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γ‐Aminobutyric acid (GABA) and glutamate (Glu), major neurotransmitters in the brain, are

recycled through glutamine (Gln). All three metabolites can be measured by magnetic resonance

spectroscopy in vivo, although GABA measurement at 3 T requires an extra editing acquisition,

such as Mescher–Garwood point‐resolved spectroscopy (MEGA‐PRESS). In a GABA‐edited

MEGA‐PRESS spectrum, Glu and Gln co‐edit with GABA, providing the possibility to measure

all three in one acquisition. In this study, we investigated the reliability of the composite Glu + Gln

(Glx) peak estimation and the possibility of Glu and Gln separation in GABA‐edited MEGA‐PRESS

spectra. The data acquired in vivo were used to develop a quality assessment framework which

identified MEGA‐PRESS spectra in which Glu and Gln could be estimated reliably. Phantoms con-

taining Glu, Gln, GABA and N‐acetylaspartate (NAA) at different concentrations were scanned

using GABA‐edited MEGA‐PRESS at 3 T. Fifty‐six sets of spectra in five brain regions were

acquired from 36 healthy volunteers. Based on the Glu/Gln ratio, data were classified as either

within or outside the physiological range. A peak‐by‐peak quality assessment was performed

on all data to investigate whether quality metrics can discriminate between these two classes

of spectra. The quality metrics were as follows: the GABA signal‐to‐noise ratio, the NAA

linewidth and the Glx Cramer–Rao lower bound (CRLB). The Glu and Gln concentrations were

estimated with precision across all phantoms with a linear relationship between the measured

and true concentrations: R1 = 0.95 for Glu and R1 = 0.91 for Gln. A quality assessment framework

was set based on the criteria necessary for a good GABA‐edited MEGA‐PRESS spectrum. Simul-

taneous criteria of NAA linewidth <8 Hz and Glx CRLB <16% were defined as optimum features

for reliable Glu and Gln quantification. Glu and Gln can be reliably quantified from GABA‐edited

MEGA‐PRESS acquisitions. However, this reliability should be controlled using the quality assess-

ment methods suggested in this work.
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1 | INTRODUCTION

Human brain function depends on the balance between the major inhibitory neurotransmitter γ‐aminobutyric acid (GABA) and the major excitatory

neurotransmitter glutamate (Glu). GABA is a product of Glu metabolism, which is synthesized from glutamine (Gln).1 These three metabolites con-

tribute to neurotransmitter cycling. Changes in each of these metabolites have been implicated in the pathophysiology of a number of neuropsy-

chiatric and neurological disorders, such as schizophrenia,2 epilepsy,3 human immunodeficiency virus (HIV),4 autism5 and addiction.6 A knowledge

of these metabolite levels is useful not only in understanding brain function, but also in providing biomarkers for drug discovery and treatment

monitoring. Therefore, accurate and reliable estimation of these metabolites in vivo is of significant interest.

The chemical and structural similarities of Glu, Gln and GABA result in similar magnetic resonance (MR) spectra,7,8 making their separation

in vivo challenging at 3 T. Glu and Gln have been measured at 3 T using different methods, such as TE‐averaged point‐resolved spectroscopy

(PRESS),9 short‐echo stimulated echo acquisition mode (STEAM) (TE = 6.5 ms),10 PRESS11 and proton echo planar spectroscopic imaging (PEPSI).12

GABA, however, has mostly been detected using J‐difference‐edited Mescher–Garwood point‐resolved spectroscopy (MEGA‐PRESS),13 which has

developed into a robust and reliable method for the quantification of GABA.14-18 J‐difference editing is based on the quantification of the visually

detectable GABA protons resonating around 3.01 ppm. The GABA C3 multiplet which is manipulated for editing resonates at 1.89 ppm close to the

Glu and Gln C3 multiplets.7,8 Thus, these amino acids co‐edit with GABA, showing peaks around 2.2–2.4 ppm and 3.75 ppm. This provides the

potential to quantify Glu and Gln from the GABA‐edited acquisition.

