

1

The timing mega-study: comparing a range of 1

experiment generators, both lab-based and online 2

 3
David Bridges1, Alain Pitiot2, Michael R. MacAskill3,4, Jonathan W. Peirce1 4
 5
1 School of Psychology, University of Nottingham, Nottingham, UK 6
2 Laboratory of Image and Data Analysis, Ilixa Ltd., London (UK) 7
3 Department of Medicine, University of Otago, Christchurch, Christchurch, New Zealand 8
4 New Zealand Brain Research Institute, Christchurch, New Zealand 9
 10
Corresponding Author: 11
Jonathan Peirce1 12
School of Psychology, University of Nottingham, Nottingham, NG7 2RD, UK 13
Email address: jonathan.peirce@nottingham.ac.uk 14

Abstract 15

Many researchers in the behavioral sciences depend on research software that 16
presents stimuli, and records response times, with sub-millisecond precision. 17
There are a large number of software packages with which to conduct these 18
behavioural experiments and measure response times and performance of 19
participants. Very little information is available, however, on what timing 20
performance they achieve in practice. Here we report a wide-ranging study 21
looking at the precision and accuracy of visual and auditory stimulus timing and 22
response times, measured with a Black Box Toolkit. We compared a range of 23
popular packages: PsychoPy, E-Prime®, NBS Presentation®, Psychophysics 24
Toolbox, OpenSesame, Expyriment, Gorilla, jsPsych, Lab.js and Testable. Where 25
possible, the packages were tested on Windows, macOS, and Ubuntu, and in a 26
range of browsers for the online studies, to try to identify common patterns in 27
performance. 28

Among the lab-based experiments, Psychtoolbox, PsychoPy, Presentation and E-29
Prime provided the best timing, all with mean precision under 1 millisecond 30
across the visual, audio and response measures. OpenSesame had slightly less 31
precision across the board, but most notably in audio stimuli and Expyriment had 32
rather poor precision. Across operating systems, the pattern was that precision 33
was generally very slightly better under Ubuntu than Windows, and that Mac OS 34
was the worst, at least for visual stimuli, for all packages. 35

Online studies did not deliver the same level of precision as lab-based systems, 36
with slightly more variability in all measurements. That said, PsychoPy and Gorilla, 37
broadly the best performers, were achieving very close to millisecond precision 38
on several browser/operating system combinations. For response times 39
(measured using a high-performance button box), most of the packages achieved 40
precision at least under 10 ms in all browsers, with PsychoPy achieving a precision 41

2

under 3.5 ms in all. There was considerable variability between OS/browser 42
combinations, especially in audio-visual synchrony which is the least precise 43
aspect of the browser-based experiments. Nonetheless, the data indicate that 44
online methods can be suitable for a wide range of studies, with due thought about 45
the sources of variability that result. 46

The results, from over 110,000 trials, highlight the wide range of timing qualities 47
that can occur even in these dedicated software packages for the task. We stress 48
the importance of scientists making their own timing validation measurements for 49
their own stimuli and computer configuration. 50

Introduction 51

Many scientists need high-precision timing of stimuli and responses in their behavioral 52
experiments and rely on software packages to provide that precise timing. Indeed, we often hear 53
people state that they use particular software packages because they “need sub-millisecond 54
timing”. Yet there is a lack of information in the literature about what is actually possible to achieve 55
with different packages and operating systems, and very few labs report testing the timing of their 56
studies themselves. 57

Before going further, we should establish the distinction we draw between accuracy and precision. 58
In general, precision is the more important issue for a behavioral scientist. Precision refers to the 59
trial-to-trial variability of the measures: the jitter of the timing measurement or its “variable error”. 60
Accuracy refers to the “constant error” of a measurement which, in timing terms, is often referred 61
to as the “lag”, “offset” or “bias” from the true value. Accuracy issues commonly arise from 62
hardware characteristics and represent physical limitations of the setup, like a stimulus at the 63
bottom of the screen typically appearing several milliseconds after a stimulus at the top of the 64
screen, due to pixels being rendered sequentially from top to bottom. If its magnitude is known, a 65
constant offset in time (poor accuracy) can be corrected for by simply subtracting it from each 66
measured value. Alternatively, in many studies the ultimate outcome measure is a difference 67
between two or more conditions, and hence any constant error is cancelled out by the taking that 68
difference. A variable error (poor precision) cannot be corrected afterwards, as by its nature, its 69
value is not known on any given trial. 70

Here we compare the timing performance, as directly as possible, of several commonly-used 71
behavioral science software packages, on various operating systems, and in both laboratory-72
based “native” systems and on studies conducted remotely via web-browsers. The aims were to 73
a) determine the range of timing performance that we encounter across platforms, packages and 74
stimuli; b) identify commonalities in performance issues that need to be considered; c) assess 75
whether online systems are technically capable of achieving sufficiently good timing for behavioral 76
studies. We also hope the data will encourage users to test the timing performance of their own 77
experiments directly, using measurement validation hardware. A study like this can only show 78
what performance it is possible to achieve in a given setting rather than what is likely to occur in 79
a standard experiment. Note, for instance, that we use a high-performance button box for our 80
tests in order to minimize the timing errors caused by external factors (the keyboard). In contrast, 81
many laboratory-based studies, and nearly all web-based studies, are run with a standard USB 82
keyboard, which can add further latencies of 20-40 ms, depending on the keyboard (Neath et al., 83
2011). 84

There are also very few papers measuring timing across packages, allowing direct comparisons 85
to be made based on similar hardware. Although comparisons across packages are no 86

3

replacement for testing the timing on the system being used, the data presented in the current 87
study do highlight a number of consistent effects that should be informative to users and might 88
also provide an incentive for software authors to improve their packages. The only study we are 89
aware of that compared timing across multiple software packages is that of Garaizar et al. (2014) 90
and the follow-up paper (Garaizar & Vadillo, 2014) in which they corrected an initial error. That 91
study compared DMDX (Forster & Forster, 2003), E-Prime (Psychology Software Tools, 92
Pittsburgh, PA) and PsychoPy but did so only on Windows 7, and only measured the precision of 93
visual stimulus duration, without considering stimulus onset times, audio-visual asynchrony or 94
response time measurements. 95

There also remains some confusion about the quality of timing in online studies, which are 96
increasingly popular. As noted by other authors (see for example Reimers & Stewart, 2015), the 97
rise in popularity is driven by the increasing ease with which participants can be collected by 98
recruitment tools such as Amazon Mechanical Turk (or MTurk) or Prolific Academic, and partly 99
by improvements in web technology, especially in timing (Reimers & Stewart, 2015). To date, 100
studies that have explicitly tested performance, using dedicated hardware to measure stimulus 101
onset and generate responses at precisely known times, have aimed to test generic software 102
technologies, such as the use of the JavaScript versus Flash, rather than comparing software 103
packages that have been specifically written for the purpose of behavioral testing (such as 104
jsPsych, Gorilla, or PsychoJS). These have shown that when used for stimulus presentation in 105
web browsers, HTML5 has a slightly higher tendency to drop frames (Garaizar, Vadillo & López-106
de-Ipiña, 2014; Reimers & Stewart, 2015) than studies run in desktop (non-browser) software. 107
Web technology is also currently improving at a dramatic rate; there have been a number of 108
improvements since 2015 that suggest the need for newer measurements. 109

Measured reaction time errors in these online studies have been found to consist of a lag beyond 110
the native applications of roughly 25-45 ms, depending on the system, and an inter-trial variability 111
(standard deviation) of 5-10 ms (Neath et al., 2011, studies 5 and 6; Schubert et al., 2013, study 112
2; Reimers & Stewart, 2015, study 1). These studies did not compare any of the more recent 113
online services such as Gorilla (Anwyl-Irvine et al., 2019), jsPsych (de Leeuw, 2015; de Leeuw & 114
Motz, 2016), PsychoPy/PsychoJS (Peirce et al., 2019) or Lab.js (Henninger et al., 2019). 115

A very recent paper (Pronk et al., 2019) and another currently in pre-print (Anwyl-Irvine et al., 116
2020) have pointed to additional encouraging results in browser-based studies using 117
touchscreens and keyboards. Pronk et al used an Arduino-controlled solenoid to press on a range 118
of touch-screen devices and keyboards and show response-time lags of 50-70 ms in most 119
configurations (133 ms in one outlier) and inter-trial variability of 5-10 ms, depending on the 120
browser. Anwyl-Irvine et al. (2020) report longer lags and greater variability, with timing errors 121
occasionally in the hundreds of milliseconds and it isn’t clear what could have caused such errors. 122
They did explicitly use modest-specification computers, avoiding machines with dedicated 123
graphics cards, for instance, and using standard keyboards rather than high-performance button 124
boxes, but those choices are in keeping with previous studies, including the most recent one by 125
Pronk et al (2019) and we would not expect them to cause errors of this magnitude. We note that 126
they also used an outdated version of PsychoPy in their measurements and the timing of the 127
online provisions improved a great deal in PsychoPy 2020.1. The aim of the current study was to 128
isolate the performance of the software packages themselves, and also to be comparable with 129
measurements of lab-based experiment software packages, so we opted to use a high-130
performance button box in all measurements, even though in web studies this would typically not 131
be expected. 132

4

While some authors have consistently pointed out the need for higher precision and more testing 133
of timing (Plant, Hammond & Turner, 2004; Plant & Turner, 2009; Plant & Quinlan, 2013; Plant, 134
2016), other authors have questioned whether sub-millisecond timing, of responses at least, is 135
strictly necessary. Their point is that variability in response time measurements, once several 136
trials have been averaged, should have relatively little impact on the statistical outcomes. For 137
instance, Brand and Bradley (2012) modelled the effect of variability in a simulation study based 138
on the known variability of participants and technical noise. They found, with a study of 158 139
simulated participants (in keeping with online studies), that the addition of “technical” noise to the 140
simulated variability within participants made very little difference. Previous modelling work has 141
also shown that timing errors, or at least lags, can be partially corrected with post-hoc calculations 142
(Ulrich & Giray, 1989) although we aren’t aware of this being common practice. 143

