁ[ini[rﬁ] (107)
with the frozen scattering amplitudes given by
(BT ) = SE8e (108)
The corresponding quasi-static Floquet scattering

amplitudes are the Fourier components of these
objects, i.e.

aﬁi

OmE:

/ de SPrup. (109)

This result follows by comparing (107) with (59) and
assuming that the carrier energy is practically constant
during the transition through the sample.

The expression (109) can be interpreted as the zeroth
order of an expansion of the Floquet scattering amplitudes
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in the photon energy fiw. The first-order term of this series
can be determined from a phenomenological ansatz of the
form [16]

aﬂi

8imE = /dt maEs“"fu;" + hw.Af:ff. (110)

Here, the first term accounts for small changes in the car-
rier energy during the transition and the correction A“ﬁ =
is chosen such that the approximated Floquet scattermg
amplitudes obey the unitarity conditions (45).

This scheme proved quite effective for various practi-
cal applications [15, 24]. How it can be derived from a sys-
tematic perturbation theory, which would make it possible
to also calculate higher-order terms, however, is not imme-
diately clear. As a first attempt, we might try to adapt the
Lippmann-Schwinger formalism of Section 5.2 by mim-
icking the adiabatic perturbation theory for systems with
discrete spectrum [34, 58, 59]. To this end, the free scat-
tering vectors (35) have to be replaced with their frozen
counterparts,

(EKFE)) = uft|xEE ). (111)
The roles of the free effective Hamiltonian and the per-
turbation are then assumed by the operators K and D,
respectively, which are defined as (t|K|y)) = H¢|;) and
(t|D|)) = —iho¢|1h¢). Upon repeating the derivations of
Sec. 5.2, we thus find that the Floquet scattering ampli-
tudes, up to second-order contributions in D, read

Saﬁ:l: _

m,E

/dt ety  2mi( (k¥ D))
T
= /dt s"‘/ﬁiu;" + hw /d <'§f,t|'<§f,t>u?"

_ /dt T —/dt mopSe uf'

ihw/dt

Hence, we indeed recover the zeroth- and fist-order terms
(109) and (110). However, this result must be taken with a
grain of salt, as the correction term in (112), which involves
the time derivative of the frozen scattering state |K§i>, is
generally divergent. Therefore, the expression (112) should
not be regarded as a proper expansion of the Floquet
scattering amplitudes.

Ut + O[(hw)?].
(112)
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The singular behavior of the last term in (112) arises
because the time derivative D, in contrast to the dynamical
potential ¥, which vanishes outside the scattering region,
constitutes an unbounded operator on (. To overcome
this problem, it might be necessary to invoke techniques
of singular perturbation theory, adiabatic gauge potentials
[60, 61] or a transformation of the scattering amplitudes
into the time domain; the latter approach lead to a consis-
tent first-order expansion in [62]. We leave it as a challenge
for future studies to derive a systematic adiabatic perturba-
tion theory by further developing the formalism presented
in this article.

8.2 Thermal Machines

The Floquet scattering formalism provides a general plat-
form to explore the performance of thermal nano-devices.
As a concrete example, we might consider a quantum heat
engine that consists of a driven sample and two reservoirs
with equal chemical potential y and different tempera-
tures T = Tc and T, = T}, > T.. Here, we imagine that
the variations of the scattering potential are caused by
the motion of mechanical degrees of freedom like a meso-
scopic paddle wheel, which perform work against some
external load [63-65]. The thermodynamic performance of
such a machine is determined by two benchmark parame-
ters, its mean power output —IIac and its efficiency n =
—TIac/ ]ﬁ. The latter figure is thereby subject the Carnot
bound

n<nc=1-TTy, (113)
which follows from the second law, 0 = JIF{ + Iac/Tc >
0, and can be attained only in the quasi-static limit, where
—IIac goes to zero?,

From a practical perspective, it is therefore important
to determine the maximum efficiency, at which a nano-
engine can deliver a given power output. For autonomous,
i.e. thermoelectric, heat engines such bounds have been
found by seeking constraints on the total rate of entropy
production that go beyond the second law [66—70], or by
explicitly optimizing the scattering amplitudes of the sam-
ple [71-75]. The first strategy has also been applied in
studies of piston-type heat engines, which use a closed
working system, and lead to the general trade-off relation

nnc —n) > -11/6 (114)

10 This result follows from the fact that the rate of entropy produc-
tion o vanishes only if all currents are zero, see Section 7.2.
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between efficiency n and power output —II; here, ® > 0
is a system-specific constant [52, 53, 68, 69]. First steps
towards an extension of this bound to paddle-wheel type
quantum engines, which are driven by a continuous flow
of carriers, have been made under the assumptions of
slowly varying driving fields and small thermochemical
biases [47, 55]. A universal and physically transparent per-
formance bound that covers also devices operating far
from equilibrium is, however, still lacking.

