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Abstract— Trust establishment among vehicles is essential for
vehicular ad hoc networks (VANETs) as it directly impacts the
security and privacy of vehicular communication. Many trust
estimation approaches have been introduced, however, they often
suffer from ensuring effective trust for vehicles. In fact, existing
approaches do not involve all malevolent properties of vehicles
in trust computation and can not properly handle the content
tampering attack, which eventually affect the accuracy of the
estimated trust. Moreover, most of them do not consider the
uncertainty of VANET arising from vehicles’ mobility, their
inaccurate/incomplete data dissemination, and the wireless com-
munication channels, which also affects the reliability of the trust
estimation. To address these limitations, this paper proposes a
fuzzy logic-based approach to estimate vehicles’ trust. The new
approach considers three trust factors, captured by fuzzy sets,
to model malicious properties of a vehicle. Further, it involves
a new data-centric parameter to capture the impact of content
tampering on trust evaluation. In addition, the new approach
includes an inter-edge trust transfer mechanism to carry forward
a vehicle’s trust when it switches to a new edge server to ensure
a seamless operation in VANETs. We evaluate the performance
of the proposed scheme against the state-of-the-art approaches
using both synthetic and real-world datasets. The experimental
results reveal that it outperforms existing schemes in detecting
malicious vehicles with higher recall, precision, and accuracy.
Further, the new scheme reduces end-to-end delay and messages
per data packet compared to other schemes.

Index Terms— Vehicular ad hoc network (VANET), trust, fuzzy
logic, V2I communication, edge computing.

I. INTRODUCTION

VEHICULAR Ad hoc Network (VANET) plays a sig-
nificant role in intelligent transportation system (ITS)

which is essential for building a smart city [1]. VANET
provides information flow for efficient traffic management,
road safety, and better travel experience by establishing link
among three components—static infrastructure-based roadside
units (RSUs), edge servers, and moving vehicles [2], [3]. Being
a dynamic topology and time-critical network, an efficient
VANET operation largely depends on the correctness of dis-
seminated information and swift response to vehicles’ queries.
However, the presence of malicious vehicles in VANETs and
the lossy nature of wireless network fail to ensure consistent
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receiving of accurate information and often increase query
response time [4], [5], causing severe consequences such
as security and privacy hamper and an increase of road
accident [4], [5].

In VANET communication, a vehicle behaves maliciously
accidentally through component malfunction and node com-
promise by adversaries or intentionally which often disrupts
normal functionalities of the network [6]. In both cases,
it disseminates false information, modifies packet content, and
drops/delays data packet transmission [6] which result in var-
ious security and privacy attacks for the network, e.g., packet
drop/delay-based black hole attacks, grey hole attacks, con-
tent alteration-based message tampering, man-in-the-middle
attacks, and packet injection-based identity impersonation
attacks [7], [8]. Hence, it is essential to identify and sepa-
rate malicious vehicles from the good ones in VANETs and
minimize their adverse effect.

Trust estimation of vehicles is a cost-effective and
efficient method to identify malicious ones which sys-
tematically analyzes vehicles’ dynamic behavior through
different trust factors such as packet forwarding ratio, rec-
ommendation from neighbor vehicles, and vehicular interac-
tion [9], [10], [11], [12]. Nonetheless, accurate trust estimation
is often challenging because of the unpredictable behavior of
vehicles as well as wireless networks. Present trust estima-
tion approaches inspect only the packet forwarding ratio—
presenting vehicles’ behavior to drop/delay packets—while
ignoring two other important features of malicious vehicles:
content alteration and insertion of false information. Further,
they are often indecisive about the actual content of a data
packet when receiving its multiple copies with some copies
tampered by malicious relay vehicles. As a result, they can
compute and assign low trust value for a good vehicle just for
passing an altered packet while high trust value for the actual
malevolent one [10], [11].

Trust computation is further affected by the uncertain
and unreliable VANET communication [10]. In fact, varia-
tion in speed and density of vehicles in roads along with
unpredictable environment and road condition introduce such
uncertainty in VANET which often causes loss of dissemi-
nated information [10], [13]. In addition, vehicles’ transient
contact time, faulty components and sensors contribute to
incompatible factor values and imprecise/incomplete data on
network which again create ambiguity and inaccuracy in trust
computation [10]. Existing researches apply fuzzy logic on
trust factors to deal with such uncertain and lossy behavior
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of vehicular networks [9], [10], [11], [14]. Xia et al. [11]
focused on vehicles’ packet drop/delay property and used
packet forwarding ratio, recommendation, and interaction with
neighbor vehicles to measure fuzzy trust values. Further,
Guleng et al. [10] proposed a fuzzy trust estimation scheme
that uses packet drop/delay feature along with content alter-
ation of malicious vehicles. However, these two approaches
face accuracy problem in estimating packet forwarding ratio
as they do not consider the impact of vehicles’ velocity. More-
over, they fail to differentiate between malevolently modified
and authentic message and erroneously reduce trust values of
vehicles.

To overcome the aforementioned shortcomings, we ini-
tially put forward a novel fuzzy logic-based trust estimation
scheme [15] for VANETs considering all malicious behavior
of vehicles and the uncertainty of wireless environment. The
new scheme used packet drop, content alteration and false
packet injection properties of vehicles as trust factors while
computing the trust. Further, it was designed to automat-
ically readjust the trust of a vehicle when its trust score
was falsely reduced due to the content alteration attack. Its
performance was evaluated using synthetic dataset where it
outperformed other approaches by producing vehicles’ trust
with high accuracy. However, our proposed scheme could not
propagate the trust value of a vehicle from one edge server
to another but recomputed its trust value from the scratch.
During the recomputation time, the vehicle’s trust score was
undefined to the interacting vehicles, thus creating problem for
them to decide whether it is a reliable vehicle or not in this
region.

To minimize this limitation, in this paper, we propose a
refinement of our scheme by incorporating an inter-edge trust
transfer mechanism which ensures a coherent operation within
VANETs. Specifically, the proposed refined scheme transfers
the trust score of a vehicle from one edge server to another
by employing the wired and wireless connectivity among edge
servers, as a result, no indecisive situation can arise and the
VANET operation can proceed smoothly. We evaluate the
new model using both synthetic and real-world datasets e.g.,
Vehicular Reference Misbehavior Dataset (VeReMi) [16] and
its extension, extended VeReMi [17]. In addition. we extend the
performance analysis of this refined model on the synthetic
dataset with an analysis of additional network performance
metrics. We also demonstrate the impact of the new scheme
on different VANET routing protocols. We note that in all
experiments, we compare the proposed refined model against
two well-known trust estimation schemes—Guleng et al.’s
scheme [10] and Xia et al.’s scheme [11]. Major contributions
of this paper are as follows:

• A fuzzy logic-based trust estimation mechanism is
proposed to deal with the unreliability of trust esti-
mation process arose from malicious behavior of
vehicles and the uncertain and unpredictable nature
of VANET.

