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Abstract—Interval type-2 fuzzy sets (IT2 FSs) are more popu-
lar over type-1 fuzzy sets (T1 FSs) as they capture uncertainty in
a better way in many real-world problems. Modelling uncertainty
with an IT2 FS is relatively complex and solely depends on how
to define its Footprint of Uncertainty (FOU)—an uncertainty
region of IT2 FS bounded by its lower and upper membership
functions. Existing methods either transform existing T1 FSs
to IT2 FSs or design IT2 FSs from input data, captured by
interval via constructing T1 FSs. In both cases, they require
additional processing step and computational time and thus not
useful for time-sensitive applications (e.g., intelligent transporta-
tion systems, online recommendation systems). To address this
limitation, this paper puts forward a simple approach, termed
as ‘Interval Creation Approach’ (ICA) to design IT2 FSs directly
from the input data. Further, it is designed to work equally well
for transforming existing T1 FS into IT2 FS. The new approach
skips data pre-processing phase and the creation of T1 FS as an
intermediary to define the FOU of the IT2 FS, thus contributing
to faster execution. The paper provides a description of the ICA
along with a comparison of its effectiveness against the state-of-
the-art methods using both synthetic and real-world data sets.

Index Terms—Interval type-2 fuzzy set, type-1 fuzzy set,
interval creation approach, footprint of uncertainty

I. INTRODUCTION

Type-2 fuzzy sets (T2 FSs) were developed by Zadeh [1]
as an extension of type-1 fuzzy sets (T1 FSs) [2]. They
include a third dimension as additional degrees of freedom to
capture higher level of uncertainty [3]–[5]. Although T1 FSs
are widely used form of FSs, their crisp membership functions
(MFs) limit scope for modelling uncertainty and thus making
them unsuitable for applications with multiple sources of
complex and varying levels of uncertainty [1], [3], [4], [6]–[9].
Conversely, general T2 FSs (GT2 FSs) with fuzzy MFs provide
better capturing of uncertainty and have potential to offer
superior results for many real-world problems but have limited
usage due to their complex structure and huge computational
cost [3], [4], [10]. To overcome these limitations, interval type-
2 FSs (IT2 FS) were developed [8], [11] with all secondary
membership grades being equal to 1.0, which greatly reduces
their computational cost. Particularly, an IT2 FS is defined as
a collection of uncountable number of embedded T1 FSs [8]
which constitutes the uncertainty region of its primary MF,
known as the Footprint of Uncertainty (FOU), bounded by a
lower MF (LMF) and an upper MF (UMF). The later definition

allows to apply all T1 FS mathematics on IT2 FSs [8], [11],
thus making them simple to handle than GT2 FSs. Figure. 1
presents three types of FSs where the shaded areas are the
FOU of the IT2 and GT2 FSs.

Several studies have already demonstrated that the IT2
FSs capture uncertainty with higher accuracy and provide
better performance than T1 FSs for a wide range of real-
world problems [7], [8], [12]. Further, less complex and
reduced computational cost of IT2 FSs lead to their enhanced
application against GT2 FSs [4], [13], [14]. Many existing
solutions leveraging T1 FSs are now adapted to their IT2
FSs equivalent for more reliable decision making (e.g. image
thresholding, VANETs) [15]–[17]. This underscores the need
to effectively transform T1 FSs to IT2 FSs. Further, easy
handling of calculations with IT2 FSs motivate people to
design IT2 FS-based solutions to real-world problems directly
from the input data [8], [18].

Several methods have been proposed to construct IT2 FSs
from existing T1 FSs where they mainly focus on how to
define the FOU of IT2 FSs [9], [15]. On the contrary, some
approaches are designed to work directly with the input data,
captured as interval-valued, to generate IT2 FSs where they
first create T1 FSs from the data and then convert them into
IT2 counterparts [13], [19]. Among them, some methods con-
sider specific T1 FSs (such as, trapezoidal and triangular FSs)
and their conversion into IT2 FSs [13], [19], thus restricting
their applications to wider community. In both cases, existing
methodologies use additional pre-processing step [4], [14]
and thus involves extra computational time and unsuitable for

Fig. 1: (a) T1 FS, (b) GT2 FS, (c) IT2 FS (FOU=Footprint of
Uncertainty).
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use in time-sensitive real-world applications (e.g. intelligent
transportation systems, online recommendation).

To address above-mentioned limitations, this paper puts for-
ward a methodology, termed as ‘Interval Creation Approach’
(ICA) to uniformly handle the construction of IT2 FSs either
from T1 FSs or interval-valued data. The new ICA method
is designed to convert any T1 MFs and can efficiently handle
the conversion of the left-shoulder and right-shoulder T1 FSs
[13] into IT2 FSs. Further, it avoids data pre-processing phase,
(i.e. no removal of outliers, often carrying valuable information
about different opinions [14], [20]) as well as the creation of
T1 FS as an intermediary to define the FOU of the IT2 FS from
the input data, thus making the ICA method computationally
faster. The paper provides a description of the ICA method.
Further, it compares the performance of the ICA method using
both synthetic and real-world data sets and demonstrates its
effectiveness against the state-of-the-art methods in respect to
real-world applications.