8.3 Thermodynamic Uncertainty Relations

Thermodynamic uncertainty relations describe a trade-
off between dissipation and precision in non-equilibrium
processes. Specifically, for a time-homogeneous Markov
process that obeys detailed balance, the inequality

o> >2 with e=+/P/J? (115)

holds for arbitrary currents with mean value J and fluctu-
ations, or noise power, P, where o denotes the total rate
of entropy production and ¢ the relative uncertainty of
the current J [76, 77]. This bound, which was first discov-
ered for biomolecular processes, does, however, not apply
to periodically driven systems, systems with broken time-
reversal symmetry or in the quantum regime [78-84]. In
order to close these gaps, a whole variety of generalized
thermodynamic uncertainty relations have been proposed
over the last years, see for instance [25, 85-93].
A particularly transparent result was recently
obtained in [89], where the frequency dependent bound
Twey > 2[1 — wQulw)/Tul’

(116)

was derived for periodically driven Markov jump pro-
cesses. Whether or not this result can be extended to coher-
ent mesoscopic conductors, or whether the relation (115)
can be generalized for such systems by other means are
compelling questions, which can be systematically inves-
tigated within the theoretical framework presented in this
article. Further research in this direction promises valu-
able insights on how quantum effects can be exploited
to control the thermodynamic cost of precision in trans-
port processes. However, this endeavor can be expected to
be challenging, as general properties of the Floquet scat-
tering amplitudes that go beyond the ones discussed in
Section 5 are hard to establish and specific models for
which they can be determined exactly are scarce.
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A Appendix: Some Helpful Lemmas

Lemma 1a: Let F5 be a complex function that is bounded
and holomorphic on the stripe D* = [0, o) x [0, +iR] with
R > 0. Then, for any v > 0, we have

lim [y SPEU g mEXPEENV] pe )
£—0 uz —v2 T ie

0
lim [ du SPIEXU pe (117b)
e—0, us +vsFie

0

in the limit x — oo.

Proof. We proceed in two steps. First, we close the integra-
tion path in the complex plane as shown in Figure 3 and
observe that

/dz exp[izxz]‘ FE x/du
) z2 —v2TFie
0

expl[+ixu] _+

w2 —v2xig v’
Tt
exp[+ixz] _+ / expl[+ixu] _+
/ Zzz+v2:Flsz ) uu2+v2:Fls v (18)
= 0

for x — oo, since the integrand on the left-hand side is
exponentially suppressed in x on either the upper (+) or

a b
R

. . Dt Xy —ig I
i =+ ie

. —iv £ ie
XV + i€ I R D—

X

Figure 3: Graphical illustration of the integration contours used in
the proof of Lemma 1. (a) The contour ;™ encircles a rectangle with
height r and infinite width, whose lower edge falls on the positive
real axis. Crosses indicate the singularities of the integrands in the
(119a) and (119b). (b) The same picture for the contour I,



DE GRUYTER
the lower (—) half plane. Second, using Cauchy’s theorem
to evaluate the contour integral yields

exp[+ixz] F=
22 —v2xig *?

dz 1 B 1 exp[+ixz]
z—VvFie z+4vtie 2v

lim [ dz

e—0
Iy
= lim FF
e—0
Iy

_ jEmexpv[izxv] Fat and
. exp|+ixz]

22+ V2 Fie Fz

[ 1 1
dz - — — - -
z—1ivFie z+4ivztie

(119a)

lim
e—0
I

= lim
£—0
I

exp|+ixz]

Ff =o,
2v Z

(119b)

where we set r = Rin (119a) and O < r < v in (119b).

Lemma 1b: For F; as in Lemma 1a and w # O being real,
we have

du explFixul

Fr =0
u2 +wxie

(120)

in the limit x — oo.

Proof. Setw = —v? forw < 0 and w = v? for w > 0 and
repeat the steps of the proof of Lemma 1.

Lemma 1c: For F;t asin Lemma 1a, G;t = F% andw # 0
being real, we have
u—wT¥ie Ju

/ du
S—>0
+
= 4o exp[+ix/w|Gy; ’
Vw

T explFixy/ul G
du PV Ul Ty
u—w¥ie Ju

exp[+ixy/u] 1GF

(121a)

lim =0 (121b)

e—0

in the limit x — oo.

Proof. Change the integration variable to s =+/u and
apply the Lemmas 1a and 1b.

Lemma 2: Let F, be a test function on the real axis and
define 0, = (1 — exp[—iul)/(iu). Then, for any integers m
and n, we have

lim /du X e(u_m)xé(u_n)xFu == 2n6mnFm. (122)

X—00
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Proof. We first rewrite the left-hand side of (122) as

5 B
lim [ du x - [0, 2 u=nx g
X— 00 9(u7m)x
. .2 é(ufn)x
= lim [ du x-sinc[(u — m)x/2]—""=F,, (123)
X—00

(u—m)x

where sinc[u] = sin[u]/u. Next, we observe that the func-
tion sinc?[u] assumes only non-negative values and obeys

lim du x - sinc*[ux] =n and (124a)
X—00
lu|<e
lim x - sinc’[ux] =0 for e< lu| < 1/e, (124b)
X— 00
where € > 0. Consequently, we have [36]
lim [ du x-sinc?[(u — m)x/z]MFu
X—oo 6(u m)x
== 27T hm é(m_n)XFm - 27T6mnFm, (125)
X— 00

where we used that lim,_.9 6y = 1 and limy_—cc @mx = 0
for any m # 0.
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