• Uncertainty in trust estimation is handled by using three
fuzzy trust factors—Packet Drop Factor (PDF) presenting
the malicious property of dropping/delaying data packets,

False Packet Injection Factor (FPIF) expressing the evil
property of generating false information, and Content
Alteration Factor (CAF) indicating the tendency of tam-
pering the original message content.

• A new data-centric factor—Network Topology Factor
(NTF) is introduced to address the impact of message
tampering attacks in trust calculation.

• An inter-edge trust transfer mechanism is proposed to
carry forward the trust value of a vehicle when it switches
to a new edge server’s domain.

• Performance analysis with a synthetic dataset on vari-
ous network settings and routing protocols reflects the
superiority of the proposed model, which is obtained by
assessing the uncertain behavior of vehicles more accu-
rately, detecting malicious vehicles with higher precision
and recall, and enduring increasing network complexity.
Our scheme reduces messages per data packet by nearly
37% and end-to-end delay by approximately 40% com-
pared to the state-of-the-art.

• Performance analysis using the VeReMi dataset and its
extension reveals that our scheme can detect around
36% and 31% more malicious vehicles than the existing
research works in DoS and data replay attacks.

The rest of the paper is organized as follows. Section II
discusses the related works on trust evaluation and Section III
presents the background information. Section IV introduces
the proposed system model, while Section V describes the
detailed operation of the proposed scheme. Section VI presents
the results of the experimental evaluations. Finally, we con-
clude the paper in Section VII.

II. RELATED WORK

Various security measures such as public key infrastructure
(PKI) [18], digital signature [19], and trust estimations [20]
have been proposed to deal with security attacks in wireless
communication networks. The PKI and digital signature-based
authentication mechanisms can successfully remove external
security attacks but fail to handle internal attacks in VANETs
caused by authenticated vehicles behaving maliciously for
component malfunctions and node compromise [6], [21]. Fur-
ther, they do not consider the dynamic and lossy environment
of VANETs and are computation-intensive, thus not suitable
for dynamic-nature VANETs [11], [21].

In contrast, trust estimation based on vehicle coopera-
tion and behavioral traits is an efficient and faster way to
assess vehicles’ trustworthiness, which can mitigate internal
attacks in VANETs [11], [12], [20]. Different entity- and
data-centric factors are used to compute trust, where the
former factor assesses the behavior of vehicles using vehicle
and engine condition, packet transmission rate, responsi-
bility of reporting observed events, interaction with neigh-
bors, recommendations from prior experience, and many
more [3], [9], [10], [11], [12], [13], [22], [23] while the
latter one validates the integrity of received information
with correctness ratio of transmitted data packets and plau-
sibility level which verifies location and time of source
vehicles [6], [9], [10], [21], [24], [25]. Despite validating the

Authorized licensed use limited to: UNIVERSITY OF NOTTINGHAM. Downloaded on November 19,2024 at 13:09:15 UTC from IEEE Xplore.  Restrictions apply. 



HASAN et al.: TRUST MODEL FOR EDGE-DRIVEN VEHICULAR AD HOC NETWORKS USING FUZZY LOGIC 14039

received packets, the data-centric factors still face limitations
in capturing the effect of malicious relay vehicles on message
content. Moreover, they do not explicitly examine vehicles’
false packet injection properties. In the proposed scheme,
we integrate both entity- and data-centric factors along with
the newly introduced three trust factors to effectively handle
all malicious properties of vehicles and to accurately compute
the trust values for vehicles.

As VANET operations are uncertain and unreliable, many
researches already involved fuzzy logic on trust factors
for effective trust computation. Guleng et al. [10] proposed
a fuzzy trust estimation scheme for decentralized VANET,
incorporating packet transmission ratio, responsibility, and
correctness ratio for direct trust (trust computation of one-
hop neighbors) calculation and a Q-learning approach to
calculate the indirect trust (trust computation of vehicles
more than one hop away). Mahmood et al. [24] introduced
a hybrid trust management scheme integrating trust value
with resource availability of vehicles. Xia et al. [11] proposed
a fuzzy trust-based multicast routing protocol combining
packet transmission ratio, activity factor, and recommenda-
tion credibility. Later, they incorporated historical information
and neighbors’ feedback with recommendations of vehicles
in another research work [12]. Zhang et al. [25] also used
historical data with social factors to design a fuzzy trust
management scheme. Besides, Soleymani et al. [14] presented
a fuzzy trust estimation scheme using plausibility, experience,
and vehicle type that utilizes the huge computation power of
edge servers to perform trust evaluation. Later, they proposed
a fuzzy logic-based trust model that examines the plausibility
and accuracy of disseminated information, and previous expe-
rience [9]. Apart from that, An et al. [3] proposed a fuzzy
trust-based packet transmission mechanism utilizing vehicle
velocity, distribution, and channel conditions. Noted that all of
these fuzzy models compute trust values for vehicles without
exploring all hostile properties of vehicles, which implies
their limitation on reliably distinguishing between trusted and
malicious vehicles, arising a big question on the accuracy of
their trust computations.

In addition, existing trust estimation schemes cannot prop-
erly handle content tampering attack (i.e., inability to realize
correct content of data packets) which directly hampers
the correct functioning of VANETs. To deal with this,
Chen et al. [6] proposed a heuristic and optimal decision
algorithm considering network topology to distinguish authen-
tic message content from the tampered one. On the other
hand, Al Zamil et al. [26] applied the Hidden Markov Model
(HMM) in binary classification to detect false alarms while
Al-Otaibi et al. [5] utilized location information to verify the
validity of received information. In addition, Radak et al. [27]
applied distributed data fusion and self-stabilizing algorithm
to deal with unreliable data sources and Raya et al. [28]
used evidence evaluation techniques to ensure the validity of
received information.

In summary, existing trust estimation works combine var-
ious entity- and data-centric factors to identify malicious
vehicles but are unable to correctly analyze all significant mali-

TABLE I
LIST OF NOTATIONS

Fig. 1. System model of the proposed scheme.

cious properties. They do not examine the impact of malicious
relay vehicles on message content and thus cannot guarantee
data integrity and accurate trust values for vehicles. In contrast,
the proposed model (discussed in Section V) evaluates all
significant malicious properties of vehicles and introduces
three fuzzy trust factors to capture them. To guarantee accurate
trust estimation, it also proposes a new data-centric factor
to ensure the integrity of received information and to adjust
falsely reduced trust values of vehicles to diminish the impact
of malicious relay vehicles.

