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Full truckload transportation (FTL) in the form of freight containers represents one of the most important

transportation modes in international trade. Due to large volume and scale, in FTL, delivery time is often less

critical but cost and service quality are crucial. Therefore, efficiently solving large scale multiple shift FTL

problems is becoming more and more important and requires further research. In one of our earlier studies,

a set covering model and a three-stage solution method were developed for a multi-shift FTL problem.

This paper extends the previous work and presents a significantly more efficient approach by hybridising

pricing and cutting strategies with metaheuristics (a variable neighbourhood search and a genetic algorithm).

The metaheuristics were adopted to find promising columns (vehicle routes) guided by pricing and cuts

are dynamically generated to eliminate infeasible flow assignments caused by incompatible commodities.

Computational experiments on real-life and artificial benchmark FTL problems showed superior performance

both in terms of computational time and solution quality, when compared with previous MIP based three-

stage methods and two existing metaheuristics. The proposed cutting and heuristic pricing approach can

efficiently solve large scale real-life FTL problems.
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1. Introduction

In intermodal freight transportation, a large proportion of container transportation is car-

ried out by barges, trains or ocean-going vessels (Braekers et al. 2014). Container movement

activities between intermodal terminals, depots and shippers are also referred to as drayage

operations and such activities are usually performed by trucks. Although drayage opera-

tions represent a small fraction of the total distance of an intermodal freight transportation,
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they constitute a substantial share of the shipping costs (Smilowitz 2006). Consequently,

major port are facing intense competition and pressure to improve the efficiency of drayage

operations.

Due to labour laws and other constraints related to the working time of drivers, shift

based working schedules are becoming a common practice in the transportation indus-

try (e.g. taxis and buses). The problem studied in this paper concerns the movement of

containers (commodities) between a number of terminals (docks) within a short distance

located in a large international port using a homogeneous truck fleet. The transportation

time window of commodities usually spans from a few hours up to several days, and covers

of multiple working shifts. Thus the problem that we are addressing is essentially different

from the single-shift problem studied in most of the existing full truckload routing prob-

lems (e.g. Zhang et al. (2010), Braekers et al. (2014)) because the planning horizon covers

several shifts and determining the transportation shift of each commodity forms part of

the optimisation decision.

In our earlier study (Bai et al. 2015), a set covering model and a three-stage method were

proposed for this problem. However, the computational time to optimally solve large size

problems was prohibitive. Chen et al. (2013) investigate a reactive shaking variable neigh-

bourhood search (rsVNS) and a simulated annealing hyper-heuristic method (SAHH) Chen

(2016) for this problem. The rsVNS extends the original VNS which utilises the systematic

changes of multiple neighbourhood functions to achieve convergence and diversification.

The SAHH applies a reinforcement learning based neighbourhood selection mechanism

within a simulated annealing framework. The learning mechanism aims to adapt the algo-

rithm to different problem instances and search scenarios by dynamically adjusting the

neighbourhood selection strategies. Both rsVNS and SAHH were able to obtain feasible

but inferior solutions with less computational time compared with the three-stage method.

The main contributions of this paper are twofold: 1) We fully explore the advanta-

geous features of a previously proposed indirect solution encoding scheme, leading to some

insightful findings of the differences between the multi-shift FTL problems and traditional

pickup and delivery problems; 2) A pricing based column generation method is investi-

gated, in conjunction with dynamic cuts. Our method is inspired by branch-price-and-cut

algorithms but differs in three major ways. Firstly, we do not solve the pricing subproblem
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exactly. Instead, we quickly produce approximate solutions by introducing several optimi-

sation strategies (See Section 5.4). Secondly, we employ metaheuristics instead of traversing

the entire search tree. Thirdly, the cuts are added after the column generation process

because the infeasible flow assignments (See Section 4.2) rarely occurs and they take time

to be evaluated and fixed in every column generation iteration. The new algorithm can

significantly reduce the solution time for large size problems. Moreover, the solution qual-

ity is also improved. Two pricing methods are proposed and tested on both real-life and

artificial instances.

The remainder of this paper is organised as follows: the problem is described in detail in

Section 2; a literature review is given in Section 3 followed with the mathematical model

of the problem in Section 4. The proposed pricing and cutting method is illustrated in

Section 5 and its the computational experiments are presented in Sections 6 and 7. Finally

conclusions are drawn in Section 8.

2. Problem Description

The multi-shift FTL problem is concerned with transporting a set of full truckload freights

(containers) between a given number of terminals within multiple working shifts. Both the

operational time windows of the freights and the planning horizon can span across several

shifts. Although each container is transported in a single shift, its time window covering

multi-shifts and determination of the shift in which this load is serviced (transported)

forms part of the decisions to optimise. The objective is to minimise the total cost while

satisfying various constraints.

First, each full truckload commodity (container) has an available time for pickup and

a deadline for delivery. Second, during each shift, a number of unit-capacity trucks start

from the deport at the start of the shift, complete a number of transportation requests and

then return to the depot before a shift ends. Finally, a service time is applied during both

pickup and delivery. To clarify, we refer to the request of a full truckload movement as

one unit of a commodity. A commodity is a collection of requests of full truckload freights

that share identical sources, destinations and time windows.

In the context of real-world applications that this research tries to address, the total

quantities of all the requests within a planning horizon can be very large (more than

1000). The number of terminals is relatively small (less than 10) and the distances between
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these terminals are relatively short (all reachable within a shift). These features make this

problem different from problems that are studied in previous work. It has been shown

in Bai et al. (2015) that a model based on a set covering formulation is more promising

for this problem than other node based formulations. However, the features and reasons

have not yet been sufficiently analysed. For the completeness of this paper, we include the

model in Section 4, along with a detailed discussion of its advantages and disadvantages.

A literature review about the real-world applications of similar problems is given in the

next section.

3. Literature Review

The drayage operations problem is a typical case of bidirectional multi-shift full truckload

vehicle routing problems. Bai et al. (2015) highlight the core features of these truckload

vehicle routing problems and discuss relationships with other variants of vehicle routing

problems (VRP) from three aspects, including the directions of the flow, existence of con-

solidation or not, and length of the planning horizon. Here, we summaries the relevant

research on the drayage operation problems which we broadly classify into drayage opera-

tions with and without relocation requirements of empty containers.

3.1. Drayage problem without relocation of empty containers

Xiubin Wang (2002) model a full truckload pickup and delivery problem with time windows

(FT-PDPTW) as an asymmetric multiple travelling salesman problem with time windows

(m-TSPTW) and propose a time-window discretisation scheme. Jula et al. (2005) extend

the m-TSPTW model with social constraints and propose an exact algorithm based on

dynamic programming. Moreover, a hybrid method combining dynamic programming and

genetic algorithms (GAs) is also investigated, as well as an insertion heuristic method.

Chung et al. (2007) design several types of formulations for practical container road trans-

portation problems. The basic problem is formulated as an m-TSPTW problem, which is

solved by an insertion heuristic.Gendreau et al. (2015) refer to this routing problem as

the one-commodity Full-Truckload Pickup-and-Delivery Problem (1-FTPDP) and present

three mathematical formulations with branch-and-cut algorithms to optimally solve the

model formulations. Lai et al. (2013) propose a new routing problem that can be viewed

as a vehicle routing problem with clustered backhauls (VRPCB). Solutions are obtained

with the Clarke-and-Wright algorithm and improved further by a neighbourhood based
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metaheuristic . This work is also compared in the study of a problem with single and dou-

ble container loads Ghezelsoflu et al. (2018). The distribution of more-than-one container

per truck by different types of trucks has also been studied in Vidović et al. (2017) and

Funke and Kopfer (2016).Soares et al. (2019) study an FTL problem with multiple types

of vehicle synchronisations. A MIP model and a heuristic solution method based on the

fix-and-optimise principles are proposed.

