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Abstract 

Background: Effective drug regimens for the treatment of hepatitis B virus (HBV) infections 

are essential to achieve the World Health Organisation commitment to eliminate viral 

hepatitis by 2030. Lamivudine (3TC) is widely used in countries with high levels of chronic 

HBV, however resistance has been shown to occur in up to 50% of individuals receiving 

continuous monotherapy for 4 years. Telbivudine (LdT) is now more commonly used in place 

of lamivudine but is ineffective against 3TC-resistant HBV. Genotyping and identification of 

resistance-associated substitutions (RAS) is not practical in many locations.  

Objectives: A novel assay was designed to enable HBV genotyping and characterisation of 

resistance mutations directly from serum samples stored on filter paper, using Sanger and 

MinION sequencing. 

Study design: The assay was applied to a cohort of 30 samples stored on filter paper for 

several years with HBV viral loads ranging from 8.2x108 to 635 IU/mL. A set of 6 high-titre 

samples were used in a proof-of-principle study using the MinION sequencer. 

 Results: The assay allowed determination of HBV genotype and elucidation of RAS down to 

600 IU/mL using a 550bp amplicon. Sequencing of a 1.2kb amplicon using a MinION 

sequencer gave results consistent with Sanger and allowed the identification of minor 

populations of variants. 

Conclusions: We present two methods for reliable HBV sequencing and RAS identification 

using methods suitable for resource-limited environments. This is the first demonstration of 

extraction-free DNA sequencing direct from DSS using MinION and these workflows are 

adaptable to the investigation of other DNA viruses. 

 

*Abstract



 Genotyping and screening for resistance associated substitutions in hepatitis B virus 
genomes is possible using an extraction-free method with dried serum spots (DSS) 
and direct PCR enzymes. 

 Longer fragments can be recovered from high-titre samples and are suitable for 
deep sequencing using the Oxford Nanopore MinION. 

 This method allows effective HBV diagnostic testing to be carried out in resource-
limited settings. 

*Highlights (for review)
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Background and objectives 1 

Hepatitis B virus (HBV) currently infects an estimated 257 million people worldwide and 2 

there is an urgent need for screening and surveillance tools to assess HBV in low and 3 

middle-income countries [1]. In some African regions it is estimated that 6% of the 4 

population are infected and only one in every ten children is vaccinated [2, 3]. HBV has a 5 

complex and error-prone replication cycle and there are many well-characterised mutations 6 

across the HBV genome, conferring resistance to therapy, an increase in replication 7 

efficiency (polymerase), immune- and diagnostic test-escape (S/pre-core), or increased 8 

pathogenicity (reviewed in [4]).  9 

Treatment of chronic HBV typically utilises long term monotherapy with a polymerase 10 

inhibitor. Resistance mutations to the polymerase inhibitor lamivudine (3TC) are well 11 

documented, occurring in 51 % of patients receiving monotherapy for 4 years [5]. 12 

Telbivudine (LdT), which is becoming increasingly more prescribed, is ineffective against 13 

3TC-resistant HBV. Although lamivudine and telbivudine are non-preferred treatment 14 

options, as defined by the American Society for the Study of Liver Diseases (AASLD) and the 15 

European Association for the Study of the Liver (EASL) [6, 7], they remain widely used in 16 

resource-limited countries with high levels of chronic HBV. Furthermore, while tenofovir 17 

(TDF) is the preferred option, 3TC and LdT have been suggested as cost-effective treatments 18 

during pregnancy to limit vertical transmission [8, 9].  19 

An added complication in HBV therapy is the use of 3TC for the treatment of HIV. 3TC 20 

currently forms part of large -scale anti-HIV programs in parts of Africa, however HBV 21 

prevalence and the impact of HIV treatment on HBV resistance associated substitutions 22 

(RAS) is not effectively monitored [10, 11].  23 
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A primary biomarker informing clinical management of chronic HBV is the serum level of 24 

hepatitis B surface antigen (HBsAg). Several mutations are known to lead to low or false-25 

negative results in diagnostic quantification assays (reviewed in [12]), but these mutations 26 

are not routinely investigated. Greater understanding of diagnostic escape mutations will 27 

inform improved patient management. 28 

RAS-typing and genotyping can be achieved by several methods. Sanger sequencing is the 29 

gold standard in clinical applications and represents the most accessible and affordable 30 

choice globally, with some countries able to access overnight sequencing from room 31 

temperature-shipped PCR products. Additionally, the introduction of third-generation 32 

sequencing platforms such as the Oxford Nanopore Technologies (ONT) MinION enables 33 

sequencing with no theoretical upper limit on read length, enabling sequencing of entire 34 

genes or viral genomes in a single read. The MinION sequencer is extremely portable, being 35 

powered through a laptop, and has been used effectively during the Ebola outbreak in West 36 

Africa [13] and in tracking the spread of Zika virus in Brazil [14]. Field application of the 37 

MinION platform has been enhanced with recent advances including improved R9.4 flow 38 

cells with increased accuracy and software such as Nanopolish [15], which works with 39 

signal-level data from the sequencer allowing generation of more accurate consensus 40 

sequences. More recently, a methodology for the MinION platform has been developed and 41 

applied to HBV sequencing and haplotyping which utilises the circular nature of the genome 42 

to generate concatenated single genome replicates [16]. While this work marked a 43 

significant technical innovation, it has limited application to diverse clinical samples due to 44 

the high viral load required for the sample (>108 IU/ml), as therapy is recommended when 45 

serum HBV DNA is as low as >2,000 IU/ml (and other criteria are met) [6, 7].  46 
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Here we combined both Sanger and MinION sequencing with dried serum spot (DSS) 47 

sampling and extraction-free direct PCR to develop proof-of-principle workflows for 48 

generating clinically relevant HBV sequence data in regions without access to conventional 49 

sample storage or a cold chain. A range of primers were developed and assessed targeting 50 

the overlapping ORFs containing S and the reverse transcriptase (RT) domain of the 51 

polymerase gene, which facilitated genotyping and RAS-typing. As the HBV genome is a DNA 52 

molecule it allows a clinical sample to be added directly to a PCR mix with no prior 53 

extraction. While this work was conducted with dried serum spots, it would be compatible 54 

with dried blood spot samples and a range of pathogens with DNA genomes.  55 

Study design 56 
 57 
Samples: All HBV DNA-positive samples were surplus material obtained for routine 58 

diagnostics. A Brazilian cohort obtained from eight centres in São Paulo State were sampled 59 

between July 2016 and April 2017. Virus titre was determined by RealTime HBV 60 

Amplification kit (Abbott). Iraqi samples were collected and processed at the Erbil Central 61 