III. PRELIMINARIES

1) Forwarding Factor (FF): It is an entity-centric factor
showing a vehicle’s behavior in transmitting packets [10], [11].
A vehicle i computes the F F of a one-hop neighbor vehicle j
as the ratio of the number of packets received from j and the
average number of packets received from its one-hop neighbor
vehicles.
2) Monitoring Factor (MF): It is also an entity-centric factor
describing a vehicle’s behavior to report observed events [10].
A vehicle i determines the M F of a one-hop neighbor
vehicle j as the quotient of the number of reported events
by j and the average number of events detected by i and
informed by its one-hop neighbor vehicles.
3) Swiftness Factor (SF): It is an entity-centric factor too
denoting the relative velocity of a vehicle [3]. A vehicle i
computes the SF of a one-hop vehicle j as the ratio of the
speed of j and the highest speed of its one-hop neighbors.
4) Trustee Factor (TF): It is a data-centric factor indicating the
accuracy in transmitting authentic information [10]. A vehi-
cle i computes the T F of a one-hop neighbor vehicle j as
the ratio of correct packets and the total number of packets
received from j . The information obtained from the maximum
number of received packets denotes the correct status of an
event [10]. Table I presents a list of notation used in this paper.

IV. PROPOSED SYSTEM MODEL

Figure 1 presents our proposed model, which incorporates
vehicles and edge servers. Vehicles usually observe and gather
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information on road conditions, environment status, and unde-
sirable events while traveling and disseminate data packets to
neighbor vehicles and edge servers through Vehicle-to-Vehicle
(V2V) and Vehicle-to-Infrastructure (V2I) communications,
respectively. In the proposed system model, vehicles calculate
the trust factor values of all neighboring one-hop vehicles by
observing their behavior. Besides, they review data consistency
and integrity of exchanged information and transmit required
data to respective edge servers for accurate trust estimation
of vehicles. We assume each vehicle in the VANET con-
tains a unique, authentic identification number [6]. Although
authenticated vehicles are expected to work honestly, they may
show malicious properties over time in a number of situations,
including selfish behavior shown by vehicles, components
and sensors malfunction, attacks by adversaries, etc. [29].
Malicious vehicles show three main hostile properties – insert
false data packets, drop or delay packets, and modify the
original content [6].

Edge servers are semi-trusted localized cloud servers pro-
viding computation, communication, and storage support to
vehicles [4]. In the proposed model, edge servers accumulate
diverse trust factors from vehicles, compute new trust val-
ues and update previously assigned trust values of vehicles.
We assume that vehicles communicate with edge servers
using SSL channels. Each edge server communicates with
neighboring edge servers using inter-edge communication
and exchange information, including relevant trust values
of vehicles moving from one edge server’s jurisdiction to
another [1]. Edge servers are connected through secure wired
channels, or wireless connections in a standard backbone
network [25].

Data packets transmitted by vehicles include the source
vehicle’s ID and position, packet type, perceived informa-
tion, and an integrity-protected list of relay vehicles [10].
In VANETs, every vehicle in transmission paths includes its
ID to the integrity-protected path list [6]. We assume that
exchanged packets have a vector of events, where a binary
value represents each event, either 0 or 1, indicating the
occurrence of a single event [6]. Besides, the source vehicle
restricts the hop counts to 5 while broadcasting data packets
due to the lossy wireless environment, and limited significance
of VANET information [6], [10], [12], [13]. We also assume
that the VANET system is time-synchronized [30].

V. PROPOSED SCHEME

A. Design Rationale

The proposed model uses fuzzy sets to represent the newly
introduced trust factors depicting the malicious properties
of a vehicle. Among them, PDF reflects the behavior of
dropping/delaying data packets by measuring the accurate
packet transmission rate. In the lossy vehicular network, high-
speed vehicles drop more data packets than vehicles with a
lower velocity due to the lack of dedicated communication
channels. Existing FF [10], [11] disregards the impact of
velocity and thus, reduces the trust values of high-speed
vehicles. We apply both FF and SF in PDF computation

Fig. 2. Flow diagram of the proposed scheme.

to overcome this shortcoming. Besides, FPIF inspects the
behavior of generating incorrect and invalid data packets.
Though vehicles with high monitoring ratio detect and transmit
more data packets and are anticipated to be trustworthy, they
may transmit false information intentionally to gain unfair
advantages or due to component malfunctions. We handle
this issue by introducing the FPIF that justifies the validity
of events claimed in MF against the transmission ratio of
valid packets TF of a vehicle. Moreover, CAF analyzes
the behavior of a malicious vehicle in altering information
of data packets. Our scheme measures CAF through NTF
that detects hostile relay vehicles in transmission paths and
adjusts the falsely reduced trust values of honest vehicles
for transferring packets tampered by the evil relay vehi-
cles. Finally, we employ a fuzzy logic-based trust estimation
algorithm utilizing the proposed fuzzy trust factors to cope
with the incomplete, imprecise data and the uncertain VANET
environment.

B. Overview of the Proposed Scheme

The proposed trust model splits the time into different time
slots, T . At the beginning of each T , vehicles observe and
gather information utilizing various sensors for a pre-defined
time duration, Ttime_slot . After that, vehicles evaluate different
entity-centric factors – FF, MF, SF, and data-centric factors –
TF, NTF for their one-hop neighbors and send them to
respective edge servers for further analysis. After receiving
varying factor values from vehicles, an edge server considers
the mean values to calculate – PDF, FPIF, and CAF for a
particular vehicle and then determines the accurate trust values
for vehicles by applying a fuzzy logic-based trust evaluation
algorithm. The flow diagram shown in Fig. 2 reflects the
working principle of both a vehicle and edge server and the
trust estimation mechanism of the proposed scheme. At initial,
the trust value for a newly introduced vehicle in VANET is
set to 0 [3], [23] while others maintain previously assigned
trust values. A vehicle sets the time counter Tv=0 whenever
it enters into the jurisdiction of a new edge server. After
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the end of Tv=0, the edge server calculates trust values for
vehicles from the values of the received factors and assigns
trust values to new vehicles and updates for existing ones.
Once the trust value of a vehicle is determined, in the later time
phases, factor values are only used to revise the existing trust
value. A vehicle updates Tv if it continues its operation in the
same region. When a vehicle switches to a new edge server,
related information, including the trust value of the vehicle,
is transferred to the neighboring edge servers by applying
inter-edge communication.

C. Trust Factors Calculation

1) Entity-Centric Trust Factors: A vehicle collects infor-
mation for Ttime_slot and evaluates three entity-centric trust
factors – FF [10], [11], MF [10], and SF [3], [23] for
each neighboring vehicle, reflecting the behavior of packet
transmission ratio, event detection and reporting tendency, and
velocity of vehicles, respectively.

2) Data-Centric Trust Factors: The proposed scheme com-
putes data-centric trust factors of one-hop neighbor vehicles
through the existing TF [10] and newly introduced NTF based
on the location of source vehicles. If source vehicles remain
within the transmission range of the trustor vehicle, we apply
TF to regulate the integrity of the received data packets. When
source vehicles stay more than one hop distance, NTF is
applied to calculate the data-centric factor.

• Trustee Factor (TF), as discussed in Section III, exhibits
the proportion of accurate data transmission by a vehi-
cle [10]. The proposed scheme applies TF to the one-hop
neighbor vehicles reporting observed events. The credi-
bility of the informed event is ensured by examining the
trustor vehicle’s sensed information and the information
received from other one-hop neighbor vehicles [10].