The paper is organized as follows: Section II describes
some fuzzy concepts along with a brief review on the well-
known methods of constructing IT2 FSs. Section III introduces
the proposed ‘Interval Creation Approach’ (ICA) to construct
IT2 FSs and Section IV demonstrates the performance of
the proposed methodology against the state-of-the-art methods
using synthetic and real-world data sets. Lastly, Section V
concludes the paper and highlights future work.

II. BACKGROUND AND RELATED WORK

This section first defines some fuzzy concepts used in the
paper. Then, it briefly reviews well-known methods used to
construct IT2 FSs from T1 FSs or interval-valued data. Here,
we focus on the methods used to generate IT2 FSs as the latter
provides the foundation for the extension to GT2 FSs.

A. Type-1 Fuzzy Set (T1 FS)

A T1 FS, A in the universe of discourse (X) is characterized
by a type-1 membership function (T1 MF), µA(x) such that [2]
(see Fig. 1(a)),

A = (x, µA(x))| ∀x ∈ X,µA(x) ∈ [0, 1]. (1)

B. General Type-2 Fuzzy Set (GT2 FS)

A GT2 FS, Ã in X is characterized by a type-2 membership
function (T2 MF), µÃ(x, u) such that [1], [11], [21]

Ã = ((x, u), µÃ(x, u))| ∀x ∈ X,u ∈ Jx ⊆ [0, 1], (2)

where Jx is the primary membership of x and µÃ(x, u) ∈
[0, 1] is the secondary membership of x. Ã can alternatively
be expressed as

Ã =

∫
x∈X

∫
u∈Jx

µÃ(x, u)/(x, u), Jx ⊆ [0, 1], (3)

where
∫

denotes union. For the discrete X , Ã is again defined
in (4).

Ã =
∑
x∈X

∑
u∈Jx

µÃ(x, u)/(x, u), Jx ⊆ [0, 1]. (4)

In Ã, the two endpoints are associated with two T1 MFs
referred to as lower membership function (LMF) and upper
membership function (UMF) [21] (see Fig. 1(b)).

C. Interval Type-2 Fuzzy Set (IT2 FS)

An IT2 FS is a GT2 FS whose all secondary membership
grades are equal to 1, defined in (5) (see Fig. 1(c)).

Ã = ((x, u), µÃ(x, u))| ∀x ∈ X,u ∈ Jx ⊆ [0, 1],

µÃ(x, u) = 1.
(5)

Following (3), an IT2 FS can be expressed [8] in (6).

Ã =

∫
x∈X

∫
u∈Jx

1/(x, u), Jx ⊆ [0, 1]. (6)

D. Footprint of Uncertainty (FOU) of IT2 FS

An IT2 FS, Ã is completely described by its FOU [13]
which graphically presents the uncertainty in the primary
memberships of Ã (see Fig. 1(c)). It is the union of all primary
membership grades of Ã, defined in (7) [8].

FOU(Ã) =
⋃
x∈X

Jx (7)

Alternatively, the FOU of Ã can be described by its LMF and
UMF [8], [22], [23], defined in (8),

FOU(Ã) =
⋃
x∈X

[uÃ(x), uÃ(x)] (8)

where uÃ(x) and uÃ(x) are the LMF and UMF of Ã. With
FOU, A IT2 FS Ã can be expressed as following,

Ã = 1/FOU(Ã) (9)

Equation (8) drastically simplifies the computation with T2
FSs and enhances the application of IT2 FS in real-world
problems. With the FOU, an ‘embedded T1 FS’ is closely
related which is a T1 FS contained within the FOU. The union
of all embedded T1 FSs makes the FOU and presents the IT2
FS, defined in (10),

Ã =

m∗⋃
i=1

A(i) (10)

where Ai is the ith embedded T1 FS [11].1

E. Literature Review

Numerous studies have been conducted to construct IT2 FSs
where some approaches were developed to transform existing
T1 FSs to IT2 FSs, while others to generate IT2 FSs from
the interval-valued data via constructing T1 FSs [13], [19].
In this regard, Tizhoosh [15] proposed a simple conversion
approach of T1 MF to IT2 MFs (i.e. UMF and LMF) for better

1Representing IT2 FS using embedded T1 FSs is particularly useful as
it allows to apply T1 FS mathematics on IT2 FSs [11], thereby reducing the
complexity of using IT2 FS in real-world applications compared to GT2 FS.
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thresholding in image processing. This approach calculates the
UMF and LMF of IT2 FS from the T1 MF, µ(x) using (11).