Laboratory in 2017 and viral load was determined by Artus HBV PCR kit (Qiagen). Sera were 62 

stored at -20°C before preparation of DSS cards. All samples were obtained for routine 63 

diagnostic investigation of HBV, and collection of surplus material from this consented 64 

activity was locally approved by both institutes (Adolfo Lutz Institute, Brazil; University of 65 

Sulaimani, Iraq) for the extended diagnostic development presented in this study. 66 

Sample preparation: 25-30 µL serum was spotted onto a Whatman® Protein SaverTM 903 67 

Card (GE Healthcare), saturating the 12 mm diameter area demarcated on the DSS cards. 68 

Cards were air-dried at room temperature for ~2 h and stored at 4°C with Silica gel sachets. 69 

Samples were stored under these conditions for up to 2 years before the work presented 70 
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here was carried out. Reactions were prepared using a hole punch with a 3 mm diameter, 71 

each filter paper punch representing ~1.5 µL of serum. To prevent cross-contamination a 72 

punch of clean filter paper was performed between each sample. A clean filter paper 73 

(punched directly after the final sample) was included in each PCR run as a negative control. 74 

To determine the level of carryover using this protocol, reactions were set up using the 75 

most sensitive assay (F1/R1 primers, table 1), and 9 high titre samples (ranging from 109 to 76 

106 IU/mL) were intermingled with samples with low or undetectable viral loads, with no 77 

amplification observed in samples with low or negligible HBV titre . 78 

PCR: Primers are shown in table 1. Phusion Blood Direct (Thermo Fisher) was used in 25 µL 79 

reactions (12.5 µL 2x Phusion Blood Direct mastermix, 0.5 µM of each primer). 3 mm 80 

punches taken from DSS cards were then added directly to each tube. PCRs were performed 81 

as follows: 98 C for 5 minutes, 55 X [98 C for 1 second, 50 C for 5 seconds and 72 C for 82 

20 seconds/kb], final extension 72 C for 1 minute.  83 

Sanger sequencing: PCR products were diluted 1:10 with nuclease-free water for Sanger 84 

sequencing (Source Bioscience, Nottingham, UK) using primers F1+R1 or F2+R2 for short and 85 

long amplicons, respectively. Reads were assembled into contiguous sequences and aligned 86 

using MUSCLE in MEGA X [17, 18].  87 

MinION sequencing library preparation: MinION-barcoded samples were prepared using a 88 

two stage PCR and SQK-LWB001 library preparation kit (ONT). First round PCR was carried 89 

out as above, using 25 µL Hemo KlenTaq reactions with 3 mm punches from DSS and 90 

primers F3 and R3 (table 1). 1 µL of reaction product was used as template for a 50 µl PCR: 91 

25 µL 2x LongAmp HotStart Taq master mix, 1.5 µL of barcoded primer mix (ONT) and 22.5 92 

µL nuclease free water. Purified PCR products were quantified by Qubit using the dsDNA 93 
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high sensitivity kit (Thermo Fisher). Based on the method developed by Quick et al. [14], 94 

amplicons were pooled to achieve a total of 0.3 pM input DNA per MinION flow cell 95 

(~260 ng total DNA for a 1.3 kb amplicon). Following adapter ligation, the library was run for 96 

48 hrs on a R9.4.1 flowcell on a MinION Mk II controlled through MinKNOW 1.10.16 97 

software followed by base-calling using Albacore 2.2.2. Adapter-trimmed sequences were 98 

uploaded to the NCBI Sequence Read Archive under project ID PRJNA521740. 99 

MinION sequencing analysis: Basecalled reads were trimmed using Porechop 0.2.3 using 100 

high stringency settings (--discard_middle and --require_two_barcodes) and retained when 101 

Porechop and Albacore barcode aligners agreed. NanoPlot was used to inspect read quality 102 

and length, and reads were filtered based on length (min.: 1200; max.: 1300) using NanoFilt 103 

[19]. Consensus sequences were assembled de novo from processed reads using Canu 104 

(v1.7.1) [20]. The same reads were subsequently aligned using Minimap2 [21] to their 105 

respective Canu consensus sequences. This alignment was used as the input for further 106 

processing in Nanopolish v0.10.2 [15], using the Variants module and the --fix-107 

homopolymers function to generate a corrected consensus sequence. Corrected nanopore 108 

consensus sequences were aligned using MUSCLE within MEGA X to their respective Sanger 109 

contigs to assess sequence similarity. A full description of the bioinformatics workflow used 110 

is included as supplementary data.  111 

Genotyping and variant calling: Genotypes were determined using the web-based tools 112 

HBV geno2pheno [22] and HBVseq [23] following removal of primer sequences. For samples 113 

sequenced by MinION potential intra-host variants were screened for by aligning processed, 114 

filtered reads to the corresponding Sanger sequence. This alignment was then used as the 115 

input for LoFreq [24]. Considering the relatively high error rate of individual nanopore reads, 116 
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variants below a 10% threshold were filtered out, and variants with significant strand bias 117 

were filtered using the default LoFreq settings. Primer sites were masked from the 118 

alignments used for variant calling. 119 

 120 

  121 
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Results 122 

Sanger sequencing direct from DSS and genotyping 123 

Initially, primer pair F1/R1 was used with Phusion Blood Direct polymerase for the analysis 124 

of 30 HBV-positive serum samples of defined viral load isolated in Brazil. Amplicons were 125 

achieved for all but 3 samples using these primers, facilitating genotyping (table 2). Of the 126 

27 amplified samples, genotype was distributed as follows: A1 n=7, A2 n=3, B1 n=1, D1 n=1, 127 