• Network Topology Factor (NTF) determines the
data-centric trust factors for one-hop neighbors that act
as relay vehicles for forwarding data packets transmitted
from distant source vehicles. NTF detects malicious
relay vehicles in transmission paths and diminishes their
negative impacts on trust estimation of vehicles.

Vehicles inform the occurrence of various events by broad-
casting data packets to neighbor vehicles. These packets
transmit from source vehicle to destination through multiple
transmission paths where the content of the packets might
be modified by malicious relay vehicles present in the paths.
Hence, a vehicle might receive numerous copies of a data
packet containing erroneous information, creating uncertainty
in deciding the correct content from the received messages.
Though TF validates the content of messages generated
from one-hop neighbor vehicles, it cannot accurately verify
the content originated from distant source vehicles as TF
does not consider the underlying network topology and the
impact of malicious relay vehicles on the message con-
tent. The proposed scheme introduces NTF to overcome this
shortcoming.

3) NTF Calculation: The proposed scheme applies the
heuristic decision algorithm [6] to detect the correct content

of messages where packets are originated beyond the one-hop
range. Based on the output decision variable D, we com-
pute the set of nonaffected vehicles N V , the set of affected
vehicle AV , and the set of malicious vehicles MV using
Algorithm 1 proposed in our earlier work [15]. NTF takes
measures to lessen the impact of content alteration attacks by
the vehicles in MV in the trust computation of vehicles in AV .
A vehicle i calculates the NTF value of one-hop vehicle j as
follows:

N T Fi j =
Ptrue j + Pa f f ected j

Ptotal j

(1)

where, Ptotal j is the total number of paths containing vehicle j ,
Ptrue j is the number of paths where j delivers accurate data
and Pa f f ected j is the number of affected paths where j delivers
incorrect information due to content alteration by malicious
relay vehicles in MV . Vehicle i computes Ptotal j , Ptrue j , and
Pa f f ected j from the network topology information obtained
from the integrity-protected path lists of received packets.
Vehicle i estimates different NTF values for a neighbor j
for multiple events and takes the mean value of all to deter-
mine the final NTF value of j . If j is a malicious vehicle,
N T Fi j = 0. The detailed description of computing NTF
can be found in [15]. For the page limitations, we omit the
thorough explanation.

D. Fuzzy Trust Factors Computation

1) Membership Values Calculation: Each neighboring vehi-
cle sends different sets of (FF, MF, SF, TF, and NTF) values
to the edge server for a specific vehicle. Hence, an edge
server averages all the values for a particular factor to obtain
a final value and applies this value to the corresponding
fuzzy membership function to obtain membership values.
Figures. 3(a) ∼ (d) represent fuzzy membership functions used
in the proposed scheme for FF, TF, MF, and SF, respectively.
These membership functions are determined by the expert
insight following [3], [10].

2) Packet Drop Factor (PDF): The proposed scheme
derives the P DF of a vehicle from the fuzzy values of F F and
SF according to the fuzzy IF/THEN rules given in Table II.
These rules consider the impact of velocity on the packet
transmission ratio. A vehicle that exhibits F F = {Strong}

in any situation gains P DF = {Strong} for transmitting
sufficient data packets. A vehicle with weak velocity (SF)
acquires a larger interaction time and is thus anticipated to
have a strong packet forwarding ratio (F F). Hence, a vehicle
with SF = {W eak} displaying other values for F F except
{Strong} is considered as malicious, leading to P DF =

{W eak}. Likewise, a vehicle with SF = {Moderate} and
F F = {W eak} is unconvincing. Vehicles that achieve strong
P DF values are reliable in transmitting packets, while weak
values mark the selfish behavior of vehicles that may drop
packets. When multiple rules are applicable for a vehicle, the
proposed scheme uses min-max method [13] to determine the
trust factor.
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Fig. 3. Fuzzy membership function for FF, TF, MF, and SF.

3) False Packet Injection Factor (FPIF): It uses the fuzzy
values of T F and M F to classify vehicles as standard
or hostile following to the rules presented in Table III.
A vehicle that reports more events with M F = Strong
but shows low correct packet forwarding ratio, T F =

W eak, indicates that it maliciously inserts false packets.
Therefore, in Table III, M F > T F leads to FPIF=

{Hostile}.
4) Content Alteration Factor (CAF): It uses the mean

N T F values of vehicles in the fuzzy membership function
presented in Fig. 4(a) to classify vehicles as standard or
hostile.

E. Trust Value Calculation and Update

1) Rank Calculation of Vehicles: An edge server, after
calculating the fuzzy values of PDF, FPIF, and CAF, deter-
mines the rank of vehicles by following the fuzzy IF/THEN
rules shown in Table IV, where the output ranks of vehicles
are classified as below, low, average, medium, high, and
perfect. Table IV shows the fuzzy rules to determine the
rank of vehicles based on the priority-assigned order of fuzzy
factor values reflecting the malicious properties of a vehicle.
Secure VANET operations require accurate transmission of
data packets and thus, highest priority is assigned to P DF .
FPIF verifies the credibility of a vehicle as a source of
information, and CAF reveals the honesty as a relay vehicle.
Hence, higher priority is assigned to FPIF than the CAF after
the PDF. A vehicle with PDF={Strong}, FPIF={Standard},
and CAF={Standard} maintains adequate packet transmis-
sions and secures the flow of trusted information and thus,
is marked as Perfect vehicle according to Table IV. Sim-
ilarly, other rules consider the remaining values of trust
factors to generate ranks according to the priority-assigned
order.

2) Trust Value Calculation: After calculating the fuzzy
output membership values, an edge server applies the Center of
Gravity (COG) method on the overall area of the membership
function distribution to precisely determine the trust values
of vehicles [3], [13]. Due to malicious vehicles and defective
sensors, fuzzy membership values from different sources may
show enormous differences. To handle this disparity and obtain

TABLE II
RULES FOR PDF VALUES

TABLE III
RULES FOR FPIF VALUES

Fig. 4. Fuzzy membership function for CAF and output rank.

acceptable trust values, we choose CoG as it always maintains
a stable equilibrium. This method returns a crisp value, the
center of the area under the curve. The overall area is divided
into several sub-areas according to the membership function
distribution to establish a combined control. Each sub-region’s
area and center of gravity are determined and then applied
in the defuzzification process to compute the crisp value.
Figure 4(b) shows the output membership function [3], [10].
If median values for output results (d1, d2,. . . , dn) and cor-
responding degree values (w1, w2,. . . , wn) then x coordinate
of the centroid in the output membership function represents
trust value of a vehicle according to (2).

C OG(x) =
d1w1 + d2w2 + . . . + dnwn

w1 + w2 + . . . + wn
(2)

3) Trust Value Adjustment: An edge server calculates the
trust values of new vehicles at the end of Tv = 0, while it
readjusts the trust values of other vehicles in the later phases
using (3).

