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Abstract: The use of metal-organic frameworks (MOFs) in the field of catalysis is growing exponentially due to their high surface area and distinctive 

active sites. In this work, we report a novel understanding of the active sites responsible for the catalytic activity of aluminum trimesate MOFs and 

their crystal/framework structure dependency. Here, we have studied the nature of the active sites of Al-MOFs with two different framework structures 

(MIL-100 & MIL-96). We found that the MOFs with MIL-100 framework structures were highly catalytically active, while the same Al-MOFs with 

MIL-96 framework structures exhibited poor catalytic activity. This behavior is explained based on the effect of coordinated water molecules on their 

Brønsted acidity as well as the effect of the coordination of Al sites, specifically hexacoordinated Al3+
6c sites and pentacoordinated Al3+

5c sites, on their 

Lewis acidity. The different entrance sizes of the catalytic pocket of MIL-96 and MIL-100 also played critical roles in their catalytic performance. 

 

Metal-organic frameworks (MOFs) have emerged as 

heterogeneous catalysts for various reactions.1-3 Their use is 

growing exponentially due to their unique catalytic and gas 

sorption behavior. However, the chemistry behind their unique 

activity is still not completely understood, and scientists continue 

to gain a deeper understanding of their active sites.4-8 Thus, a 

detailed study of the various active sites by which MOFs catalyze 

reactions is crucial for the design of new MOF-based catalysts. In 

a continuation of our work on heterogeneous catalysis,9-12 in this 

work, we studied the role of crystal structure and textural 

properties in the catalytic activity of aluminum trimesate metal-

organic frameworks (Al-MOFs).  

First, we synthesized two different Al-BTC (1,3,5-tricarboxylic 

acid) MOFs, M100 and M96 with the framework structure, MIL-

100 (Al) 13,14 and MIL-96 (Al), 15,16 respectively. The scanning and 

transmission electron microscopy (SEM & TEM) images of 

M100 and M96 indicate the formation of spherical and hexagonal 

bipyramidal shaped MOFs (Figure 1). The powder X-ray 

diffraction (PXRD) patterns of M100 and M96 are in agreement 

with those of the MIL-100 (Al) and MIL-96 (Al),  respectively 

(Figure 2).13-17 With regard to textural properties, both exhibited a 

type-I sorption isotherm (Figure 2) and a pore size distribution in 

the micropore region of 3 to 12 Å (Figure 2). M100 possesses a 

Langmuir surface area of 2717 m2/g, while M96 possesses 1263 

m2/g (Table 1). FTIR of both the MOFs showed a similar pattern 

(Figure S1). The absence of a band at approximately 1710-1720 

cm-1 indicates the absence of residual BTC ligands, confirming 

the purity of the MOFs.18 TGA analysis (Figure S2) and EDX 

(Table S1) measurements also confirmed the purity of these 

MOFs. 

 

 
Figure 1. SEM images of (a1, a2) M100, (b1, b2) M96. TEM images of 

(a3) M100, (b3) M96 Al-MOFs.  

 

Figure 2. Powder XRD (a1,b1), N2 sorption isotherm (a2,b2), and pore 

size distribution (a3,b3) of M100 and M96 Al-MOFs, respectively. The 

standard error in surface area (SA) ± 4%, in pore volume (PV) ± 0.01. Pore 

volume was estimated using the Horváth-Kawazoe (HK) method. 

 

 

To determine the correlations between the MOFs framework 

structure and textural properties with their catalytic activity, a 
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systematic catalytic study was carried out using the acetalization 

of p-chlorobenzaldehyde as a model reaction (Figure 3) which is 

sensitive to the acidic environment of the active sites. 3 As these 

Al-MOFs contain both Brønsted and Lewis acid sites, the 

acetalization of p-chlorobenzaldehyde (PCB) using methanol will 

directly probe the acidity behaviors of these MOFs and their 

dependence on textural properties and framework structure. The 

relatively larger size of PCB will also allow probing of the role of 

pore (cavity) size in their diffusion behavior. The M100 exhibited 

excellent catalytic activity (Figure 3a). On the other hand, the 

M96 MOF exhibited poor catalytic activity before activation with 

less than 2% conversion under exactly the same conditions 

(Figure 3a, unactivated). Interestingly,  catalytic activity after 

activation at 120 °C for 4 hours showed slight enhancement in the 

case of M96 (~ 3%) and a significant decrease was found in the 

case of M100 (~ 58%) (Figure 3a).  The reactant size-dependent 

catalytic study also showed a decrease in the catalytic activity 

with the increase in the reactant size (Figure 3b). 