Partly this result is due to the inherently high trial-by-trial variability in individual participants’ 144
response times, which is on the order of several tens of milliseconds, depending on factors such 145
as attention and motivation. Consider for instance the data from Reimers & Stewart (2007) where 146
they compared response times (from real participants rather than a robot as in the current study), 147
measured using code written in C versus Adobe/Macromedia Flash. Participants made a binary 148
decision as fast as they could, which yielded a mean reaction time of between 375 ms and 400 149
ms (depending on the software setup) but the response times of individual trials had a range of 150
over 300 ms (interquartile range of roughly 100 ms, SD of over 80 ms). That level of variability is 151
almost certainly driven primarily by variance in human response times rather than in the software 152
or hardware, which are generally of considerably smaller magnitude. 153

Furthermore, de Leeuw and Motz (2016) compared participants responding in a browser-based 154
task with those in a lab-based version and found that, where there is a measurable difference in 155
timing, this was predominantly in the form of an increased lag (decreased accuracy) but not 156
increased variability. Given that many studies seek to measure effects based on a difference in 157
response between conditions, it is only the variability that is usually a concern, as any constant 158
lag is cancelled out by taking a difference. That might largely explain the findings of Miller et al. 159
(2018) who made measurements of various standard psychology effects, both online and offline, 160
and found essentially no discernible difference in data quality between the online and lab-based 161
data. 162

There are some forms of study, however, where sub-millisecond precision really is essential. For 163
example, electroencephalography event-related potentials can have components that are very 164
brief and more consistently timed than behavioral responses. Analysis of these can be 165
dramatically impacted by a variability of only 10 ms in the trigger pulses with respect to the 166
stimulus, or in the measured timing of the response. Even in behavioral tasks, in the absence of 167
large numbers of trials or participants over which to average (unlike the ample 158 simulated 168
participants in the Brand and Bradley study), high precision may be required. 169

Here, we quantify the technological variability (precision) and lag (accuracy) using dedicated 170
testing hardware (Black Box Toolkit; Plant, Hammond & Turner, 2004), aiming to understand what 171
precision can be achieved in ideal circumstances for a range of software. We suspect that the 172
vast majority of studies will not achieve this level of precision due to, for instance, using a 173
keyboard instead of a button box, or by not accounting for the display introducing timing errors. 174

We tested the fidelity with a range of timing measures that scientists often require. We measured 175
stimulus duration to test whether a 200 ms stimulus really lasts for 200 ms. We measured the 176
stimulus onset, relative to a TTL pulse (although this was not possible for browser-based studies) 177
as would be needed to tag the stimulus onset with a trigger. Third, we measured the absolute 178

5

timing of an audio onset relative to the same TTL pulse (in lab-based studies) and the audiovisual 179
synchrony (in both lab-based and online studies). Lastly, we measured the reaction time to a 180
visual stimulus using a robotic responder (the Black Box Toolkit key actuator), eliminating the 181
physiological variability of human responses. 182

Materials & Methods 183

We collected timing data for a range of common software packages in standard ‘native’, 184
laboratory-based setups, for which we opted to use PsychoPy (v2020.1), Psychophysics Toolbox 185
(v3.0.16 beta running on MATLAB R2018b), OpenSesame (v3.2.8 using PsychoPy backend 186
(v1.85.3), Expyriment (v0.9.0), and NBS Presentation (v21 Build 006.06.19) and E-Prime 187
(v3.0.3.8) run using E-Studio (v3.0.3.82). 188

We sought to compare the timing of those lab-based setups with several commonly-used online 189
packages; PsychoPy/PsychoJS (v2020.1), Gorilla (Build 20190828), jsPsych (v6.0), lab.js 190
(v2.4.4) and Testable. Testable does not give version numbers, but uses a rolling release. We 191
recorded the stimulus presentation data for all platforms on 23/10/19 and for response times on 192
07/08/19 for Linux 10/08/19 for Windows and 11/09/19 for Mac but 23/10/19. 193

For the lab-based applications, a trigger pulse was generated by the software at the time at which 194
it was intended for a visual stimulus to be displayed, or for an audio stimulus to start playing. The 195
actual time of stimulus onset or offset was then measured via a hardware detector. We could 196
therefore test absolute visual onset timing (compared to a hardware trigger from the package), 197
absolute auditory timing (compared to the same trigger), visual duration precision for a 200 ms 198
stimulus, audiovisual synchrony (attempting to present the two stimuli with simultaneous onset), 199
and the measurement error of response time to a visual stimulus. For browser-based packages, 200
this was not possible because web scripts do not have access to parallel or USB ports and so 201
cannot generate a trigger signal, but all other measures were collected. 202

We created the experiments in the manner that might be expected from a normal user of each 203
package (as described by the package documentation), and therefore excluded advanced, 204
undocumented code additions to optimize performance. For example, the PsychoPy scripts were 205
automatically generated by the graphical Builder interface, and were not supplemented with any 206
custom-written Code Components to optimize performance. Since we are the authors of that 207
package, we are more knowledgeable about potential optimizations than most users and it would 208
be inappropriate for this package to receive any advantage from that additional experience. 209

As a caveat to the general rule of creating studies exactly as a typical user would, at times we 210
weren’t sure what “typical users” would be aware of. For instance, in Presentation and in 211
Expyriment, achieving a stimulus duration of 200 ms is certainly possible but to do so requires 212
setting the requested duration to just under 200 ms (say, 195 ms). The timing mechanisms of 213
those applications appear not to take into account the time to render the final frame, such that 214
when requesting exactly 200 ms, the stimulus will actually overshoot by 1 screen refresh (typically 215
16.7 ms). While a naïve user might not take this into account, we considered it easy enough to 216
apply that we should do so. Certainly, anyone validating the timing independently would notice 217
the error, and be able to verify simple that the fix works in a reliable manner. Therefore, on those 218
packages, we specified the stimulus duration to be slightly less than the intended duration. 219

6

Equipment 220

Linux and Windows were tested on the same (dual boot) PC, with an AMD Ryzen 5 2600 6-core 221
3850 MHz central processing unit on a B450 Tomahawk motherboard, with 16 GB of DDR4 222
2133 MHz RAM, a Samsung 860 EVO 500 GB SATA III Solid State Disk, and a Gigabyte GeForce 223
GTX 1050 Ti 4 GB graphics card. For Windows we used version 10 (10.0.18362), running the 224
NVIDIA 417.01 graphics driver, and the REALTEK HD audio driver (6.0.1.8549). For Linux, we 225
used the Ubuntu 18.04 operating system (Linux 5.0.0-31-generic), running the proprietary NVIDIA 226
430.26 graphics driver, with Advanced Linux Sound Architecture (ALSA) audio driver (1.1.3). 227

The Apple Macintosh hardware was a 2019 Mac Mini 64-bit 3.2 GHz Intel Core i7 with 16 GB of 228
DDR4 2667 MHz RAM, with an integrated Intel Ultra High Definition (UHD) 630 1536 MB graphics 229
processing unit. Testing was done on Mac OS X 10.14.5. The built-in Core Audio drivers were 230
used for audio output. 231

The same monitor was used for presenting stimuli throughout: an AOC 238LM00023 / I2490VXQ 232
23.8” 60Hz LED Backlight LCD monitor with 1920 × 1080 pixel resolution and 4 ms response time 233
(https://eu.aoc.com/en/monitors/i2490vxq-bt/specs). We confirmed that this model had no options 234
to perform any ‘optimizations’ on the frames generated by the graphics card. 235

For online studies we used a range of browsers, as shown in Table 1. 236

Measurement hardware 237

We used a Black Box Toolkit v2 (BBTK) to measure the onset and offset of trigger pulses, audio 238
and visual stimuli. We also used it to trigger responses to the visual stimuli to test the response 239
time measurements made by the software packages. Although that can be done by the BBTK all 240
at once, in its Digital Stimulus Capture and Response (DSCAR) mode, that limited the number of 241
trials we could include in a single run. We wanted to run 1000 trials continuously and therefore 242
opted to run the trials once to collect the trigger, visual and auditory onset/offsets, using BBTK’s 243
Digital Stimulus Capture (DSC) mode, and then a second time using the response actuator to test 244
the response timing of the software, in Digital Stimulus Response Echo (DSRE) mode. 245

Trigger (TTL) pulses were sent from all test systems using a LabHackers USB2TTL8 connected 246
to the BBTK’s TTL 25-way ASC/TTL breakout board. A BBTK opto (photodiode), positioned at 247
the center top of the display, was used to provide information about the visual stimulus. Audio 248
onsets were recorded from the 3.5 mm speaker jack on the back of the computers. 249

Table 1: Browsers used for testing across the different operating systems. Safari and
Edge are specific to MacOS and Windows, respectively. Edge was tested in 2 versions
because Microsoft recently (with Edge version 78) changed the underlying engine to use
Chromium (the open source engine behind the Chrome browser).

 OS 64-bit Browsers

 FireFox Chrome Safari Edge Edge Chromium
Mac 68.0.2 76.0.3809.1 12.1.1
Win10 69.0.0 77.0.3865 44.18362.387.0 78.0.276.19
Linux 69.0.2 76.0.3809.1

7

Response time to visual stimuli timing 250

Responses to visual stimuli were created using the BBTK’s robotic response key actuator (RKA). 251
The RKA was configured using the BBTK’s TTL 25-way ASC/TTL breakout board and the BBTK 252
software RKA calibration tools in order to determine the onset and duration times of the RKA 253
device. To achieve the desired onset times for the RKA, accounting for its solenoid response 254
times, a 16 ms offset was taken from the intended response times. 255

The response actuator was positioned over button 1 of a LabHackers MilliKey, a 1 kHz USB 256
response box that was used to collect responses on all platforms. Note that this is likely to provide 257
a more precise measurement than in many lab scenarios, where standard consumer-grade 258
computer keyboards are still commonly used. Only standard keyboards or touchscreens are used 259
in nearly all online studies, but for comparison purposes, we considered it useful to measure a 260
consistent high-precision response across all platforms. 261

Procedure 262

Scripts for all the procedures (where the software provides a local copy to store) are available 263
from Open Science Framework (https://osf.io/3kx7g/). 264