D2 n=2, D3 n=8, F1 n=1, F2 n=3. A single sample, Br28, was classed as genotype A but did 128 

not match any subtype sequences in geno2pheno. 129 

RAS characterisation 130 

The amplicon produced from the F2/R2 primers permitted Sanger sequencing across aa 169 131 

to aa 250 of the reverse transcriptase (RT) domain of the Pol gene (figure 1, highlighted in 132 

red), which is the region critical to identification of RAS. Of those samples for which an 133 

amplicon was obtained, 5/25 contained known polymerase RAS (table 2). A further 4 134 

samples contained minor peaks on Sanger traces at known RAS sites (table 2). 135 

MinION sequencing direct from DSS 136 

Having obtained clinically relevant sequence data by Sanger sequencing from DSS, we 137 

investigated whether comparable data could be obtained using MinION sequencing in a 138 

small proof-of-principle study. Three high titre samples were selected from the Brazilian 139 

cohort (Br1, Br2, Br3), along with three samples from a separate cohort sourced from the 140 

Kurdistan region of Iraq. The samples sourced from Iraq all had a viral load >108 IU/mL. All 141 

samples were successfully amplified and Sanger sequenced using F1/R1 and F2/R2 primer 142 

pairs initially. An attempt was made to amplify whole HBV genomes from DSS using our 143 
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direct PCR protocol and a previously published primer set [25], however this was 144 

unsuccessful regardless of viral load. 145 

Amplicons of 1,274 bp were successfully generated using primers F3 and R3. A total of 146 

185,349 raw reads were obtained for the 6 samples, ranging from 23869 to 41392 per 147 

barcode. Following adapter trimming and further filtering of erroneously long and short 148 

reads these counts ranged from 7676 to 11832 per barcode (table 3). A summary of raw 149 

sequencing reads acquired over time, and average quality score per read over time is 150 

included in figure 2.  151 

De novo consensus sequence building 152 

Consensus sequences were assembled using Canu. Following initial assembly, the only 153 

errors observed were single base deletions within homopolymers when compared to Sanger 154 

sequences, ranging from 5 to 12 deletions (data not shown). Following a single round of 155 

Nanopolish processing all consensus sequences were identical to their Sanger counterparts 156 

(figure 3).  157 

Detection of minor variants 158 

Several putative minor variants were detected following alignment of MinION reads with 159 

the de novo consensus sequence. The majority of these were filtered out by LoFreq. A single 160 

variant was detected in sample Iq3, an A > G switch in 19% of reads coding for N155D within 161 

the spacer region of polymerase. Inspection of the Sanger trace confirmed the presence of 162 

this minor variant.  163 

164 
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Discussion 165 

Methods to both genotype and characterise therapeutic and diagnostic mutations can be 166 

technically, logistically or financially challenging in regions of the world with a high 167 

prevalence of chronic HBV infection. We developed two workflows for generating 168 

sequencing data from DSS using Sanger and MinION platforms, obtaining fully analysed 169 

sequences in less than 48 hours for both methods from receipt of samples. Deep sequencing 170 

data were successfully generated for all six of the samples tested and, following in silico 171 

processing, produced consensus sequences that were identical to the sequences generated 172 

by Sanger sequencing.  173 

While both sequencing methods involve specific expenses, once established they are cost-174 

effective, require no cold chain, and the PCR achieved a lower limit of detection of 175 

approximately 600 IU/mL for small amplicons. This level of sensitivity makes both workflows 176 

viable options for informing clinical decisions as the recommended limit set for initiating 177 

therapy is 2,000 IU/mL [6, 7]. However, while the direct PCR method used here worked well 178 

for partial gene amplicons at low viral loads, it was not successful when applied to 179 

previously published primer sets for amplifying the entire HBV genome [25] (data not 180 

shown), suggesting traditional extraction methods may be preferable for larger (>1.5kb) 181 

amplicons.  182 

Several  RAS detected in this cohort are clinically significant. The Y100C mutant in the S 183 

region of HBsAg has been linked to false negative/low HBsAg tests interpreted as occult 184 

infection [26]. This variant was unusually common in our Brazilian cohort, being present in 185 

5/10 genotype A samples, compared to only 2.8% of genotype A samples analysed in a 186 

separate study, from South Africa [27].  187 
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Our PCR approach specifically targeted the RT domain of Pol to characterise drug resistance 188 

mutants. This is particularly important for application in countries where drugs with a low 189 

barrier to resistance are commonly prescribed. The V173L, L180M and M204V RAS detected 190 

in the polymerase gene indicated resistance to the nucleoside analogues lamivudine and 191 

entecavir [28]. The N236S mutation has not been previously described, but other mutations 192 

at this site have been shown to lead to breakthrough on adefovir [29] and decrease the 193 

efficacy of tenofovir in vitro [30]. Further research is required to determine if N236S 194 

produces a similar phenotype. Finally M250I, present in one sample as a heterozygous peak 195 

in Sanger sequencing, has been shown to lead to lamivudine and telbivudine resistance [28]. 196 

Complex selection pressures on HBV lead to evolution of intra-host subpopulations [31]. 197 

Accurately determining minor variants and haplotypes is potentially of great clinical value, 198 

particularly for a virus requiring long-term therapy allowing the expansion of multi-drug 199 

resistant haplotypes. By applying a conservative variant calling approach we identified one 200 

minor variant sequence using the MinION workflow (N155D in sample Iq3). This variant was 201 

subsequently confirmed by visual analysis of the Sanger read. As residue 155 is located in 202 

the spacer region of polymerase it is unlikely to be clinically significant but highlights the 203 

potential for detecting low-level variants. Multi-drug resistant populations can arise through 204 

sequential RAS introduction over time [32]. Long read high-throughput sequencing 205 

technologies such as nanopore allow characterisation of the changing population of HBV 206 

variants in high titre samples, which has previously required clonal analysis combined with 207 