 

Figure 3. Reaction kinetics of Al-MOF catalyzed acetal formation of p-

chlorobenzaldehyde by alcohols, a) Methanol is used as the reactant 

under unactivated and activated condition, b) reactions were carried out 

by using various alcohols under unactivated condition. 

We endeavored to determine the factor that controls the catalytic 

activity of Al-MOFs. The differences in the catalytic activity of 

M100 and M96 MOFs could be due to the differences in their 

textural properties, Lewis Al sites and Brønsted-coordinated 

water sites (and their proximal environment) as well as different 

framework structures. Although, M100 possesses a higher BET 

surface area (2346 m2/g) compare to M96 (1054 m2/g), but this 

alone cannot explain the significant difference in their catalytic 

activity (Figure 2b). 

The entrance of the cavity of a MOF where the active Lewis and 

Brønsted Al sites are located (catalytic pocket) will play a critical 

role in their accessibility and in turn their catalytic performance. 

The catalytic results (Figure 3) indicate the existence of a strong 

correlation between the cavity entrance size and catalytic activity. 

From the nitrogen sorption studies (Figure 2) and framework 

structure analysis (Figure S3, S4), the M100 and M96 exhibit 

different cavity (pore) sizes. These cavities, particularly their 

entrance size, will affect the reactant diffusion into the catalytic 

pocket; hence, we studied the correlation between catalytic 

activity and cavity entrance size. 

M96 contains one spherical cage A with a cavity-free diameter of 

11 Å, an elongated cavity B with dimensions of 9.5 x 12.6 x 11.3 

Å and a narrow cavity C with dimensions of 3.6 x 4.5 Å (Figure 

3).15,16 Notably, these cavities are not connected to their own type, 

i.e., A-A, B-B and C-C connections were not observed. Cavities 

B and C are connected and the window between them of ~ 4.5 x 

3.6 Å, while cavity A is not connected to B or C and is 

isolated.15,16 Thus, M96 has a zig-zag pore structure with 

connections between the B and C cavities (Figure 4). Only cavity 

B is accessible to PCB because it has a cavity entrance diameter 

of 4.6 Å, which is greater than the size of the PCB (Figure S5), 

while the entrances of the other cavities are smaller than PCB. 

M100 contains tri-nuclear building blocks linked to each other via 

trimesate ligands with each corner corresponding to an Al trimer, 

and the faces covered by aromatic ligands.14 These super-

tetrahedrons then share corners to generate the 3D framework of 

the MOF, with two types of cavities, the first formed by 12 

pentagonal windows 5.2 Å across and the 2nd cavity by 12 

pentagonal and 4 hexagonal windows 8.8 Å across (Figure 4d).14 

M100 possesses a much larger cavity entrance diameter of 6.4 A 

and 9.4 Å for the pentagonal cage and the hexagonal cage, 

respectively (Figure 4f, g), making it more accessible to PCB.  
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Figure 4. Framework structure of Al-MOFs (a,b,c) showing three 

different types of cavities in M96 and (d) two different types of cavities 

with pentagonal (red) and hexagonal (blue) cages in M100. Entrance size 

(d) and area of accessible cavities (A) of (e) M96 and (f,g) M100 Al-

MOFs. 

The total area of the cavity entrance was estimated by knowing 

the area of the circled space inside the cavity entrance (Figure 4e-

g), which will play a role in reactant/product diffusion 

inside/outside the cavity. M100 has cavity entrance areas of 33.3 

Å2 and 69.4 Å2 for pentagonal and hexagonal cavities, 

respectively,14 while M96 has 16.6 Å2 for its only accessible 

cavity, cavity B.15,16 A PCB molecule fits tightly into the entrance 

path of M96 but can easily enter M100 due to its larger cavity 

entrance size and area. In addition to the cavity size data from 

framework structure analysis, the pore size distribution (size and 

total numbers) of these cavities provides further information 

(Figure 2). The deconvoluted HK pore size distribution (Figure 

2a3-b3) quantifies the individual contributions of pore sizes 

towards the total numbers of pores of various sizes. M100 

contains two types of pores, 5±1 Å and 9.5±4 Å, attributed to the 

pentagonal cage (cavity A) and hexagonal cage (cavity B) 

respectively. M96 contains three different types of pores, in 

accordance with the framework structure, cavities A, B, and C. 