There have been a number of studies in which Glu and Gln have been measured using GABA‐edited MEGA‐PRESS. However, reliable quan-

tification of Glu and Gln has proven to be challenging given the low editing efficiency of Glu and Gln in this acquisition method. Some studies have

quantified the peak at 3.75 ppm as Glx (the sum of Glu + Gln).19-22 This approach is incapable of evaluating Glu and Gln separately and is not useful

in conditions in which the Glu and Gln concentration change in opposite directions. Some studies have reported Glu concentrations using LCModel

software16,23; however, these studies fall short in quantifying Gln and cannot investigate the precision of Glu estimation.

The accuracy and precision of simultaneous measurements of Glu, Gln and GABA from edited MEGA‐PRESS spectra in phantoms at 4 T have

been investigated,24 but translation of these results to 3 T requires further investigation and independent validation. Here, using phantoms, we first

investigate the reliability of the Glx peak in GABA‐edited MEGA‐PRESS and the precision of separate Glu and Gln estimations. Then, using quality

assessment of data acquired in vivo, we introduce a framework in order to identify the GABA‐edited MEGA‐PRESS spectra from which Glu and Gln

can be estimated reliably.

2 | METHODS

All acquisitions, in vitro and in vivo, were performed on a 3‐T MR scanner (Philips Achieva, Best, the Netherlands) using a body coil for transmission

and a 32‐channel head coil for signal reception.

2.1 | Experiments in vitro

Ten phantom solutions with a range of GABA, Glu and Gln concentrations and 8mM N‐acetylaspartate (NAA) were prepared in phosphate buffer

(25mM KH2PO4, 25mM K2HPO4) and adjusted to pH 7.0 as listed in Table 1. All chemicals were from Sigma‐Aldrich (Gillingham, Dorset, UK). The

phantom temperature was kept at 21°C for data acquisition. The selective pulses of MEGA‐PRESS were set to a frequency of 1.89 ppm, coupled to

the detected GABA signal at 3.01 ppm, and to 7.6 ppm symmetrically disposed about the water signal. The pulses were Gaussian with a duration of

14 ms and a bandwidth of 106 Hz. TE (=TE1 + TE2) was 70 ms, withTE1 = 12.6 ms and TE2 = 57.4 ms. The spectra were acquired in blocks of four

averages when the MEGA pulse was set at 1.89 ppm (MEGA‐on), referred to as a single dynamic, followed by four averages when the MEGA pulse

was set at 7.6 ppm (MEGA‐off). The dynamics were then repeated in an interleaved manner until 32 were acquired at each frequency, making a
TABLE 1 Phantom concentration

Phantom [Glu] (mM) [Gln] (mM) [GABA] (mM)

1 25 0 0

2 0 25 0

3 0 0 25

4 8 2 1

5 10 4 2

6 12 6 3

7 11 2.2 2

8 9 6 2

9 15 5 3

10 18 3 3

GABA, γ‐aminobutyric acid; Gln, glutamine; Glu, glutamate.
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total of 64 dynamics. In all scans, TR was 2000 ms with 1024 samples. The voxel size of 30 × 30 × 30 mm3 was chosen in the middle of the phan-

tom. The receiver bandwidth was 2000 Hz, the water suppression method was excitation and the shimming was second‐order pencil beam

(FASTMAP). The NAA peak at 2.02 ppm was used for frequency referencing.
2.2 | Experiments in vivo

Fifty‐six spectra were acquired from 36 healthy volunteers (18 female, 18 male; age range, 20–55 years) who all gave written informed consent in

accordance with the procedures approved by the local ethics committee. Ten of the volunteers had measurements in three different brain regions

with a voxel size of 32 × 32 × 32 mm3 as follows: left occipital cortex (LOCC), left motor cortex (LMC) and right motor cortex (RMC). Seven of the

volunteers had measurements in the anterior cingulate cortex (ACC), with a voxel size of 35 × 40 × 20 mm3, and 19 had measurements in the occip-

ital cortex (OCC), with a voxel size of 30 × 30 × 30 mm3 (see Figure 1). GABA‐edited MEGA‐PRESS spectra (TE = 70 ms, TR = 2000 ms), as

described in the ‘in vitro’ section, with identical acquisition parameters, were acquired from each voxel.
2.3 | Metabolite quantification