µU (x) = [µ(x)]
1
α

µL(x) = [µ(x)]α
(11)

Here, α ∈ (1,∞). Despite its simplicity, this approach
often faces difficulty in determining a suitable value for α
as it is application-dependent. Further, it often completely
changes the shape of IT2 FS compared to the original T1 MF
[24], thus failed to systematically comparing the performance
between original T1 FS and the newly constructed IT2 FS,
[9]. Moreover, it cannot produce the FOU of the IT2 FS for
the crisp range of trapezoidal T1 FS with the membership
degree of 1. Later, Aladi et al. [25] developed a new ‘T1
FS to IT2 FS’ conversion method (M1 method), along with
its refinement in [9] (M2 method) to show the relationship
between the size of FOU of IT2 FSs and the noise in data.
The initial method focuses only on maintaining uniform FOU
over the core area of fuzzy set (i.e. the support of the LMF)
whereas the refined one gives emphasis on keeping the same
structural configuration (i.e. if the T1 MF is triangular, both
LMF and UMF of the IT2 FS also be triangular but both be
trapezoidal in the initial approach). The former method mainly
depends only on the selection of a fixed parameter, c ∈ [0, 1]
based on the uncertainty level in the dataset. The refined one
introduces a new parameter, δ to be subtracted/added from
the parameters of T1 FS MF to make the left and right end-
points of the LMF and UMF while again maintaining the same
structural outline in IT2 FS as T1 FS.2 Unfortunately, both
methods do not focus on the optimization while converting
to IT2 FSs which may affect their ultimate results.3 Further,
these approaches were developed only for creating IT2 FSs
from T1 FSs and did not provide any solution on how to
generate IT2 FSs from the input data. Considering this, Liu
et al. [13] introduced an ‘Interval Approach’ (IA) to generate
IT2 FSs for interval-valued data for a word from a group of
subjects. The IA maps each interval to either a symmetric
triangular T1 MF with a mean value as peak, left shoulder T1
MF, or right shoulder T1 MF. Then, it interprets the T1 MFs
as an embedded T1 FSs to construct the FOU of the IT2 FS
from their union. It performs data pre-processing eliminating
outliers, nonsensical data, data not maintaining a tolerance
threshold, and non-overlapped intervals. Indeed, the IA is a
systematic method to construct IT2 FSs, however, it may
lead to create the left-shoulder and right-shoulder IT2 FSs
without FOU for some regions. Further, for a single interval
opinion, it generates IT2 FS which is similar to T1 FS, hence,
additional higher-order uncertainty with IT2 FS cannot be
achieved. Later, Wu et al. [19] refined the IA as ‘Enhanced
Interval Approach’ (EIA) with an altered pre-processing stage
and an improved procedure for computing the LMF. Although
the EIA minimises the limitations of the IA, both IA and EIA

2In [9], the value of δ is taken arbitrarily depending on the application.
3Some applications, e.g. boost DC-DC converters show prominent results

with optimization while converting T1 Fs to IT2 FS [26].

depend on specific FS models, e.g. triangular or trapezoidal
MFs [4] and involve substantial computational time due to
their pre-processing phase. In addition, both approaches firstly
convert the interval-valued data to T1 FSs as an intermediate
step before generating IT2 FSs which further makes them
computationally expensive. To address these challenges and
ensuring faster execution, Miller et al. [14] presented a new
approach to transform interval-valued survey responses from
experts on multiple occasions into GT2 FSs. This approach
firstly calculates the intra-expert uncertainty using T1 FSs and
then combines these FSs to generate zSlices-based GT2 FS
[27] to present both the intra- and inter-expert uncertainty
in two separate domains of GT2 FS. In this approach, no
data pre-processing is performed as it considers the entire
data set to accurately portray the experts’ opinions. Although
the generation of zSlices-based GT2 FS substantially reduces
design complexity and execution time, the creation of T1 FSs
as intermediary in this case involves extra computation, thus
not suitable to use in the dynamic environment like VANET
where faster computation is a prerequisite [28], [29].

Following the above discussion, it becomes clear that there
is a compelling need for establishing an approach to construct
IT2 FSs directly from the interval-valued data without via T1
FSs to ensure faster execution. At the same time, the same
approach should be applicable to transform any existing T1
FS to IT2 FS. The next section introduces such an uniform
approach that effectively generate IT2 FSs from interval-
valued data or T1 FSs.

III. THE INTERVAL CREATION APPROACH (ICA)

This section proposes a new method, the Interval Creation
Approach (ICA), for generating IT2 FSs from the interval-
valued data as well as T1 FSs. The ICA omits the data pre-
processing step as we do not want to remove any outlier as
they often carry different perspective of experts’ opinion [14],
[20] and prefer to create IT2 FSs capturing the entire data set.
Further, it is designed to deal with any T1 FS models and does
not create any T1 FS as an intermediate step before generating
IT2 FS from the input data.

A. Factors to Consider

The following factors are considered while designing the
proposed ICA method.

• T1 fuzzy MFs (e.g. triangular, trapezoidal, Gaussian,
or generalized bell-shaped) can be complete or incom-
plete [21] (see Figs. 3(a) and (b)).