3.2. Drayage problems with relocation of empty containers

Efforts to combine the planning of loaded and empty container transports are made by

several authors. Coslovich et al. (2006) analyse a fleet management problem for a container

transportation company by decomposing the problem into three subproblems, which are

then solved using a Lagrangian relaxation. Ileri et al. (2006) present a column generation

based approach for solving a daily drayage problem. Smilowitz (2006) model a drayage

operation with empty repositioning choices as a multi-resource routing problem (MRRP)

with flexible tasks. The solution approach is a column generation algorithm embedded

in a branch-and-bound framework. Imai et al. (2007) formulate a container transporta-

tion problem as a vehicle routing problem with full container loads (VRPFC) and solve it

with a subgradient heuristic based on Lagrangian relaxation. Caris and Janssens (2009)

extend this work and model the problem as a FT-PDPTW. A local search heuristic is

proposed. The work is further extended by using a deterministic annealing algorithm sug-

gested in Caris and Janssens (2010). Zhang et al. (2010) improve the time window par-

titioning scheme used in Xiubin Wang (2002) for container transportation in a local area

with multiple depots and multiple terminals. The results indicate that good performance

can be achieved compared with a reactive tabu search (RTS) method demonstrated in

Ruiyou Zhang (2009). Zhang et al. (2011) also investigate the single depot and terminal

problem. Again, an RTS is proposed. Vidovic et al. (2011) extend the problem analysed

by Zhang et al. (2010) and Imai et al. (2007) to the multi-commodity case and formulate

it as a multiple matching problem. Solutions are obtained via a heuristic approach based

on calculating utilities of matching nodes. Nossack and Pesch (2013) present a new formu-

lation for the truck scheduling problem based on a FT-PDPTW and propose a two-stage

heuristic solution approach. Braekers et al. (2013) investigate a sequential and an inte-

grated approach to plan loaded and empty container drayage operations. A single- and

a two-phase deterministic annealing algorithm are presented. This solution approach is
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further adapted in Braekers et al. (2011) to take a bi-objective optimisation function into

account. The algorithms are further improved in Braekers et al. (2014). More recently, Xie

et al. (2017) investigate the empty container delivery problem in an intermodal transport

system composed of a sea liner firm and a rail firm. Apart from transportation cost, the

difference in marginal profits between the seaport and dry port is also considered in the

objective function.

Some researchers examine drayage operations problems in dynamical situations. A survey

on dynamic and stochastic vehicle routing problems can be found in Ritzinger et al. (2016).

Most of the aforementioned research work has been trying to formulate the drayage

problem as some forms of classical vehicle routing problems in order to exploit the time

constraint structures to prune the search space. However, as discussed in Bai et al. (2015),

this type of formulations does not work well for problems where time related constraints

are not very tight and node-based solution representations generally lead to unnecessarily

large search space, resulting to inefficient solution methods.

3.3. Hybridising exact methods and (meta)-heuristics

This paper studies an indirect solution representation for the multi-shift FTL problem that

addresses these issues and contributes to the body of research with an efficient column

generation method. In many vehicle routing applications solved by column generation, the

subproblem is usually viewed as an elementary shortest path problem with resource con-

straints or one of its variants. Nowadays, an increasing number of hybridisations between

heuristics and exact approaches are developed. These methods can provide a good com-

promise between solution quality and computational time as they adopt the advantages

of both types of methods. Puchinger and Raidl (2005) classified hybridisation of exact

algorithms and (meta)-heuristics into four types. We briefly introduce them and provide

examples for each of them as follows:

1) Collaborative Combinations - sequential execution: In this type of hybridisa-

tion, either the heuristic is executed before the exact method, or vice-versa. For example,

when solving a set covering problem, a heuristic is used to generate a set of feasible columns

and the exact method is used to find an optimal solution from the feasible columns. Exam-

ples of this type of hybridisation can be found in Clements et al. (1997) and Vasquez et al.

(2001).
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2) Collaborative Combinations - parallel or intertwined execution: Instead of

executing either heuristics or exact methods sequentially, this type of method implements

the algorithms in a parallel or intertwined way. Clusters or multi-processors are used to

deploy the parallel implementations. There are several frameworks proposed to facilitate

such implementations, such as Alba et al. (2002) Vidal et al. (2014) and Lahrichi et al.

(2015).

3) Integrative Combinations - incorporating exact algorithms in heuristics:

Where exact algorithms are subordinately embedded within heuristics. For example, the

solution of LP-relaxation and its dual values can be utilised in heuristically guiding neigh-

bourhood search. Applications can be found in Marino et al. (1999) and Puchinger et al.

(2004).

4) Integrative Combinations - incorporating heuristics in exact algorithms:

This type of hybridisation is analogous with the previous one, but heuristics are embed-

ded within exact algorithms. For example, heuristics can be used to determine bounds

in branch-and-bound algorithms. Heuristics can also be used to search for columns with

negative costs in the branch-and-price approach. Applications of this hybridisation method

can be found in Puchinger and Raidl (2004) and Strandmark et al. (2020). The column

generation based method proposed in this paper falls into this category.

Please refer to Blum et al. (2011) and Muthuraman and Venkatesan (2017) for more

comprehensive reviews of the hybridisation approach.

4. Model Formulation

The problem studied here can be defined on a graph G= (N,A) where each node i ∈N

represents a physical terminal (including the depot, i = 0). An arc (i, j) between nodes

i, j ∈N is included in the arc set A if the visit of j can be performed immediately after

i. A service time ti is applied to each node i to represent the loading/unloading times of

truckload commodities and the travel time of arc (i, j) is denoted as µij. All trucks must

depart from and return to node 0 (depot). Let R be the set of all feasible routes that a

truck can execute in a working shift without the complication of time window requirements

from commodities. Therefore, each route r ∈R is called distance-wise feasible.

For a given shift s, the i-th node in route r ∈R (denoted as ri) can only be visited within

a time window (es
ri
, ls

ri
) where es

ri
is the earliest time that a truck covering route r can start
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Figure 1 Example of a routing sharing among five commodities.

a pickup or delivery operation while ls
ri
is the latest time that a truck must depart from the

node. Let tri be the service time at node ri. In each route r encoding, a duplicated node is

inserted if the node involves both a loading and an unloading operations (i.e. this node is

both the destination and source of two different commodity flows). Therefore, if the nodes

is 0-indexed in a route, loading operations are always conducted at the odd indexed nodes

of a route (see Eq. (3)) and unloading operations are at the even-indexed nodes. es
ri

and

ls
ri
can be calculated using the following recursive equations:

esri = esri−1 + tri−1 +µri−1ri ∀i∈ r, r ∈R (1)

lsri = lsri+1 − tri+1 −µriri+1 ∀i∈ r, r ∈R (2)

Let K denote the set of commodities for delivery. Each commodity k ∈K is defined by a

tuple (o(k), d(k),Q(k), σ(k), τ(k)), which, respectively, are the origin, destination, quantity,

availability time and deadline of commodity k. Denote δks
ri

the binary variable to indicate

whether the i-th node of route r can be the loading node for commodity k in shift s (δks
ri
= 1)

or not (δks
ri

= 0). To speed up the computation, δks
ri

can be pre-calculated by checking the

following conditions:

i mod 2 = 1 (3)

ri = o(k) (4)

ri+1 = d(k) (5)

lsri ≥ σ(k)+ tri (6)

esri+1 ≤ τ(k) (7)
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Figure 1 presents a simple example of a feasible truck route where 0 denotes the depot.

For a 0-indexed route node list, odd numbered nodes are commodity loading nodes while

even numbered nodes are unloading nodes. If a node on a route is involved with both

loading and unloading, a copy of it is created so that the above rules are maintained (see

more details in Bai et al. (2015)). In this example, a truck departs from the depot and

picks up a unit of commodity from either commodity 1, commodity 2 or commodity 3

from node 1 and unload the commodity at node 3. Then the truck picks another unit of

commodity (either commodity 4 or commodity 5) at node 4 and unload at node 2 before

the truck returns to the depot.

In summary, the following notations are used for the formulation:

Sets

• N : Set of nodes in the transportation network.

• S : List of time-continuous shifts in the planning horizon.

• R : Set of all feasible truck routes within a shift.