Analysis of the spectroscopic data was performed in jMRUI 6.0 software25 using QUEST,26 a non‐linear, least‐squares fitting algorithm. This is a

time domain algorithm which fits a weighted combination of metabolite signals directly to the data. An initial metabolite basis set for the sequence

was obtained from the scanner using phantoms 1, 2 and 3 (Table 1) and a 25mM [NAA] phantom. Each phantom only contained a single metabolite.

The NAA, GABA, Glu and Gln spectra from these phantoms were used as prior knowledge for QUEST quantification. For accurate frequency

referencing and phase estimation of the spectrum, preprocessing was performed as follows: the dynamics which had their MEGA frequency set

at 7.6 ppm (MEGA‐off spectra) were summed. The NAA peak was set as 2.02 ppm and its phase was estimated using AMARES,27 a resonance‐

by‐resonance quantification method based on a non‐linear, least‐squares quantification. As the NAA peak in GABA‐edited MEGA‐PRESS has a

180° phase shift relative to the GABA peak at 3 ppm, the MEGA‐PRESS phase was fixed at the NAA phase minus 180°. Any residual water peak

was removed using the Hankel Lanczos singular value decomposition (HLSVD) routine in jMRUI. Finally, all the dynamics were summed to give the
FIGURE 1 T1‐weighted images showing the positioning of the 1H magnetic resonance spectroscopy (MRS) voxel in the left occipital cortex (a), left
motor cortex (b), right motor cortex (c), anterior cingulate cortex (d) and occipital cortex (e). (f) Diagram of the Mescher–Garwood point‐resolved
spectroscopy (MEGA‐PRESS) pulse sequences used in this study
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GABA‐edited spectrum. The implementation of MEGA‐PRESS on the scanner is such that there is a phase shift of 180° between the MEGA‐on and

MEGA‐off dynamics so that the GABA signal is always positive. The MEGA‐PRESS acquisition provided the possibility of a dynamic‐by‐dynamic

phase and frequency correction.28 However, both in vivo and in vitro, the high stability of the scanner and the full cooperation of the healthy

volunteers made such corrections unnecessary.

2.4 | Concentration calculation

NAA‐referenced concentrations were estimated using the following equation:

Conc:½ � ¼ Sm
SNAA

×CCm þ intm (1)

where Sm and SNAA are the rawmetabolite andNAA signals, respectively. In order to report accurateGlu andGln concentrations, a calibration coefficient

(CCm) and an intercept (intm) were calculated for eachmetabolite using the phantom data. These valueswere linear regression coefficients, where the

y axis was the ratio of the metabolite (Glu or Gln) to the NAA signal intensity measured using QUEST and the x axis was the known concentration of

the phantom (Figure 5, see later). The slope and intercept in Figure 5 (see later) are called ‘m’ and ‘c’ (conventionally y =mx + c), such that CCm = 1/m

and intm = –c/m. These coefficients were also used to quantify the Glu and Gln concentrations in vivo relative to NAA, assuming a NAA concentration

of 8mM (the same as in the phantoms). The calculated CCm and intm values were 10 and 3 for Glu and 16.6 and 1.6 for Gln.

2.5 | Spectral classification

TheGlu/Gln concentration ratiowas used to assess the quality of the quantification for bothmetabolites. It was preferred over the absolute concentration

as it is independent of the NAA signal and is less likely to be contaminated by errors caused by concentration calculation. The physiological concentration

ranges of Glu and Gln, as reported in Govindaraju et al.,7 are 6–12.5mM and 3–5.8mM, respectively, leading to a ratio range of 1–4. There have been a

number of studies estimating Glu and Gln by magnetic resonance spectroscopy (MRS) in different brain regions, as reviewed by Ramadan et al.29 In this

paper, 34 studieswere reported inwhich bothGlu andGln concentrationsweremeasured byMRS. All studies had a ratio equal to or above 1.5; 80%of the

data had a Glu/Gln ratio equal to or less than 4.5. A ratio between 1.5 and 4.5 thus encompasses most of the normal variation in Glu/Gln and is consistent

with the range of absolute values reported in Govindaraju et al.7 This defines a range which we can be confident represents normal physiological values.