Response time latencies 265

For the response time measurements, we created an experiment in each package that simply 266
presented a black screen for 300 ms, followed by a white square (positioned at the center top of 267
the screen) for 200 ms. The experiment was programmed to measure the response time of the 268
actuator, which was programmed through the BBTK to respond precisely 100 ms after the onset 269
of the white square (triggered by the BBTK photodiode), with a keypress 50 ms in duration. This 270
trial sequence was repeated 1000 times in quick succession, following an initial pause of 5 s to 271
give time for the BBTK to initialize in its DSRE mode. 272

Stimulus latencies 273

To measure the absolute and relative latencies of the visual and auditory stimuli, we programmed 274
an almost identical task that would present a similar black screen for 300 ms, followed 275
simultaneously by the onset of a TTL pulse sent via the LabHackers USB2TTL8 trigger box, a 276
white square at the top of the screen, and a simple audio tone, all lasting 200 ms. This simple trial 277
sequence was again repeated 1000 times for each package, following a 10 s initial blank screen 278
while the BBTK initialized into DSC (Digital Stimulus Capture) mode. In some instances, using 279
online software, it was necessary to present 1 trial of the auditory stimuli before main trials, in 280
order to initialize the audio drivers and eliminate start-up delay in audio presentation for the first 281
trial. If required, it is reported below for the relevant software. 282

To summarize, the differences between the response time runs and the stimulus timing runs are 283
as follows. The serial port code for the TTL was only needed in the stimulus timing run (because 284
the response timing was based on the visual stimulus it was unnecessary). The sound stimulus 285
was also only needed in the stimulus timing run (again, it was unnecessary in the response timing 286
run). Conversely, the keyboard checks were typically only needed in the response timing run and 287
were omitted from the stimulus timing run. 288

8

Some aspects of the study implementations could not be kept exactly the same on all platforms. 289
For instance, some packages don’t support mp3 audio files whereas others only support mp3 290
files. Some packages are able to generate their own white rectangle (as a Rect stimulus, for 291
instance) whereas others required that to be loaded as a bitmap file. We doubt that any of these 292
differences had any impact on timing. The stimuli were always loaded from disk at the start of the 293
experiment, so the time taken to decode an mp3 file, or read an image from disk, should have no 294
impact on the time taken to deliver the stimulus. Furthermore, all of these stimuli are really the 295
most basic objects that we could imagine presenting and should not have impacted timing 296
themselves. 297

Again, for full details of the experiments for all packages we provide the actual experiment files at 298
Open Science Framework (https://osf.io/3kx7g/). 299

PsychoPy implementation 300

The aim was to mimic what relatively naïve users would normally do. To this end, the experiment 301
in PsychoPy was created entirely in the Builder interface, except for Code Components used 302
solely to automatically detect the LabHackers USB2TTL8 trigger box, set the status of the TTL 303
object (e.g., started, stopped) and write triggers to the serial port in synchrony with the visual and 304
audio stimuli presentation. The triggers were synchronized with the screen refresh using the 305
PsychoPy Window method, callOnFlip(), which allows a call to be scheduled to run at the time of 306
the next screen refresh, rather than immediately. 307

The black screens used throughout the task were generated by setting the experiment screen to 308
black, in the Experiment Settings dialog. To generate the visual stimuli we used a Polygon 309
component, a white rectangle .25 × .25 screen height units positioned at top and center of the 310
screen. In the Experiment Settings, the audio library was set to be PTB (i.e. Psychtoolbox’s 311
PsychPortAudio engine, ported to Python) with audio latency mode set to Level 3 (“Aggressive 312
low-latency”). The sound waveform was generated by PsychoPy (i.e. an ‘A’ tone was requested 313
in the Sound Component settings, rather than a ‘wav’ file being loaded). On macOS, a lower audio 314
latency mode (level 1: “Share low latency driver”) was required to achieve clean sound (i.e., 315
without crackling) on this Mac-mini, although that has not been the case on other Mac hardware 316
that we have tested. 317

Components of PsychoPy experiments, in this case the visual and auditory stimuli and trigger 318
pulses, can be run simultaneously simply by setting them to start and stop at the same time 319
(whereas some of the packages only allow stimuli to be displayed sequentially). PsychoPy also 320
has a check box for non-visual components to determine whether they should be synchronized 321
with the visual stimulus (i.e. starting and stopping at the same time as the screen refresh, rather 322
than as soon as possible) and this was set to be on for the Keyboard and Sound Components. 323

In general, the measurement and control in stimulus and response timing was achieved using 324
frame refresh periods, where timing was set using a fixed number of screen refreshes, or frames, 325
at the default refresh rate of 60hz (16.7 ms per frame). Thus, stimulus and response time latencies 326
were converted into frame onset and duration using (time in ms / frame duration), for example the 327
300 ms visual stimulus onset was set to appear 18 frames from the beginning of each trial (300 328
ms / 16.7 = 18 frames – note, frames are rounded to nearest whole number. The exception was 329
the sound duration. This was set to occur at a time in seconds because PsychoPy does not 330
provide setting for sound to be timed by frames, although it was also set to synchronize its onset 331
with the screen refresh (the “sync visual” setting). 332

9

Psychtoolbox implementation 333

For Psychtoolbox there are multiple techniques one might use to control the stimulus timing and 334
sequencing and so this is probably the package with greatest scope for users to get different 335
timing than that described here. 336

In our implementation we timed the visual stimulus by actively drawing a fixed number of frames 337
(rather than, say, flipping a frame to the display just once and then waiting for a fixed period until 338
the next scheduled stimulus change). Many studies use dynamic stimuli that need to be updated 339
continuously (i.e. on every screen refresh interval). That requires this active drawing and timing 340
mechanism rather, than a flip-once-and-wait method, and this was also a close match to the 341
method used in the PsychoPy script. The trigger was sent by calling fprintf(usb2ttl, 'WRITE 342
255\n'); immediately after the flip of the first frame. For frame refresh periods of all stimulus 343
and response timing, see the PsychoPy implementation described above. 344

For stimulus timing, the sound stimulus was queued up before the first flip of the visual stimulus, 345
by determining the time of the next screen flip using the PredictVisualOnsetForTime() 346
function. This was then used as the when argument for PsychPortAudio('Start',…). As with 347
the PsychoPy implementation, the sound library was set to “aggressive low-latency” audio mode 348
(level 3). Further, to play the sound synchronously with the visual stimulus rendering loop, we set 349
the values of waitForEndOfPlayback and blockUntilStopped to be zero (off). 350

Response tasks used PTB’s PsychHID event-based functions (kbQueue and related functions) to 351
keep track of key responses in parallel to stimulus presentation. At the end of each response trial, 352
the keyboard buffer was emptied, and response times collected. These RTs were then added to 353
a response matrix, and written to a text file at the end of the task. As PTB has no built in escape 354
function, the stimulus timing task used a state-based keyboard polling method (kbCheck) to check 355
for escape keys. 356

NBS Presentation implementation 357

Presentation is designed for sequential presentation of visual stimuli, but does allow for parallel 358
presentation of audio and visual stimuli. 359

In the Port menu, the output port was given an “Init sequence” of “WRITE 0\n”, a “Code 360
sequence” of “WRITE 255 200000 0\n” and an “End sequence” of “WRITE 0\n”. The “Init” and 361
“End” sequences are called at the beginning and end of the task. The “Code” sequence is called 362
every time a “code” parameter is specified in the task script. This “Code” string sent the instruction 363
to the LabHackers device to set the TTL pulse ON for 200 ms, and set it OFF (zero) at the end of 364
this sequence. Port device properties for the USB2TTL8 interface were set using Rate (155200), 365
Parity (Even) Data bits (8), Stop Bits (1), clear-to-send, data-set-ready out/In set to ON, and data-366
terminal-ready and request-to-send were set to “enabled”. Also, the “FIFO Interrupt” checkbox 367
was deselected. 368

In the Response menu, we added a keyboard device with the “1” button activated (the button 369
used on the LabHackers Millikey response box). In the Video menu, the primary display driver 370
was selected. In the Audio menu, we used the primary sound driver. The Presentation Mixer 371
Settings were set to the low latency “exclusive” mode, according to NBS Presentation Audio Mixer 372
Recommendations, with duplicate channels on load selected. 373

10

Both the response and stimuli timing tasks were coded in the Presentation script editor. A blank 374
screen was generated using a blank text object, positioned in a picture object. To generate the 375
visual stimulus we used a polygon graphic object, which defined a white 400 × 400 pixel rectangle, 376
which was positioned at top and center of the screen, using a picture object. For the stimulus 377
timing, an audio stimulus was created using a “.wav” file object, used to load a 200 ms long 440 Hz 378
wav file, with the preload parameter set to true. The wav file object was added to a sound object, 379
ready for presentation. 380

For both tasks, the trial timeline was generated using the trial object. In the trial object, we used 381
the trial_duration variable to set the trial duration to 500 ms. For the response task, setting 382
trial_type as “first_response” ended the trial on the first recorded response. The 383
stimulus_event objects were used to present each of the following events. A blank screen starting 384
from time zero for a duration of 300 ms, followed by a white stimulus, starting at 300 ms from 385
zero, for a duration of 200 ms. In the stimulus timing task, trial duration was set to 500ms, and 386
the audio stimulus was presented at 300 ms, for a duration of 200 ms. For corrected onsets and 387
durations, see the PCL code explanation below. The TTL trigger was added to the visual stimulus 388
event only. To achieve parallel audio-visual stimulus presentation, we followed the Parallel 389
Stimulus Events guidelines on the NBS Presentation website. This only required that we set the 390
parallel parameter in the audio stimulus event to true. 391

PCL code was used to define the trial presentation, where the stimulus events were presented 392
for 1000 trials. Both tasks started and finished with a black screen for 1000 ms. Note, we used 393
Presentations black “ready” screen (see Settings tab) to provide the Black Box Toolkit initialization 394
time. The offset of the blank screen and visual stimulus, as well as the onset of the visual stimulus, 395
were corrected so that blank offset and visual stimulus onset duration was shortened by half a 396
screen refresh (i.e., 200 – screen refresh / 2). Also, the visual stimulus onset began half a screen 397
refresh before its desired onset of 300 ms, and thus started before the onset of the sound was 398
scheduled (i.e., 300 – screen refresh / 2). 399