• K : Set of full truckload commodities to be delivered.

Other parameters

• dr : The cost (distance) of route r.

• n : The maximum number of trucks available for use.

Decision variables

• xks
ri

: Commodity flow of the ith node of r in s for servicing commodity k ∈K.

• ysr : The number of times a given route r ∈R is used during shift s∈ S and ysr ∈N
+.

The model for this multi-shift FTL problem can be formulated as the follows:

min
∑

s

∑

r

dry
s
r (8)

subject to

∑

r

ysr ≤ n ∀s∈ S (9)

∑

s

∑

r

∑

i

xks
ri = Q(k) ∀k ∈K (10)

∑

k

xks
ri ≤ ysr ∀i∈ r,∀r ∈R,∀s∈ S (11)

xks
ri ≤ δksri y

s
r ∀i∈ r,∀r ∈R,∀k ∈K,∀s∈ S (12)

xks
ri = Z

+ ∀i∈ r,∀r ∈R,∀k ∈K,∀s∈ S (13)

ysr ∈ Z
+ ∀r ∈R,∀s∈ S (14)
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The objective function (8) minimises the aggregated distance of all routes used in a

solution. Constraint (9) restricts the total number of trucks being used in a solution.

Constraint (10) ensures all the commodities are serviced (transported) entirely. Constraint

(11) requires that each arc of a route in a shift can only be used ysr times. Constraint

(12) makes sure that any positive xks
ri

is feasible in terms of the source, destination and

operation time window of commodity k. Since binary indicator δks
ri

can be pre-calculated,

this constraint can be eliminated by removing the corresponding flow variables xks
ri

from

the model when δks
ri

takes value of 0. This is indeed how the model was implemented in our

experiments because the resulting model is a lot smaller. Constraints (13) and (14) define

the domains of the decision variables.

4.1. Merits of this solution encoding

One of the most helpful benefits of this solution encoding scheme is the transformation of a

previous m-TSPTW based non-linear model (e.g. the model proposed by Chen (2016)) into

a linear integer model, so it can be solved using various integer programming techniques.

This was done through hiding nonlinear time related constraints into the generation of the

shift-independent feasible truck route set.

For some applications (e.g. FTL with a small number of terminals), pre-computing all

feasible routes is possible since the time related constraints in this problem are slightly

different from those in the traditional pickup and delivery problem with time windows

(PDPTW). In this multi-shift FTL problem, each commodity k has an operation time win-

dow (σ(k), τ(k)) defining its availability time and the delivery deadline. Time constraints

require that both the pickup and delivery operations occur within this time window for

commodity k. In PDPTW problems, two separate time windows are used, one for pickup

and the other for delivery. Note that for non-time critical full truckload transportation,

having one time window is reasonable since all the terminals (nodes) operate all the time,

and having short time windows for both pickup and delivery does not make sense, although

we acknowledge it is very different for express deliveries which are mostly for household

customers.

A second benefit of this solution representation is its capability to handle nonlinear

cost functions. For example, the costs of routes could be a nonlinear, complex function of

the distance. It also permits to include various other constraints related to drivers (e.g.

maximum driving distance, time or preferred terminals).
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A third benefit of this solution representation is the reduced size of the search space

compared with a commonly used m-TSPTW formulation, in which each container is

modelled as a node in the graph. For a problem instance with hundreds or even thousands

of truckload sized containers, the corresponding graph in m-TSPTW formulation could

be prohibitively expensive to handle. However, in the real-world problem that we are

concerned with, containers often arrive in large batches with same requirements (i.e. same

O-D pairs and time windows). In an m-TSPTW formulation, any swaps of positions

of these nodes (i.e. containers) in the TSP tours shall result in the same objective value

(i.e. many-to-one mapping from solution encoding and objective space). This leads to a

significantly larger search space with a plateau. In our proposed formulations, containers

with the same property are grouped as one commodity, leading to a one-to-one mapping

and a much smaller search space.

4.2. Dealing with non-compatible commodities

Although for all the practical instances that we extracted from real-world problems, the

FTL model in Section 4 produces solutions that satisfy practical constraints. However, it

is possible to artificially generate problem instances that the proposed FTL model returns

an infeasible solution. That is, the solution is feasible for the FTL model but may still

violate the time window constraints for some commodities. This happens when two time

non-compatible commodities are assigned to a same route and same shift. An example

of such cases is illustrated in Figure 2.

i i+1 j j+1 00

!"#ℎ_&'()(+)

direct arc indirect arcs

-./ 0./1())

!"#ℎ_&'()(2 + 1)

-.567 0.5678(9)

Figure 2 Service time push back and non-compatible commodities.

In this example, we included two non-compatible commodities (k and v) that are ser-

viced using a feasible route r at arcs (i, i + 1) and (j, j + 1), respectively. The solution
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becomes infeasible when the service time of the first commodity k was delayed because the

commodity available time σ(k) is later than node i’s earliest arrival time eri . Because of

this, the service time of commodity k at node i is pushed back by

push back(i) = σ(k)− eri (15)

As a service node can serve multiple commodities (e.g. commodity 1, commodity 2,

and commodity 3 served by node 1 in Figure 1), if more than one commodities lead to

push back, then push back(i) is calculated as the maximum value of puch backs of all

commodities that served by node i.

Unless there are larger push backs by other commodities in the remaining route nodes,

the push back at node i is propagated in its entirety to all the remaining nodes in the

route. A violation of another following commodity v’s shipment deadline (τ(v)) shall occur

if the following condition is satisfied:

push back(j+1)> erj+1 − τ(v) (16)

That is, if a push back caused by a previous commodity is greater than the difference

between the earliest vehicle arrival time of its destination node and a commodity’s deadline,

the commodity assignments along this route become infeasible.

If the resulting solution sequentially assigns two non-compatible commodities, k and v,

at nodes i and j, respectively, of a same route r in the same shift s, then the following

constraints should be added to ensure v is not inserted at or after k in the same route and

shift.

xks
ri ≤Mθ and xvs

rj ≤M(1− θ) i≤ j ∈ r,∀k ∈Kr,∀v ∈ Vr,∀s∈ S (17)

where θ is an auxiliary variable taking either 0 or 1 and M is a large positive number. Kr

contains the commodities that σ(k)> eri , Vr contains the commodities that τ(v)< erj+1 .

Note that constraint (17) also prevents cases of non-compatible commodity assignments

at a same node. The process of generating the cuts through constraint (17) to eliminate

non-compatible commodity assignments is given in Algorithm 1.

We do not want to strongly restrict the non-compatible commodities, as shown in the

above example, v is not simply forbidden to be served by the node, instead, it is still
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allowed to be served by the route as long as the compatibility constraint of k and v is

not violated. From Algorithm 1 it can be seen that the procedure keeps tracking the push

back time (push back) of each commodity in Kr and maximum allowed push back time

(acceptable push back) of each commodity in Vr. The cut will be added to the model only

if any pairs of incompatible commodities were found. That means even if the service time

of the commodities served between k and v, if any, are pushed back, they are not restricted

by constraint (17) unless there are larger push back by other commodities result in a delay

in shipment.