Tnew( j) = α × T f uzzy( j) + (1 − α) × Told( j) (3)

where Tnew( j) is the new trust value of vehicle j , T f uzzy( j)
is the fuzzy logic-based trust value of vehicle j , Told( j) is
the earlier trust value, and α is a smoothing factor reflecting
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TABLE IV
FUZZY RULE BASE: RANK OF VEHICLES

a co-relation between new and old values while emphasizing
the new observed values.

F. Inter-Edge Trust Transfer

As vehicles travel across multiple edge servers, a standard
backbone of a wired or wireless network internally connects
edge servers to transfer information about the moving vehi-
cles, workloads, and unsatisfied requests [1], [25]. Based on
periodic beacon messages of vehicles, an edge server deter-
mines the current position, moving direction, and dwelling
period of vehicles [1]. Besides, route information delivered
by a vehicle utilizing a digital map, GPS navigator, neighbor
vehicles’ information, and current traffic condition [31] helps
the corresponding edge server to identify exactly the following
edge server and perform accordingly [1]. The proposed scheme
takes these opportunities to transfer trust values of vehicles
that leave the area of a particular edge server to the next edge
server. We define three roles for an edge server: current, trans-
feror, and transferee. The current edge server provides services
to vehicles and calculates trust values of vehicles within its
transmission range. The transferor edge server transfers infor-
mation about vehicles, including current trust values, to the
adjacent edge servers based on the vehicle’s moving direc-
tion, route information, traffic condition, etc. Finally, trans-
feree edge server receives information, provides services and
updates trust values of vehicles [1]. The transferee edge server
uses the received trust value of a vehicle as the basis for adjust-
ing the trust value of the same vehicle while dwelling in its
covered area.

An edge server can be compromised due to intrusions, phys-
ical attacks, malfunctions, node compromise, code injection
attacks, etc. [32], [33]. A potential solution to defend malicious
edge servers is to incorporate a centralized cloud server on
top of the proposed edge-based vehicular model, where the
cloud server monitors the behavior of an edge server based on
the feedback of neighboring edge servers and its observation
of edge behavior on deciding malicious and honest vehicles.
If an edge server’s behavior deviates significantly from the
expected behavior, the cloud server decides an edge server is
malicious and informs the neighbor edge servers and vehicles.
In this case, the cloud server can temporarily take respon-
sibility for computing trust values for vehicles belonging to
the area of the malicious edge server. We plan to incorpo-

TABLE V
EVALUATION METRICS

rate a concrete solution to handle this issue in our future
work.

VI. EXPERIMENTAL EVALUATION

This section evaluates the performance of our proposed
Fuzzy Logic-based Trust Estimation in Edge-enabled VANET
(FLTEEV) scheme using a synthetic and a real-world public
dataset. Its performance is compared against Decentralized
Trust Calculation with Fuzzy Logic (DTCFL) scheme [10],
and Novel Trust Calculation with Fuzzy Logic (NTCFL)
scheme [11], already discussed in Section II.

A. Evaluation Metrics

We used Recall, Precision, and Accuracy defined in
Table V to evaluate the performance of the schemes. Four
additional metrics are also considered to assess the perfor-
mance in case of the synthetic dataset. They are:
1. Packet Delivery Ratio (P DRdel) shows the ratio between
data packets received and the total packets sent from source
to destination vehicles [11].

P RDdel =
No. of data packets received

No. of data packets sent
. (4)

2. Packet Dissemination Ratio (P DRdis) is the ratio between
the accurate data packets received and the data packets gen-
erated at a source vehicle multiplied by the total number of
vehicles [13].

P DRdis =
Packettrue

Packetsource × N
(5)

where Packettrue is the no. of packets received correctly,
Packetsource is the no. of packets generated by a vehicle, and
N is the total no. of vehicles.
3. Messages per Data Packet (M D P) is the average number of
disseminated messages required to transmit information from
source to destination vehicles [13].

MDP =
No. of messages transmitted by all vehicles
No. of data packets generated by sources

.

(6)

M D P counts total no. of generated packets including the ACK
and data packets.
4. End-to-End (E2E) Delay refers to the average time required
for a data packet to be transmitted from the source to the
destination vehicle [11]. Our experiment considered only the
successfully delivered data packets to evaluate the E2E [13].

E2E = H × D + T × (N − 1). (7)
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TABLE VI
SIMULATION PARAMETERS

where H is the number of hop counts, D is the delay of first
packet, T is the transmission delay, and N is the total number
of data packets.

B. Experiment With Synthetic Datasets

We simulated a freeway VANET [34] using OMNet++ ver.
5.6.1 [35] to conduct different experiments, where a freeway
VANET is a controlled-access highway with two lanes in
each direction. We used OMNet++ Mobility Framework [36]
to construct the vehicular network, where OMNet++ sim-
ple modules (written in C++) represent vehicles and edge
servers. Messages in the network were traveled through a
chain of connections representing multi-hop communication.
Vehicles (OMNet++ simple modules) were moved towards a
straight line without changing their initial lane, and the edge
servers (OMNet++ simple modules) were placed in spec-
ified positions maintaining the standard transmission range,
which is 1 km [37]. Vehicles were assigned a unique identity
and a velocity. They used data packets of 512 bytes to
exchange traffic information where normal road condition was
0, and the congested or abnormal road condition was 1 to
ease experiments. We can extend experiments for support-
ing correlation between multi-variable vectors of events [6].
Each data packet also maintains an integrity-protected vehi-
cle list for multi-hop routing through relay vehicles [6].
Table VI presents the simulation parameters for our
experiments.

In our simulation, we used the cSimpleModule class for
packet transmission and analysis of received packets. We wrote
customized C++ functions to compute factor values (FF, TF,
MF, SF, and NTF) from the pre-defined fuzzy membership
functions discussed in Section V-D.1. Besides, we wrote C++

functions on the specified edge servers’ modules to determine
the PDF, FPIF, and CAF from the fixed rule sets and fuzzy
membership functions discussed in Sections V-D.2, V-D.3,
and V-D.4. We then used the C++ functions to obtain
the rank of vehicles from the fuzzy rule sets and com-
pute trust values using the CoG method discussed in
Sections V-E.1 and V-E.2.

We considered 200 vehicles for the experiment, where
percentages of malicious vehicles were varied as 10%, 20%,
30%, and 40% as shown in Table VI. In each simulation,
we specified the position and type of the vehicle (hon-
est/malicious), where selected malicious vehicles arbitrarily
drop, delay, modify, or inject data packets. Hostile vehicles

executed Packet Alteration Attacks through content tampering,
Bad Mouth Attacks by perfidiously adjusting trust factor values
of vehicles with a probability of 0.3, and On-Off Attacks by
dropping packets with a probability of 0.3 [10], [12]. The
final results were the mean value of 30 simulations with 95%
confidence intervals.

