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A B S T R A C T

Advances in additive manufacturing (AM) have facilitated the fabrication of cellular structures inspired by
those in the natural world. But the design of complex, tessellating cellular structures remains a challenge
for human designers, and only a small number of geometries, defined either by connected walls or struts,
or by surface equations, have been investigated. This study introduces generative deep learning to the
problem, with the aim of synthesising novel cellular geometries producible by AM. Our unconditional 3D
latent diffusion model (U3LDM) explores the design space from a new class of training data comprising
10,650 unit cells. A critical task involved developing a varied set of cell geometries based on random
permutations of trigonometric surface equations. This was coupled with a stringent set of pass/fail tests to
ensure the generated structures possessed structural connectivity and could tessellate in 3D. The new cellular
structures were analysed numerically using finite element analysis, fabricated by polymer AM, and subjected to
compression tests to verify their manufacturability and mechanical properties. Results indicate that the U3LDM
is capable of generating new ‘unseen’ cellular structures with geometries and mechanical properties consistent
with those of the training specimens. This method also demonstrates the potential universal technique for
creating nature-inspired and AM-manufacturable structures beyond the currently limited set of human-derived
geometries.
1. Introduction

Additive manufacturing (AM) mitigates some traditional manufac-
turing constraints (CNC tool access, for example) and enables the
production of geometrically complex parts, making it effective in fabri-
cating cellular structures [1]. As illustrated in Fig. 1, these are widely
observed in biological systems, including the stems of plants, butterfly
wings, and animal bones. Such structures have attracted significant
attention due to their high specific strength and surface area [2], their
potential use in orthopaedic implants [3], and their energy absorption
characteristics under axial compression and complex loads [4]. Thanks
to the capabilities of AM, cellular structures have been applied in
engineering domains including thermal management [5], biological
tissue engineering [6], vibration sensing [7] and various other fields.

The speed and quality of geometric modelling of cellular structures
remain crucial factors at the design stage [8]. Various commercial
computer-aided-design (CAD) packages, such as Autodesk Netfabb [9],
Rhinoceros 3D [10] and nTopology [11], along with non-commercial
options like MSlattice [12] and FLatt Pack [13], have been developed
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for designing cellular structures. However, modelling cellular struc-
tures with complex geometries remains challenging with existing CAD
software [14]. This challenge persists because it requires experienced
designers and extensive trial-and-error efforts to explore the design
space [15], which anyway is still constrained by designers’ knowledge
and past experience.

To tackle the above challenge, some studies have used optimisation
algorithms to design and adjust cellular structures. Alkhatib et al. [16]
designed structures with the objective of mechanical isotropy through
topology optimisation (TO). A multi-patch isogeometric topology op-
timisation (MP-ITO) method was proposed by Gao et al. [17] for the
design of periodic or graded cellular structures, and Zhang et al. [18]
introduced a Kriging-assisted multiscale TO method to achieve max-
imum natural frequencies in heterogeneous cellular structures. How-
ever, optimising cellular lattice structures remains challenging due
to the need for systematic and accurate characterisation, as well as
knowledge of the design and manufacturing constraints [19].
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Fig. 1. Biological cellular structures from nature. (a) English oak hardwood [20], (b)
butterfly wings [21], (c) mice epiphysis [22], (d) transverse of sea urchin [23].

Machine learning has also been employed to enhance design capa-
bilities beyond brute force computation [24]. Machine learning models,
such as artificial neural networks (ANNs), are widely implemented to
predict and optimise structural properties such as the stiffness ma-
trix [25], Poisson’s ratio [26] and buckling load [27]. These are pow-
erful tools for designing structures with target mechanical properties.
However, human intervention in data labelling leads to models fo-
cusing on the connections between labels and samples, limiting their
capability to create truly new structures [28].

Unconditional generative methods, such as variational autoencoders
(VAEs) and generative adversarial networks (GANs), explore the design
space without human-specified constraints and are capable of generat-
ing a vast number of new designs. A VAE model has been utilised by
Zhang et al. to reconstruct 3D digital rocks [29]. However, VAEs are
ineffective at capturing complex data distributions [30], and the detail
representation and quality of VAE-generated images cannot compete
with that of GANs [31]. ScaffoldGAN was previously proposed for
the synthesis of bone scaffolds [32], and a combination of a two-
dimensional GAN and a similarity-based stacking approach was used to
generate 3D structures based on X-ray CT images of porous media [33].
Shen et al. developed a GAN to generate nature-inspired architectured
materials [28]. However, GANs can suffer from training instability
and mode collapse [34]. The latter refers to the case where, despite
the model’s stochastic nature and different initial conditions, the GAN
consistently produces very similar designs [35]. Compared to GAN,
diffusion model (DM) approaches are more resistant to model collapse
and training instability [36].

In the study from Jadhav et al. [25], a 3D DM was employed for
generating cellular structures, either unconditionally or conditionally.
It directly operated on the solution fields of trigonometric surface
equations, which subsequently limited the spatial resolution of the
generated designs, thereby reducing the accuracy of structural fabri-
cation and analysis [37]. This yields structural details with high spatial
frequency, which require extensive training to model accurately [38].
The recently developed latent diffusion model (LDM) [38] conducts
diffusion and denoising processes in the latent space, thereby reducing
computational costs compared to a traditional DM. Herron et al. [35]
explored the use of a conditional 3D LDM to generate structures with
strain energy similar to those originating from solid isotropic material
with penalisation (SIMP) optimisation. However, the 3D LDM of Herron
et al. is guided by labels during the generation process, and its design
space is influenced by conditional labels. A limitation of this method
is that it only generates binary 3D voxel grids for the designed struc-
tures, which are unable to capture smooth gradients and geometrical
transitions at high spatial frequencies. In addition, generative models
developed in computer science do not always generate high-quality,
high-fidelity images or structures in specific research domains, such as
the generation of kirigami metamaterials [39].