Algorithm 1 Valid cuts generation for eliminating infeasible flow assignments

Require: r ∈R
x
, where R

x
is the set of routes used in the current solution and x is the vector of

flow variables xks

ri

1: Kr = ∅, Vr = ∅, accu= 0 ⊲ accu is the accumulated push back time along r
2: for i in r do
3: push back(i) ← 0
4: if (i mod 2=1) then
5: for k in W (i) do, where W (i) is set of commodities serviced by node i.
6: if σ(k)> eri then
7: k.push back ← σ(k)− eri − accu
8: Kr.add(k)
9: push back(i) ← max(σ(k)− eri , push back(i))

10: if push back(i)>0 then
11: Propagate puch back(i) to all the remaining nodes in r
12: accu+=puch back(i)

13: for j in r do
14: if (j mod 2=1) then
15: for v in W (j) do, where where W (j) is set of commodities serviced by node j.
16: if τ(v)< erj+1 then
17: v.acceptable push back ← erj+1 − τ(v)
18: Vr.add(v)

19: for k in Kr do
20: for v in Vr do
21: if k.push back time > v.acceptable push back then
22: k and v not compatible in r ⊲ output constraint: xks

ri
≤Mθ and xvs

rj
≤M(1− θ)

Table 1 An example: A problem with 4 commodities

Commodity Available Deadline Start node End node

k1 13:40 15:05 1 2
k2 8:00 13:10 1 2
v1 8:00 16:00 3 4
v2 9:00 15:50 3 4
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Table 1 gives a simple illustrative example how the valid constraints can be dynamically

generated into the model to prune the search space. In this example, A total of 4 feasible

routes are available for selection to deliver 4 commodity k1, k2, v1, v2. They are (0,1,2,3,4,0),

(0,3,4,1,2,0), (0,1,2,0), (0,3,4,0) with distances of 79, 129, 64, 75, respectively. Without

considering push backs, the optimal solution is to choose route 1 twice (i.e. ys1 = 2), with

flows of xk1s

11
= 1, xk2s

11
= 1, xv1s

13
= 1, xv2s

13
= 1 because it satisfies formulas (4) to (7) and

requires the least travel distance (158) to delivery all commodities. However, since σ(k1)>

e11(13 : 40> 8 : 15), the service of commodity k1 at node 1 is pushed back to 13:40 by 325

minutes, which is propagated to all the remaining nodes in route 1 (the updated e and l

after pushed back by k1 are denoted as e′ and l′ in Table 2).

It can be seen that the push back at node 1 by commodity k1 resulted in commodi-

ties v1 or v2 not being serviced according to the optimal solution due to τ(k2)< e12(13 :

10 < 15 : 00), τ(v1) < e14(16 : 00 < 16 : 50), τ(v2) < e14(15 : 50 < 16 : 50). Thus, K1={k1},

V1={k2, v1, v2} and 3 constraints (xk1s

12
≤Mθ and xk2s

12
≤M(1− θ), xk1s

12
≤Mθ and xv1s

14
≤

M(1− θ), xk1s

12
≤Mθ and xv2s

14
≤M(1− θ)) are subsequently added to the model. The true

optimal objective, after adding the valid constraints, increased to 208 by choosing route 1

to deliver k2, v2 and route 2 to deliver v1, k1 (i.e. xk2s

11
= 1, xv2s

13
= 1, ys1 = 1, xv1s

21
= 1, xk1s

23
=

1, ys2 = 1).

4.3. Dealing with a very large set R

The proposed model also has some problems. The most critical one is the size of the feasible

route set R which can increase exponentially with the number of nodes (or terminals). In

Bai et al. (2015), some real-life problems have certain special features to permit some of

nodes being merged, and a three-stage algorithm was able to find near optimal solutions.

However, in addition to the excessive computational time of the three-stage algorithm, the

method becomes invalid for problems that do not possess these features to permit node

merging.

In this paper we propose to use a column generation method to address this issue. The

idea is to use the pricing information to guide the generation of promising feasible routes

dynamically.

5. A Hybrid Column Generation Method

Column Generation is an effective approach for solving large scale integer programming

problems (i.e. problems with large number of columns). It is a potentially very good method
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Table 2 An example: Time window e and l of nodes

Node of route 1 0 1 2 3 4 0
Index of route 1 0 1 2 3 4 5

e 8:00 8:15 9:35 10:05 11:25 13:05
l 13:55 14:40 16:00 16:40 18:20 20:00
e′ 8:00 13:40 15:00 15:30 16:50 18:30
l′ 13:55 14:40 16:00 16:40 18:20 20:00

Node of route 2 0 3 4 1 2 0
Index of route 2 0 1 2 3 4 5

e 8:00 8:50 10:10 11:50 13:10 14:30
l 13:00 14:30 16:10 17:20 18:40 20:00
e′ 8:00 8:50 10:10 13:40 15:00 16:20
l′ 13:00 14:30 16:10 17:20 18:40 20:00

Node of route 3 0 1 2 0
Index of route 3 0 1 2 3

e 8:00 8:15 9:35 10:55
l 16:35 17:20 18:40 20:00
e′ 8:00 13:40 15:00 16:20
l′ 16:35 17:20 18:40 20:00

Node of route 4 0 3 4 0
Index of route 4 0 1 2 3

e 8:00 8:50 10:10 11:50
l 15:10 16:40 18:20 20:00
e′ 8:00 8:50 10:10 11:50
l′ 15:10 16:40 18:20 20:00

e, l: before push back; e′, l′: after push back

for the problem formulation stated in Section 4, where the feasible route set R is very large,

leading to a model with a huge number of columns while the optimal solution uses a very

small subset of it. We propose to use the column generation approach for this problem

in which the sub-problem (pricing problem) is solved to identify the variables that should

enter the basis.

5.1. The proposed solution framework

The integer programming formulation presented in section 4 is also referred to as the master

problem. The Restricted Master Problem (RMP) is the master problem that considers only

of a subset of truck routes R that are generated by the pricing problem (subproblem) using

the dual information obtained from the Linear Programming Relaxation (LPR) of the

RMP. The pricing problem and the LRP will be discussed in Section 5.4 and Section 5.3,

respectively. Before the RMP is solved for the first time, no dual information is available

and an initial truck routes set (see Section 5.2) is thus required to start the process. Then

the LPR is solved to optimality and the dual information is obtained for calculating the
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reduced costs of routes during the pricing subproblem. The overall solution framework is

outlined in Figure 3, followed by detailed steps of the procedure.

Our intial experiments showed that majority of computing time is consumed by the RMP

solving. The algorithm was thus modified to accelerate convergence by adding multiple

routes with negative reduced costs at each iteration. Details of the methods for the pricing

problem is given in Section 5.4. It is hoped that by doing this the total number of RMP

calls can be reduced. This process is repeated until the stopping criteria are met. Finally,

in order to obtain the integer solutions, relaxed constraints associated with xks
ri

and ysr are

set back to their original ones during the final RMP solving.

Because the pricing problem is solved repeatedly in the column generation framework, it

is crucial that the solution algorithm for the pricing subproblem is as efficient as possible.

Therefore, we propose two different strategies, one for problems with small-sized R and

one for problems with a large R. For the former case, we propose to adapt an explicit

enumerative generation of R as priori and then try to solve the pricing subproblem when

no column with negative reduced cost can be found. We apply a recursive algorithm to

generate all feasible routes as described in Bai et al. (2015) before the iterative procedure

starts. In the case of a large R, we propose to use heuristic approaches (see 5.5) to solve the

pricing problem and the stopping criteria of the heuristic is an limitation of the number of

RMP cycles (denoted by Finish in Figure 3). The overall solution framework as described

above is outlined in Figure 3.

5.2. Initial set of routes

Before the RMP is solved for the first time, no dual information is available and an initial

set of columns is required to start the process. We apply two methods described in detail

in the next two subsections to generate an initial set of columns (routes).

5.2.1. Simple route initialisation A prerequisite of constructing a basic route set is to

ensure that each commodity has at least one route to service it. Thus the simplest solution

is to generate a dedicated route for each commodity, in which an empty truck leaves the

depot and travels to the source of a commodity, loads the commodity and delivers it to its

destination. After that, the truck returns to the depot. This method works fine in some

cases but may of course lead to an infeasible solution in terms of the maximum number of

vehicles constraint (9).
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Figure 3 Framework of the proposed column generation process

5.2.2. Insertion heuristic method The advantage of the basic route initialisation in

the previous section is its simplicity. However, very rarely will these routes be used in

the optimal solutions, neither do they resemble any of the routes that are present in the

optimal solutions. In this study, we proposes to use constructive heuristic methods to

generate these initial routes for our column generation method. In particular, we used the

same insertion heuristics described in (Chen et al. 2013). To construct routes, the task

that cause minimum empty load distance is inserted by following two initialisation criteria:

First, the most urgent tasks that have deadlines closer to the shift start time are inserted.