Sanger sequencing.  208 

 209 

 210 
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We acknowledge a number of limitations of this study. Large amplicons were chosen to 211 

utilise nanopore sequencing directly from DSS in this proof-of-concept study, but greater 212 

sensitivity could be achieved using a PCR-tiling approach of two or more amplicons that are 213 

pooled before sequencing (as demonstrated with the much larger Zika virus genome [14]), 214 

or by scaling up reaction mixtures and using more DSS per reaction. Identical sequences 215 

were also observed in two pairs of high viral load samples chosen for nanopore sequencing. 216 

To confirm that this was not an artefact introduced by cross-contamination during 217 

processing, additional, independent DSS punches were taken and sequenced following 218 

direct PCR amplification from these samples to verify the sequences. Given the low 219 

substitution rate of HBV and the fact that these pairs of patients were sampled from the 220 

same geographic region it is likely that these are genuinely identical sequences. However, 221 

errors in preparing DSS cards cannot be discounted. Although we observed no carryover 222 

between high titre samples and those with an undetectable viral load, more stringent 223 

decontamination between punches could be considered if this workflow was applied in a 224 

clinical setting. We also highlight issues with obtaining amplicons >1.5kb using the direct 225 

PCR enzyme, which limits the ability of this direct method to detect linked mutations in long 226 

genomes.  227 

 228 

In summary, we describe two approaches for rapid genotyping and RAS detection in HBV, 229 

using a novel analyte, dried serum spots, which are applicable in resource-limited settings 230 

and require little existing infrastructure. The results presented here demonstrate the utility 231 

of direct PCR enzymes and DSS together in a clinical context. We have also demonstrated, 232 

for the first time, that nanopore sequencing can be applied directly to samples amplified 233 
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from DSS, with no requirement for extraction. Reliable sequence data was generated using 234 

the MinION sequencer, significantly reducing the requirements for laboratory 235 

infrastructure.  236 
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Figure captions 335 

 336 
 337 
Figure 1. Cartoon highlighting the locations of PCR amplicons. Overlapping ORFs in the HBV 338 

genome (genotype A reference isolate X02763) are shown in blue. PCR amplicons generated 339 

in this study are shown in orange, and the crucial RT region associated with treatment 340 

resistance mutations (aa169 – 250) is shown in red. The F1+R1 amplicon is sufficient for 341 

genotyping and limited detection of sAg diagnostic escape mutants. The region of the 342 

reverse transcriptase (RT) domain in which resistance associated substitutions (RAS) arise 343 

(aa169 – 250), shown in red, is encompassed by the F2+R2 amplicon.  344 

 345 

Figure 2. Metrics from MinION sequencing run. Both plots were generated from raw reads 346 

assigned barcodes by Albacore without further filtering. Quality scores are standard Phred 347 

scores produced by Albacore during basecalling, data is presented as mean Phred score per 348 

read with min and max. 349 

 350 

 351 
Figure 3: Maximum likelihood tree comparing sequences sourced from direct PCR using 352 

both Sanger and nanopore sequencing methods. Nanopore data was first analysed using 353 

Nanopolish, before comparing to Sanger sequences. Sequences were generated using the 354 

amplicons generated from the F3/R3 primers. The ML tree was inferred using a general time 355 

reversible model within MEGA X [17]. Statistical robustness was assessed using bootstrap 356 

resampling of 1,000 pseudoreplicates. The tree with the highest log-likelihood is shown. 357 

 358 
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Background and objectives 1 

Hepatitis B virus (HBV) currently infects an estimated 257 million people worldwide and 2 

there is an urgent need for screening and surveillance tools to assess HBV in low and 3 

middle-income countries [1]. In some African regions it is estimated that 6% of the 4 

population are infected and only one in every ten children is vaccinated [2, 3]. HBV has a 5 

complex and error-prone replication cycle and there are many well-characterised mutations 6 

across the HBV genome, conferring resistance to therapy, an increase in replication 7 

efficiency (polymerase), immune- and diagnostic test-escape (S/pre-core), or increased 8 

pathogenicity (reviewed in [4]).  9 

Treatment of chronic HBV typically utilises long term monotherapy with a polymerase 10 

inhibitor. Resistance mutations to the polymerase inhibitor lamivudine (3TC) are well 11 

documented, occurring in 51 % of patients receiving monotherapy for 4 years [5]. 12 

Telbivudine (LdT), which is becoming increasingly more prescribed, is ineffective against 13 

3TC-resistant HBV. Although lamivudine and telbivudine are non-preferred treatment 14 

options, as defined by the American Society for the Study of Liver Diseases (AASLD) and the 15 

European Association for the Study of the Liver (EASL) [6, 7], they remain widely used in 16 

resource-limited countries with high levels of chronic HBV. Furthermore, while tenofovir 17 

(TDF) is the preferred option, 3TC and LdT have been suggested as cost-effective treatments 18 

during pregnancy to limit vertical transmission [8, 9].  19 

An added complication in HBV therapy is the use of 3TC for the treatment of HIV. 3TC 20 

currently forms part of large -scale anti-HIV programs in parts of Africa, however HBV 21 

prevalence and the impact of HIV treatment on HBV resistance associated substitutions 22 

(RAS) is not effectively monitored [10, 11].  23 
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A primary biomarker informing clinical management of chronic HBV is the serum level of 24 

hepatitis B surface antigen (HBsAg). Several mutations are known to lead to low or false-25 

negative results in diagnostic quantification assays (reviewed in [12]), but these mutations 26 

are not routinely investigated. Greater understanding of diagnostic escape mutations will 27 

inform improved patient management. 28 

RAS-typing and genotyping can be achieved by several methods. Sanger sequencing is the 29 

gold standard in clinical applications and represents the most accessible and affordable 30 

choice globally, with some countries able to access overnight sequencing from room 31 

temperature-shipped PCR products. Additionally, the introduction of third-generation 32 

sequencing platforms such as the Oxford Nanopore Technologies (ONT) MinION enables 33 

sequencing with no theoretical upper limit on read length, enabling sequencing of entire 34 

genes or viral genomes in a single read. The MinION sequencer is extremely portable, being 35 

powered through a laptop, and has been used effectively during the Ebola outbreak in West 36 

Africa [13] and in tracking the spread of Zika virus in Brazil [14]. Field application of the 37 