• The left- and right-most intervals of a set of intervals are
treated in the same way like incomplete T1 FS [13], [19].

• A set of intervals can be merged using union [30].

B. Proposed Methodology

Considering the completeness/incompleteness of T1 FSs
and intervals, the proposed methodology to construct IT2 FS is
discussed below. Figure 2 presents the overall working process
of the ICA method for constructing the IT2 FS from a T1 FS
and/or interval-valued data.
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Fig. 2: Flowchart to construct IT2 FSs by the ICA method.

C. Construction of IT2 FS from T1 FS

1) Completeness Check: We check whether the T1 FS is
complete or incomplete. If it is incomplete, we convert it
to a complete T1 FS by adding a similar configuration to
its opposite side (i.e. mirror reflection [31]). Note that for
the incomplete left-most T1 FS, a counter-clock wise mirror
reflection is performed, while for the incomplete right-most T1
FS, a clock-wise mirror reflection is applied. Figure 3 shows
such transformations for different T1 FSs. For the incomplete
triangular and trapezoidal MFs, the support of the left-most
T1 FS turns from the range [c, c + x] to [c − x, c + x] while
the support of the right-most T1 FS from the range [d− y, d]
to [d − y, d + y] (see Figs. 3(a) and (c)). As Gaussian and

(a) T1 FSs with incompleteness (b) T1 FSs with incompleteness

(c) T1 FSs with completeness (d) T1 FSs with completeness

Fig. 3: T1 FSs (a) trapezoidal and triangular, (b) Gaussian and
generalized bell-shaped) and their completeness check.

generalized bell-shaped MFs are distributed within the range
[c, d], the active intervals for the supports of the left-most
incomplete Gaussian, middle complete Gaussian and the right-
most incomplete generalized bell-shaped are same, which is
[c,d]. Thus, for the incomplete Gaussian and generalized bell-
shaped T1 FSs, the supports for the left- and right-most T1
FSs are transformed to [c-(d-c),d] and [c,d+(d-c)] respectively
(see Figs. 3(b) and (d)).

2) Interval Creation: For each complete T1 FS, we have
the interval comprising its support. We discretise the interval
at 0.01 value increment and calculate their mean (m) and
standard deviation (s). For transforming an IT2 FS from a
T1 FS, at least two intervals are needed to build its FOU [13],
[19]. Equation (12) is used to generate such two intervals for
the trapezoidal IT2 FS.

[a
(1)
MF , b

(1)
MF ] = [m− 1× s,m+ 2× s],

[a
(2)
MF , b

(2)
MF ] = [m− 2× s,m+ 1× s]

(12)

For other MFs (triangle, Gaussian, and generalized bell-
shaped), (13) is used to generated intervals for them.

[a
(1)
MF , b

(1)
MF ] = [m− 1× s,m+ 1× s],

[a
(2)
MF , b

(2)
MF ] = [m− 2× s,m+ 2× s]

(13)

3) Calculation of the Peak Value for the UMF: For the
trapezoidal T1 FS, the peak is modelled by an interval, [e, f ].
To extend [e, f ] for IT2 trapezoidal FS, we compute the mean
(m) and standard deviation (s) by discretising [e, f ] at 0.01
value increment and calculate the new range, [e′, f ′] with (14).

[e′, f ′] = [m− 2× s,m+ 2× s] (14)

For other T1 FSs (triangle, Gaussian, and generalized bell-
shaped), the peak of the T1 FS (i.e. a single value) is
considered as the peak of the IT2 FS.

4) Min-Max Selection: The left endpoints for the UMF and
LMF are computed using (15).

aMF = min{a(1)MF , a
(2)
MF },

aMF = max{a(1)MF , a
(2)
MF }

(15)

Similarly, the right endpoints for the LMF and UMF are
computed using (16).

bMF = min{b(1)MF , b
(2)
MF },

b̄MF = max{b(1)MF , b
(2)
MF }

(16)

For trapezoidal IT2 FS, the peak for UMF will be in a range
where the left and right endpoints are calculated with (17).

CMF = e′, CMF = f ′ (17)

For triangular IT2 FS, the peak values of the LMF and UMF
are the same as that of T1 FS (CMF = CMF ). However, for
Gaussian and generalized bell-shaped IT2 FS, the peak for the
UMF is calculated as the average of aMF and bMF and the
peak for the LMF is calculated as the average of aMF and
bMF .
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(a) Trapezoidal/Triangular IT2 FSs (b) Gaussian/G. Bell-shaped IT2 FSs

Fig. 4: Initial IT2 FSs from T1 FSs.