Consequently, there is currently a lack of documented investigation
into the unconditional 3D latent diffusion model (U3LDM) for AM
2

design within a broad design space. Our study aims to be the first to
develop a U3LDM for a new context — designing cellular structures
with new geometries for AM. Uniquely, the training data comprised a
comprehensively diverse set of cell geometries generated by a triply
periodic continuous surface (TPCS) approach. Unlike recent studies,
which are based on unconditional GAN and conditional LDM that
employ binarised voxel arrays [28,32,33,35], our approach uses 𝑈
arrays that result from the trigonometric surface equations and preserve
the geometry and smooth contours of the underlying 3D mathematical
surfaces. The U3LDM learns from the provided dataset in the latent
space and is capable of sampling from the learned design space to
create new and AM-manufacturable cellular structures. We demonstrate
the capabilities of this method and quantitatively assess its effective-
ness. The newly generated cells are here investigated using numerical
analysis and physical testing. This new design approach will not only
facilitate the creation of manufacturable cellular structures with never
before seen geometries, but also lays the foundation for developing
new designs with performance that outstrips that which is currently
accessible through conventional design methods.

Following this introduction, the methodologies for cell geometry
generation, dataset construction, and the U3LDM are introduced in
Section 2. The results of geometry comparison, numerical analysis,
AM fabrication and compression tests of the generated designs are
presented in Section 3. Section 4 summarises the work and discusses
future directions.

2. Methodology

2.1. Surface-based cellular structure design

We first generate a dataset comprising AM-manufacturable cellular
structures to represent the design space. Inspired by triply periodic
minimal surfaces (TPMS), we present the TPCS approach to create a
vast array of cellular structures with diverse geometries and proper-
ties. Before introducing the surface equations, some shorthand terms
related to these equations are presented. 𝑘𝑖 define cellular function
periodicities:

𝑘𝑖 = 2𝜋 𝑛𝑖 (1)

where 𝑖 = 𝑥, 𝑦, 𝑧, indicating that the design space spans the 𝑥, 𝑦 and 𝑧
directions. 𝑛𝑖 is the number of cell repetitions along each direction. The
following sine and cosine functions are then formulated:

𝑆𝑖 = 𝑠𝑖𝑛(𝑘𝑖
𝑖
𝐿𝑖

) (2)

𝑆2𝑖 = 𝑠𝑖𝑛(2𝑘𝑖
𝑖
𝐿𝑖

) (3)

and

𝐶𝑖 = 𝑐 𝑜𝑠(𝑘𝑖 𝑖
𝐿𝑖

) (4)

𝐶2𝑖 = 𝑐 𝑜𝑠(2𝑘𝑖 𝑖
𝐿𝑖

) (5)

where 𝐿𝑖 represents the sizes of the cellular structure along each axis.
Sets of trigonometric functions in each direction are represented as
follows:

𝑆 𝐶 𝑋 ∈ {𝑆𝑥, 𝑆2𝑥, 𝐶𝑥, 𝐶2𝑥, 1} (6)

𝑆 𝐶 𝑌 ∈ {𝑆𝑦, 𝑆2𝑦, 𝐶𝑦, 𝐶2𝑦, 1} (7)
𝑆 𝐶 𝑍 ∈ {𝑆𝑧, 𝑆2𝑧, 𝐶𝑧, 𝐶2𝑧, 1} (8)
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Fig. 2. The main methodology of TPCS cellular structure design. This example shows
the creation of a cellular structure with a 2 × 2 × 2 array of cells. The 3D array or
surface, 𝑈 , is defined by summations of trigonometric terms (see Eqs. (1)–(9)).

Then the TPCS approximation of the cellular structure is given by
summations of the form:

𝑈𝐺 =

⎧

⎪

⎪

⎪
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⎪
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⎩

𝑎1
(
∑3
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)𝑚 − 𝑡𝑚, 𝐺 = 1

(

𝑎1
3
∑

𝑗=1
𝑆 𝐶 𝑋𝑗𝑆 𝐶 𝑌𝑗𝑆 𝐶 𝑍𝑗−

𝑎2
6
∑

𝑗=4
𝑆 𝐶 𝑋𝑗𝑆 𝐶 𝑌𝑗𝑆 𝐶 𝑍𝑗

) 𝑚 − 𝑡𝑚
, 𝐺 = 2 (9)

where 𝑈𝐺 represents the 𝑈 array, which is a 3D matrix prescribed
by the trigonometric functions spanning positive and negative values.
The boundary between positive and negative values (which is the 𝑈 =
0 surface) can be interpreted as a solid–void boundary, meaning 𝑈
can be treated as representing a 3D geometry. 𝑎1, 𝑎2, 𝑚 and 𝐺 are
parameters that define the complexity of the generated geometries,
with 𝐺 being the number of summative terms, 1 or 2. 𝑆 𝐶 𝑋𝑗 , 𝑆 𝐶 𝑌𝑗 and
𝑆 𝐶 𝑍𝑗 represent randomly selected elements from the sets 𝑆 𝐶 𝑋, 𝑆 𝐶 𝑌
and 𝑆 𝐶 𝑍, respectively, which are used as the 𝑗th sub-term of Eq. (9).
The variable 𝑡 controls the positions of the 𝑈 = 0 surface, and is used
to control the solid volume fraction of the resulting cellular structure.