MinION platform has been enhanced with recent advances including improved R9.4 flow 38 

cells with increased accuracy and software such as Nanopolish [15], which works with 39 

signal-level data from the sequencer allowing generation of more accurate consensus 40 

sequences. More recently, a methodology for the MinION platform has been developed and 41 

applied to HBV sequencing and haplotyping which utilises the circular nature of the genome 42 

to generate concatenated single genome replicates [16]. While this work marked a 43 

significant technical innovation, it has limited application to diverse clinical samples due to 44 

the high viral load required for the sample (>108 IU/ml), as therapy is recommended when 45 

serum HBV DNA is as low as >2,000 IU/ml (and other criteria are met) [6, 7].  46 
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Here we combined both Sanger and MinION sequencing with dried serum spot (DSS) 47 

sampling and extraction-free direct PCR to develop proof-of-principle workflows for 48 

generating clinically relevant HBV sequence data in regions without access to conventional 49 

sample storage or a cold chain. A range of primers were developed and assessed targeting 50 

the overlapping ORFs containing S and the reverse transcriptase (RT) domain of the 51 

polymerase gene, which facilitated genotyping and RAS-typing. As the HBV genome is a DNA 52 

molecule it allows a clinical sample to be added directly to a PCR mix with no prior 53 

extraction. While this work was conducted with dried serum spots, it would be compatible 54 

with dried blood spot samples and a range of pathogens with DNA genomes.  55 

Study design 56 
 57 
Samples: All HBV DNA-positive samples were surplus material obtained for routine 58 

diagnostics. A Brazilian cohort obtained from eight centres in São Paulo State were sampled 59 

between July 2016 and April 2017. Virus titre was determined by RealTime HBV 60 

Amplification kit (Abbott). Iraqi samples were collected and processed at the Erbil Central 61 

Laboratory in 2017 and viral load was determined by Artus HBV PCR kit (Qiagen). Sera were 62 

stored at -20°C before preparation of DSS cards. All samples were obtained for routine 63 

diagnostic investigation of HBV, and collection of surplus material from this consented 64 

activity was locally approved by both institutes (Adolfo Lutz Institute, Brazil; University of 65 

Sulaimani, Iraq) for the extended diagnostic development presented in this study. 66 

Sample preparation: 25-30 µL serum was spotted onto a Whatman® Protein SaverTM 903 67 

Card (GE Healthcare), saturating the 12 mm diameter area demarcated on the DSS cards. 68 

Cards were air-dried at room temperature for ~2 h and stored at 4°C with Silica gel sachets. 69 

Samples were stored under these conditions for up to 2 years before the work presented 70 
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here was carried out. Reactions were prepared using a hole punch with a 3 mm diameter, 71 

each filter paper punch representing ~1.5 µL of serum. To prevent cross-contamination a 72 

punch of clean filter paper was performed between each sample. A clean filter paper 73 

(punched directly after the final sample) was included in each PCR run as a negative control. 74 

To determine the level of carryover using this protocol, reactions were set up using the 75 

most sensitive assay (F1/R1 primers, table 1), and 9 high titre samples (ranging from 109 to 76 

106 IU/mL) were intermingled with samples with low or undetectable viral loads, with no 77 

amplification observed in samples with low or negligible HBV titre . 78 

PCR: Primers are shown in table 1. Phusion Blood Direct (Thermo Fisher) was used in 25 µL 79 

reactions (12.5 µL 2x Phusion Blood Direct mastermix, 0.5 µM of each primer). 3 mm 80 

punches taken from DSS cards were then added directly to each tube. PCRs were performed 81 

as follows: 98 C for 5 minutes, 55 X [98 C for 1 second, 50 C for 5 seconds and 72 C for 82 

20 seconds/kb], final extension 72 C for 1 minute.  83 

Sanger sequencing: PCR products were diluted 1:10 with nuclease-free water for Sanger 84 

sequencing (Source Bioscience, Nottingham, UK) using primers F1+R1 or F2+R2 for short and 85 

long amplicons, respectively. Reads were assembled into contiguous sequences and aligned 86 

using MUSCLE in MEGA X [17, 18].  87 

MinION sequencing library preparation: MinION-barcoded samples were prepared using a 88 

two stage PCR and SQK-LWB001 library preparation kit (ONT). First round PCR was carried 89 

out as above, using 25 µL Hemo KlenTaq reactions with 3 mm punches from DSS and 90 

primers F3 and R3 (table 1). 1 µL of reaction product was used as template for a 50 µl PCR: 91 

25 µL 2x LongAmp HotStart Taq master mix, 1.5 µL of barcoded primer mix (ONT) and 22.5 92 

µL nuclease free water. Purified PCR products were quantified by Qubit using the dsDNA 93 
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high sensitivity kit (Thermo Fisher). Based on the method developed by Quick et al. [14], 94 

amplicons were pooled to achieve a total of 0.3 pM input DNA per MinION flow cell 95 

(~260 ng total DNA for a 1.3 kb amplicon). Following adapter ligation, the library was run for 96 

48 hrs on a R9.4.1 flowcell on a MinION Mk II controlled through MinKNOW 1.10.16 97 

software followed by base-calling using Albacore 2.2.2. Adapter-trimmed sequences were 98 

uploaded to the NCBI Sequence Read Archive under project ID PRJNA521740. 99 

MinION sequencing analysis: Basecalled reads were trimmed using Porechop 0.2.3 using 100 

high stringency settings (--discard_middle and --require_two_barcodes) and retained when 101 

Porechop and Albacore barcode aligners agreed. NanoPlot was used to inspect read quality 102 

and length, and reads were filtered based on length (min.: 1200; max.: 1300) using NanoFilt 103 

[19]. Consensus sequences were assembled de novo from processed reads using Canu 104 

(v1.7.1) [20]. The same reads were subsequently aligned using Minimap2 [21] to their 105 

respective Canu consensus sequences. This alignment was used as the input for further 106 

processing in Nanopolish v0.10.2 [15], using the Variants module and the --fix-107 

homopolymers function to generate a corrected consensus sequence. Corrected nanopore 108 

consensus sequences were aligned using MUSCLE within MEGA X to their respective Sanger 109 

contigs to assess sequence similarity. A full description of the bioinformatics workflow used 110 

is included as supplementary data.  111 

Genotyping and variant calling: Genotypes were determined using the web-based tools 112 