The second criterion considers tasks that have earlier availability time.

There are two benefits here. First, because the constructive heuristic produces a feasible

solution for the original problem, the vehicle routes extracted from the solution shall also

produce a feasible solution in our column generation method, satisfying the maximum

number of vehicles constraint (constraint (9)). Second, because the pricing subproblem is

solved heuristically, starting from a good set of initial vehicle routes will enable the column

generation method to generate high quality solutions more quickly compared to the simple

route initialisation method. The proposed method will converge to a high quality solution

much faster.
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5.3. Linear programming relaxation (LPR)

Linear programming relaxation (LPR) relaxes the discrete variables constraints and differs

from the model presented in Section 4 in the route set, which should be attained as a

set R′(R′ ⊂R) resultant from the pricing subproblem instead of all feasible routes R. Let

LPR be the relaxed model, and let LPR-(9-12) be the constraints corresponding to the

constraints (9-12) of the master problem.

5.4. Pricing methods

We present three different route price estimation methods: The first method obtains

solution by enumerating and examining all possible commodity assignments for each route

and the best route (i.e. the route with the most negative reduced cost) is selected. This

method is referred to as Pricing problem by enumeration in this paper. For efficiency,

two other pricing estimation methods (Average pricing and Demand weighted

average pricing) are also investigated.

Pricing problem by enumeration. Let αs, πk, βs
ri
, γks

ri
be the pricing variables for con-

straints from the LPR-(9-12), respectively. The reduced cost for route r in shift s is:

dr +αs−
∑

ri

βs
ri −

∑

ri

∑

k

δksri γ
ks
ri (18)

However, since routes are generated independent of shifts, the following average reduced

cost is computed over all shifts for each route.

dr +
1

|S|
(
∑

s

αs−
∑

s

∑

ri

βs
ri −

∑

s

∑

ri

∑

k

δksri γ
ks
ri ) (19)

where |S| is the total number of shifts in the planning. Let W = {w1,w2, ...,} be the set

of all possible commodity assignments, each of which can be delivered by one instance

of route r. In the example of the route in Figure 1, all possible commodity assignments

are W = {[1,4], [1,5], [2,4], [2,5], [3,4], [3,5], ...}. Since there are many possible commodity

assignments for a given route r, we evaluate them all and if the reduced cost of any given

w ∈W is found to be negative for route r, it is added to the RMP. The same process

is repeated for the next route r+1 until all feasible routes are evaluated. This searching

process guarantee that the reduce cost of commodity assignment in each route is examined
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but its efficiency is low as some routes may contain thousands of possible commodity

assignments.

In order to obtain good results in a reasonable time, we investigated the following steps

to improve efficiency: Firstly, the constraints LPR-(12) are pre-processed offline. Given a

route and its start time, the feasibility of commodity in a route can be determined by

formula (3)-(7) offline. This allows us to reduce a large number of decision variables that

have to be handled by the model. Consequently, we lost the price values (γ) associated

with the feasibility of commodity and time window of the service node.

Secondly, we do not want to explicitly restrict which shift that a route belongs to, as the

feasible route set is meant to be same across all shifts. This has benefits from management

standpoints too because drivers proficiency can be improved if they are asked to follow a

fixed set of routes repeatedly. Also after long run, the set of frequently used routes can

become part of the knowledge system of the transportation planning and time consuming

column generation procedure may not be required anymore. Therefore, the price values

of arcs (β) in each shift is not used because the efficiency is substantially degraded by

generating routes dependent of shifts. Fortunately, the price of an arc can be estimated by

the price of all possible commodities (π) for all shifts that can be serviced by the arc.

Thirdly, the constraint related to truck numbers is also not involved for the reduced cost

calculation, due to in real-life problems, vehicle number is not critical but the efficiency is,

leading to α taking zeros for all of our instances. In the end, we came to two approximated

pricing methods, illustrated below.

P1: average pricing Instead of enumerating all the commodity combinations of a route

and then checking the cr for each of wi, a more efficient approach is to use the average

prices to estimate cr approximately. More specifically, let J be the set of all service nodes

in r (e.g. nodes {1,4} in Figure 1). Denote V ′

j be the set of all commodities that can be

serviced by a node j in r. The reduced cost cr for route r is calculated by the following

equation:

cr = dr−
∑

j∈J

(
1

|V ′

j |

∑

k∈V ′

j

πk) (20)

P2: demand weighted average pricing Though the commodities processed by a service

node in a route share the same source and destination node, the quantity of the commodi-

ties varies from one to another. The simple average pricing method P1 fails to take into
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account the quantity of the commodities, so that large quantity commodities may be left

unpaired to improve the efficiency. Therefore, the demand weighted average method tries

to give priority to large commodities at the early stage. A weight ωk that is proportional

to the commodity quantity Q(k) is used. The weighted average pricing method uses the

following equation to estimate the reduced cost.

cr = dr−
∑

j∈J

∑

k∈V ′

j

ωkπ
k (21)

5.5. Heuristic column generator for large R

As can be seen from Figure 3, a heuristic column generator is used within the column

generation framework. As optimally solving the pricing problem involves an expensive

recursive tree search, we propose to use a variable neighbourhood search (VNS) and a

genetic algorithm (GA) to tackle the pricing subproblem. The goal of the metaheuristics is

to identify new columns with negative reduced costs. The idea is that, instead of generating

a new column (i.e. route) from scratch, it is probably more efficient to search from the

existing routes through either neighbourhood moves or route combinations (i.e. crossovers).

VNS and GA are widely adopted excellent frameworks to implement these ideas. The main

difference here is that the metaheuristics are guided by an objective function that heavily

relies on the pricing information obtained from the linear program relaxations.

5.5.1. VNS The pseudo-code of our VNS algorithm is given in Algorithm 2 and the

parameters of the algorithms are listed in Table 3. In our VNS method, the neighbourhood

functions include swap, 2-opt, and relocate. These operators are very similar to those used

in solving the classical VRP problems. For example, the swap operator swaps two arcs

of two different routes. The 2-opt exchanges two nodes on the same route. The relocate

operator relocates an arc from its current route to a different one. By exploring different

neighbourhood structures, the method has an increased probability to detect more diver-

sified routes than a single neighbourhood. The neighbourhood functions are called one

by one in the order of swap, 2-opt and relocate. Once a neighbourhood function can no

longer find a better set of routes, the next neighbourhood is called. If, however, a better

solution (e.g. a more negative reduced cost) is found, the algorithm will restart from the

first neighbourhood (i.e. swap).

Before VNS starts, the initial set of columns in z is generated by the insertion heuris-

tic (Chen et al. (2013)). As shown in Algorithm 2, for each successive iteration, z is
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Table 3 Abbreviations of VNS

z current solution
Rz a set of routes present in z
i index of neighbourhood
imax index of the last neighbourhood function
cmin minimum reduced cost of route set
c′min modified minimum reduced cost of route set
maxIteration max number of column generation iterations
maxColumns max number of routes
columnPool stores the set of best routes

Algorithm 2 Pseudo-Code of VNS column generator

Require: z, maxIteration
1: j← 0
2: while j <maxIteration do
3: columnPool← V NS(z) ⊲ Algorithm 3
4: z←RMP (columnPool), j← j+1

5: return z

Algorithm 3 Pseudo-Code of VNS()

Require: z, imax, maxColumns
1: i← 1, update Rz by z, cmin← 0
2: while i≤ imax do
3: R′← neighbourhood(Rz, i,maxColumns)
4: c′

min
←minReducedCost(R′)

5: if c′
min

< cmin then
6: i← 1, cmin← c′

min

7: columnPool← sortByReducedCost(R′,maxColumns)
8: columnPool← columnPool∪ z
9: else

10: i← i+1
11: return columnPool

updated subsequently. Since our VNS not aims to solve the overall problem but find

out a set of feasible routes with the most negative reduced costs to be solved by the

RMP, the VNS based column generator is not conventionally implemented with a shak-

ing process. The search is guided by the pricing methods described in Section 5.4. The

neighbourhood(R,i,maxColumns) function applies the i-th neighbourhood function on all

routes in Rz to search for new feasible routes. It returns the maximum of maxColumns

distinct routes with negative reduced cost. The constraints related with feasible route pat-

tern (Eq. (3) to (7)) are imposed. Function minReducedCost(R′) returns the minimum

reduced cost of route set R′. Function sortByReducedCost(Rz ∪R
′,maxColumns) sorts

routes in Rz ∪R
′ by their corresponding reduced costs in an ascending order and returns

the top maxColumns distinct routes. The RMP (columnPool) is the restricted master
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problem (see Section 5.3) based on the route set stored in columnPool and the solution is

stored in set z.