C. Recall

Figures 5(a) ∼ 5(d) demonstrate the recall capability of dif-
ferent schemes for different MV and H when N = 200. The
results reveal that the FLTEEV scheme is capable of detecting
more hostile vehicles than the DTCFL and NTCFL schemes
with higher values of H and MV . The proposed scheme
more accurately characterizes a malicious vehicle by analyzing
every aspect of a hostile vehicle. It uses PDF, CAF, and FPIF
to estimate packet forwarding ratio, content tampering, and
false packet insertion ratio of a vehicle. The DTCFL scheme
assesses the packet forwarding rate and content tampering
using FF and TF, respectively. It does not consider the false
packet injection and the impact of relay vehicles on message
content. Therefore, the DTCFL scheme shows a mediocre
performance in detecting mischievous vehicles. Besides, the
NTCFL scheme partly considers the packet forwarding ratio
using the FF in association with recommendation credibility
(RC) and activity factor (AF). Hence, the NTCFL scheme
exhibits bad performance in detecting malicious vehicles.
Besides, higher MV and H create complicated network
scenarios by increasing the network size with newer paths
affected by more malevolent vehicles. The FLTEEV handles
this challenge more successfully visible from Figs. 5(a) ∼ 5(d).
As the NTCFL puts the least effort into detecting rogue
vehicles, its performance degrades severely with increasing
H and MV as shown in Fig. 5(d).

Figure 5(e) demonstrates the performance of different
schemes at H = 5. The FLTEEV scheme shows better recall
than the DTCFL and NTCFL schemes for increasing MV .
The FLTEEV, DTCFL, and NTCFL schemes detect nearly
88%, 76%, and 48% hostile vehicles, respectively, when
MV = 40%.

D. Precision

Figures 6(a) ∼ 6(d) present the accuracy of different
schemes in detecting hostile vehicles with increasing H and
MV when N = 200. Among the mentioned schemes, the
FLTEEV more exactly detects dishonest vehicles than the
DTCFL and NTCFL schemes, as it considers all malevolent
characteristics of vehicles in the trust estimation. Besides,
Fig. 6(e) shows that when H = 5 and MV = 40%, the
NTCFL gains around 50%, the DTCFL achieves nearly 78%,
and the FLTEEV attains approximately 88% precision. The
result in Fig. 6(e) also demonstrates that the FLTEEV obtains
approximately 13% and 76% improvement over the DTCFL
and NTCFL schemes, respectively.

E. Accuracy

Accuracy indicates the efficiency of decision-making
that classifies vehicles according to their behavior.
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Fig. 5. Recall on various H and MV for N=200.

Fig. 6. Precision on various H and MV for N=200.

Fig. 7. Accuracy on various H and MV for N=200.

Figures. 7(a) ∼ 7(d) manifest that the FLTEEV shows
better accuracy in identifying honest and malicious vehicles
compared to the DTCFL and NTCFL schemes. Moreover,
Fig. 7(e) indicates when H = 5 and MV = 40%, the
NTCFL, DTCFL, and FLTEEV schemes attain nearly
50%, 77%, and 85% accuracy in vehicle detection,
respectively.

F. Packet Dissemination and Packet Delivery Ratio

Packet dissemination ratio (P DRdis) and packet delivery
ratio (P DRdel ) reflect the flow of data packets in networks.
Figure 8(a) shows that the FLTEEV achieves a packet dis-
semination ratio of nearly 76% at MV = 40% whereas it is
around 66% for the DTCFL and approximately 63% for the
NTCFL. Similarly, the FLTEEV attains a higher delivery ratio
(77%) compared to the DTCFL (72%) and the NTCFL (67%)
at MV = 40%, shown in Fig. 8(b). Due to a lack of accurate
trust calculation, the DTCFL and NTCFL schemes cannot
precisely identify trusted vehicles for packet transmission.
Hence, packet drop, data alteration, and false packet injection
by malicious vehicles lower the overall results shown in
Figs. 8(a) and 8(b). The FLTEEV performs better on both
metrics through precise trust computations, accurate detection
of malicious vehicles, and assigning honest vehicles in packet
transmission.

G. Messages per Data Packet and End-to-End Delay

Messages per data packet (MDP) determines the number
of messages transmitted to send information from source

Fig. 8. Packet dissemination ratio and packet delivery ratio for various MV
when N=200 and H = 5.

to destination vehicles. Malicious relay vehicles drop or
delay messages to hinder the normal flow of data packets,
which causes packet re-transmissions by source vehicles.
So detecting reliable relay vehicles is a key issue in handling
effective data transmission in VANET. High values of MDP
indicate the generation of redundant messages against the
same data packet, which increases transmission time and
end-to-end delay. Figure 9(a) indicates when H = 5 and
MV = 40%, the required MDP for the NTCFL, DTCFL,
and FLTEEV schemes is around 22, 19, and 14, respectively.
It depicts that the FLTEEV achieves approximately 37% and
27% improved performance than the NTCFL and DTCFL
schemes, respectively. The FLTEEV performs better in the
end-to-end (E2E) delay by accurately selecting honest relay
vehicles to ensure data transmissions with minimum messages.
Figure 9(b) indicates when H = 5 and MV = 40%,
the E2E delay for the NTCFL is around 1.5s, the DTCFL
needs 1.3s, and the FLTEEV requires around 0.9s. The result
indicates that the FLTEEV achieves approximately 40% and
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Fig. 9. Messages per data packet and end-to-end delay for various MV when
N=200 and H = 5.

31% less E2E delay than the NTCFL and DTCFL schemes,
respectively.

H. Impact of the FLTEEV Scheme on VANET Routing
Protocols

We validated the competency of the FLTEEV scheme by
incorporating it into two VANET proactive routing proto-
cols: Optimized Link State Routing Protocol (OLSR) [38]
and Geographic Routing Protocol (GRP) [38] and one reac-
tive routing protocol: Ad hoc On-demand Distance Vector
(AODV) [38]. Proactive routing protocols utilize the prior
knowledge of network topology and awareness of a vehicle
on its one-hop neighborhood to establish fixed and pre-defined
routes [38]. On the contrary, reactive routing protocols perform
the on-demand route discovery process and thus, require more
time in data transmission [38].

1) Packet Delivery Ratio: Figure 10 shows that trust incor-
poration into routing protocols increases the packet delivery
ratio compared to the basic protocols due to eliminating mali-
cious vehicles from transmission paths. Figure 10 (a) depicts
that OLSR with the FLTEEV trust model achieves approxi-
mately 20% more packet delivery ratio compared to the origi-
nal OLSR protocol. Similarly, trust-assigned GRP and AODV
attain around 22% and 21% improvement than the basic GRP
and AODV, respectively, as shown in Fig. 10 (b) and 10
(c). Figure 10 (d) shows that OLSR achieves the highest
packet delivery ratio, which AODV closely follows. Besides
maintaining a global routing table for the entire network,
OLSR also assures the availability of transmitted packets
through predefined multi-point paths. While AODV selects
on-demand relay vehicles according to trust values, GRP
follows a greedy forwarding algorithm to select closest neigh-
bors based on geographic position that can be inconsistent
over time.