This does not mean that ratios outside this range are necessarily unreliable or in error, but, in order to define a set of ‘normal’ spectra, it is prudent to

exclude the values >4.5. Using this information, we defined the ratio of 1.5–4.5 as the ‘physiological range’. The spectra in vivo were classified into two

groups: those with a Glu/Gln ratio within the physiological range and those outside this range. It is assumed that the data producing values within the

physiological range aremore likely to be accurate and reliable than the data producing values outside the range, and hence we investigated whether there

was a difference in data quality between these two groups that can define acceptance standards. Figure 2 illustrates the flow of work in a diagram.

2.6 | Quality assessment

The features of a GABA‐edited MEGA‐PRESS spectrum that enable the reliable estimation of Glu and Gln concentrations are, self‐evidently, the

signal‐to‐noise ratio (SNR) and spectroscopic resolution, but also the effectiveness of water suppression and scan‐to‐scan stability, as these

influence the appearance of artefacts and of subtraction errors. Our approach was to estimate these independently of the QUEST analysis of

the edited spectrum, and we used AMARES analysis of the spectra for this purpose. For SNR, we chose the GABA‐edited peak, as this combines

the effects of intrinsic sensitivity and subtraction errors. For the linewidth, we used the NAA signal, as its proximity to the C3 region of Glu, Gln and

GABA means that broad linewidths will adversely affect fitting in this region (2.2–2.4 ppm), in which the Glu and Gln overlap is minimized23
FIGURE 2 Workflow of this study. CRLB, Cramer–Rao lower bound; GABA, γ‐aminobutyric acid; Gln, glutamine; Glu, glutamate; Glx, Glu + Gln;
LW, linewidth; NAA, N‐acetylaspartate; SD, standard deviation; SNR, signal‐to‐noise ratio
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FIGURE 3 Glutamate (blue) and glutamine (red) spectra acquired from 25mM concentration phantoms
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(see Figure 3), and is crucial to the separation of Glu and Gln. Finally, we used the Cramer–Rao lower bound30 (CRLB) of the fit to the edited Glx

signal at 3.75 ppm. The fit to this signal is sensitive to the overall SNR, to the quality of water suppression (poor water suppression will distort the

baseline in this region of the spectrum) and to subtraction errors. In the prior knowledge for AMARES, we fixed the phase of the edited signals to be

180° relative to that of NAA, so that if subtraction errors cause a phase distortion of the Glx signal, this will be reflected as a higher CRLB. AMARES

performs a resonance‐by‐resonance quantification based on a non‐linear, least‐squares algorithm that requires starting values for chemical shift,

linewidth and lineshape for each resonance. All peaks were quantified using defined prior knowledge, including the frequency shift and Lorentzian

or Gaussian lineshape (Figure 6, see later).

To measure the GABA SNR, a single Gaussian15 was used to fit the GABA peak at 3.01 ppm. SNR was defined in the frequency domain as the

maximum height of the fitted GABA signal at 3.01 ppm (without any line broadening) divided by the root‐mean‐square amplitude of the noise in a

signal‐ and artefact‐free part of the spectrum (Figure 6, see later).

The linewidth is the full width at half‐maximum peak height in the frequency domain. The NAA linewidth was extracted from the estimation of

the peak at 2.02 ppm as a Lorentzian lineshape in AMARES (Figure 6, see later).

TheGlx peak at 3.75 ppmwas fittedwith amodel extracted from the phantomdata. Thismodel was two Lorentzian lineshapes that are constrained

to have identical linewidths, phases and amplitudes with a 10‐Hz separation. The CRLBs of the two Lorentzian peaks were calculated; the largest value

of CRLB amongst the twowas considered as the marker for quality assessment of the Glx peak (Figure 6, see later). The justification for using the larger

CRLB is that any distortions or artefacts which reduce the symmetry of the two peaks will be reflected in different CRLBs for the pair of peaks.