Note that a distinctive feature of our VNS based column generation method is the joint

exploitation of pricing information and the current best solution z. While most heuristic

column generation methods aim to construct new routes from scratch in light of new

pricing information, our VNS column generation procedure (and the GA column generator)

is a perturbative based neighbourhood search starting from existing columns in the basis.

Consequently, we believe our column generation methods converge much faster than the

constructive methods used in the literature.

5.5.2. Genetic algorithm We also investigate a Genetic Algorithm (GA) approach to

tackle the pricing subproblem. The motivations are two-fold: first, at each column genera-

tion iteration, we need to obtain a set of routes with the most negative reduced costs, which

the VNS may struggle to achieve as a single point search method. The GA is potentially

more powerful as it can find a population of routes through evolution. Secondly, we believe

that high quality routes (i.e. most reduced costs) may share some common structures which

could be evolved more efficiently through crossover operations in the genetic algorithm.

Therefore, each chromosome in our generic algorithm stands for a vehicle route, leading

to a variable length chromosome. More specifically, a route(chromosome) is represented as

a list of nodes(genes). For example, the parent 1 illustrated in Figure 4 simply represents

route 0→ 1→ 2→ 2→ 1→ 0.

The pseudo-code for the GA search is given in algorithm 4. Similar to our VNS imple-

mentation, the initial population is generated by using the insertion heuristic by Chen

et al. (2013). The size of the initial population for each RMP iteration is equal to the

number of distinct vehicle routes used in the solution z but increased to a pre-defined

value populationSize in the subsequent generations. Other implementation details of our

GA are as follows. Two-point crossover operators were adopted. The length between two

crossover points is randomly generated from 0 to 2 arcs, as larger crossover length would

increase the possibility of generating infeasible routes due to the violation of routes’ travel

time constraint. Figures 4a, 4b and 4c illustrate examples of the two-point crossover. A

standard mutation operator is used in which each chromosome is subject to an uniform

2-opt mutation with probability mutationRate. The 2-opt mutation operator is the same

as the 2-opt neighbourhood moves in our VNS method. A local search stage is incorporated
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into our GA to ensure that local optima are reached in each generation. The local search

is performed every time when new individuals have been generated. More specifically, the

local search phase swaps two nodes between two different routes and returns two new

routes that are local optimal with regard to the neighbourhood.

We use the tournament selection method. As the first population is obtained by the

insertion heuristic, it usually has smaller population size than the predetermined constant

value (populationSize). The tournament size is set to populationSize× tournamentRate

so that it is population dependent. The fitnesses of individuals are calculated according

to the functions in Section 5.4. Note that only feasible routes that satisfy the time con-

straints are considered and evaluated. If their fitnesses are better than any of the routes

in the columnPool which stores the set of best routes so far, they replace the inferior

routes in the columnPool, to allow a maximum of maxColumns columns to be stored.

Finally, the algorithm terminates when the number of RMP iterations reaches a predefined

parameter,maxIterations. The pseudo-code of the proposed GA is given in Algorithm 4.

Note that although the main framework of our GA is the same as many other GA

implementations, the goal is very different. Our GA here does not solve the overall problem,

but rather evolves a set of vehicle routes (columns) with the most negative reduced costs.

These set of routes will then be used in solving the updated RMP problems.

Algorithm 4 Pseudo-code of the GA column generator

Require: maxIterations, z, generations, populationSize, columnPool, maxColumns
1: while i <maxIterations do
2: R← z, Clear columnPool
3: while j < generations do
4: R← generateNewPolulation(z,R, populationSize) ⊲ Algorithm5
5: j← j+1

6: z←RMP (columnPool)
7: i← i+1
8: return z

6. Experiments with small R

For the first round of experiments, we consider instances with relatively small R. As such,

all instances in the first round of experiments have seven nodes, resulting in a total of

61365 feasible routes which is close to the limit to which our model can be solved directly.

Therefore, we can compare how our methods perform in comparison with exact methods.
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(a) Example of crossover 1 (b) Example of crossover 2

(c) Example of crossover 3

Figure 4 Examples of crossover operators in the GA

A set of randomly generated instances are used in the experiments. These instances are

generated based on characteristics of real-life instances which are obtained from historically

scheduled container operation data of a truck company. All artificially generated instances

have three planning horizons of 4, 6, 8, reflecting the different problem scenarios in practice.

These instances were grouped into three sets. All the instances are generated by the same

parameters except the size of the planning horizon. Five instances are generated for each

problem set, referred to as I4, I6 and I8, standing for shift length of 4, 6 and 8, respectively.

The information and configuration of these problem sets is illustrated in Tables 4 and 5.

In order to test the efficiency of the column generation process in the first round of

experiments, the initial route set is constructed by the simple method detailed in section
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Algorithm 5 Pseudo-Code of generateNewPolulation()

Require: current solution z, current population R, empty new population R′, populationSize,
tournamentRate, mutationRate

1: for r in z do
2: if r not in R then
3: R.add(r) ⊲ Ensure R include z

4:

5: while R′.size < populationSize do
6: r1← tournamentSelection(populationSize, tournamentRate,R)
7: r2← tournamentSelection(populationSize, tournamentRate,R)
8: R′′← crossover(r1,r2)
9: R′′← mutation(R′′,mutationRate)

10: R′′← localSearch(R′′)
11: for r in R′′ do
12: if fitness(r)<0 then
13: R′.add(r)
14: updateColumnPool(r)

15: return R′

Table 4 Configuration of the artificial instances

no. of nodes: 7 (including the depot)
Commodity Time Window: 1-2 hours up to the length of planning horizon

Commodity Availability Time: nearly 30% commodities are available at the start of
the planning horizon

Emergency tasks: 10% to 30% of total commodities (i.e. time window<10h)

Table 5 Details of the artificial instances

Instance no. of shifts no. of commodities no. of FTL units
I4-1 4 51 360
I4-2 4 56 340
I4-3 4 50 266
I4-4 4 87 624
I4-5 4 71 305
I6-1 6 77 489
I6-2 6 79 564
I6-3 6 94 581
I6-4 6 105 783
I6-5 6 99 818
I8-1 8 106 888
I8-2 8 120 831
I8-3 8 106 939
I8-4 8 124 1067
I8-5 8 127 971

5.2.1. Since the RMP solving will take the majority of computational time, at each iteration,

we add multiple columns in the RMP model (capped by maxColumns). If maxColumns

is set too small, more RMP solving calls are required which are computationally very

expensive. However, if the maxColumns is set too large, time to solve each RMP would

also increase (the extreme case is that all feasible columns are included in RMP and it is
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equivalent to the original problem). Some initial experiments suggest that maxColumns =

1000 provides a good trade-off. We use this value on the understanding that it may not be

the best parameter for every instance. Note that in our method, in the early search stage,

we permit our method to use more trucks than the limit (n), but this constraint will later

be restored at the end of the column generation procedure. Gurobi 8 linear programming

libraries were used in conjunction with Java 7.0. These experiments were run on a PC with

an Intel i7 3.40GHZ processor and 16GB RAM.

The experimental results are given in Table 6. Since the pricing by enumeration method

(see Section 5.4) takes an unrealistically long time even for the smallest instances (e.g.

3-4 hours for a 4-shift instance), it is not used for further experiments. Column T is the

total running time of the entire process, from data parsing, solving, to the solution output.