E-Prime implementation 400

E-Prime is also inherently a sequential stimulus presenter but can achieve simultaneous audio-401
visual stimuli using the Slide object. E-Prime (version 3.0.3.80) is not compatible with version 402
1903 of Windows 10, as used in this study, causing E-Prime to report the "Display is too busy" 403
runtime error or freeze. To work around this, we needed to turn off Windows 10 “Fullscreen 404
optimizations”, as recommended in the E-Prime documentation 405
(https://support.pstnet.com/hc/en-us/articles/360024774913-ERROR-Experiments-run-on-406
Windows-10-May-Update-1903-or-Windows-10-November-Update-1909-freeze-or-receive-a-407
display-is-too-busy-error-30679). 408

Both tasks (stimulus measurement and response measurement) used the default experiment 409
settings, with the exception of the Devices settings, where we set the Display to a specific refresh 410
rate of 60, giving minimum acceptable refresh rate of 59, and a maximum acceptable refresh rate 411
of 61. 412

The overall layout of both tasks was controlled using a main Procedure object, which started and 413
ended with an Inline script object for setting the TTL trigger to its OFF state, and a black 414
TextDisplay screen that ended on a keypress – useful to await BBTK initialization. No Inline code 415
was required for the response timing task. The LabHackers USB2TTL8 was set up as a serial 416
device in the experiment properties, where information can be sent to the serial port using the 417
Serial object e.g., Serial.WriteString “WRITE 0\n” to set an OFF signal at the start of every 418

11

trial, and Serial.WriteString “WRITE 255 200000 \n” to set an ON signal for 200 ms, 419
simultaneously with the stimulus. For the main trials, we added a List to the main procedure. The 420
List acted as the main loop, where we created 1000 samples (trials) by setting 100 cycles of 10 421
samples per cycle, using a sequential selection. To the main loop, we added another Procedure 422
object for setting the trial timeline. 423

For the stimulus timing task, the trial procedure began with an empty Slide object, set to a black 424
background. We used default Duration/Input properties of the Slide object. The duration of the 425
Slide was set to 300 ms and PreRelease was “same as duration”, where this PreRelease setting 426
allows E-Prime to preload the following stimulus immediately, during the presentation of the 427
current stimulus. 428

For the stimulus presentation, we used another Slide object. The Slide was given a white 429
background, and a SoundOut component, playing a 440 Hz wav file. We used default 430
Duration/Input properties of the Slide object, where duration was 200 ms and PreRelease was 431
“same as duration”. The PreRelease setting allowed immediate processing of the TTL code, 432
positioned after the stimulus Slide object in the trial procedure. 433

For the response timing task, we needed only two Slide objects. The trial was the same as the 434
stimulus timing task, without the sound component in the second Slide object, and without the 435
InLine script for setting the TTL trigger. In addition the stimulus Slide object had additional settings 436
in the Device/Input properties. Specifically, a keyboard was added as a device, with any key 437
allowable, a time limit the same as the duration of the stimulus, and an End Action of “Terminate”, 438
to end the trial on a keypress. 439

Expyriment implementation 440

Expyriment is also structured around sequential presentation. In each task, the stimulus was 441
preloaded during the ISI to prepare the stimuli for fast presentation, then presented using the flip-442
then-wait method. We shortened the requested visual stimulus duration to 195 ms, which reliably 443
achieved an actual duration of 200 ms. For both visual and audio stimuli, the present() method 444
was called using the default values, which took approximately 1 ms to process, according to the 445
returned time from the present() method. On each trial, the TTL pulse was fired immediately after 446
the initial call to present the visual stimulus on screen. 447

OpenSesame implementation 448

OpenSesame is also structured around sequential presentation. For stimulus timing, in order to 449
present the audio stimulus synchronously with the visual stimulus and TTL pulse we tested a 450
number of ordering combinations. The best timing was achieved by a configuration in which the 451
audio stimulus was presented first, followed by the visual stimulus, both with a notional duration 452
of zero, such that the next object began immediately. These were followed by the TTL pulse, and 453
then a call to sleep for the duration of the stimulus, so that the stimuli remained on screen for the 454
correct duration. This is essentially a flip-then-wait method of stimulus presentation. We shortened 455
the requested sleep duration to 191 ms, to achieve an actual duration of 200 ms. The TTL pulse 456
(coded using the Python pySerial module) and calls to sleep (a method of the OpenSesame 457
experiment class) were coded using inline script, an OpenSesame component for inserting 458
custom code into the experiment. 459

In the response task, each trial presented a blank screen for 300ms, followed by visual stimulus 460
positioned at the top center position of the screen. The visual stimulus duration of zero allowed 461

12

the task to move immediately onto the keyboard component, so responses could be collected 462
whilst the visual stimulus remained on screen. The keyboard was given a timeout duration of 463
200ms, with an event type of “keypress”, controlling the type of response collected (i.e., key down 464
vs key up). Following the keyboard component, a Logger component was used to record the 465
response time. 466

PsychoPy online (PsychoJS) implementation 467

The same study as used in the lab-based implementation was used to generate the PsychoJS 468
script, which was then pushed to Pavlovia.org for running (all of which is done automatically by 469
PsychoPy). 470

Parts of the code that were not needed for, or compatible with, the online version of the study, 471
such as the connection to the hardware triggers, are automatically skipped by PsychoPy Builder 472
during JavaScript code generation. No further customizations to the experiment were required for 473
the study to run in the browsers. 474

PsychoJS uses WebGL where possible (unlike most of the other JavaScript packages, as far as 475
we know). In just one configuration that we tested - Firefox on Linux – WebGL was supported but 476
needed to be explicitly enabled on the PC we used. This is because Mozilla blacklists certain 477
GPUs based on driver numbers to ensure that WebGL does not crash the browser if runs on 478
insufficient hardware. To turn off this blacklisting we opened the settings of Firefox and set 479
layers.acceleration.force-enabled to true. This ensured WebGL compatibility of FireFox 480
on Linux. Until we had made this adjustment, a warning message was provided that prevented 481
the experiment from starting. 482

Gorilla implementation 483

We created a Gorilla Project, with separate Tasks for stimulus timing tests and response timing 484
tests. Each Task was added to its own Experiment, where Task nodes were positioned between 485
the start and finish nodes. For both tasks, we created an initial and final blank black screen, each 486
5000 ms duration. For stimulus timing, we added an audio tone to the start screen in order 487
initialize the audio drivers, ready for the task, followed by the main trials presenting a blank screen 488
for 300 ms, followed by a stimulus screen for 200 ms, containing separate Zones for synchronous 489
image and audio content presentation. For response timing, the main trials consisted of a 300 ms 490
black screen, followed by a stimulus screen for 200 ms, containing separate Zones for image 491
content presentation and keyboard responses. The task was run using the “Preview Task” option, 492
used for piloting the task. 493

jsPsych implementation 494

The jsPsych task was coded using pure JavaScript, which consists of creating a timeline (array) 495
of elements using jsPsych plugins (i.e., JavaScript objects with jsPsych compatible parameters 496
used for presenting stimuli, recording responses etc.) and passing the timeline array as a 497
parameter to the init method of the jsPsych experiment object. The stimuli used in both tasks 498
were requested to be preloaded via the preload parameter in the jsPsych init method. To code 499
the experiments, we created the timeline array, and added the Pavlovia.org connection object to 500
the array. Finally, the command was sent to Pavlovia to finish the task and save any data. 501

For the response time task, we began with a welcome screen containing text, using an “html-502
keyboard-response” object. Pressing any key would begin the experiment. For each trial, we 503

13

presented a black image to using “image-keyboard-response” for 300 ms, with no key options 504
given, rendering the keyboard ineffective. Then, a stimulus screen presented a white stimulus on 505
black background, using “image-keyboard-response” for 200 ms, with all keys allowed as a valid 506
response. A response ended the trial. 507

The stimulus timing task was identical to the response time task, with the exception of the audio 508
stimulus. On the stimulus presentation screen, the audio stimulus was presented simultaneously 509
with the image stimulus using the “audio-keyboard-response” plugin, where the audio is passed 510
to the stimulus parameter, and the visual stimulus is presented via the “prompt” parameter. 511

Testable implementation 512

We were informed that Safari cannot handle fast audio stimulus presentation via Testable 513
(personal correspondence). Therefore, we did not assess Testable for synchronous sound and 514
visual stimuli presentation using Safari. 515

Testable experiments are created using a comma-separated values (CSV) file, or Excel 516
spreadsheet, where each row contains stimulus presentation configurations for each trial. For 517
both response and stimuli timing tasks, tasks started and finished with a 5 second black screen. 518
For response times, each main trial consisted of an ISI of 300 ms, followed by the 200 ms 519
presentation of visual stimuli, with a keyboard response defined for each trial. For stimulus timing, 520
a start-up trial was presented, preceding the 5 second start screen, containing an ISI of 300 ms, 521
followed by the 200 ms presentation of audio and visual stimuli, in order to initialize the audio 522
drivers, ready for the task. Each main trial consisted of an ISI of 300 ms, followed by the 200 ms 523
presentation of audio and visual stimuli. 524

Lab.js implementation 525

The Lab.js task was built using the lab.js Builder. Both stimulus and response timing tasks had 526
the same structure, and only differed with the addition of a sound oscillator for stimulus timing. 527
The task started and ended with a black Canvas-based display, presented for durations of 5 528
seconds. We then added a Loop and set the sample to 1000, where the sample denotes the 529
number of loop iterations that will occur. To the Loop, we added a Frame component, which acts 530
as the container for the stimuli. Frames contain the area occupied by the stimuli and only update 531
that contained area on each screen refresh, thus potentially enhancing performance. This was 532
advantageous with our stimuli since they occupied only a small portion of the screen. To the 533
Frame, we added a Sequence, containing the trial events. To the Sequence, we added a black 534
Canvas-based display presented for 300 ms for the ISI, and another Canvas-based display shown 535
for 200 ms to present the stimuli. The stimulus canvas contained a white rectangle at the top-536
center location of the screen. The Behaviour of the stimulus canvas was set to have a timeout, or 537
duration, of 200 ms, but was also able to record a key-down event, if required. For the stimulus 538
timing task, sound was created using an Oscillator, added to the Behaviour timeline, with an onset 539
at time 0, relative to the onset of the stimulus canvas, and a duration of 200 ms. 540