These metrics were used to test general spectrum quality and goodness‐of‐fit. No assumptions were made that physiological range spectra

were all ‘good’ or non‐physiological range spectra were ‘poor’, but rather this question was asked: do these quality metrics discriminate between

these two classes of spectra? If so, this suggests that the reason for the differences in the ratio is spectroscopic quality, not an expression of bio-

logical variation. To answer this question, the mean and standard deviation (SD) of GABA‐edited SNR, NAA linewidth and Glx CRLB within each

group were calculated and compared between classes.
FIGURE 4 The area under the peak at 3.75 ppm, the Glx (Glu + Gln) peak, versus the glutamate (Glu) + glutamine (Gln) concentration present in the
phantoms. The area under the peak at 3.75 ppm was quantified with AMARES
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3 | RESULTS

3.1 | In vitro

The Glx peak (3.75 ppm) intensity in phantoms 4–10 (Table 1), which are a combination of Glu, Gln, GABA and NAA, with the concentration range

of Glu = 8–18mM and Gln = 2–6mM, was quantified. There was a linear relationship between the peak intensity and the concentration of Glu + Gln

(R1 = 0.95, Figure 4). QUEST Glu and Gln estimation from the phantoms also had a linear relation with the known concentration. (R1 = 0.95 for Glu

and R1 = 0.91 for Gln; Figure 5). The intercepts in the plots in Figure 5 can be interpreted as the lower concentration detection limits of this method

in quantifying Glu and Gln, which are 3.51mM and 1.81mM, respectively. The calibration coefficients for converting signal ratio into concentration

(CCm in Equation 1), calculated from these data, were 10 for Glu and 16.6 for Gln (Figure 5).
3.2 | In vivo

Figure 6 illustrates the fitting of a spectrum from the data within the physiological range by both AMARES (quality assessment) and QUEST

(quantification). The relatively flat residual shows that the spectrum is well described by the sum of Glu, Gln, GABA and NAA.

The number of spectra classified within the physiological range (1.5 ≤ [Glu]/[Gln] ≤ 4.5) and the mean concentration of each region are shown

inTable 2. The concentrations were calculated using NAA referencing, which can introduce potential problems or bias in the data. The use of water

signal referencing can reduce these putative issues, but additional water signals were not available for all in vivo GABA‐edited spectra.
FIGURE 5 The ratio of glutamate (Glu) (a) and glutamine (Gln) (b) over N‐acetylaspartate (NAA) concentration quantified using QUEST in phantoms
versus the known concentration. The slope of the line is the reciprocal of the concentration calibration coefficient (CCm)



FIGURE 6 An example of a spectrum in vivo and its fitting. QUEST is used for concentration calculation. The individual components of the spectra
glutamine (Gln), glutamate (Glu), γ‐aminobutyric acid (GABA), N‐acetylaspartate (NAA) and the residual are illustrated. The AMARES fit is used for

quality assessment

TABLE 2 Glutamate (Glu) and glutamine (Gln) concentrations of spectra in the physiological class reported in different regions. The classification is
based on Glu/Gln being equal to or between 1.5–4.5. The column ‘Number of total spectra’ includes all the spectra used in the study in each region
and the column ‘Number of spectra’ includes the data classified as the physiological range. Concentration is in mmol/kg wet weight. Numbers are
reported as mean ± standard deviation (SD)

Number
of total
spectra

Physiological
Glu/Gln ratio

Number of spectra Ratio [Glu] [Gln]

LOCC 10 8 2.18 ± 0.25 11.07 ± 2.95 5.12 ± 1.36

LMC 10 4 3.09 ± 0.94 10.23 ± 1.24 3.51 ± 1.05

RMC 10 7 3.31 ± 0.48 13.75 ± 2.83 4.20 ± 0.98

OCC 19 18 2.53 ± 0.41 10.45 ± 0.91 4.20 ± 0.50

ACC 7 7 2.67 ± 0.62 13.55 ± 3.94 5.08 ± 0.90

ACC, anterior cingulate cortex; LMC, left motor cortex; LOCC, left occipital cortex; OCC, occipital cortex; RMC, right motor cortex.