Col. shows the total number of columns being generated during the process. Obj. gives

the objective value which is the total travel distance. Hereafter, P1 and P2 are short

abbreviations for column generation solution methods adopting P1 average pricing and

P2 demand weighted average respectively (see Section 5.4).

Overall, the results in Table 6 show that most instances are solved in 1000s or less.

In most cases, P2 generated a larger number of columns than P1 during the column

generation process. On average, P2 generates 1165 more columns than P1, resulting in

longer running times, but P2 uses 3089km less distance than P1. Seemingly, this fact is due

to P2 generating more columns that enlarge the search space used by the model. However,

we notice that for the result of instances I4-1, I4-2 , I8-1 and I8-3, P1 obtained a larger

number of columns which did not result in a smaller objective value.

The performance of both algorithms is also compared with the results from the Gurobi

IP solver with the default algorithm setting in two experiments. The first experiment allows

the solver to solve the problem to optimality and its objective value is denoted as Obj..

In the second experiment, Gurobi was given a limited computational time (the same time

taken by the slowest of P1 and P2) and the corresponding objective value is marked as

obj.*. All the results are given in Table 6.

It can be seen that although Gurobi can solve all instances to optimality, it takes more

than 8000s on average and sometimes more than 10h. Two tailed paired t-tests (α = 0.01)

were conducted to compare the performance between P1, P2 and Gurobi. In contrast,

the proposed column generation methods (P1 and P2) use significantly less time (P1 vs.
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Table 6 Comparison of the two pricing methods (artificial data)

P1 P2 Gurobi IP Solver Random
Instance T Obj. Col. T Obj. Col. T Obj. Obj.* Obj.
I4-1 23 15516 4691 21 14154 3005 1215 13746 n.a. 22530
I4-2 93 16480 9448 151 15988 5976 1208 15823 n.a. 22743
I4-3 3 12793 2281 6 11067 4319 155 11037 n.a. 15885
I4-4 271 27557 4674 711 25642 8811 1736 25307 28819 33583
I4-5 187 13407 4021 343 11435 6430 1193 11429 14624 25798
I6-1 131 27566 7742 193 25540 13985 1153 24713 29542 34589
I6-2 175 26719 3046 507 23374 4861 2772 21665 n.a. 31294
I6-3 87 32009 3142 513 30124 5321 2604 30029 n.a. 31889
I6-4 218 41301 2170 290 35935 3321 9462 33898 n.a. 54497
I6-5 172 33799 2040 420 30207 3216 5406 29223 n.a. n.a.
I8-1 276 53871 2863 694 50178 2724 14890 49797 n.a. 70269
I8-2 323 38589 2199 958 33532 3361 17202 32668 n.a. 54667
I8-3 213 44856 3539 970 39643 2701 10006 38108 n.a. n.a.
I8-4 479 35850 2022 919 32307 2286 36132 31979 n.a. 46778
I8-5 213 45066 2414 704 39911 3455 19170 37979 n.a. 61476
Avg. 191 31025 3753 493 27936 4918 8287 27160 n.a. 38923

P:pricing method; T:Total running time(s);
Col.:Total columns generated; Obj.:Objective value(km).
Obj*.:Objective value with a limited computational time.
n.a.:Failed to find feasible solution in the given time.

Gurobi: t=-3.389, p<0.01; P2 vs. Gurobi: t=-3.298, p<0.01) with competitive solutions.

This is particularly true when P2 is used as, on average, it uses around 5% of the time

used by Gurobi but produces solutions that are only 776km (or 2.80%, P2 vs. Gurobi:

t=4.517, p<0.01) away from optimality. On the other hand, if we reduce computational

time, for many instances Gurobi fails to produce a feasible solution. Between P1 and P2,

P1 generates less columns and is faster, but produces inferior solutions for most instances.

To evaluate the effectiveness of the pricing subproblem, we conducted another set

of experiments by replacing the routes produced by the pricing subproblem with

maxColumns randomly selected routes (from all possible feasible routes) of the RMP at

each iteration. All the other settings were kept the same as before. Column in Tabe 6

presents the objective values based on the average of five runs. As can be seen, the results

are significantly inferior to those by P1 or P2 (P1 vs. Random: t=-6.496, p<0.01; P2 vs.

Random: t=-6.993, p<0.01), which shows the importance of the pricing subproblem.

7. Experiments on instances with a very large R

For larger instances, the feasible route set R can become very big and therefore it becomes

impossible to enumerate them all as we did in the previous section. In this section, we inves-

tigate the effectiveness and performance of the two metaheuristic approaches presented in

section 5.5. As the evidence from previous experiments suggest P2 performs better than P1,
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for the remaining experiments only P2 is used. Similar to the previous section, maximum

maxColumns= 1000 columns are allowed to be generated by both VNS and GA at each

iteration. As maxColumns is the only parameter used in the proposed VNS based column

generator, parameter tuning for VNS is omitted. We now illustrate parameter tuning for

the GA.

7.1. Parameter Tuning for GA

The parameters used in the proposed GA are the population size (populationSize), the

generation size (generations), the probability of mutation (mutationRate), and the tourna-

ment size i.e. the tournament rate (tournamentRate). In this experiment, the mutationRate

is set to 0.02 and the tournamentRate is set to 0.1 after some initial tuning. Table 7 shows

the results with the algorithm with different population sizes and different number of gen-

erations for the two most challenging problem instances LB8-1 and LB8-2. Each instance

was run five times and the average result of both instances is given in column Avg.. The

maxIteration is set to 5 as increasing it further gives very little further improvement. With

the consideration of algorithm efficiency, we choose the combination of populationSize=500

and generations=500.

Table 7 Experiment results for evaluating populationSize and generations

populationSize 10 100 200 500 10 100 200 500 10
generations 10 10 10 10 100 100 100 100 200

Avg. 25043 22154 21797 21280 21930 20991 20588 20079 21647
populationSize 100 200 500 10 100 200 500 1000 2000
generations 200 200 200 500 500 500 500 1000 2000

Avg. 20676 20128 19999 21205 20228 20081 19879 19775 19724

7.2. Comparing VNS and GA based column generation approaches

Due to the very large amount of computational time required, we select a total of six

instances, two from the real-life instance set and four from the artificial instance set used by

Bai et al. (2015). The instance names starting with NP are real-life instances while those

starting with LB, TB, LU and TU represent (Loose, Balanced), (Tight, Balanced),

(Loose, Unbalanced) and (Tight, Unbalanced) configurations of artificial instances.

The first digit of each instance name indicates the length of the planning horizon (e.g.

NP4-1 is a real-life instance with a 4-shift planning horizon).

The stopping criterion maxIteration is set to 10 for both VNS and GA. Figure 5 lists

the average objective values of five runs of experiments. The horizontal axis defines the
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number of RMP iterations while the vertical axis given the objective values. The results

suggest that the GA is a faster converging algorithm thanks to its population based search

framework and capacity to evolve a set of routes instead of a single one.

(a) Instance NP4-1 (b) Instance NP8-1

(c) Instance LB8-1 (d) Instance TU8-7

(e) Instance TB4-4 (f) Instance LU4-6

Figure 5 Comparison of performance maxIteration=10.

As experiments show that the VNS converges in 30 RMP iterations, for a fairer com-

parison, we set maxIteration to 30 for both GA and VNS for all instances. In addition,

a comparison was also made with previous results obtained by the three-stage method,

meta-heuristic methods and lower bound reported in Bai et al. (2015).
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Table 8 presents the running time and objective values obtained by the pricing method

P2 using VNS and GA column generators (P2-VNS, P2-GA), 3-stage method (Bai et al.