The pore size distribution (Figure 2a3-b3, Table S2) shows that 

M100 has more pores with dimensions higher than 5 Å (needed 

for PCB diffusion inside the catalytic pocket), while M96 has 

fewer such pores. This result indicates that M100 has better 

accessibility than M96, which is also supported by the reactant 

size-dependent catalytic activity (Figure 3b) 

Apart from the textural properties, Al sites in M100 and M96 also 

have differences in their chemical nature in terms of the bonding, 

connectivity and environment, which may affect their catalytic 

activity. The structure of M100 is composed of trinuclear 

octahedrally coordinated aluminum building blocks that are 

arranged in a tetrahedral fashion (Figure S3).14,17 The corners of 

these blocks are connected to each other via a benzene-1,3,5-

tricarboxylic acid (BTC, also known as trimesate) ligand to form 

a supertetrahedral structure that contains seven non-equivalent Al 

centres. Previous studies have suggested that the presence of µ3-

oxo groups, hydroxyl groups and water molecules (free and 

bonded) ensures the electroneutrality of the framework (i.e., 

Al3O(H2O)2(OH)[btc]2).15,17 On the other hand, M96 consists of 

two distinct inorganic components. The first component consists 

of a trinuclear aluminum octahedral corner shared with a µ3-oxo 

group that is connected to a BTC ligand and water molecules (i.e., 

Al12O(OH)18(H2O)3(Al2(OH)4)[btc]6) (Figure S4).15 The second 

inorganic component is a 2D network consisting of AlO2(OH)4 

and AlO4(OH)2 octahedra with two crystallographically non-

equivalent types of aluminum centres. These two inorganic blocks 

are connected via a BTC ligand. M96  also contains one additional 

non-equivalent Al centre due to distortion in the framework 

structure.15 Therefore, four non-equivalent Al centres are present 

in M96.  

To probe the various Al sites in both the MOFs, 27Al magic-angle-

spinning (MAS) nuclear magnetic resonance (NMR) studies were 

performed.18-21 For M100, the broad signal in the 27Al NMR 

spectrum consists of three poorly resolved signals at 11 to -38 

ppm, corresponding to the seven crystallographically independent 

octahedral Al sites (Al3+
6c) (Figure 5). [18,19] However, M96 

exhibited a broad signal at approximately 19 to -22 ppm, 

corresponding to the four non-equivalent Al centres (Al3+
6c). In 

both of these MOFs, aluminium is hexacoordinated (Al3+
6c), but 

with different environments as can be seen in the 27Al NMR 

spectrum which shows different shifts for M100 and M96 (Figure 

5). 

 
Figure 5. 27Al solid-state MAS NMR spectra of Al-MOFs. 
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After activation, the catalytic activity of M100 remained nearly 

the same, while the M96 exhibited slightly improved activity 

(Figure 3). This indicates that, during activation, surface active 

sites are generated in the M96 due to loss of the aquo species 

confirmed by the proton NMR (Figure S6), hence, reducing the 

coordination state of the aluminium centre and creating Lewis 

acidic pentacoordinated (5c) aluminium (i.e., coordinatively 

unsaturated sites (CUS) of aluminium (Al3+
5c).17,18 The generation 

of Al3+
5c was confirmed from the 27Al NMR spectrum of the Al-

MOFs after activation. A new broad signal was seen at 

approximately 20 to 41 ppm after activation (Figure 4), 

confirming the generation of CUS Al3+
5c.18 The number of Al (V) 

sites formed in M100 after activation was higher (5.2%) as 

compared to M96 (2.8 %). The multiple-quantum MAS 

(MQMAS) 27Al NMR spectrum of M96 showed four well-

resolved signals (Figure 5), confirming four different 

crystallographic sites, Al1, Al2, Al3 and Al4.15,16 The 

deconvoluted 27Al NMR 1D spectra (Figure S7)  provided 

additional information regarding the various 27Al sites and their 

local environments (quadrupolar coupling constants, CQ) before 

and after activation process. The deconvolution was performed 

using Czjzek model22 and CQ values were extracted (Figure S8). 