2) End-to-End Delay: Figure 11 compares the E2E delay
of the fundamental OLSR, GRP, and AODV with the respec-
tive trust-assigned protocols where trust scores are calculated
using the FLTEEV scheme. Trust helps to identify reliable
relay vehicles in transmission paths, reducing overall delay
by lessening the packet drop ratio. Figures 11(a) ∼ 11(c)
indicate that the trust-assigned protocols show around 8%,
13%, and 18% efficiency compared to the respective basic
OLSR, GRP, and AODV protocols, respectively. Figure 11(d)
indicates that AODV has a higher E2E delay than GRP and
OLSR. AODV executes the route discovery process before

Fig. 10. Packet delivery ratio for routing protocols when MV = 30%,
N = 200.

Fig. 11. End-to-end delay of routing protocols when MV = 30%, N = 200.

a packet transmission, while OLSR and GRP use prede-
fined routes that are regularly updated according to network
topology.

3) Throughput: It indicates the amount of data received by
vehicles per unit of time. Figure 12 shows the throughput of
OLSR, GRP, and AODV protocols after the FLTEEV scheme
is incorporated with them. Although each protocol exhibits
good packet delivery ratio according to Fig. 10, throughput
reduces for each protocol with higher values of H shown
in Fig. 12. This is due to the increased time required for
packets to reach their destinations. With higher values of
H , malicious vehicles also increase. These rogue vehicles
initiate packet re-transmissions by dropping packets, which
increases the time required for packets to reach the destination.
Figure 12(d) depicts that the proactive protocols (OLSR, GRP)
show a higher throughput ratio than the reactive protocol
(AODV).

I. Experiment With Real-Valued Datasets

In this experiment, we used the public dataset VeReMi [16]
and its Extension [17]. Table VII shows the attack types (AT )
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Fig. 12. Throughput of routing protocols when MV = 30% and N = 200.

TABLE VII
ATTACK DESCRIPTION OF VEREMI [16] AND VEREMI EXTENSION [17]

used in these datasets. Here, we only focus on the performance
of the schemes on VeReMi dataset which considers five
different attacks along with three attacker densities (AD) and
three vehicle densities (V D).

Experimental results for different attacks in case of AD =

30% and different V D are summarized in Table VIII. We com-
puted the distance between vehicles separately using the
position and speed values of consecutive packets, and used the
inconsistency in distance values to identify false packets that
ultimately detect malicious vehicles. The experimental results
reveal that the FLTEEV achieves better recall, precision, and
accuracy than the DTCFL and NTCFL schemes in all attack
scenarios except the CPO attack. In this attack, distances
derived from the position and speed values of consecutive
packets cannot be distinguished, causing a problem in identi-
fying malicious vehicles. Hence, both FLTEEV and DTCFL
exhibit lower recall, precision, and accuracy than other attacks.
On the other hand, both FLTEEV and DTCFL attain recall
values of 1.00 for CP and RP attacks. In these attacks, the
distance derived from position values of consecutive packets
significantly vary from the distance obtained from the speed

TABLE VIII
RESULT ON VEREMI [16] DATASET

values, leading to the identification of malicious vehicles.
We observe that the performance gaps between the DTCFL
and FLTEEV are comparatively narrow. There are mainly
two reasons behind this behavior. Firstly, the VeReMi does
not consider the uncertainty of VANET environments as it
uses the two-ray signal interference model [16] (our synthetic
dataset uses the Nakagami model [10] to consider the uncer-
tainty in VANETs). Secondly, the VeReMi considers packet
transmissions in the one-hop distance, which does not cap-
ture content alteration attacks by relay vehicles in multi-hop
communications. Hence, the result analysis of the FLTEEV on
the VeReMi dataset cannot utilize the advantage of the CAF.
Besides, the FLTEEV cannot always take advantage of PDF,
which correlates SF with F F , and FPIF, which associates T F
with M F (missing in the DTCFL scheme) due to not consider-
ing uncertainty in VeReMi. The FLTEEV shows approximately
9%, 2%, 8%, 13%, and 2% better accuracy in CP, CPO, RP,
RPO, and ES attacks, respectively, compared to the DTCFL.
Besides, the FLTEEV performs better than the DTCFL with
increasing vehicle density. The NTCFL concentrates only
on the packet forwarding ratio while paying no attention to
the correctness of received data. Hence, this scheme shows
almost constant performance for each V D in different attack
scenarios.

J. Experiments With Extended VeReMi Dataset

The extended VeReMi dataset [17] includes a more accu-
rate sensor error model, new attacks, and more data points.
The misbehavior models are classified as malfunctions (posi-
tion and speed malfunctions) and attacks (DoS, data replay,
eventual stop attacks). The former describes benign behav-
iors caused by malfunctioning of on-board units (OBU)s
or vehicle sensors, whereas the latter represents malicious
behaviors caused by vehicles purposely relaying misleading
information. All simulations in this dataset considers AD =

30% and V D in rush hour (07h–09h) and low traffic times
(14h-16h).

Table IX shows the experimental results on the VeReMi
extension dataset. Alike the VeReMi dataset, the FLTEEV
scheme offers better recall on the VeReMi extension for
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TABLE IX
RESULT ON VEREMI EXTENSION [17] DATASET

different malfunction models, excluding CPO and CSO mal-
functions, as they cannot accurately differentiate the mis-
behaving and honest vehicles. Once again, for CP and RP
malfunctions, the FLTEEV and DTCFL achieve a recall
value of 1.00 for the same reason discussed in Section VI-
I. We observed that for RPO and RS, the DTCFL shows
slightly better recall than the FLTEEV. This happens as
the VeReMi does not consider uncertainty. In the cases of
speed malfunctions, data falsification in the velocity prop-
erty of a packet is challenging to detect compared to the
falsification in position value, leading to a lower attacker
detection for the speed-based malfunctions compared to
the position-based malfunctions for both the FLTEEV and
DTCFL. The FLTEEV shows around 11%, 5%, 6%, 6%, 14%,
3%, 8%, and 7% better accuracy in decision making than
the DTCFL for the CP, CPO, RP, RPO, CS, CSO, RS, RSO,
respectively.

For DoS attacks, each vehicle sends duplicate packets with
the same position and velocity information, leading to false
packet identification. The FPIF of the FLTEEV captures false
packet injections due to T F < M F . In the DTCFL, the
DoS attacks impact mainly on F F and T F . Due to the high
F F , the possibility of a malicious vehicle being considered
as ‘honest’ increases, leading to lower attacker detection.
The FLTEEV detects nearly 36% more malicious vehicles
than the DTCFL for DoS attacks. In DR attacks, a vehicle
repeats previously captured messages randomly, which can be
detected from the consecutive packets’ position and velocity
information. This affects the FPIF of the FLTEEV and T F ,
M F of the DTCFL. Due to considering the FPIF, our scheme
identifies around 31% more attackers than the DTCFL. For
both the VeReMi and its extension, the FLTEEV achieves
better precision than the DTCFL in all cases, which signi-
fies that the FLTEEV generates fewer false positives than
the DTCFL.