5) Creation of the UMF: Using straight lines, we connect
the points, (aMF , 0), (CMF ,1), (C̄MF ,1), and (b̄MF ,0) to
create the UMF for the trapezoidal and triangular IT2 FSs. Be-
sides, (18) and (19) are employed to generate the UMF of IT2
Gaussian and IT2 generalized bell-shaped FSs respectively.

f(x; s,m) = e−
(x−m)2

2s2 (18)

f(x; s, k,m) =
1

1 + |x−m
s |2k

(19)

In (18) and (19), x is a member of universal set. In (19), k
is the skewness factor shaping the curve on both sides of the
central plateau. Further, m and s are computed based on the
newly created interval [a(2)MF , b

(2)
MF ].

6) Creation of the LMF: For trapezoidal and triangular
MFs, we calculate the peak of the LMF with (20) and (21)
where the peak point is (p, hp).

p =
bMF (CMF − āMF ) + āMF (bMF − CMF )

(CMF − āMF ) + (bMF − CMF )
(20)

hp =
bMF − p

bMF − CMF

(21)

Using straight lines, we connect the points, (aMF , 0),
(āMF ,0), (p,hp), (bMF , 0) and (b̄MF ,0), resulting in a tri-
angular LMF [13] (for trapezoidal MF, it is considered as
truncated). Figure 4(a) shows the constructed IT2 FSs from
the trapezoidal and triangular T1 FSs. For Gaussian and
generalized bell-shaped T1 FSs, we compute m and s for
[a

(1)
MF , b

(1)
MF ] and generate the LMFs using (18) (see Fig. 4(b)).

7) Boundary Constraints: If the endpoints of the left- and
right-most IT2 FSs are out of the predefined range [c, d], we
bind them to the closet boundary values [32]. Thus, aMF , āMF

and CMF are bounded by the left endpoint, c whereas bMF ,
b̄MF and C̄MF by the right endpoint, d. Further, if any portion

(a) Trapezoidal/Triangular IT2 FSs (b) Gaussian/G. Bell-shaped IT2 FSs

Fig. 5: The resulting IT2 FSs using the ICA method.

of Gaussian or generalized bell-shaped IT2 FS is out of its
corresponding range, we prune that portion [32]. Figures 5(a)
and (b) show the resulting IT2 FSs for all T1 FSs. It is noted
that the same process is also carried out for the IT2 FS related
to the complete T1 FS.

D. Construction of IT2 FS from interval-valued data

Before constructing IT2 FS from the interval-valued data,
we first merge the intervals under the same classifications
using union to get single interval for each classification.

1) Completeness Check: We first decide on which MF is
employed to model the set of intervals. The left- and right-most
intervals are always considered incomplete [13], so we need
to make them complete. Suppose, [x, y] and [m,n] present the
left- and right-most intervals accordingly. If they are presented
using triangular or trapezoidal MF, then after transformation to
complete intervals, the left- and right-most intervals become
[x − (y − x), y] and [m,n + (n − m)] respectively. In case
of Gaussian or generalized bell-shaped MF, if the boundary
interval is [c,d], then the complete left- and right-most intervals
are [c− (d− c), d] and [c, d+ (d− c)] respectively.

2) Interval Creation: We create new intervals for the
interval-valued data with (12) and (13) with respect to the
chosen MF.

3) Calculation of the Peak Value for UMF: For trapezoidal
case, the average of the left and right endpoints of the interval,
[a

(2)
MF , b

(2)
MF ] of (12) is e and the average of the left and right

endpoints of the interval [a(1)MF , b
(1)
MF ] of (12) is f . The interval

[e, f ] is extended using (14) which models the interval of peak
for UMF of IT2 FS. For other MFs, the peak is the average
of the left and right endpoints of the intervals in (13) where
the average for both intervals is the same.

4) Min-Max Selection: Follow Section (III-C4).
5) Creation of the UMF: Follow Section (III-C5).
6) Creation of the LMF: Follow Section (III-C6).
7) Boundary Constraints: Follow Section (III-C7).

Claim: Figure 5 presents interval IT2 FSs.
Proof: If we take a vertical slice at any point x = x′ in
Fig. 5(a)-(b), we obtain degree of MFs in an interval [u, u].
For ∀x ∈ X has primary degree of membership expressed as
an interval. Union of all intervals makes the shaded region
between the LMF and UMF which satisfies the definition of
FOU. We omit the third dimension in the T2 FS construction
using the ICA, as it gives no new information. The secondary
membership degree remains constant, 1, for all intervals asso-
ciated with each x ∈ X . For any x = x′, we can write,

µÃ(x = x′, u) ≡ µÃ(x = x′) =

∫
u∈Jx′

1/u ; Jx ⊆ [0, 1],

which satisfies the definition of IT2 FS. So, we can say that
our constructed figure is an IT2 FS. ■

IV. DEMONSTRATION

This section evaluates the performance of the ICA using
synthetic examples and two real-world data sets against the
IA, EIA, and M2 methods, already discussed in Section II.

Authorized licensed use limited to: UNIVERSITY OF NOTTINGHAM. Downloaded on November 19,2024 at 13:04:36 UTC from IEEE Xplore.  Restrictions apply. 