Results 541

Note that we have deliberately not included significance testing on any of the measures 542
presented below. Such tests would give a false impression of the results. The reason to provide 543
tests would be to give a sense for the reader of whether this would generalize to their own 544
hardware and environment but that is not something we can address. We have tested a large 545

Table 2: Timing summaries of desktop software by package and platform. The Var(iability) measures are the inter-trial standard deviations of
the various latencies for that configuration. The table is sorted by the mean of those variabilities (Mean Var). The Lag/Bias measures are the
mean latencies for that configuration. In the case of audiovisual synchrony, a negative bias indicates the audio lead the visual stimulus, a positive
bias means the visual lead the audio. Each of the values with a hyperlink will lead to a plot of the distribution of values leading to that summary
value. Cells are colored pale green where times are “good” (arbitrary cut-offs of <=1 ms for precision and <=5 ms for lag). Cells are a dark pink
where the timing is notably “bad” (>10 ms for precision, >20 ms for lag). An interactive version of the table can be found at
https://psychopy.org/timing/2020/table2.html

Package Platform
Mean

Precision
(ms)

Reaction times Visual durations Visual onset Audio onset Audiovisual sync
Var
(ms) Lag (ms) Var

(ms) Lag (ms) Var
(ms) Lag (ms) Var

(ms) Lag (ms) Var
(ms) Lag (ms)

PsychToolBox Ubuntu 0.18 0.31 12.30 0.15 2.05 0.18 4.53 0.17 -0.74 0.11 -5.27

Presentation Win10 0.29 0.35 11.48 0.23 -1.83 0.34 7.07 0.31 0.56 0.19 -6.51

PsychToolBox macOS 0.39 0.44 22.27 0.12 -2.15 0.41 21.52 0.53 0.09 0.43 -21.43

PsychoPy Ubuntu 0.46 0.31 8.43 1.19 3.49 0.34 4.71 0.31 -0.71 0.16 -5.43

E-Prime Win10 0.57 0.53 9.27 0.18 2.51 0.18 4.41 0.98 5.08 0.97 0.67

PsychToolBox Win10 0.67 0.42 10.49 0.75 2.24 0.19 4.56 0.99 0.77 0.98 -3.79

PsychoPy Win10 1.00 0.35 12.05 2.42 -1.97 0.35 7.10 0.96 0.85 0.93 -6.25

PsychoPy macOS 2.75 0.40 22.02 11.56 1.00 0.55 18.24 0.70 0.54 0.52 -17.70

Open Sesame macOS 3.14 0.54 21.21 1.65 18.94 0.79 18.10 6.40 9.46 6.30 -8.64

Open Sesame Ubuntu 3.41 0.45 9.68 9.16 32.29 0.50 2.35 3.45 2.05 3.48 -0.30

Open Sesame Win10 4.02 1.22 8.27 1.12 17.04 0.72 3.85 8.56 47.24 8.50 43.39

Expyriment Win10 6.22 2.90 10.76 0.55 -0.08 0.19 5.98 13.72 106.83 13.72 100.85

Expyriment Ubuntu 7.75 2.73 23.45 8.31 12.08 0.73 16.75 13.49 118.67 13.50 101.92

Expyriment macOS 9.05 4.84 33.83 7.04 -1.13 4.82 29.02 13.84 42.81 14.72 13.79

14

number of trials on a single machine and the variance we measured in that single machine is 546
likely to be small compared with the variance between machines. We would therefore 547
dramatically overestimate the significance of the differences with reference to the reader’s own 548
configuration. 549
To create the tables below we have calculated a mean precision score for each row (each 550
combination of package, operating system and browser where appropriate) and sorted the table 551
according to that mean precision. 552
All raw data files and analysis scripts are available from Open Science Framework 553
(https://osf.io/3kx7g/). 554

Lab-based package results 555

Table 2 shows the timing performance of packages running lab-based studies (not via a web 556
browser) and Figure 1 shows a visual representation of the variance in precision as a function of 557
operating system and software package 558

Timing on the lab-based systems was generally impressive. Most of the packages tested were 559
capable of sub-millisecond precision in the visual, audio and response timing tests used here. 560
The packages typically show a constant apparent lag of roughly 4 ms in visual stimulus onset 561
(visual onset bias), the difference between the occurrence of the trigger pulse and the pixels 562
changing on the LCD screen. This lag is largely hardware-based and is position dependent – 563
setting the stimulus lower in the display will result in a greater apparent lag. For PTB, Presentation 564
and PsychoPy, which have settings to pre-schedule an audio onset there is also <1ms lag for the 565
audio stimuli. 566

For macOS, performance was less precise for visual presentations. This is due mostly to a known 567
issue introduced in version 10.13 of macOS whereby a delay of 1 frame is imposed when updating 568
the display. For most of the packages, this caused a relatively constant delay, and did lead to 569
reduced precision. The resulting lag did, however, have a knock-on effect for other 570
measurements, such as the visual response time measurement which then shows a lag of 20 ms 571

Figure 1: Precision across the packages and operating systems for lab-based software.
The point size represents the standard deviation of the respective times in that configuration.
In general, the majority of the differences are caused by differences in the packages (rows)
although there are clearly some differences also between operating systems.

15

on the for all packages. On Windows and Linux, the Windows Desktop Manager and the Linux 572
Compositor, respectively, also have the potential to introduce presentation delays, but did not 573
have an effect upon the data collected in this study. 574

PsychoPy performed well on all the timing tests under Windows 10 and Linux. Since version 3.2, 575
PsychoPy has used the same engine as Psychtoolbox (ported to Python by Mario Kleiner), 576
enabling excellent audio and response timing. It should be noted that earlier versions of the 577
software did not attain this level of performance, so upgrading to PsychoPy 3.2+ is strongly 578
recommended. As with the other packages, performance on macOS was poorer. In PsychoPy’s 579
case, however, on this platform there appeared to be a reduced precision of visual stimulus 580
presentation durations as well as the greater lag, which was not observed for the other packages. 581

Psychophysics toolbox (PTB) performance was excellent, at least on Linux and Windows. 582
Achieving this precision does require more knowledge than when using PsychoPy’s 583
automatically-generated scripts. That is, there are many ways to get poorer performance 584
unwittingly but, when programmed well, PTB can deliver excellent timing. 585

E-Prime performed very well out-of-the box, with no tweaking or effort. The audio stimulus had a 586
slight (5 ms) lag compared to some of the other packages, but that is something that could 587
presumably have been measured and corrected for, as was done for Presentation. Critically, the 588
inter-trial variability (standard deviation) of the timings was sub-millisecond on every measure. 589

NBS Presentation timing was ultimately excellent, but this was not the case in the first instance. 590
Initially we found duration measurements that overshot the desired 200 ms (which were corrected 591
by requesting a duration of ½ frame less than the desired duration). We also initially found audio 592
latencies to be both delayed and variable, having simply set the audio stimulus to play immediately 593
after the visual stimulus. Detailed Presentation technical documentation on “Parallel Stimulus 594
Events” describe a work-around that did allow the sound and visual stimulus to be prescheduled, 595
if the user knows the latency that needs to be compensated for. Applying this compensation 596
enabled the excellent timing shown in Table 2. To achieve this was rather more difficult than on 597
other platforms, however, requiring familiarity with advanced documentation that many users will 598
not have read. 599

OpenSesame timing performed well in the visual stimulus domain and response timing was also 600
fairly good (an inter-trial variability of 1.16 ms on Windows was worse than the packages 601
described above, but still adequate for most behavioral measurements). To get this response 602
timing the package must constantly check the keyboard (it cannot do so asynchronously) which 603
means that other stimulus updates can’t be made at the same time (whereas PsychoPy and PTB 604
allow checking the keyboard while presenting dynamic stimuli) but, again, this would be sufficient 605
for many simple tasks. Audio timing was less good, with a lag of over 40 ms and an inter-trial 606
variability of 3-9 ms, depending on operating system. This poorer performance is because, at the 607
time of writing, OpenSesame was using an older version of PsychoPy as its backend, which did 608
not support the new PsychPortAudio library. 609

Expyriment had the worst performance in nearly all domains. Indeed, in many instances it was 610
out-performed by the packages that were running experiments online. Expyriment’s stimulus 611
presentation and response monitoring is built upon the Pygame Python library, which has not 612
been optimized for low-latency, high-precision timing. We would not recommend the use of this 613
package where precise stimulus/response timing is required. 614

16

Web-based package results 615

In general, the precision of the web-based packages was reasonable, but lags were certainly 616
more substantial than in desktop configurations. While these were constant within any one 617
browser/operating system combination they varied a great deal between different combinations. 618
There are also aspects of the timing, and especially stimulus onset lags, that could not be 619
measured in online systems due to the lack of a trigger pulse from a parallel port (which cannot 620
be controlled from JaaScript). 621

It is important to remember that the “online” response timing was measured as if the user had 622
access to a low-latency button box. That is, we were using lab-based hardware from within a 623
browser environment, which will not reflect the heterogeneous and generally low-spec commodity 624
keyboards that will be used “in the wild” for online studies. 625

Table 3 shows the performance of packages in browser-based studies and Figure 2 shows a 626
visual representation of the variance in precision as a function of operating system, browser and 627
software package. Although the timing of the packages in online experiments did not match that 628
of the lab-based packages, it was perhaps surprisingly good. The data were more mixed in terms 629

Figure 2: The precision across the packages, operating systems, and browsers for the
two major cross-platform browser. The point size represents the standard deviation of the
respective times in that configuration. There is a greater mix of performance in the online
provision, with some packages performing better on one browser/OS combination, and another
package performing better on another.