As illustrated in Fig. 2, the 𝑈 = 0 boundary separates solid and
void regions, with the solid regions forming the cellular structure
suitable for finite element (FE) analysis and AM. A large number of
candidate cellular structures with diverse geometries can be generated
by the combinational exploration of randomly generated values of 𝐺,
𝑎1, 𝑎2, 𝑆 𝐶 𝑋, 𝑆 𝐶 𝑌 , 𝑆 𝐶 𝑍, 𝑚, and 𝑡 based on Eq. (9). For computational
efficiency, predefined ranges are utilised for these variables. Drawing
inspiration from existing TPMS equations in the literature [13], 𝑎1 and
𝑎2 are assigned integer values from −4 to 4. The parameter 𝑚 takes
integer values from {1, 2, 3}, and 𝑡 ranges as a float from −3 to 3.
𝑆 𝐶 𝑋, etc. are selected randomly from the sets given in Eqs. (6)–(8),
and 𝐺 is either 1 or 2. We generate 3D 𝑈 arrays with a resolution
of 128 × 128 × 128 voxels per lattice cell. 𝑈 arrays with minimum
values ranging from −12.5 to −2.4, maximum values from 2.4 to 12.5
and a maximum standard deviation of 5 are chosen as candidates
for dataset construction. Following this, geometrical tests designed to
ensure manufacturability are applied to further refine the dataset.

2.2. Manufacturability requirements

𝑈 arrays are converted to binarised voxel data based on the 𝑈 = 0
isosurface, and five constraints are applied to verify the manufactura-
bility of the cell geometries.

m1. The volume fraction, 𝜌∗, representing the proportion of the cell
composed of solid material, is checked. Unit cells with 𝜌∗ ranging
from 0.1 to 0.8 pass this test.

m2. The number of solid regions in the unit cell is determined
by evaluating the 3D connectivity of each voxel. Only cells
containing one solid region are acceptable.
3

m3. The presence of solid elements at the cell faces is checked. Only
cells which possess some solid elements at all faces pass this test.

m4. The cell faces are examined to determine if each one contains
more than 5% solid voxels. This is to prevent thin neck regions
in the resulting cellular structures, which would possibly be
unmanufacturable, and would anyway possess limited strength.

m5. Opposing cell face pairs are analysed for similarity by calculating
the ratio of overlapping solid elements to the total number of
overlapping and distinct solid elements. Ratios falling between
0.95 and 1.05 indicate that the unit cell exhibits approximate
periodicity, and therefore can be tessellated to form a larger
continuous cellular structure.

𝑈 arrays meeting all these criteria undergo min–max normalisation
to scale them to the range of 0 to 1 and are then utilised for training
the U3LDM. The process is summarised in Fig. 3.

Examples of normalised 𝑈 arrays with various 𝜌∗ values along with
their corresponding boundary representations are shown in Fig. 4. The
dataset comprises normalised 𝑈 arrays spanning 𝜌∗ values from 0.1 to
0.8, incremented by 0.01. 150 samples are preserved for each volume
fraction, resulting in a total of 10,650 normalised 𝑈 arrays using the
described methodology. The dataset is randomly split into training and
testing subsets, with 90% and 10% of the samples allocated to each set,
respectively.

2.3. Unconditional 3D latent diffusion model

Fig. 5 depicts the architecture of the U3LDM developed here. It
consists of two main components: an external variational autoencoder-
generative adversarial network (VAE-GAN) and an internal DM. The
VAE-GAN encodes 𝑈 arrays into latent space, while DM operates on
these latent representations. After training, DM can generate new latent
representations, which are then decoded to 𝑈 arrays using the VAE
decoder. Notably, geometry tests (see Section 2.2) are embedded in
the U3LDM to ensure that the generated designs are tessellable and
manufacturable. These processes are described more completely in the
following sections.

2.3.1. Variational autoencoder-generative adversarial network
The VAE consists of an encoder, 𝑝𝜃(𝑧𝑢|𝑈 ), which maps the input 𝑈

to the latent variable 𝑧𝑢, and a decoder, 𝑝𝜃(𝑈̂ |𝑧𝑢), which reconstructs
𝑈̂ from the latent representation. Both the encoder and decoder are
neural networks composed of 3D convolutional layers. Subsequently,
the decoder acts as the generator within the GAN framework, while
a discriminator distinguishes between real data and that generated by
the decoder. We incorporated a GAN discriminator in our VAE in order
to employ an adversarial training strategy. This has been shown to
improve VAE compression and reconstruction capabilities [40–42].

The VAE is optimised using three loss terms. The first is the recon-
struction loss, 𝑟𝑒𝑐 , which comprises both a per-voxel loss function and
a perceptual loss function, 𝑝𝑒𝑟𝑐 , [43] that relies on high-level features.