Two different metrics are used to evaluate the effectiveness of
these methods (see Section IV-A).4

A. Evaluation Metrics

1) Root Mean Square Error (RMSE): It estimates error by
considering the average deviation of the predicted values from
the observed ones [20]. The RMSE is defined as,

RMSE =

√
Σ(Pi −Oi)2

n
(22)

where Pi and Oi are the predicted and observed values
respectively and n is the total number of observations. Lower
the RMSE value, higher the accuracy of the system.

2) Coefficient of Determination (R2): It determines what
proportion of observed values reflected in the predicted val-
ues [33]. The R2 is defined as,

R2 = 1− SSR

SST
(23)

where SSR is the sum of the squared differences between
the observed and predicted values. SST is the sum of the
squared differences between the observed values and their
mean. Higher the R2 value, higher the accuracy of the system.

B. Synthetic Examples

Three synthetic T1 FSs are considered from [16], [17],
created for the time-sensitive, uncertain Vehicular Ad Hoc
Network (VANET). Here, each T1 FS corresponds to ‘Trust
Factor’ (TF)—one of the properties of vehicles used to iden-
tify malicious vehicles and ensure a secured communication
through VANET [16], [17]. Figure 6(a) shows such three T1
FSs—Low, Medium, and High for TF. We apply the IA, EIA,
M2, and ICA on them to create IT2 FSs and the resulting
FSs are shown in Figs.- 6(b)-(d). From Fig. 6(b), it is seen
that both IA and EIA cannot generate IT2 FSs based on the
single intervals related to the T1 FSs and result in a new set
of T1 FSs, different from the original ones. Note that both IA
and EIA provide identical IT2 FS in these cases, thus shown
together in Fig. 6(b). Figure 6(c) shows that for δ = 0 and
c = 0.3, the M2 generates good resulting IT2 FSs. However,
the M2 completely depends on the randomly selected δ, as
a result a different selection of δ may reduce its performance
(see Fig. 9 with δ = 0.2 and c = 0.3 in Appendix). Figure 6(d)
shows that the ICA defines reasonable FOU and generates
better IT2 FSs capturing the T1 FSs. Note that Table I shows
all steps used to generate the IT2 FSs using the ICA method.5

C. Real-world Data Sets

Two real-world data sets are used to analyse the perfor-
mance of the proposed ICA against other three methods.

4Note that due to page constraint, we avoid discussion on the time-
complexity of these methods but will provide in our future journal publication.

5The proposed ICA method is designed to apply for any MFs including
Gaussian as well as Generalized bell-shaped MFs. As both IA and EIA
methods are specific to trapezoidal and triangular MFs, in Section IV-B, we
consider synthetic examples with only trapezoidal and triangular MFs.

(a) T1 FSs for TF (b) IT2 FSs using IA/EIA

(c) IT2 FSs using M2 (d) IT2 FSs using ICA

Fig. 6: T1 FSs presenting ‘Trust Factor’ (TF) and their con-
version to IT2 FSs using the IA/EIA, M2, and ICA methods.

TABLE I: Generation of IT2 FSs from T1 FSs for ‘Trust
Factor’ (TF) using the ICA method.

MFs
Steps Low Medium High

Completeness T1 FS is incomplete, T1 FS is complete T1 FS is incomplete,
Check new interval new interval

=[(0− 0.8), 0.8] = [0.8, (1− 0.8) + 1]
= [−0.8, 0.8] = [0.8, 1.2]

Interval [−0.8, 0.8], [0.6, 1], [0.8, 1.2],
Analysis c = 0, σ = 0.46 c = 0.8, σ = 0.12 c = 1, σ = 0.12
Interval [0− 2× 0.46, [0.8− 1× 0.12, [1− 1× 0.12,
Creation 0 + 1× 0.46], 0.8 + 1× 0.12], 1 + 1× .12],

[0− 1× 0.46, [0.8− 2× 0.12, [1− 2× 0.12,
0 + 2× 0.46] 0.8 + 2× 0.12] 1 + 2× 0.12]

= [−0.92, 0.46], = [0.68, 0.92], = [0.88, 1.12],
[−0.46, 0.92] [0.56, 1.04] [0.76, 1.24]

Peak-Points After completion, [e, f ]= CMF = CMF CMF = CMF

Analysis [(0− 0.6), 0.6] = 0.8, = 1,
of UMF = [−0.6, 0.6] same same

c
′
= 0, σ

′
= 0.346 peak-points peak-points

[e′, f ′] = [−0.692, 0.692] as the T1 FS as the T1 FS
CMF = −0.692 = e
CMF = 0.692 = f

Min-Max aMF = min{−0.92, aMF = min{0.68, aMF = min{0.88,
Selection −0.46} = −0.92 0.56} = 0.56 0.76} = 0.76

aMF = max{−0.92, aMF = max{0.68, aMF = max{0.88,
−0.46} = −0.46 0.56} = 0.68 0.76} = 0.88
bMF = min{0.46, bMF = min{0.92, bMF = min{1.12,