Table 3: Timing summaries of web-based software by package, platform, and browser. The Var(iability) measures are the inter-trial standard
deviations of the various latencies for that configuration. The table is sorted by the mean of those variabilities (Mean Var). The Lag/Bias
measures are the mean latency values, for that configuration. In the case of audiovisual sync, a negative bias indicates the audio lead the visual
stimulus, a positive bias means the visual lead the audio. Each of the values with a hyperlink will lead to a plot of the distribution of values
leading to that summary value. Cells are colored pale green where times are “good” (arbitrary cut-offs of <=1 ms for precision and <=5 ms for
lag). Cells are a dark pink where the timing is notably “bad” (>10 ms for precision, >20 ms for lag). An interactive version of the table can be
found at https://psychopy.org/timing/2020/table3.html

Package Platform Browser
Mean

Precision
(ms)

Reaction times Visual durations Audiovisual sync
Var
(ms) Lag (ms) Var

(ms) Lag (ms) Var
(ms) Lag (ms)

PsychoPy Win10 Chrome 1.36 0.39 43.95 0.67 -2.08 3.01 65.32

Gorilla Win10 Firefox 1.84 1.11 24.83 2.67 1.35 1.73 88.27

Gorilla macOS Firefox 2.18 4.47 30.34 0.94 1.16 1.12 38.43

PsychoPy Win10 Edge (Standard) 2.22 2.03 42 0.93 -2.28 3.69 56.19

PsychoPy macOS Firefox 2.65 1.17 67.01 3.38 0.24 3.4 -10.21

PsychoPy macOS Safari 2.66 1.05 33.5 4.26 0.49 n/a n/a
PsychoPy Win10 Firefox 2.76 1.96 40.97 2.42 -2.61 3.9 58.93

Gorilla Ubuntu Firefox 2.76 4.71 24.71 2.35 2.05 1.23 -30.61

jsPsych macOS Safari 3.39 0.66 31.31 4.39 3.09 5.11 -23.48

jsPsych Win10 Edge (Chromium) 3.85 1.74 15.19 4.21 2.97 5.6 44.51

Testable Win10 Firefox 3.92 3.87 31.36 2.94 1.91 4.95 76.32

PsychoPy Ubuntu Firefox 3.97 1.57 42.5 4.97 1.02 5.36 190.45

Testable Ubuntu Firefox 4.05 3.97 31.57 3.25 1.84 4.92 -44.36

PsychoPy Ubuntu Chrome 4.14 0.2 66.98 1.77 1.77 10.45 187.19

Lab.js macOS Firefox 4.2 0.97 16.38 8.61 19.51 3.01 4.26

PsychoPy Win10 Edge (Chromium) 4.24 1.04 46.01 3.03 -3.36 8.66 63.3

jsPsych Ubuntu Chrome 4.63 3.23 48.29 4.33 4.05 6.34 27.73

PsychoPy macOS Chrome 4.84 3.22 35.29 6.47 -0.3 4.82 -6.86

Lab.js Ubuntu Chrome 5.12 8.27 31.79 1.19 2.34 5.91 198.05

jsPsych Ubuntu Firefox 5.12 4.11 31.38 4.84 4.05 6.43 10.55

jsPsych macOS Firefox 5.16 6.85 53.7 2.57 3.27 6.05 -15.29

Testable Ubuntu Chrome 5.46 4.23 47.09 7.06 -11.92 5.09 94.18

Testable macOS Chrome 5.52 3.99 41.94 7.43 6.34 5.13 67.2

jsPsych macOS Chrome 5.62 5.68 41.42 5.74 3.25 5.45 -9.71

Lab.js Win10 Firefox 5.78 7.88 8.22 4.21 14.25 5.25 70.93

Lab.js macOS Chrome 5.79 3.26 20.3 8.78 6.51 5.31 -0.21

Gorilla Win10 Edge (Standard) 5.96 4.95 40.23 7.15 4.95 5.79 70.93

Testable macOS Firefox 6.1 5.2 57.66 7.63 22.83 5.48 40.73

Lab.js Ubuntu Firefox 6.19 2.91 25.54 10.22 13.66 5.44 185.35

jsPsych Win10 Chrome 6.23 7.85 23.27 5.1 3.6 5.73 43.57

Testable Win10 Edge (Chromium) 6.8 4.11 15.99 8.34 -5.39 7.94 73.79

jsPsych Win10 Firefox 7.38 8.37 25.7 7.04 15.32 6.74 32.32

Gorilla Win10 Chrome 7.89 3.58 25.6 5.03 4.24 15.06 98.84

Testable Win10 Chrome 8.08 7.88 23.96 8.38 -5.9 7.98 72.57

Lab.js Win10 Edge (Chromium) 8.57 4.22 17.14 8.03 -4.9 13.45 82.45

Lab.js Win10 Chrome 9.48 8.44 19.2 7.76 -1.73 12.25 86.03

Gorilla macOS Chrome 9.76 5.3 35.31 5.36 3.4 18.61 32.03

Gorilla Win10 Edge (Chromium) 11.34 4.89 23.4 3.01 1.56 26.13 121.57

Gorilla Ubuntu Chrome 14.17 0.43 40.85 1.66 3.36 40.42 200.55

Gorilla macOS Safari 19.16 1.53 29.65 30.11 22.25 25.83 285.81

17

of which packages performed the strongest, with some packages performing well on some 630
browsers and poorly on others. Similarly, there was no clear winner in terms of operating system 631
– Linux often performed poorly in these tests whereas it had generally been superior in the lab-632
based studies. 633

PsychoPy/PsychoJS version 2020.1 achieved an inter-trial variability under 5 ms in nearly all 634
browsers for nearly all measures and often exceeded sub-millisecond precision. It should be 635
noted that substantial timing improvements were made to this package in the 2020.1 release so 636
users needing precise timing in their web experiments are strongly encouraged to upgrade and 637
re-compile their JavaScript outputs from Builder. 638

PsychoPy had the lowest inter-trial variability in reaction times (under 4 ms on every browser/OS 639
combination) with a mere 0.2 ms inter-trial variability for Ubuntu Chrome. Interestingly, the 640
response time measure showed more lag under PsychoPy than some of the other packages, but 641
better precision. We suspect that is due to PsychoPy using WebGL where available. That could 642
well be introducing a 1-frame lag as the window is rendered, but then increases the certainty of 643
when the rendering occurs. As discussed in this article, we consider constant lags of lesser 644
importance than variability, so this may be an acceptable compromise, but we will certainly be 645
trying to find ways using JavaScript of getting low lags at the same time as low variability. 646

Gorilla performed relatively well in the visual tests, with consistently low variability across the 647
browsers and operating systems. Similarly, it performed well with visual reaction times with under 648
6 ms inter-trial variability in all browsers and sub-millisecond in Chrome on Ubuntu. Where Gorilla 649
struggled was with audio stimuli, with inter-trial variability over 10 ms in five of the browsers tested, 650
and lags exceeding 100 ms in three cases. 651

Lab.js reaction time measures showed an inter-trial variability under 9 ms, with Firefox on macOS 652
showing sub-millisecond precision. The notable thing about lab.js was that it showed surprisingly 653
low lag values for measures like reaction time but not an improved precision. Indeed, on some 654
trials, the lag was negative: it was reported as having a shorter response time should have been 655
possible, not something we saw in any other package or configuration. 656

jsPsych and Testable both showed inter-trial variability in the range 3.2-8.4 ms in all 657
configurations, slightly less precise than Gorilla and PsychoPy. Nonetheless that variability is 658
still less than the typical physiological variability of human participants themselves, or the 659
keyboards and touchscreens that are typically used for responses. 660

Discussion 661

From the data, it is clear that modern computers are capable of very precise timing in presenting 662
audio and visual stimuli and in receiving responses, at least when used with a button box rather 663
than a keyboard. There are a number of absolute lags that are common to all the software 664
packages, which cannot be avoided, and there are differences between software packages but, 665
in the best-performing packages on Windows and Linux, the inter-trial variability in the timing (the 666
standard deviation of the measurements for a single configuration) was typically under a 667
millisecond for all measures. 668

For lab-based studies, PsychoPy and Psychtoolbox were the most precise, outperforming even 669
the proprietary NBS Presentation and E-Prime packages. OpenSesame and Expyriment followed 670
in precision, in that order. For online studies the timing was less precise than in the native 671
applications and was quite variable between browsers. Stimulus duration remained relatively 672

18

precise on most of the packages. For response times, there were larger lags, and these varied 673
between browsers, but the precision within a software/browser combination (as would be 674
experienced by an individual participant) was relatively good, with an inter-trial variability in the 675
range 5-10 ms in most cases and even less for PsychoJS. The findings lend support to the notion 676
that online studies might well be adequate across a large number of domains, except where the 677
utmost precision is required, or where absolute response times must be compared between 678
individuals, which would be impacted by responding on different systems. Further details on the 679
particular packages and operating systems are considered below. 680

It is very important to note that the timings measured here represent something approaching a 681
best-case scenario. Although we deliberately tested using mid-spec, rather than high-end, 682
computers there are various reasons that our timing may have been better than in many standard 683
experimental set ups. We used very simple stimuli: a single white square and a sound. We 684
ensured that our monitors were correctly configured and the graphics settings were appropriate, 685
whereas some labs, and most online participants, will leave the monitor and graphics card in 686
whatever their default settings are. We also used a button box to measure the response times, 687
rather than the standard commodity-grade keyboard, in use by many labs, and nearly all online 688
participants. Probably most importantly, however, by validating the timing independently with 689
dedicated hardware, we could detect when timing was not as good as expected (whether because 690
of hardware or software settings). For example, as mentioned above, we found that some of the 691
software packages presented the visual stimulus for 1 extra frame (216.7 ms rather than the 692
intended 200 ms) unless we reduced the requested duration to 195 ms. We suspect that a large 693
number of studies are being conducted with timing that is considerably worse than reported here, 694
by virtue of stimuli being incorrectly programmed, hardware being incorrectly configured, or by 695
computers that aren’t sufficient for the task. We discuss below a range of specific ways in which 696
timing performance can be dramatically impaired. We would like to stress, once again, the 697
importance of testing timing for every study, with the particular combination of stimuli, operating 698
system and hardware used in that study. Papers such as this one, which report “best case” timing 699
performance, should not be used in lieu of study-specific validation and testing. 700

Comparing the lab-based packages 701

PsychoPy, Psychtoolbox, E-Prime and NBS Presentation all had precision that was below 1 ms 702
on average across the measures. OpenSesame was slightly less precise across the board but 703
most notably in audio. We were using the PsychoPy backend, but this in OpenSesame is currently 704
using an older version of PsychoPy not supporting the new low-latency audio options. Expyriment 705
had the worst timing and would not be recommended, particularly for studies needing precisely-706
timed audio stimuli. The exception in timing quality for lab-based studies was macOS, where all 707
packages showed a large absolute lag in visual onsets, sometimes combined with a poor 708
precision of those onsets, as discussed below. 709