HBV geno2pheno [22] and HBVseq [23] following removal of primer sequences. For samples 113 

sequenced by MinION potential intra-host variants were screened for by aligning processed, 114 

filtered reads to the corresponding Sanger sequence. This alignment was then used as the 115 

input for LoFreq [24]. Considering the relatively high error rate of individual nanopore reads, 116 
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variants below a 10% threshold were filtered out, and variants with significant strand bias 117 

were filtered using the default LoFreq settings. Primer sites were masked from the 118 

alignments used for variant calling. 119 

 120 

  121 
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Results 122 

Sanger sequencing direct from DSS and genotyping 123 

Initially, primer pair F1/R1 was used with Phusion Blood Direct polymerase for the analysis 124 

of 30 HBV-positive serum samples of defined viral load isolated in Brazil. Amplicons were 125 

achieved for all but 3 samples using these primers, facilitating genotyping (table 2). Of the 126 

27 amplified samples, genotype was distributed as follows: A1 n=7, A2 n=3, B1 n=1, D1 n=1, 127 

D2 n=2, D3 n=8, F1 n=1, F2 n=3. A single sample, Br28, was classed as genotype A but did 128 

not match any subtype sequences in geno2pheno. 129 

RAS characterisation 130 

The amplicon produced from the F2/R2 primers permitted Sanger sequencing across aa 169 131 

to aa 250 of the reverse transcriptase (RT) domain of the Pol gene (figure 1, highlighted in 132 

red), which is the region critical to identification of RAS. Of those samples for which an 133 

amplicon was obtained, 5/25 contained known polymerase RAS (table 2). A further 4 134 

samples contained minor peaks on Sanger traces at known RAS sites (table 2). 135 

MinION sequencing direct from DSS 136 

Having obtained clinically relevant sequence data by Sanger sequencing from DSS, we 137 

investigated whether comparable data could be obtained using MinION sequencing in a 138 

small proof-of-principle study. Three high titre samples were selected from the Brazilian 139 

cohort (Br1, Br2, Br3), along with three samples from a separate cohort sourced from the 140 

Kurdistan region of Iraq. The samples sourced from Iraq all had a viral load >108 IU/mL. All 141 

samples were successfully amplified and Sanger sequenced using F1/R1 and F2/R2 primer 142 

pairs initially. An attempt was made to amplify whole HBV genomes from DSS using our 143 
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direct PCR protocol and a previously published primer set [25], however this was 144 

unsuccessful regardless of viral load. 145 

Amplicons of 1,274 bp were successfully generated using primers F3 and R3. A total of 146 

185,349 raw reads were obtained for the 6 samples, ranging from 23869 to 41392 per 147 

barcode. Following adapter trimming and further filtering of erroneously long and short 148 

reads these counts ranged from 7676 to 11832 per barcode (table 3). A summary of raw 149 

sequencing reads acquired over time, and average quality score per read over time is 150 

included in figure 2.  151 

De novo consensus sequence building 152 

Consensus sequences were assembled using Canu. Following initial assembly, the only 153 

errors observed were single base deletions within homopolymers when compared to Sanger 154 

sequences, ranging from 5 to 12 deletions (data not shown). Following a single round of 155 

Nanopolish processing all consensus sequences were identical to their Sanger counterparts 156 

(figure 3).  157 

Detection of minor variants 158 

Several putative minor variants were detected following alignment of MinION reads with 159 

the de novo consensus sequence. The majority of these were filtered out by LoFreq. A single 160 

variant was detected in sample Iq3, an A > G switch in 19% of reads coding for N155D within 161 

the spacer region of polymerase. Inspection of the Sanger trace confirmed the presence of 162 

this minor variant.  163 

164 
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Discussion 165 

Methods to both genotype and characterise therapeutic and diagnostic mutations can be 166 

technically, logistically or financially challenging in regions of the world with a high 167 

prevalence of chronic HBV infection. We developed two workflows for generating 168 

sequencing data from DSS using Sanger and MinION platforms, obtaining fully analysed 169 

sequences in less than 48 hours for both methods from receipt of samples. Deep sequencing 170 

data were successfully generated for all six of the samples tested and, following in silico 171 

processing, produced consensus sequences that were identical to the sequences generated 172 

by Sanger sequencing.  173 

While both sequencing methods involve specific expenses, once established they are cost-174 

effective, require no cold chain, and the PCR achieved a lower limit of detection of 175 

approximately 600 IU/mL for small amplicons. This level of sensitivity makes both workflows 176 

viable options for informing clinical decisions as the recommended limit set for initiating 177 

therapy is 2,000 IU/mL [6, 7]. However, while the direct PCR method used here worked well 178 

for partial gene amplicons at low viral loads, it was not successful when applied to 179 

previously published primer sets for amplifying the entire HBV genome [25] (data not 180 

shown), suggesting traditional extraction methods may be preferable for larger (>1.5kb) 181 

amplicons.  182 

Several  RAS detected in this cohort are clinically significant. The Y100C mutant in the S 183 

region of HBsAg has been linked to false negative/low HBsAg tests interpreted as occult 184 

infection [26]. This variant was unusually common in our Brazilian cohort, being present in 185 

5/10 genotype A samples, compared to only 2.8% of genotype A samples analysed in a 186 

separate study, from South Africa [27].  187 
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Our PCR approach specifically targeted the RT domain of Pol to characterise drug resistance 188 

mutants. This is particularly important for application in countries where drugs with a low 189 

barrier to resistance are commonly prescribed. The V173L, L180M and M204V RAS detected 190 

in the polymerase gene indicated resistance to the nucleoside analogues lamivudine and 191 

entecavir [28]. The N236S mutation has not been previously described, but other mutations 192 

at this site have been shown to lead to breakthrough on adefovir [29] and decrease the 193 

efficacy of tenofovir in vitro [30]. Further research is required to determine if N236S 194 

produces a similar phenotype. Finally M250I, present in one sample as a heterozygous peak 195 

in Sanger sequencing, has been shown to lead to lamivudine and telbivudine resistance [28]. 196 