𝑟𝑒𝑐 (𝑈 , 𝑈̂ ) = ‖𝑈 − 𝑈̂‖1 + 𝑝𝑒𝑟𝑐 (𝑈 , 𝑈̂ ) (10)

The second loss term regularises the latent variables sampled from
the encoder-mapped distribution towards a Gaussian prior distribu-
tion. This is achieved by minimising the Kullback–Leibler (KL) diver-
gence between the prior distribution 𝑝(𝑧𝑢) and the encoder-mapped
distribution 𝑝𝜃1(𝑧𝑢|𝑈 ).

𝐾 𝐿(𝑈 ) = 𝐾 𝐿(𝑝𝜃1(𝑧𝑢|𝑈 )||𝑝(𝑧𝑢)
)

(11)

The third loss term is derived from the manufacturability constraints
on binarised U arrays, 𝑈𝑏. This guides the model in maintaining the
regularities of the training samples and is defined as:
𝑝ℎ𝑦(𝑈𝑏, 𝑈̂𝑏) =𝜆1|𝜌∗𝑈𝑏

− 𝜌∗
𝑈𝑏
| + 𝜆2(𝑁𝑠 − 1)

+ 𝜆3
6
∑

(

‖𝐹𝑖(𝑈𝑏) − 𝐹𝑖(𝑈̂𝑏)‖1
)

(12)
𝑖=1
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Fig. 3. TPCS-based U array dataset generation, featuring randomised parameters in the underlying 3D trigonometric functions, and the application of pass/fail geometry tests to
ensure the resulting generated cells can form larger manufacturable cellular structures.
Fig. 4. TPCS generated unit cells. (a) Normalised U arrays, (b) boundary representations.
where the three sub-terms are derived from manufacturing constraints
(m) in Section 2.2 as follows: the first sub-term is based on m1, the
second on m2, and the third on a combination of m3, m4 and m5.
These three constraints respectively guide the reconstructed 𝑈 arrays
to preserve the volume fraction, retain the number of solid regions, and
match the cell faces with those of the input. Specifically, 𝜌∗𝑈𝑏

and 𝜌∗
𝑈̂𝑏

are
the volume fractions of the input and reconstructed 𝑈𝑏, respectively. 𝑁𝑠
is the number of solid regions produced by 𝑈̂ . 𝐹 (𝑈𝑏) and 𝐹 (𝑈̂𝑏) denote
the cell faces of the input and reconstructed 𝑈𝑏, respectively. 𝜆1, 𝜆2 and
𝜆3 control the weights of the different loss components.

Finally, the VAE loss is represented as follows:

𝑉 𝐴𝐸 = 𝜆4𝑟𝑒𝑐 (𝑈 , 𝑈̂ ) + 𝜆5𝐾 𝐿(𝑈 ) + 𝑝ℎ𝑦(𝑈𝑏, 𝑈̂𝑏) (13)

where 𝜆4 and 𝜆5 are hyperparameters used to control the weighted
contribution of different high-level loss terms.

Regarding the GAN loss, the Hinge loss [44] is adopted:

𝐺𝐺 𝐴𝑁 = −E[𝐷𝐺 𝐴𝑁
(

𝐺𝐺 𝐴𝑁 (𝑧𝑢)
)]

(14)

𝐷𝐺 𝐴𝑁 =E
[

𝑚𝑎𝑥
(

0, 1 −𝐷𝐺 𝐴𝑁 (𝑈 )
)]

+ E
[

𝑚𝑎𝑥
(

0, 1 +𝐷𝐺 𝐴𝑁
(

𝐺𝐺 𝐴𝑁 (𝑧𝑢)
))]

(15)

where 𝐺𝐺 𝐴𝑁 (𝑧𝑢) and 𝐷𝐺 𝐴𝑁 (𝑈 ) are the outputs of the GAN generator
and discriminator, respectively.

The VAE is trained initially to improve the stability of the training
procedure, and the GAN is initiated after 𝑠 steps. So the final loss
4

𝐺 𝐴𝑁
functions for the VAE-GAN are:

𝐹 𝐺 =
{

𝑉 𝐴𝐸 , 𝑠𝑡𝑟𝑎. < 𝑠𝐺 𝐴𝑁
𝑉 𝐴𝐸 + 𝜆6𝜆𝑎𝑑 𝑎𝑝.𝐺𝐺 𝐴𝑁 , 𝑠𝑡𝑟𝑎. ≥ 𝑠𝐺 𝐴𝑁

(16)

𝐹 𝐷 =
{

0, 𝑠𝑡𝑟𝑎. < 𝑠𝐺 𝐴𝑁
𝐷𝐺 𝐴𝑁 , 𝑠𝑡𝑟𝑎. ≥ 𝑠𝐺 𝐴𝑁

(17)

where 𝐹 𝐺 and 𝐹 𝐷 are generator and discriminator losses, respec-
tively. 𝜆𝑎𝑑 𝑎𝑝 adjusts the weight of the adversarial loss autonomously
based on the gradient norms of the losses [38], while 𝜆6 controls the
effect of the adaptive adversarial loss. 𝑠𝑡𝑟𝑎. is the number of training
steps.