0.92} = 0.46 1.04} = 0.92 1.24} = 1.12
bMF = max{0.46, bMF = max{0.92, bMF = max{1.12,

0.92} = 0.92 1.04} = 1.04 1.24} = 1.24
Peak-Points p = p = p =

Analysis {0.46× {0.92(0.8− 0.68)+ {1(1− 0.88)+
of LMF (0.692− (−0.46)} 0.68(0.92− 0.8)}/ 0.88(1− 1)}/

+(−0.46)× {(0.8− 0.68)+ {(1− 0.88)+
(0.46− (−0.692))}/ (0.92− 0.8)} (1− 1)}
{(0.692− (−0.46))+ = 0.8 = 1
(0.46− (−0.692))} , hp = , hp =

= 0 (0.92− 0.8)/ (1.12− 1)/
, hp = {0.920.8} {1.12− 1}

(0.46− 0)/ = 1 = 1
{0.46− (−0.692)}

= 0.4

Boundary aMF < 0, bMF > 1, bMF > 1,
Constraints so,aMF = 0 so bMF = 1 so,bMF = 1

aMF < 0, bMF > 1,
so aMF = 0 so bMF = 1
CMF < 0,

so CMF = 0

1) With ‘Wear Analysis’ Data Set [33]: This data set is used
to investigate the wear behavior of electroless Ni-P coating
under lubricated condition [33]. A T1 fuzzy logic system
was designed using this data set to predict the wear depth
of electroless Ni-P coating under the mentioned condition
where each of three input variables, Load (N), Speed (rpm),
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TABLE II: Comparison of the Wear-depth prediction perfor-
mance between T1 fuzzy logic system [33] and IT2 fuzzy
logic systems using the ICA and M2 methods.

IT2 fuzzy logic system
Evaluation T1 fuzzy M2 with δ6

metrics logic system c = 0 c = 0.5 ICA
RMSE 0.425 0.636 0.704 0.393
R2 96.5% 94.5% 93.6% 97%

and Time (min) has three T1 triangular MFs—low, medium,
and high, whereas the output variable, Wear-depth (µm) has
nine T1 triangular MFs—extremely low, very low, low, low
medium, medium, high medium, high, very high, and ex-
tremely high [33]. Further, 27 fuzzy if-then rules are applied
to predict the Wear-depth. Based on this data set, we first
construct IT2 fuzzy logic systems by employing the ICA and
M2 (with different c and δ values6) methods to transform each
of the triangular T1 FSs to triangular IT2 FSs (as both IA and
EIA methods are not designed to convert T1 FS to IT2 FS)
along with a minor modification of 27 if-then rules [33]. Then,
we compare the prediction performance of the constructed IT2
fuzzy logic systems with that of the prior T1 fuzzy logic
system [33] with respect to RMSE and R2. A comparative
results of these fuzzy logic systems are presented in Table II.
From the results, we see that the IT2 fuzzy logic system with
the ICA method provides the best performance with minimum
RMSE and maximum R2 in predicting the Wear-depth.

2) ‘MovieLens’ Data Set [34]: Siddiquee et al. [35] pro-
posed a ‘movie recommendation system’ using T1 fuzzy
logic for the ‘MovieLens’ data set [34] with one million
movie ratings (on a scale from 1 to 5) from 6000 users
on 4000 movies. They considered three types of T1 FSs
(triangular, trapezoidal, and Gaussian) to design the T1 fuzzy
logic system for recommending movies to users. In each case,
two input parameters (user similarity ratings and acceptance
ratings, calculated using k-neighbourhood with K = 5, 10, 20)
are used based on a set of nine if-then rules to calculate
recommendation of a movie to a target user.

We first compare the recommendation performance of the
T1 fuzzy logic system with that of the IT2 fuzzy logic systems
constructed by the ICA and M2 methods. Figure 7 shows the
resulting IT2 FSs from the ICA for different T1 FSs for the
user similarity ratings (whereas for the M2, see Fig. 10 in
Appendix). Table III exhibits the values of c and δ used in the
M2 method and Table IV provides a comparative analysis on
the movie recommendation performance between the T1 fuzzy
logic system [35] and the IT2 fuzzy logic systems using the
ICA and M2 methods with respect to RMSE. From the result, it
is seen that the IT2 fuzzy logic based movie recommendation
system outperforms with minimum RMSE in most of the cases.

As mentioned earlier, both IA and EIA are developed to
construct IT2 FS only from the interval-valued data. Hence,
to assess their performance in recommending movies to users,

6We consider δ = 5, 2, 1 for Load, Speed, and Time respectively to
present the system with M2 method more compatible with real-world scenario.

(a) Triangular T1 FSs (b) Triangular IT2 FSs

(c) Trapezoidal T1 FSs (d) Trapezoidal IT2 FSs

(e) Gaussian T1 FSs (f) Gaussian IT2 FSs

Fig. 7: T1 FSs showing user similarity ratings’ MFs [35] and
their conversion to IT2 FSs using the ICA method.