Complex selection pressures on HBV lead to evolution of intra-host subpopulations [31]. 197 

Accurately determining minor variants and haplotypes is potentially of great clinical value, 198 

particularly for a virus requiring long-term therapy allowing the expansion of multi-drug 199 

resistant haplotypes. By applying a conservative variant calling approach we identified one 200 

minor variant sequence using the MinION workflow (N155D in sample Iq3). This variant was 201 

subsequently confirmed by visual analysis of the Sanger read. As residue 155 is located in 202 

the spacer region of polymerase it is unlikely to be clinically significant but highlights the 203 

potential for detecting low-level variants. Multi-drug resistant populations can arise through 204 

sequential RAS introduction over time [32]. Long read high-throughput sequencing 205 

technologies such as nanopore allow characterisation of the changing population of HBV 206 

variants in high titre samples, which has previously required clonal analysis combined with 207 

Sanger sequencing.  208 

 209 

 210 
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We acknowledge a number of limitations of this study. Large amplicons were chosen to 211 

utilise nanopore sequencing directly from DSS in this proof-of-concept study, but greater 212 

sensitivity could be achieved using a PCR-tiling approach of two or more amplicons that are 213 

pooled before sequencing (as demonstrated with the much larger Zika virus genome [14]), 214 

or by scaling up reaction mixtures and using more DSS per reaction. Identical sequences 215 

were also observed in two pairs of high viral load samples chosen for nanopore sequencing. 216 

To confirm that this was not an artefact introduced by cross-contamination during 217 

processing, additional, independent DSS punches were taken and sequenced following 218 

direct PCR amplification from these samples to verify the sequences. Given the low 219 

substitution rate of HBV and the fact that these pairs of patients were sampled from the 220 

same geographic region it is likely that these are genuinely identical sequences. However, 221 

errors in preparing DSS cards cannot be discounted. Although we observed no carryover 222 

between high titre samples and those with an undetectable viral load, more stringent 223 

decontamination between punches could be considered if this workflow was applied in a 224 

clinical setting. We also highlight issues with obtaining amplicons >1.5kb using the direct 225 

PCR enzyme, which limits the ability of this direct method to detect linked mutations in long 226 

genomes.  227 

 228 

In summary, we describe two approaches for rapid genotyping and RAS detection in HBV, 229 

using a novel analyte, dried serum spots, which are applicable in resource-limited settings 230 

and require little existing infrastructure. The results presented here demonstrate the utility 231 

of direct PCR enzymes and DSS together in a clinical context. We have also demonstrated, 232 

for the first time, that nanopore sequencing can be applied directly to samples amplified 233 
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from DSS, with no requirement for extraction. Reliable sequence data was generated using 234 

the MinION sequencer, significantly reducing the requirements for laboratory 235 

infrastructure.  236 
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Figure captions 331 

 332 
 333 
Figure 1. Cartoon highlighting the locations of PCR amplicons. Overlapping ORFs in the HBV 334 

genome (genotype A reference isolate X02763) are shown in blue. PCR amplicons generated 335 

in this study are shown in orange, and the crucial RT region associated with treatment 336 

resistance mutations (aa169 – 250) is shown in red. The F1+R1 amplicon is sufficient for 337 

genotyping and limited detection of sAg diagnostic escape mutants. The region of the 338 

reverse transcriptase (RT) domain in which resistance associated substitutions (RAS) arise 339 

(aa169 – 250), shown in red, is encompassed by the F2+R2 amplicon.  340 

 341 

Figure 2. Metrics from MinION sequencing run. Both plots were generated from raw reads 342 

assigned barcodes by Albacore without further filtering. Quality scores are standard Phred 343 

scores produced by Albacore during basecalling, data is presented as mean Phred score per 344 

read with min and max. 345 

 346 

 347 
Figure 3: Maximum likelihood tree comparing sequences sourced from direct PCR using 348 

both Sanger and nanopore sequencing methods. Nanopore data was first analysed using 349 

Nanopolish, before comparing to Sanger sequences. Sequences were generated using the 350 

amplicons generated from the F3/R3 primers. The ML tree was inferred using a general time 351 

reversible model within MEGA X [17]. Statistical robustness was assessed using bootstrap 352 

resampling of 1,000 pseudoreplicates. The tree with the highest log-likelihood is shown. 353 

 354 



Table 1: Primers used for the amplification of HBV. R2 is a modified version of the HBV3 

primer. F3 and R3 primers contain additional 5’ bases for MinION library preparation PCR. 

*Numbering based upon HBVdb genotype A reference strain X02763 [33]. 

 
Original name This study Sequence (5’-3’) HBV genome 

position*  

Outer plus 
[34]

 F1  GATGTGTCTGCGGCGTTTTA 376 - 395 

Outer minus 
[34]

 R1  CTGAGGCCCACTCCCATAGG 656-637 

- F2  GGAYGGAAAYTGCACYTGTA 583 – 602 

- R2  GRGCAACRGGGTAAAGG 1156 - 1140 

HBVZ 
[35]

 F3  TTTCTGTTGGTGCTGATATTGCAGCCCTCAGGCTCAGGGCATA 3085 – 3105 

HBV3 
[35]

 R3  ACTTGCCTGTCGCTCTATCTTCCGTTGCCKDGCAACSGGGTAAAGG 1163 - 1140 

 

 

Table 1



Table 2: Amplification of S/Pol gene from DSS of HBV-positive samples from Brazil, 

allowing genotyping and characterisation of RAS by Sanger sequencing, is dependent on 

viral load. Clinically significant RAS in the reverse transcriptase (RT) domain of the 

Polymerase open reading frame (ORF) are noted. Treatment information: TDF, tenofovir; 

3TC, lamivudine; EFV, efavirenz; U, treatment unknown. Amplification and sequencing 

information: Y, amplification and sequencing successful for given primer set; N, unsuccessful 

amplification for given primer set; NT, sample not tested due to lack of source material; ND, 

no RAS detected in given ORF. Genotype and % confidence data were obtained using HBV 

geno2pheno with F1+R1 sequence data. In the case of sample Br26, the consensus 

sequence was basecalled as R (A/G) at RT site 750, with G leading to the M250I mutant and 