2.3.2. Denoising diffusion probabilistic model
The 3D denoising diffusion probabilistic model (DDPM) for gen-

erating U arrays is derived from 2D DDPM [45] by replacing 2D
convolution with 3D convolution. This model includes both forward
diffusion and reverse denoising processes. The noising procedure is a
Markov process, and it can be defined as:

𝑞(𝑧(𝑡)𝑢 |𝑧(𝑡−1)𝑢 ) ∼  (𝑧(𝑡)𝑢 ;
√

1 − 𝛽𝑡𝑧
(𝑡−1)
𝑢 , 𝛽𝑡𝐈) (18)

where 𝑧(𝑡)𝑢 is the latent representation after 𝑡 diffusion steps. 𝛽𝑡 ∈ (0, 1)
controls the noising schedule, and 𝐈 is the identity matrix.

Once the reverse distribution 𝑞(𝑧(𝑡−1)𝑢 |𝑧(𝑡)𝑢 ) can be learned, the noise
can gradually be removed in the backward steps, and this process can
be approximated by a neural network with parameter 𝜃. The diffusion
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Fig. 5. The principle of the U3LDM. (a) Training stage. 𝑈 arrays are mapped into the latent space and reconstructed by the VAE-GAN. A DDPM learns the latent representations
through forward diffusion and reverse denoising. (b) Inference process. The DDIM generates latent representations from random noise, which the pretrained decoder reconstructs
back to 𝑈 arrays. Geometry tests (see Section 2.2) ensure that the generated designs are tessellable and manufacturable.
neural network is trained by minimising the distance between the
predicted and added noises, which is defined as:

𝑀 𝐴𝐸 = E𝑧(0)𝑢 ,𝑡,𝜖(𝑡) [‖𝜖
(𝑡) − 𝜖(𝑡)𝜃 (𝑧(𝑡)𝑢 )‖1] (19)

where 𝜖(𝑡) and 𝜖(𝑡)𝜃 are the added noise and predicted noise at step 𝑡.
Nichol et al. [46] demonstrated that the model’s performance can be

improved through the optimisation of variational lower-bound (VLB),
so we adopted 𝑉 𝐿𝐵 from Ho et al. [45]. Finally, the learning objective
for the DDPM is defined as follows:

𝐷 𝐷 𝑃 𝑀 = 𝑀 𝐴𝐸 + 𝑉 𝐿𝐵 (20)

2.3.3. Denoising diffusion implicit model
The main drawback of DDPM is that each step in the denoising

process involves some randomness, and it requires a large number of
steps to generate a new design. To accelerate the sampling process
with the pre-trained DDPM, the denoising diffusion implicit model
(DDIM) [47] is proposed. In DDIM the reverse diffusion process be-
comes deterministic, thereby enhancing the consistency and stability
of the generation process. Consequently, DDIM enables latent variable
generation with fewer reverse steps, reducing computational costs and
accelerating the sampling process.

2.4. Model architecture

The model architecture draws inspiration from Rombach et al. [38]
and incorporates 3D convolution. The DDPM [45] leverages a U-
Net [48] for predicting noise due to its excellent capability to capture
and fuse multi-scale features. Table 1 summarises the VAE and U-Net
architectures. The VAE model operates with 4 feature map resolu-
tions spanning from 128 × 128 × 128 down to 16 × 16 × 16 and
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Table 1
Parameters in the VAE and U-Net model architectures.

VAE U-Net

Input channels 1 16
Base channels 32 256
Channel multipliers [1, 2, 4, 4] [1, 2, 4, 4]
Global attention
layer

0 1

Attention layers on
spatial resolution

0 [16, 8, 4]

Residual blocks 1 1
z channels 16 –
Output channels 1 16

incorporates 1 convolutional residual block per resolution level. The
input normalised U arrays, initially sized at 128 × 128 × 128 × 1, are
encoded into a latent representation of 16 × 16 × 16 × 16 by the encoder,
and subsequently decode back to the initial size by the decoder. The
U-Net architecture includes 4 feature map resolutions ranging from
16 × 16 × 16 to 2 × 2 × 2, with 1 convolutional residual block per
resolution level. From the resolution level of 16 × 16 × 16 down to
4 × 4 × 4, a global attention layer with a single head is employed
between convolution blocks. The GAN discriminator is developed from
the PatchGAN discriminator [49] and extended to process 3D data.

2.5. Training procedure

Both the VAE-GAN and DDPM were implemented using PyTorch
1.13.0 and trained on an Nvidia Tesla A100 40 GB GPU. Following
Rombach et al. [38], they were optimised using Adam and AdamW,
respectively. For the VAE-GAN, the learning rate was set to 4.5 × 10−6
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Fig. 6. U3LDM-generated designs, arranged from left to right and top to bottom, with
𝜌∗ values ranging from 0.12 to 0.72 in increments of 0.04.

with an accumulated grad batch size of 24. 𝜆5 and 𝜆6 were set as 1 × 10−6
and 0.5, respectively [38]. The GAN discriminator was invoked after
30,000 steps. To maintain consistency in the scale of various loss terms,
we assigned 𝜆1, 𝜆2, 𝜆3 and 𝜆4 the values 1, 0.1, 1 × 10−5 and 1 × 10−6,
respectively. The DDPM was trained with a learning rate of 5 × 10−5, and
the accumulated grad batch size was 96. The diffusion process involved
1000 time steps with a linear noise schedule. Both the VAE-GAN and
DDPM were trained until their respective losses converged. The results
presented in Section 3 were derived from the VAE-GAN model trained
for 124 epochs and the DDPM model trained for 343 epochs.