TABLE III: Different δ and c values for the M2 method for
the IT2 fuzzy logic based ‘Movie recommendation system’.

c
MFs 0.2 0.4 0.8 1

Triangular 0.02 0.045 0.12 0.182
δ Trapezoidal 0.015 0.033 0.088 0.127

Gaussian 0.004 0.009 0.017 0.021

TABLE IV: Comparison of the movie recommendation per-
formance between T1 fuzzy logic system [35] and IT2 fuzzy
logic systems using the ICA and M2 methods.

IT2 fuzzy logic system
T1 fuzzy M2 with δ from Table-III

MFs K logic system c = 0.2 c = 0.4 c = 0.8 c = 1 ICA

Trapezoidal
5 0.978 0.964 0.951 0.888 0.984 0.871

10 0.989 0.978 0.966 0.912 0.97 0.867
20 0.917 0.905 0.893 0.838 0.89 0.809

Triangular
5 0.925 0.918 0.91 0.883 1.07 0.907

10 0.933 0.927 0.92 0.9 1.049 0.9
20 0.845 0.839 0.833 0.81 0.977 0.81

Gaussian
5 0.934 0.931 0.93 0.916 1.696 0.899

10 0.947 0.944 0.942 0.927 1.679 0.907
20 0.868 0.864 0.862 0.844 1.623 0.829

we first compute different intervals from the low, medium and
high MFs designed for the prior T1 fuzzy logic system. For
instance, from Figs. 7(a), (c) and (e), we can compute the
interval set {[0, 2.5], [0, 2], [0, 2.65]} to represent the low
T1 FSs. With the computed interval sets, we again construct
the IT2 fuzzy logic systems using the IA and EIA methods
along with the ICA (as it is compatible to build IT2 FS from
both intervals and T1 FS). Figure 8 exhibits the IT2 FSs
generated using the IA, EIA (8(a)) and ICA (8(b)) methods.
Table V shows the comparison between the IT2 fuzzy logic
system using the IA/EIA method and that of using the ICA
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TABLE V: Comparison of the movie recommendation perfor-
mance between IT2 fuzzy logic system using the ICA method
and those of using the IA/EIA methods with respect to RMSE
and Execution time (ET) in seconds.

IT2 fuzzy logic system
IA/EIA ICA

K RMSE ET (s) RMSE ET (s)
5 0.931 7.2 0.878 5.64
10 0.949 10.06 0.884 8.375
20 0.873 14.5 0.805 12.5

(a) IT2 FSs using IA/EIA (b) IT2 FSs using ICA

Fig. 8: IT2 FSs with the IA/EIA and ICA methods from the
interval sets generated from Fig. 7.

method for movie recommendation with respect to RMSE and
Execution time (ET) in seconds. The results reveal that the
IT2 fuzzy logic system using the ICA once again shows the
best performance with minimum RMSE and ET (s).

V. CONCLUSION AND FUTURE WORKS

The contribution of the paper centres on proposing an easy
to use technique, referred to as ‘Interval Creation Approach’
(ICA) to construct IT2 FS from T1 FS as well as from interval-
valued data. The proposed approach is designed such that it
works on any T1 MF and does not involve data pre-processing
phase (thus keeping outlier in the data set to portray different
opinions) and/or creation of T1 TS before generating IT2 FS
from interval data and hence reduces extra processing as well
as computational cost. At an experimental level, the paper
provides a detailed investigation contrasting the performance
of the proposed ICA method vis-a-vis the IA, EIA, and M2
methods using both synthetic examples and real-world data
sets. The exhaustive analyses have confirmed that the new
method shows better performance with respect to evaluation
metrics, such as RMSE and R2 against other methods in
recommending real-world applications. In the future, we plan
to test the ICA method to generate IT2 fuzzy logic systems
for time-sensitive, highly uncertain real-world applications
(e.g. VANET communication). We further aim to extend this
approach to find a faster way to construct GT2 FSs so that they
can be used to efficiently solve complex real-world problems.
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APPENDIX

Degraded Performance of the M2 method: Figure 9 exhibits
the lower performance of the M2 methods with δ = 0.2 and
c = 0.3 in generating the IT2 FSs for the T1 FSs of Fig. 6
modelling ‘Trust Factor’ (TF).

(a) T1 FSs for TF (b) IT2 FS using M2

Fig. 9: T1 FSs presenting ‘Trust Factor’ (TF) and their con-
version to IT2 FSs using the M2 method.

IT2 FSs using the M2 Method for the T1 FSs of Fig. 7:

(a) Triangular IT2 FS (b) Trapezoidal IT2 FS

(c) Gaussian IT2 FS

Fig. 10: IT2 FSs using the M2 method for the T1 FSs of Fig.
7 showing user similarity ratings’ MFs with (a) c = 0.2, δ =
0.02, (b) c = 0.4, δ = 0.033, and (c) c = 0.8, δ = 0.017.
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