2015), meta-heuristic methods using simulated annealing hyper-heuristic (SAHH ), and

reactive shaking variable neighbourhood search (rsVNS ). In terms of objective values, the

average results in increasing order are as follows: P2-GA < 3-stage < P2-VNS < SAHH

< rsVNS. The best results are highlighted in bold. The average running times show an

increasing order as follows: P2-VNS < SAHH < P2-GA < rsVNS < 3-stage. Two tailed

Paired t-tests (α = 0.01) were conducted to compare P2-VNS and P2-GA with 3-stage,

SAHH and rsVNS approaches. There were significant differences in the solution quality

for P2-VNS vs. P2-GA(t=3.698, p<0.01), P2-VNS vs. rsVNS(t=-4.239, p<0.01), P2-VNS

vs. SAHH(t=-3.916, p<0.01), P2-GA vs. rsVNS(t=-5.667, p<0.01), P2-GA vs. SAHH(t=-

5.463, p<0.01). These tests suggest that both P2-GA and P2-VNS are able to find better

solution in less time than most of the existing algorithms.

The novel solution coding and pricing methods limit the search space for the algorithm,

so its efficiency is increased compared with the results obtained by meta-heuristics (rsVNS

and SAHH ). The 3-stage method performs well for tight instances, but it does less well

for large and loose instances. The reason is that it employs an integer programming solver

so its solution time increases exponentially with large problem sizes. The proposed column

generation methods are able to find effective columns in order to reduce the problem

size, therefore, compared with the 3-stage method, the solving time of column generation

method is significantly decreased for large instances. However, the advantage of column

generation method may not be obvious for small problem instances (i.e. tight and small

instances) as the iterative RMP solving comprises a significant proportions of the run time

by the algorithm.

8. Conclusions

We have presented an innovative FTL routing formulation assisted by dynamic cuts and

investigated column generation based approaches which are particularly effective on very

large instances. Unlike traditional branch-price-and-cut, it performs an incomplete search,

with the aim of finding good solutions more quickly. It efficiently solves the problem using

the following strategies: 1) Infeasible flow assignments are allowed in the column generation

process but will be fixed by adding cuts in the end; 2) To reduce the number of decision
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Table 8 Comparisons with previous results

P2-VNS P2-GA 3-stage rsVNS SAHH
Instance T Obj. T Obj. T Obj. T Obj. T Obj.
NP4-1 126 13978 405 13860 33301 13509 4800 14453 310 14471
NP4-2 112 16667 462 16621 15742 16636 4800 16593 386 16595
NP4-3 132 17110 417 17106 11178 16879 4800 17138 590 17383
NP4-4 273 22100 509 21980 18537 21886 4800 22302 545 22142
NP4-5 384 26184 1195 26166 20647 26731 4800 26216 1022 26239
NP6-1 1017 34054 3742 34022 160079 34055 7200 35209 1613 35122
NP6-2 1360 33490 1868 33490 138486 33316 7200 33808 955 33653
NP6-3 45 16150 198 16094 3978 16192 7200 16660 211 16247
NP6-4 356 26146 1262 26126 58898 26260 7200 26272 698 26316
NP6-5 545 16883 984 16817 104446 16881 7200 17950 492 17800
NP8-1 730 33889 1133 33789 148067 35685 9600 34181 822 34095
NP8-2 825 30576 1612 30554 147241 30633 9600 31639 869 31310
NP8-3 1049 28281 1260 28281 121074 28314 9600 28450 878 28451
NP8-4 1211 43643 1731 43630 66438 44224 9600 43955 1631 43943
NP8-5 898 25419 1415 25389 131369 25452 9600 25742 1128 26182
LB4-1 89 15852 447 15766 13438 15763 4800 16011 292 15865
LB4-2 61 14975 283 14777 3812 14319 4800 15291 414 15059
TB4-3 30 11027 128 10364 1415 10867 4800 11027 288 11092
TB4-4 21 12671 157 12172 186 12508 4800 13577 383 13495
LU4-5 66 18242 183 17676 1590 18500 4800 19884 276 19717
LU4-6 65 19403 215 19394 1783 20316 4800 19741 233 19859
TU4-7 6 12869 113 12804 79 13033 4800 13760 232 14377
TU4-8 12 18920 125 17956 138 17025 4800 17846 491 17815
LB8-1 375 18251 1803 18097 138988 18133 9600 18542 1899 18325
LB8-2 444 22265 2909 20928 157354 22834 9600 23068 1266 22990
TB8-3 73 21670 224 20456 148 21338 9600 21657 2602 21689
TB8-4 112 28001 193 25316 561 28167 9600 28398 2391 28305
LU8-5 73 23288 248 22453 4380 21226 9600 24587 915 24787
LU8-6 226 23528 659 22690 13202 23261 9600 24412 1204 24261
TU8-7 58 32680 166 32334 140 31094 9600 35595 484 35581
TU8-8 58 27884 197 26958 66 27406 9600 28197 434 28162
Large 8355 105793 7801 100119 n.a. n.a. 9600 142258 15848 141252

Average 349 22777 847 22389 48928 22659 7200 23295 837 23269
n.a.:Failed to find feasible solution in given time.
Average: ignoring the results of the Large instance.

variables, some constraints are pre-processed offline; 3) The shift that a route belongs to is

not restricted; 4) To avoid traversing the entire search tree, metaheuristics are implemented

to repeatedly identify new columns with negative reduced costs in light of both new pricing

information and latest columns on the basis of the RMP problem.

Two pricing methods and two approaches for generating initial routes were proposed and

evaluated. The result indicates that the proposed solution methods improve the existing

algorithms in terms of both the computational time and the solution quality. We believe

the advantageous features of the indirect solution encoding of the FTL problem have been

fully explored in this paper and the proposed solution methods can efficiently solve real-life

drayage container operation problem with long planning horizon covering multi-shifts.
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Marino, A., Prügel-Bennett, A., Glass, C.A., 1999. Improving graph colouring with linear programming and

genetic algorithms, in: In, Citeseer.

Muthuraman, S., Venkatesan, V.P., 2017. A comprehensive study on hybrid meta-heuristic approaches

used for solving combinatorial optimization problems, in: 2017 World Congress on Computing and

Communication Technologies (WCCCT), IEEE. pp. 185–190.

Nossack, J., Pesch, E., 2013. A truck scheduling problem arising in intermodal container transportation.

European Journal of Operational Research 230, 666 – 680.

Puchinger, J., Raidl, G.R., 2004. An evolutionary algorithm for column generation in integer programming:

an effective approach for 2d bin packing, in: International Conference on Parallel Problem Solving from

Nature, Springer. pp. 642–651.

Puchinger, J., Raidl, G.R., 2005. Combining metaheuristics and exact algorithms in combinatorial optimiza-

tion: A survey and classification, in: International work-conference on the interplay between natural

and artificial computation, Springer. pp. 41–53.

33 of 34



Puchinger, J., Raidl, G.R., Koller, G., 2004. Solving a real-world glass cutting problem, in: European

Conference on Evolutionary Computation in Combinatorial Optimization, Springer. pp. 165–176.

Ritzinger, U., Puchinger, J., Hartl, R.F., 2016. A survey on dynamic and stochastic vehicle routing problems.

International Journal of Production Research 54, 215–231.

Ruiyou Zhang, Won Young Yun, I.M., 2009. A reactive tabu search algorithm for the multi-depot container

truck transportation problem. Transportation Research Part E: Logistics and Transportation Review

45, 904 – 914.

Smilowitz, K., 2006. Multi-resource routing with flexible tasks: an application in drayage operations. Iie

Transactions 38, 577–590.

Soares, R., Marques, A., Amorim, P., Rasinmäki, J., 2019. Multiple vehicle synchronisation in a full truck-

load pickup and delivery problem: A case-study in the biomass supply chain. European Journal of

Operational Research 277, 174–194.

Strandmark, P., Qu, Y., Curtois, T., 2020. First-order linear programming in a column generation based

heuristic approach to the nurse rostering problem. Computers & Operations Research , 104945.

Vasquez, M., Hao, J.K., et al., 2001. A hybrid approach for the 0-1 multidimensional knapsack problem, in:

IJCAI, pp. 328–333.

Vidal, T., Crainic, T.G., Gendreau, M., Prins, C., 2014. A unified solution framework for multi-attribute

vehicle routing problems. European Journal of Operational Research 234, 658–673.
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