3. Results

3.1. Cellular structure generation

Each initial U3LDM starting condition produces a unique cell de-
sign. These were evaluated qualitatively to assess the performance of
the developed U3LDM. For this evaluation, 1000 normalised U arrays
were generated with a batch size of 1, and each denoising process
contained 200 steps. The average GPU usage was 7948 MB, with an
average generation time of 35.51 s per 𝑈 array meeting the geometrical
requirements outlined in Section 2.2.

Examples of generated designs, with 𝜌∗ ranging from 0.12 to 0.72
in increments of 0.04, are presented in Fig. 6. These results indicate
that the U3LDM has successfully learned the principles required for
designing cells similar to TPCS structures.

Fig. 7 depicts different cell types selected with the same 𝜌∗, il-
lustrating the U3LDM’s ability to generate multiple geometries with
the same 𝜌∗. Therefore, the trained U3LDM is capable of generating
designs across a wide range of 𝜌∗, as well as creating various new cell
geometries not contained in the training dataset. This suggests that
U3LDM is effective in preventing instances of mode collapse.

A qualitative comparison between structures designed by the
U3LDM and similar structures from the training dataset is shown in
Fig. 8. The similarity of these structures was evaluated by calculating
the similarity of their 𝑈𝑏 arrays.

In Fig. 8, the structure shown in the top left was created by the
U3LDM with a 𝜌∗ value of 0.16. The other two structures at the top were
the most geometrically similar structures identified from the training
dataset with the same 𝜌∗. The bottom three structures were the three
most similar ones with any 𝜌∗ in the training dataset. It can be observed
that the structures designed by the U3LDM share a combination of
geometrical features present in the training dataset, however are not
identical. Notably, the generated structures do not share the same 𝜌∗ as
the three most similar structures. This demonstrates the model’s ability
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Fig. 7. U3LDM-generated designs with 𝜌∗ = 0.26.

Fig. 8. Comparison of the generated design with similar structures in the training
dataset. The top left structure represents the U3LDM-generated design. To its right
are the most similar structures that have the same 𝜌∗ value from the training dataset.
On the bottom row are the three most similar structures of any 𝜌∗ from the training
dataset.

to combine different parts from various structures while maintaining
smooth connectivity in the generated designs.

To analyse how distinct U3LDM-generated cells are from the train-
ing dataset, 190 cells that pass our manufacturability tests were gener-
ated in a single run of U3LDM. We categorised latent representations
of generated and training cells using 3D t-distributed Stochastic Neigh-
bour Embedding (t-SNE) [50] with default parameters from Pedregosa
et al. [51]. The results are shown in Fig. 9, which indicates that
U3LDM-generated designs are distinct from training samples.

The Chamfer distance, as previously used by Jadhav et al. [25], was
used to quantify the similarity of the generated and training cells. It
describes the average distance between pairs of nearest neighbours of
two sets of point clouds. The cellular structures were converted into
point clouds using PyMeshLab [52], with each point cloud spanning the
coordinate range from 0 to 10 along the 𝑥, 𝑦, and 𝑧 axes. For each point
cloud of generated designs, the most similar point cloud in the training
dataset was determined by the minimum pairwise Chamfer distance.
The average Chamfer distance between these generated cellular struc-
tures and their closest training samples was 0.48. Given this is > 0, it
further confirms that the U3LDM learns the characteristic geometrical
feature sets associated with TPCS structures and preserves key features
while generating similar designs that are not explicitly present in the
training dataset.
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Fig. 9. 3D t-SNE visualisation of the latent representations of U3LDM-generated and
training cellular structures.

3.2. Finite element analysis

To further evaluate the efficacy of the developed U3LDM for creat-
ing cells similar to TPCS geometries, the elastic moduli of the generated
structures were investigated. Gibson and Ashby [53] provided compre-
hensive insights into the physical properties of cellular solids. Among
their findings, the relationship between the relative elastic modulus
𝐸∗ and volume fraction 𝜌∗ is one of the most significant factors for
cellular structural design. Hexahedral FE meshes were created based
on the 𝑈 = 0 isosurface, where each solid element in the cellular
structure corresponds to a hexahedral element in the FE mesh. This is
the same methodology previously employed by Maskery et al. [13] to
programmatically create FE meshes for surface-based cellular structures
and export them as Abaqus FE analysis input files.

The generated cells were subjected to compressive displacements at
the nodes of their top planes, equivalent to 1% of each model’s height.
Elements on the bottom surface of each model were constrained by the
Abaqus ZSYMM boundary condition, which restricted these elements to
translation only in the 𝑥–𝑦 plane and rotation only around the 𝑧 axis.
Further details regarding the configuration and methodology for the FE
analysis can be found in [54].

In this study, three unit cells generated by the U3LDM were selected
for each 𝜌∗ ranging from 0.15 to 0.75 in increments of 0.05, giving
a total of 65 models for FE analysis. To validate their performance
compared to randomly generated TPCS structures, we chose the three
most similar designs with different volume fractions and the two most
similar designs with the same volume fraction in the training dataset.

𝐸∗(𝜌∗) for each unit cell under compressive loading in the 𝑧-
direction is presented in Fig. 10. There is no discernible elastic modulus
deviation for the U3LDM-generated models compared to those from the
training dataset. We can conclude that the U3LDM not only produces
cellular structures with similar geometries to the training dataset, but
also with broadly comparable mechanical properties to those of the
TPCS structures.