For visual stimulus durations, most of the packages showed similar timing, although with 710
Presentation and Expyriment, the correct duration was only achieved by setting the requested 711
duration to a shorter time (setting to 200 ms resulted in a 1-frame overshoot, whereas setting it to 712
191 resulted in good timing). This is the sort of issue where, unless validating the timing with a 713
hardware device, unsuspecting users would find it very easy to produce an incorrect stimulus 714
duration. Surprisingly in OpenSesame we set the duration to be 191 ms but still observed an 715
overshoot. 716

19

For response times, PsychoPy, Psychtoolbox, E-Prime and Presentation all provided reaction 717
times with an inter-trial variability of 0.5 ms or less on all 3 operating systems. OpenSesame 718
reaction times were slightly poorer on Windows, with an inter-trial variability of 1.2 ms, but similar 719
high-precision on Linux and macOS. Expyriment reaction times had an inter-trial variability of 2-720
5ms depending on the operating system. Due to the aforementioned visual lag on the Mac, the 721
response times on that platform all appear to be 1 frame slower but, again, as that is roughly 722
constant, the achieved precision is generally good. 723

The relatively poorer performance of Expyriment is likely to stem from its use of the Pygame 724
library (a Python wrapper of SDL), which provides convenient features for programming, but sub-725
optimal performance. 726

Comparing Operating Systems 727

Mario Kleiner, on the Psychtoolbox forum, has long advocated the use of Linux for optimal timing 728
and that is somewhat born out here. Timing was indeed nearly always better on Ubuntu than the 729
other systems, but the difference for these particular tests was relatively small (compare for 730
example an audio variability of roughly 0.2 ms on Linux with 0.5 ms on macOS and 1.0 ms on 731
Windows for both PsychoPy and Psychtoolbox). The difference may well be accentuated with 732
tougher testing environments, such as testing whether the package still performs well under high 733
computing loads. 734

The most notable poor performance overall was the lag of visual stimulus onset on Apple’s 735
macOS. Attempting to sync a trigger pulse with a visual stimulus on a Mac revealed a 1-frame 736
delay for most of the software packages, and on Expyriment the lag was longer and variable. This 737
lag on the Mac is something that depends on the operating system version. Up to and including 738
OS X 10.12, we could see the same high-precision visual timing as on the other operating systems 739
but this changed in the system update from 10.13 onwards (persisting at least until macOS 740
10.14.5, as tested here). It appears that the system has added some additional buffering step 741
(“triple buffering”) into its rendering pipeline. Therefore when the experimental software regards 742
the framebuffer as having ‘flipped’, it has actually just progressed to the next buffering stage and 743
is not yet visible on the screen. 744

The same behavior occurs in Windows 10 if triple-buffering is enabled in the driver settings, or by 745
turning on screen scaling (which appears to implicitly use triple-buffering). On Windows these can 746
always be turned off if the user knows to search for them. On macOS, however, there is currently 747
no user-accessible way to disable this lag. In most other aspects, macOS had good timing. 748

Comparing online packages 749

For the online packages, we could not measure the absolute lag as there is no means to send a 750
hardware trigger synchronization pulse from within the browser environment. The only measures 751
we could provide in that setting were the precision for a stimulus duration, the audio-visual onset, 752
and the visual stimulus response. In many cases those are, in any case, the things that the 753
scientist might need but they do little to inform us of the cause of any discrepancies. For example, 754
when we find that the response time has a lag of 35 ms it isn’t clear whether this is caused by a 755
delay in the visual stimulus appearing, or a delay in detecting the keypress. 756

Those caveats aside, behavioral scientists might be reassured to find that most of the online 757
packages were certainly capable of presenting visual stimuli for a relatively precise number of 758

20

milliseconds. For the vast majority of packages and browser/OS combinations, we found an inter-759
trial variability of less than 5 ms for stimulus duration and rarely any consistent under/overshoots. 760
There was more variability than in the native packages, but the effects on most experiments are 761
likely to be very small. 762

For response timing, similarly, we were generally impressed by the performance, finding the inter-763
trial variability to be under 10 ms in all cases. PsychoPy/PsychoJS topped this table recording a 764
precision of under 4 ms in every browser/OS combination, and with sub-millisecond precision 765
using Chrome for both Windows and Linux. As noted by other authors, the absolute lags in the 766
response times were longer than in desktop studies, but these are typically the less important 767
measure. In a study where one takes a measure by comparing the response times of participants 768
across multiple conditions (consider a Stroop task, for instance, or an Implicit Association Test) 769
then this is of little consequence. As we take the difference in response times, the absolute lag is 770
subtracted and the only value of relevance is the variability. 771

Note that the measured timings here are much higher precision than in the most recent other 772
study to our knowledge (Anwyl-Irvine et al., 2020). For instance, they report standard deviations 773
of over 10 ms for most packages (Table 2), but that value is the standard deviation across devices 774
and browsers for a package, not the inter-trial variability within any single configuration as 775
reported here. A second key difference is that they used a keyboard for all measurements, 776
although this would not be sufficient to explain some of the extreme reaction time measures that 777
they found: for all packages they report maximum errors of over 150 ms, which we have not 778
encountered in any of our measurements and which should not have resulted simply from the use 779
of a keyboard. A last key difference with their data is that, for PsychoPy, Anwyl-Irvine et al used 780
an older version (v3.1.5) than in the current study (v2020.1) and it is certainly the case that 781
PsychoPy’s timing has improved a great deal between those versions. 782

For audio-visual synchrony, the data are less encouraging; all the tested packages are currently 783
struggling in that domain. There are some browsers where the synchrony is good, but others 784
where it is extremely poor using the same software package. In some cases the sound failed to 785
play reliably at all. The results indicate that JavaScript probably isn’t currently a technology ready 786
for precisely-timed audio and this is an area for all the software authors to work on. 787

The importance of making your own measurements 788

The comparisons made here generally represent best-case scenarios. There are several reasons 789
that the timing would be poorer on a typical lab system than measured in the current study. The 790
chief of these reasons is simply that we independently tested the timing with photodiodes and 791
microphones and, in so doing, we found timing problems that could be addressed first. We 792
consider below just some of the many factors that can cause timing quality to be reduced. 793

Visual lags from monitor and operating systems. The experimenter might experience lags of 794
one or more refresh period for the visual stimulus (and that delay is effectively also added to your 795
response times and to the audio-visual synchrony) in a manner that your stimulus presentation 796
system cannot detect without dedicated hardware. This could be caused by your monitor itself. 797
Monitors often now have multiple viewing “modes” such as movie mode or game mode, where 798
the manufacturer seeks to optimize the picture for that particular activity. In optimizing the picture, 799
they perform further processing on the pixel values that you have sent to the screen from your 800
graphics card. As well as frustrating the careful scientist by subtly altering the images, the delay 801
incurred can have a dramatic impact on timing, because the processing can take 10-20 ms, 802

21

introducing a lag. Windows 10 can add a 1-frame lag if you turn on seemingly innocuous features 803
like screen scaling. Unless you measure the physical timing against a hardware trigger signal, 804
then you wouldn’t know that this was occurring. If you measure the system and establish that the 805
timing is good but then stop measuring further, you are still susceptible to changes introduced as 806
the operating system or the audio/graphics card drivers are updated (for example, Apple silently 807
introducing a 1-frame lag at the level of the operating system in macOS X 10.13). Note also that 808
whereas some timing errors (such as a dropped frame) can be detected by the software packages 809
themselves and will show up in log files and/or alert messages, others, such as image processing 810
in the monitor, cannot be detected by any of the packages. Hardware tests are required to detect 811
that if the monitor is adding delays to stimulus display. 812

Audio timing. Unlike the visual stimulus, for which we can at least detect when the graphics card 813
has flipped a frame buffer (and then hope that the screen updated reasonably quickly after that), 814
audio libraries do not report back on the progress they have made. When we request that a sound 815
plays, we have no real information about when the speakers begin physically vibrating, except by 816
recording it externally with a microphone. A software package might be able to use information 817
about the size of the audio buffer and latency settings that are reported in the card to estimate 818
when the sound is physically played, but it cannot detect any feedback signal that a sound has 819
played. Again, the only way to know about the timing quality of your audio stimuli is to test with 820
hardware devices. 821

Stimulus differences. The next reason to think that your timing performance might not match 822
the performance described above is that, in nearly all cases, experimental stimuli will be more 823
complex than those we presented here, and tests need to be carried out for that stimulus 824
configuration to confirm that the quality of timing is still being maintained. Complexity can affect 825
performance, and it might not be clear to many users what constitutes “complex” (for instance, 826
rendering text stimuli is more computationally challenging for most packages than rendering a 827
photographic image or a shape). Similarly, although we used computers with moderately high 828
specifications rather than heavy-duty powerhouses, in reality very many experiments are run on 829
relatively weak hardware. The characteristics of the computer and, especially its graphics card, 830
can have a drastic effect on experimental timing. Especially in the days of high-resolution displays, 831
many users are probably unaware of the demands that these place on a graphics card and that 832
they should only be used in conjunction with high-end dedicated graphics processors. A “4K” 833
display, increasingly common as a computer monitor, typically has a resolution of 3840 × 2160, 834
which is roughly 8.3 million pixels, each consisting of red, green, blue and alpha values. At 60 835
frames per second the graphics card needs to update, and output, a staggering 40 billion values 836
per second. That is something that modern cards are capable of doing, but cheaper or older 837
computers are not. When they encounter a high-resolution display, they will typically just send 838
fewer screen updates per second, so that a nominally 60 frames per second display runs at, say, 839
30 Hz or becomes irregular. 840

Erroneous or inefficient code. While graphical experiment builders do a great deal to help 841
reduce errors in code, it is still easy for a user to make mistakes. In particular, many users have 842
rather little knowledge of the underlying limitations of their computer, or at least haven’t thought 843
through the implications of those limitations. For example, it takes a relatively long time for an 844
image to be loaded from disk and uploaded to the graphics card, whereas rescaling it and 845
repositioning the same image has minimal overhead for a hardware-accelerated graphics 846
application. At other times of course the scientist might have excellent knowledge but simply made 847
a typographical error while creating the experiment. The best way to ensure that you haven’t 848
made a mistake with your coding is to test the physical output of that coding (i.e. by testing the 849
stimulus appearance with hardware). 850