Table X summarizes different aspects of the NTCFL,
DTCFL, and FLTEEV schemes. The computational complex-
ity analysis of the three schemes is provided in the Appendix.

VII. CONCLUSION AND FUTURE WORK

We have proposed a trust estimation scheme for an
edge-enabled VANET that utilizes fuzzy logic to deal with the
uncertain and unpredictable behavior of vehicles and wireless
communication channels. The proposed scheme detects mali-
cious vehicles more accurately using three trust factors–PDF,
FPIF, and CAF captured by fuzzy sets. Besides, we have
introduced a new parameter NTF to capture the message
alteration effect on the trust calculations. We have incorporated
an inter-edge trust transfer mechanism to eliminate inconsis-
tency in the VANET operation. The experimental results on
synthetic datasets show that the proposed scheme attains recall,
precision, and accuracy in 85 ∼ 90% to detect malicious
vehicles. Moreover, this scheme reduces end-to-end delay
nearly by 40% and message per data by approximately 37%
compared to the contemporary works. Experimental results
on real datasets show that our scheme attains nearly 36%
and 31% improvement in detecting vehicles causing DoS
and data replay attacks, respectively. Besides, our scheme
improves network performance in different VANET routing
protocols due to accurate trust calculation. Our scheme is
also lightweight on vehicles as it outsources computation to
edge servers. Hence, we believe that the proposed scheme
is an efficient solution for the dynamic-nature VANET for
detecting malicious vehicles. In the future, we plan to include
more trust factors to cover a broader range of security attacks
more accurately. Besides, we want to incorporate a concrete
mechanism to handle malicious edge servers computing trust
scores for vehicles.

APPENDIX

COMPUTATIONAL COMPLEXITY ANALYSIS

Table XI shows the computational overhead of the FLTEEV,
DTCFL, and NTCFL schemes on vehicles and edge servers.
We use m, n, e, l, and p to denote the total number of one-
hop neighbors, number of packets received in Ttime_slot from
a vehicle, number of events, number of rules in a fuzzy rule-
base, and number of ranks in output membership function,
respectively. For comparison equivalency, each scheme uses a
hop count of 5. The computational complexity analyses of the
three schemes are discussed below:
• The FLTEEV Scheme: It uses edge servers and splits the

trust estimation into two parts: 1) computation in vehicles
and 2) computation in edge servers. The computational
complexity analysis of vehicles is further divided into 1)
factor values calculation and 2) NTF computation. A vehicle
determines factor values of m one-hop neighbor vehicles in
O(mn), where the computation of F F , M F , T F , and SF
requires O(mn), O(em), O(mn), and O(m), respectively,
for m neighbors and n ≥ e. Besides, the vehicle calculates
the network topology based N T F that incurs O(emn3)

overhead. Vehicles apply the max-flow min-cut approach
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TABLE X
COMPARISON OF THE FLTEEV SCHEME WITH THE DTCFL AND NTCFL SCHEMES

TABLE XI
COMPUTATIONAL OVERHEAD COMPARISON

in the N T F calculation that has a complexity of O(V E2)

where V is the number of vertices, and E is the number of
edges in the network graph [39]. We assume that a vehicle
computing NTF receives n packets from individual one-hop
neighbors. We also assume that the number of paths traveled
by the n packets is also n, where each path has a length
of 5 hop counts. Hence, a packet generated from a source
vehicle located at a 5 hop distance travels through 5 relay
vehicles and 4 connecting edges. Thus, n packets acquired
from at most n paths come across 5n relay vehicles and
(5 − 1)n connecting edges. Hence, the number of vertices
in the topology graph is 5n, and the number of edges is
(5 − 1)n. We replace V and E2 with n and n2, respectively.
The complexity of topology-based N T F calculation for
each event is O(n3), which is O(emn3) for e events and m
one-hop neighbor vehicles. Thus, the overall computational
overhead on each vehicle is O(mn) + O(emn3).
The edge server receives m copies of F F , M F , T F , SF ,
and N T F for each vehicle and calculates average value with
a complexity ofO(m). The edge server then computes P DF
and F P I F for each vehicle by applying a fuzzy rule-base,
and the complexity for this operation is O(l), where l is the
number of rules in the rule-base. The complexity of com-
puting C AF is O(1). After calculating P DF , F P I F , and
C AF , the edge server applies the fuzzy rule-base approach
to determine the rank of a vehicle with a complexity of O(l).
It applies the rank of a vehicle on the output membership
function and then computes the trust value of a vehicle
using the Center of Gravity (COG) method following eq.
(2) in the manuscript. As the number of output rank is p,
according to eq. (2), there are p median values d1, d2, .., dp,
and p corresponding degree values w1, w2, .., wp. Hence,
the overall time to compute the trust value of a vehicle
following eq. (2) is O(p). This leads to an overall overhead
of O(m)+ O(l)+ O(p) on the edge server for each vehicle.

• The NTCFL Scheme: Trust calculation in the NTCFL is
divided into two parts: 1) factor values calculation and
2) fuzzy rule-based trust calculation. Each vehicle calculates
the forwarding factor, activity factor, and recommendation
credibility for one-hop neighbor vehicles. The time com-
plexity for factor values computation of m neighbor vehicles
is O(mn). The computational overhead of fuzzy rule-based
trust calculation is O(ml), as each one-hop neighbor vehi-
cle’s factor values are compared against a fuzzy rule table
comprising l number of rules and m is the number of one-

hop neighbors. After determining the degree of trust level,
a vehicle applies the COG method to get the trust value
of a neighbor vehicle. Time complexity of COG method is
O(p) which is O(mp) for m one-hop neighbor vehicles.
Therefore, the overall computational overhead on a vehicle
in the NTCFL scheme is O(mn) + O(ml) + O(mp).

• The DTCFL Scheme: Trust calculation in the DTCFL
comprises 1) factor values calculation, 2) fuzzy rule-based
direct trust calculation, and 3) Q-learning based indirect
trust calculation. Each vehicle calculates factor values for
one-hop neighbors, where complexity of computing F F
is O(mn), M F is O(em) and T F is O(mn). The overall
complexity of factor value calculation is O(mn) as n ≥ e.
The computational complexity of fuzzy rule-based direct
trust calculation is O(ml)+O(mp) where O(ml) is the
time complexity of comparing factor values of m neighbor
vehicles against a fuzzy rule-base of l rules and O(mp) is
the computational overhead of computing the trust values of
m neighbors using the COG method (since the DTCFL does
not mention the method of defuzzification, we use the COG
method for comparison equivalency). According to [40],
time complexity for reaching a goal state in Q-learning
approach is O(N 3) in the worst-case situation, where N
indicates the size of the state space. As m is the number
of one-hop neighbors, maximum size of the state space for
Q-learning is N = m2. Thus, complexity of the Q-learning
is O(m6). Therefore, the overall complexity of the DTCFL
is O(mn) + O(ml) + O(mp)+O(m6).
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