TABLE 3 The quality assessment markers are reported based on the classification result on the glutamate/glutamine (Glu/Gln) ratio, reported in
different voxels. Numbers are reported as mean ± standard deviation (SD)

Number
of total
Spectra

Physiological Glu/Gln ratio

Number of spectra GABA SNR NAA LW Glx CRLB

LOCC 10 8 2.63 ± 0.37 6.20 ± 0.68 6.97 ± 1.89

LMC 10 4 2.22 ± 0.43 6.04 ± 0.75 14.19 ± 8.02

RMC 10 7 2.22 ± 0.84 6.19 ± 0.97 9.04 ± 6.51

OCC 19 18 2.41 ± 0.48 6.17 ± 0.96 5.02 ± 1.21

ACC 7 7 3.97 ± 1.02 5.61 ± 0.45 6.27 ± 4.23

ACC, anterior cingulate cortex; CRLB, Cramer–Rao lower bound; GABA, γ‐aminobutyric acid; Glx, Glu + Gln; LMC, left motor cortex; LOCC, left occipital
cortex; LW, linewidth; NAA, N‐acetylaspartate; OCC, occipital cortex; RMC, right motor cortex; SNR, signal‐to‐noise ratio

NEZHAD ET AL. 7 of 11



8 of 11 NEZHAD ET AL.
The quality assessment markers of the physiological range class are reported inTable 3. In this class, the lower confidence limit (mean – 2SD) of

the GABA‐edited SNR was 1.0, whereas the upper confidence limit (mean + 2SD) of the NAA linewidth and Glx CRLB were 8 Hz and 16%, respec-

tively. Using these three features as quality criteria, we investigated the non‐physiological class spectra. Regardless of the fact that the classification
FIGURE 7 (a–c) Examples of glutamate (Glu) and glutamine (Gln) fitting in spectra in vivo which failed one or two checks in the quality assessment.
The upper trace is the original data and the QUEST fits of Glu and Gln are presented below. The quality assessment values calculated using
AMARES are reported for each spectrum; the text in red indicates the failed quality parameter. (d) Sample of a spectrum and its Glu and Gln fit
which passed all the quality criteria checks. CRLB, Cramer–Rao lower bound; GABA, γ‐aminobutyric acid; Glx, Glu + Gln; LW, linewidth; NAA,
N‐acetylaspartate; SNR, signal‐to‐noise ratio

FIGURE 8 Scatter plots of the three quality assessments: Glx (glutamate + glutamine) Cramer–Rao lower bound (CRLB), N‐acetylaspartate (NAA)
linewidth and γ‐aminobutyric acid (GABA) signal‐to‐noise ratio (SNR) are illustrated in both the physiological (Phys.) and non‐physiological (Non‐
phys.) classes of data. The broken line is the rejection threshold



FIGURE 9 Plot of all the data points and their
ratio of glutamate to glutamine (Glu/Gln). The
triangles represent the data that failed the
quality criteria and the crosses are those that
passed. The broken line indicates the Glu/Gln
ratios of 1.5 and 4.5
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of the spectra was independent of the quality assessment and based only on the Glu/Gln ratio, at least one of the quality criteria failed in 70% of

the non‐physiological class spectra.

Investigation of the failed spectra showed that the most common feature that fell short in the criteria was CRLB, with eight of 56 spectra not

meeting the requirement, and the NAA linewidth, with four of 56 falling short. The SNR criteria did not fail any spectra, and so this does not form

part of the quality assessment framework. Overall, the proportion of spectra which failed the framework in this dataset was region dependent, with

the greatest in the motor cortex (8/20) and the least in OCC (3/29). Figure 7 shows examples of spectra in which the quality threshold failed on a

single feature (Figure 7a, b), two features (Figure 7c) and a spectrum which passed all quality thresholds (Figure 7d).