A matching the genotype D reference sequence. The minor peaks column highlights any 

minority sequence changes at clinically significant RAS sites. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2 revised



 

Sample Viral load 
(IU/mL) 

Therapy F1+R1 
sequence 

Genotype % 
confidence 

F2+R2 
sequence 

RT mutants sAg 
escape 

mutants 

Minor 
peaks 

Br1 816,483,772 No 
treatment 

Y A1 97.6 Y ND Y100C ND 

Br2 389,547,123 Peg-IFN Y A1 97.6 Y ND Y100C ND 

Br3 241,145,063 TDF, 3TC Y D2 98.9 Y V173L, L180M 
M204V 

ND ND 

Br4 33,875,365 TDF, 3TC, 
EFV 

Y A1 97.6 Y ND Y100C ND 

Br5 21,807,740 No 
treatment 

Y D3 98.5 Y ND ND ND 

Br6 6,219,005 TDF Y D3 98.7 Y ND ND ND 

Br7 5,843,310 No 
treatment 

Y A1 97.1 Y ND Y100C ND 

Br8 5,217,998 U Y D2 98.8 Y ND ND ND 

Br9 3,166,098 TDF Y F2 97.6 Y V173L ND rtL173V, 
rtL180M, 
rtA181T, 
rtM204V 

Br10 692,965 U Y A2 99.0 Y ND ND ND 

Br11 193,271 TDF Y F2 97.6 Y ND ND ND 
 

Br12 94,152 U Y D3 97.9 Y N236S ND ND 
 

Br13 59,927 TDF Y D3 98.6 N ND ND ND 
 

Br14 43,005 TDF, 3TC Y A1 97.1 Y ND Y100C ND 
 

Br15 35,672 TDF Y A1 97.6 Y ND ND ND 
 

Br16 25,791 TDF Y D2 95.1 Y S202I ND ND 
 

Br17 17,280 U Y F1 97.3 Y ND ND ND 
 

Br18 16,697 U Y D3 98.7 NT ND ND ND 
 

Br19 12,446 3TC Y D3 98.7 Y ND ND rtI169M, 
rtM204L 

Br20 12,196 No 
treatment 

Y A2 96.2 Y ND ND ND 
 

Br21 10,058 TDF Y F2 97.2 Y ND ND rtI169K, 
rtV173G 

Br22 7,199 TDF N   N    

Br23 6,208 No 
treatment 

Y D3 98.7 Y ND ND ND 
 

Br24 4,091 TDF Y B1 98.5 Y ND ND rtV173G 

Br25 2,884 Peg-IFN Y A1 97.5 N    

Br26 2,431 No 
treatment 

Y D1 97.1 Y M250I (A/G 
heterozygous) 

ND ND 
 

Br27 2,262 No 
treatment 

Y A2 97.7 Y ND ND rtN263K 

Br28 1,069 U N A  Y ND ND ND 
 

Br29 1,046 No 
treatment 

N   N    

Br30 635 No 
treatment 

Y D3 92.6 Y ND ND ND 
 



Table 3. MinION sequencing yields. Raw reads are those assigned barcodes by Albacore 

before any further quality control. Adapter trimmed reads are those exceeding a mean 

Phred score of 7 and processed by Porechop. Length filtered reads were processed by 

NanoFilt. 

 

Sample Viral load (IU/mL) Raw reads Adapter trimming Length filtered 

Br1 816,483,772 24105 13320 11272 

Br2 389,547,123 23868 12640 10309 

Br3 241,145,063 41392 14702 11832 

Iq1 369,094,710 
 

27478 12445 7676 

Iq2 480,199,200 
 

40646 13539 8979 

Iq3  361,383,300 27860 11654 9572 

 

Table 3
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Supplementary data 
 
Bioinformatics workflow 
 
Following basecalling using Albacore, the “pass” folder (reads exceeding a mean Phred score 
of 7) was used as the input for Porechop as follows: 
 
porechop -i source_directory --discard_middle --require_two_barcodes 
 
Filtering based on length was carried out for each barcode using NanoFilt: 
 
cat reads.fastq | nanofilt -l 1200 --maxlength 1300 > reads.filtered.fastq 
 
Downsampled, filtered FASTQ files for each sample were then used as the input for Canu: 
 
./canu --nanopore-raw reads.filtered.fastq genomeSize=1300 stopOnReadQuality=false -d 
canu_out -p sample-ID 
 
This generates several candidate contigs, the contig with the highest number of reads used 
was verified using BLAST and taken forwards to the next step. 
 
Reads were then aligned in Minimap2 to their respective contig generated using Canu: 
 
minimap2 -ax map-ont canu_contig.fasta reads.filtered.fastq | samtools view -bS - | 
samtools sort -o sample.minimap.sorted.bam 
 
This alignment was then used to generate a polished consensus sequence using Nanopolish. 
First the reads are indexed to match every read in the .fastq file with its corresponding raw 
fast5 file (the original output of the minION sequencer): 
 
nanopolish index -d fast5_directory -s sequencing_summary.txt reads.filtered.fastq 
 
The alignment, reference contig and fastq for each sample were then used as the input for 
Nanopolish: 
 
nanopolish variants --consensus --fix-homopolymers -b sample.minimap.sorted.bam -g 
canu_contig.fasta -r reads.filtered.fastq -o sample.polished.consensus.vcf 
 
This consensus .vcf file was then converted to standard .fasta format: 
 
nanopolish vcf2fasta -g canu_contig.fasta sample.polished.consensus.vcf > 
sample.polished.consensus.fasta 
 
The output consensus sequence can then be checked against the original Canu contig, as 
well as a Sanger contig from the same sample if available. These sequences can also be used 
for genotyping and resistance typing against established reference sequences. 
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Intra-sample variants can be determined by aligning all reads to the consensus sequence 
and using LoFreq to generate a .vcf file: 
 
lofreq call-parallel --pp-threads 8 -f reference_genome.fas -o variants_file.vcf 
sample_alignment.bam 
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