22

Miscellaneous. There are many additional recommendations, of course. While running your 851
study you should turn off unnecessary network services, such as Dropbox and email applications, 852
as well as any applications that might be using substantial amounts of memory. You should keep 853
image files to roughly the number of pixels that they will need when rendered on-screen (rather 854
than loading a 12-megapixel image to be displayed on a 2-megapixel screen). You should try to 855
perform any time-consuming activities in your code during inter-trial intervals or similar. If any of 856
these miscellaneous issues are causing timing errors, however, most of them should be 857
detectable in your software log files, which you should also check as a part of your testing process. 858

How to test timing 859

There are a variety of options for this depending on your needs and budget. With an oscilloscope, 860
a microphone, and a photodiode you can test audio-visual synchrony. If you don’t have a 861
traditional oscilloscope there are now cheap PC-based options available to help, such as the 862
BitScope (http://www.bitscope.com/), although those are more likely to require some 863
programming (we haven’t tested one). The downside of traditional oscilloscopes is that while you 864
can easily visualize the offset between various signals such as triggers and visual stimuli, this can 865
be difficult or impossible to automate unless your scope also supports computer communication. 866

If you want to test the absolute lag of a visual or auditory stimulus then you will also need 867
something with which to generate a trigger pulse, such as a parallel port. Physical parallel ports 868
are increasingly hard to source, hard to configure and may not be compatible with your computer 869
(e.g. on a Mac or a laptop PC). There are other cheap cross-platform USB solutions though, such 870
as the LabHackers USB2TTL8 (http://www.labhackers.com/usb2ttl8.html) we used in this study 871
and is extremely simple to set up and use, or a LabJack (https://labjack.com/), which has more 872
channels and provides analogue as well as digital in/outputs, but requires a little more 873
programming effort. 874

The Labhackers Millikey (http://www.labhackers.com/millikey.html) is a high-performance button 875
box with the additional feature that it can be commanded via the USB port (with RS232 protocol) 876
to send a virtual keypress and this can be used to test how quickly the software then detected the 877
keyboard event. We have tested this and found a round-trip time of under 1 ms to send the 878
command to the box and detect the resulting keypress. An upgrade called the DeLux allows you 879
to fire the virtual keypress on the basis of a visual stimulus onset, which you could also use to test 880
how long it took to be detected by your software (after stimulus onset). Such a setup allows you 881
to test the overall timing error from stimulus presentation to response collection (for instance, 882
revealing the visual stimulus delay on recent macOS) and it can be scripted. 883

For the ultimate range of measurements, a key device is the Black Box Toolkit (BBTK, 884
https://www.blackboxtoolkit.com/) (Plant, Hammond & Turner, 2004), as used in all the timing 885
tests reported here. BBTK v2 has many inputs and outputs allowing you to test the timing over 4 886
photodiodes and 2 microphones and to send “responses” via sounders and keyboard actuators. 887
You can use it to test the timing of stimuli, or to respond to your stimuli in numerous ways, all 888
synchronized with trigger pulses over numerous TTL input/outputs. This is a more expensive 889
device, costing between £1500 and £3000 depending on the options, but is highly recommended 890
as a resource for complete testing of your experimental setup. 891

Conclusions 892

23

We find that PsychoPy, Psychtoolbox, E-Prime® and NBS Presentation® are all capable of similar 893
sub-millisecond precision in both stimulus and response timing. OpenSesame and Expyriment 894
were slightly less precise, especially in terms of audio stimulus presentation. In comparing 895
operating systems, the ideal system depends on the type of study: for visual stimuli Apple’s 896
macOS suffers from a visual stimulus lag (since OS X version 10.13); Linux can be optimized to 897
be extremely precise but its web browsers are seemingly poorly optimized, and Windows 10 898
appears to have reasonable performance in all domains. 899

For online studies we report the fastest, least variable data yet measured in browser-based 900
latency tests. All the packages we tested were also reasonably precise in visual stimulus 901
presentation, with PsychoPy achieving particularly impressive reaction time precision of under 4 902
ms on all browsers. That said, these packages remain not quite as precise as the lab-based 903
equivalents. In particular, no online system can yet provide audio stimuli with precisely timed 904
onsets. We also note, in agreement with previous studies (Reimers & Stewart, 2015), that quality 905
of absolute timing (the accuracy rather than the precision) is poor in browsers. Comparisons 906
between participants, in terms of their absolute response times, is unwise for web-based data. 907
Studies should aim always to make comparisons with a control condition on the same 908
browser/computer (such as in within-subject comparisons) so that these absolute lags are 909
naturally removed. 910

 911

24

References 912
Anwyl-Irvine AL, Dalmaijer ES, Hodges N, Evershed J. 2020. Online Timing Accuracy and 913

Precision: A comparison of platforms, browsers, and participant’s devices. PsyArXiv. DOI: 914
10.31234/osf.io/jfeca. 915

Anwyl-Irvine AL, Massonnié J, Flitton A, Kirkham N, Evershed JK. 2019. Gorilla in our midst: An 916
online behavioral experiment builder. Behavior Research Methods. DOI: 10.3758/s13428-917
019-01237-x. 918

Brand A, Bradley MT. 2012. Assessing the Effects of Technical Variance on the Statistical 919
Outcomes of Web Experiments Measuring Response Times. Social Science Computer 920
Review 30:350–357. DOI: 10.1177/0894439311415604. 921

Forster KI, Forster JC. 2003. DMDX: A Windows display program with millisecond accuracy. 922
Behavior Research Methods, Instruments, & Computers 35:116–124. DOI: 923
10.3758/BF03195503. 924

Garaizar P, Vadillo MA. 2014. Accuracy and Precision of Visual Stimulus Timing in PsychoPy: No 925
Timing Errors in Standard Usage. PLOS ONE 9:e112033. DOI: 926
10.1371/journal.pone.0112033. 927

Garaizar P, Vadillo MA, López-de-Ipiña D. 2014. Presentation Accuracy of the Web Revisited: 928
Animation Methods in the HTML5 Era. PLOS ONE 9:e109812. DOI: 929
10.1371/journal.pone.0109812. 930

Garaizar P, Vadillo MA, López-de-Ipiña D, Matute H. 2014. Measuring Software Timing Errors in 931
the Presentation of Visual Stimuli in Cognitive Neuroscience Experiments. PLOS ONE 932
9:e85108. DOI: 10.1371/journal.pone.0085108. 933

Henninger F, Shevchenko Y, Mertens UK, Kieslich PJ, Hilbig BE. 2019. lab.js: A free, open, online 934
study builder. PsyArXiv. DOI: 10.31234/osf.io/fqr49. 935

de Leeuw JR. 2015. jsPsych: A JavaScript library for creating behavioral experiments in a Web 936
browser. Behavior Research Methods 47:1–12. DOI: 10.3758/s13428-014-0458-y. 937

de Leeuw JR, Motz BA. 2016. Psychophysics in a Web browser? Comparing response times 938
collected with JavaScript and Psychophysics Toolbox in a visual search task. Behavior 939
Research Methods 48:1–12. DOI: 10.3758/s13428-015-0567-2. 940

Miller R, Schmidt K, Kirschbaum C, Enge S. 2018. Comparability, stability, and reliability of 941
internet-based mental chronometry in domestic and laboratory settings. Behavior 942
Research Methods 50:1345–1358. DOI: 10.3758/s13428-018-1036-5. 943

Neath I, Earle A, Hallett D, Surprenant AM. 2011. Response time accuracy in Apple Macintosh 944
computers. Behavior Research Methods 43:353. DOI: 10.3758/s13428-011-0069-9. 945

Peirce JW, Gray JR, Simpson S, MacAskill M, Höchenberger R, Sogo H, Kastman E, Lindeløv 946
JK. 2019. PsychoPy2: Experiments in behavior made easy. Behavior Research Methods 947
51:195–203. DOI: 10.3758/s13428-018-01193-y. 948

25

Plant RR. 2016. A reminder on millisecond timing accuracy and potential replication failure in 949
computer-based psychology experiments: An open letter. Behavior Research Methods 950
48:408–411. DOI: 10.3758/s13428-015-0577-0. 951

Plant RR, Hammond N, Turner G. 2004. Self-validating presentation and response timing in 952
cognitive paradigms: How and why? Behavior Research Methods, Instruments, & 953
Computers 36:291–303. DOI: 10.3758/BF03195575. 954

Plant RR, Quinlan PT. 2013. Could millisecond timing errors in commonly used equipment be a 955
cause of replication failure in some neuroscience studies? Cognitive, Affective, & 956
Behavioral Neuroscience 13:598–614. DOI: 10.3758/s13415-013-0166-6. 957

Plant RR, Turner G. 2009. Millisecond precision psychological research in a world of commodity 958
computers: New hardware, new problems? Behavior Research Methods 41:598–614. 959
DOI: 10.3758/BRM.41.3.598. 960

Pronk T, Wiers RW, Molenkamp B, Murre J. 2019. Mental chronometry in the pocket? Timing 961
accuracy of web applications on touchscreen and keyboard devices. Behavior Research 962
Methods. DOI: 10.3758/s13428-019-01321-2. 963

Reimers S, Stewart N. 2007. Adobe Flash as a medium for online experimentation: A test of 964
reaction time measurement capabilities. Behavior Research Methods 39:365–370. DOI: 965
10.3758/BF03193004. 966

Reimers S, Stewart N. 2015. Presentation and response timing accuracy in Adobe Flash and 967
HTML5/JavaScript Web experiments. Behavior Research Methods 47:309–327. DOI: 968
10.3758/s13428-014-0471-1. 969

Schubert TW, Murteira C, Collins EC, Lopes D. 2013. ScriptingRT: A Software Library for 970
Collecting Response Latencies in Online Studies of Cognition. PLOS ONE 8:e67769. DOI: 971
10.1371/journal.pone.0067769. 972

Ulrich R, Giray M. 1989. Time resolution of clocks: Effects on reaction time measurement—Good 973
news for bad clocks. British Journal of Mathematical and Statistical Psychology 42:1–12. 974
DOI: 10.1111/j.2044-8317.1989.tb01111.x. 975

 976