Figure 8 shows a scatter plot of the quality assessment criteria in both physiological and non‐physiological groups. Figure 9 shows a plot of all

the data points and their ratio of [Glu]/[Gln]. It can be seen that there are data points which fail the quality assessment framework whilst being in

the physiological range class, and vice versa (data points that pass the framework and do not belong to the physiological range class). Investigation

of the data also showed that the majority of the failed spectra underestimate the Gln concentration, resulting in a high Glu/Gln ratio.
4 | DISCUSSION AND CONCLUSIONS

The linear correlation of the Glx peak with the total Glu + Gln present in the phantoms shows that the peak at 3.75 ppm can be used as an indicator

of Glu + Gln, but cannot be used as a sole marker for Glu. The linear correlation of the Glu and Gln estimation with the concentration present in the

phantom shows that, in ideal conditions, Glu and Gln can be independently quantified with precision using GABA‐edited MEGA‐PRESS and

QUEST. This provides the potential to quantify Glu, Gln and GABA from a single acquisition at 3 T.

The calibration coefficient (CCm) for Glu and Gln not only reflects the relationship between the signal intensity and concentration, but also the

editing efficiency. Having a smaller value of CCm for Glu (10) compared with Gln (16.6) suggests that this metabolite is more effectively edited in

GABA‐edited MEGA‐PRESS. This is to be expected as the C3 multiplet of Glu (at 2.03 ppm) is 0.07 ppm closer to the editing pulse (at 1.89 ppm)

than that of Gln (at 2.1 ppm).7

The application of the quality assessment framework to the data suggests that there is a difference in spectroscopic quality between regions.

More than 90% of the data in OCC, LOCC and ACC passed the quality assessment, whereas, in the motor cortex (LMC, RMC), only 60% of the data

did so. This regional dependence can be explained as a result of the difficulty of performing spectroscopy in different brain areas. The motor cortex

is relatively harder to shim, and is more susceptible to outer‐volume lipid contamination. The location of the voxel directly determines the quality of

the spectra and hence can be a factor in estimating the possibility of Glu and Gln quantification in GABA‐edited MEGA‐PRESS.

Glu and Gln quantification from an acquisition that is not optimized for these metabolites is complex, and reliable estimation of these metab-

olites requires extra quality measurements. Figure 8 shows that none of the three markers (GABA‐edited SNR, NAA linewidth or Glx CRLB) on their

own can identify the spectra with unreliable Glu and Gln estimation. However, using the combination of NAA linewidth and Glx CRLB can resolve

this problem.

The classification of reliable Glu/Gln estimation based on their ratio is a method to compensate for the lack of knowledge of the true concen-

trations present in vivo. This does not imply that the Glu/Gln ratios outside the defined value are unacceptable. A number of studies in Ramadan

et al.29 reported a Glu/Gln ratio higher than 4.5. In addition, in our dataset, three data points pass the quality assessment framework regardless of

having a Glu/Gln ratio higher than 4.5. Here, we used the most reliable data to develop a framework in order to identify the features of good‐qual-

ity spectra. However, in our dataset, seven of 11 of the estimations which did not have a Glu/Gln ratio between 1.5 and 4.5 failed in one or both of

the quality assessment criteria. Although it is inevitable that 95% of the spectra within the ratio limits will meet the quality criteria (as this is how the

criteria were defined), this does not mean that all the spectra outside these limits have to fail. The fact that the majority of the data do fail in at least

one feature gives some confidence that the quality thresholds are useful. The use of the quality assessment step may result in the rejection of a

proportion of the data, such that the statistical power may be reduced, and this needs to be taken into account in study design. Care should be

taken to ensure that, if spectra are rejected, this occurs in a balanced manner across experimental groups, as a preponderance of failed spectra

in one group could bias the overall results.
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In conclusion, Glu and Gln can be quantified reliably from GABA‐edited MEGA‐PRESS under certain circumstances. Quality assessment of the

spectra and the framework proposed in this study can be used as a tool to evaluate the reliability of the Glu and Gln quantification from

GABA‐edited MEGA‐PRESS spectra.
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