3.3. Fabrication and compression tests

This section validates the manufacturability of U3LDM-generated
cell designs, and provides some experimental verification of their me-
chanical properties to compare with TPCS cellular structures.
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Fig. 10. Comparison of 𝐸∗ between U3LDM-generated designs and similar structures
in the training dataset.

Fig. 11. U3LDM generated and fabricated structures. (a) Normalised 𝑈 arrays of unit
cells; (b) boundary representations of unit cells; (c) cellular structures comprising
4 × 4 × 4 cells; (d) fabricated specimens comprising 4 × 4 × 4 cells.

As depicted in Fig. 11, three designs with 𝜌∗ values of 0.16, 0.25,
and 0.30 were randomly selected from the U3LDM-generated models.
Structures comprising 4 × 4 × 4 cells were fabricated using a Bambu
Lab X1 Carbon 3D printer [55] from polylactic acid (Bambu Lab
PLA Basic). Each specimen had dimensions of 50 × 50 × 50 mm and
was fabricated according to the parameters detailed in Table 2. 𝜌∗

of the manufactured cellular specimens was calculated as the ratios
of their mass densities to the density of a solid specimen made with
the same printer settings (infill pattern, etc.). The mass densities were
determined via electronic balance and calliper to determine mass and
volume, respectively. The fact that all specimens were built without
failure, and the average difference in 𝜌∗ between the manufactured
specimens and the corresponding STL models was only 1.2%, confirms
the manufacturability and fidelity of the U3LDM-generated designs.

The fabricated specimens were subjected to mechanical compres-
sion using an Instron 5966 universal testing machine equipped with
a 50 kN load cell. The deformation rate was set to 0.1 mm/min. The
resulting stress–strain curves are shown in Fig. 12. Because of the
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Table 2
Parameters used by the Bambu Lab X1-Carbon Combo 3D Printer for specimens
fabrication.

Parameter Value

Material PLA basic
Nozzle temperature 220 ◦C
Nozzle diameter 0.4 mm
Layer thickness 0.16 mm
Print speed 500 mm/s
Heated bed temperature 55 ◦C

Fig. 12. Stress–strain curves of the U3LDM-generated cellular structures under com-
pression.

differences in cell geometry, they exhibit distinct behaviour under com-
pression. Specimen #1 exhibits brittle failure and collapses at around
5% strain. Specimen #2 showed an initial elastic response followed
by plastic deformation, eventually leading to structural collapse at
approximately 15% strain. Specimen #3 demonstrated a prolonged
plastic plateau, akin to those of bending-dominated cellular structures.
These behaviour profiles are generally consistent with those observed
in conventional TPMS and strut-based cellular structures made by
AM [54,56].

To determine the 𝐸∗ of these three structures, the compressive
modulus of elasticity of Bambu Lab PLA Basic was obtained from the
literature [57], with a value used in this study of 2.7 GPa. The 𝐸∗

values for U3LDM-generated cells obtained from FE analysis and via
compression of the fabricated specimens are summarised in Table 3.
𝐸∗ generally shows an increasing trend with 𝜌∗, but not for every incre-
ment in 𝜌∗. Specimen #3, despite having a larger 𝜌∗ than specimens #1
and #2, exhibits the lowest 𝐸∗ among them. Nonetheless, this remains
entirely consistent with the structural characteristics derived from TPCS
equations; i.e., specimen #3 has anisotropic mechanical properties ow-
ing to its geometry; the stiffness in other axial loading directions is
much higher. Specifically, 𝐸∗ in the 𝑥 and 𝑦 loading directions was
found by FE analysis to be 101.6 × 10−3 and 101.0 × 10−3, respectively.
Table 3 demonstrates that the elastic modulus of fabricated specimens
is well described by the FE model, with an average over-estimation, of
just 6%. Unit cells generated by the U3LDM can therefore be reliably
tessellated to form repeating cellular structures, which offers confirma-
tion that the manufacturability requirements described in Section 2.2
are effective.

A final interesting observation from the U3LDM-generated cellu-
lar structures is illustrated in Fig. 13. Unlike conventional TPMS or
strut-based geometries, which are always rotationally symmetric, spec-
imen #1 exhibits very different connectivity and symmetry in different
planes. It possesses a body-centred-cubic-like (BCC) geometry in the
𝑥-𝑦 plane and a gyroid-like structure in the 𝑦-𝑧 plane. Fig. 8 proves
that this type of cellular structure is not present in the training dataset.
Hence, it can be regarded as a hybrid structure effectively combining
8

Table 3
Comparison of 𝐸∗ of structures comprising 4 × 4 × 4 U3LDM-generated cells obtained
from FE analysis and compression tests.

𝜌∗ (%) 𝐸∗ from
FEA ×10−3

𝐸∗ from compression
tests ×10−3

Specimen #1 16 89.9 84.8
Specimen #2 25 135.0 122.6
Specimen #3 30 28.0 27.4

Fig. 13. Different views of the specimen #1. In the 𝑥-𝑦 plane, its geometry appears
identical to the commonly studied body-centred-cubic-like (BCC) cell type, while in the
𝑦-𝑧 plane, it appears like a gyroid or other surface-based cell type.

the characteristics of geometries from the training dataset. This further
demonstrates the potential of the U3LDM to create highly novel, man-
ufacturable cellular designs, and implies that the same technique could
be applied to other 3D structures (e.g., natural, biological structures)
to synthesise useful materials for a wide range of applications. Since
data-driven inverse design methods for AM rely heavily on the quality
and variety of datasets [25], they will also benefit from the U3LDM’s
ability to enrich and expand dataset diversity.

3.4. Discussion

To the best of our knowledge, the U3LDM presented here is the
first to utilise the unconditional LDM for generating 3D surfaced-
based cellular structures. Most GAN-based [32,58], DM-based [59], and
the latest LDM-based [35] 3D structure generation approaches do not
guarantee structures that can be tessellated and are limited to a single
representation of the structure.

While a DM-based approach named GLU3D [25] for generating 3D
surface-based cellular structures does exist, it is trained by a set of 22
families of known TPMS structures and their combinations. It employs
a combination of unconditional generation and masked conditioning to
enable conditional generation during the training stage, which allows
for a broad exploration of the design space. Despite this, predefined
labels may still limit the extent of the explored design space, preventing
it from fully capturing the variety of the entire dataset. Since GLU3D
directly operates at the solution fields of trigonometric equations with a
resolution of 64 × 64 × 64, it generates meshes which cannot accurately
represent complex volumes of the structure, such as thin and highly
tortuous walls or struts [25]. Furthermore, GLU3D does not address
the presence of unconnected regions of the cell, which can result in
convergence failures during FEA and make the designed structures
unmanufacturable with some AM processes.

Our U3LDM goes further by being trained on a new family of di-
verse TPCS geometries not previously available. It generates smoothly-
varying 𝑈 arrays with a resolution of 128 × 128 × 128 from the
latent space, and the inference process requires less than 8 GB of GPU
memory. The high-resolution 𝑈 arrays generated by our U3LDM, which
pass a stringent set of pass/fail geometry tests, offer adaptability for
repeating cellular that are fabricable by AM.

However, there are two limitations observed in our U3LDM’s ability
to generate structures. First, only 19% of the generated cell designs
are currently able to pass the geometry tests for tessellation and man-
ufacture. To better understand this, the generated results are further
individually evaluated through the manufacturability requirements m1
to m5 (see Section 2.2), and success rates are 98.3%, 45.9%, 95.6%,
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Fig. 14. Distribution of 𝜌∗ across the training dataset, created by the unconditional
latent diffusion model, and the U3LDM-generated results that pass geometry tests.

83.8%, and 32.3%, respectively. The low pass rates for the manufac-
turability requirements m2 and m5 are because we do not allow any
disconnected solids and only permit 5% differences on the opposite
faces to ensure tessellation, which are structural features the LDM
does not learn well. The success rate of U3LDM could potentially be
improved by imposing the geometry constraints during the diffusion
and denoising processes rather than only at the compression and recon-
struction stage, as we did here. By contrast, if we follow the evaluation
matrix employed in GLU3D [25], where any structure with 𝜌∗ > 0.05
is considered a successful generation, the comparable success rate for
our model would be 99.9%.

Another limitation is that, although our U3LDM is trained with cells
with 𝜌∗ uniformly distributed between 0.1 to 0.8, as shown in Fig. 14,
high and low volume fractions are under-represented in the U3LDM
output. We understand this discrepancy arises because the U3LDM
learns from samples with 𝜌∗ values both below and above a specific
value to generate a design with this 𝜌∗ value. A large number of LDM-
generated low 𝜌∗ samples fail the given geometry tests. This is due to
the thin connections in low 𝜌∗ structures, which the LDM struggles to
generate effectively. Additionally, the low 𝜌∗ structures contain small
solid face regions where small discrepancies between opposing faces are
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magnified in significance. As a result, the final output of our U3LDM,
shown in Fig. 14(c), spans approximately the same 𝜌∗ range as the
training dataset, but with fewer generated designs at low and high
volume fractions. This could be mitigated by implementing optimal
network architectures and training hyperparameters.

4. Conclusions and future work

This study demonstrates how a U3LDM can be used to generate
entirely new cellular structures. A dataset comprising 10,650 random
surface-based cell designs was constructed, the VAE-GAN and DDPM
models were trained, and new ‘unseen’ cellular structures were created
by DDIM and the VAE’s decoder. The U3LDM is capable of creating
similar geometries to those in the training dataset, as well as novel
structures which combine several distinct geometrical properties pre-
viously only seen in separate cell types, such as the body-centred-cubic
and gyroid.

Evidence from numerical modelling, fabrication by additive man-
ufacture, and compression testing indicate that the U3LDM can effec-
tively identify and replicate features of complex cellular geometries,
which is potentially useful for the creation of intricate nature-inspired
structures for AM. Additionally, the properties of the U3LDM-generated
structures could be manipulated through refinement of the training
dataset.

A significant improvement here over previous efforts in this area is
that we employed smoothly-varying arrays of a wide variety of TPCS
geometries instead of binarised voxel models or limited cell types in
the training dataset. This allowed the generated design to preserve
gradients and transitions to create smooth surfaces, especially in curved
and angled areas, while also presenting a wide range of geometries
and properties. Another advancement of the U3LDM is its ability to
generate 128 × 128 × 128 arrays from the latent space that pass the
geometry tests, ensuring they can be tessellated and manufactured by
AM processes while preserving more structural detail than existing
methods.

Future research directions include quantifying geometric similari-
ties between the training dataset and U3LDM-generated designs, as well
as optimising the U3LDM configurations, such as adjusting the number
of layers and weights for different loss terms to improve the efficacy of
design generation.
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