Before the activation process, both the MOFs (M100 and M96) 

exhibit only Al(VI) sites and their CQ values are in the range of 

0.004 to 0.009 MHz. These low CQ values before and after 

activation (Figure S8) indicate the symmetric environment of Al 

(VI) and Al (V)  sites in both the MOFs.18,23,24 However, 13C NMR 

studies of these MOFs before and after activation indicate that T2 

values reduced after activation (Figure S9, Table S3). This 

decrease in the T2 values can be correlated to the increase in the 

flexibility of the framework,25,26 due to the removal of water 

molecules from MOF crystal. The 1H-27Al HETCOR studies 

(Figure S10) confirmed the removal of the water molecules, also 

seen in TGA (Fig. S2).  

 

Figure 6. Two-dimensional triple-quantum MAS 27Al NMR spectrum 

M96 (before activation) recorded on a 700 MHz spectrometer using the 

split-t1-shifted-echo scheme.  

The overall acidity of these MOFs was also affected by the 

activation step as reflected in the catalytic study (Figure 3). Lewis 

acidic Al3+
5c sites are generated only after activation, and, hence, 

before activation, Brønsted acidity is the only source of their 

acidity. However, after activation, the combination of Lewis and 

Brønsted acidic sites is responsible for their activity. It may be 

noted that Al3+
5c sites were also generated in the M100 (Figure 5), 

but still its catalytic performance decreased. This indicates the key 

role of the Brønsted acidity of these MOFs in their catalytic 

activity. The source of the Brønsted Acidity arises due to the water 

molecules directly coordinated to the Al sites.17,18 The elemental 

compositions of M100 and M96 are Al3O(H2O)2(OH)[btc]2, and 

Al12O(OH)18(H2O)3(Al2(OH)4)[btc]6 respectively, indicating the 

presence of more coordinating water in M100 than in M96 per 

aluminum. The activation process was performed under vacuum 

which removed Al coordinated water molecules (seen from TGA, 

Fig. S2), which reduces the total number of Brønsted acidic sites 

and as a result of it, the catalytic performance was reduced 

significantly (Figure 3). 

To further understand this activation step, we performed MQMAS 

spectroscopy27,28 for M100 and M96. Their z-filtered 27Al MAS 

NMR spectra are shown in Figure 6 before and after activation. In 

these spectra, the position of the lines in the direct dimension 

corresponds to the direct-exciation 27Al MAS NMR 

measurements, while isotropic resolution is obtained in the second 

dimension. In the spectrum of M100 before activation (Figure 7), 

strong signals due to Al3+
6c sites are observed, but the seven 

crystallographically independent octahedral Al sites are not 

resolved. This finding indicates that Al3+
6c sites are in a very 

similar environment in M100, as seen in the comparably narrow 

signal in 1D NMR (Figure 5). However, in the case of M96, 

before activation, two strong signals originating from Al3+
6c sites 

are observed (Figure 7). This result indicates a more 

heterogeneous environment of the four non-equivalent Al centres 

of M96 Al MOFs, which was also observed in their 1D (Figure 5) 

and 2D triple-quantum MAS 27Al NMR spectrum (Figure 6).  
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Figure 7. Two-dimensional triple-quantum MAS 27Al NMR spectrum of 

(a1) M100, (b1) M96, before activation and (a2) M100, (b2) M96, after 

activation. The peak marked with * are the spinning sidebands. [28] 

After the activation of these MOFs, in the case of M100, in 

addition to the signal for Al3+
6c sites, a signal for Al3+

5c sites 

around 35 ppm was observed (Figure 7). M96, after activation, 

did not show any signal for Al3+
5c sites, possibly due to their low 

abundance (as seen from 1D NMR, Figure 5). Another noticeable 

change that was observed in the MQMAS spectrum of M100 after 

activation was the broadening of the signal for Al3+
6c sites in both 

the direct and isotropic dimensions (Figure 7). This broadening 

indicates that these shifts became more dispersed due to the 

increase in the heterogeneity in the Al3+
6c environment after the 

loss of coordinated water molecules. This broadening was also 

observed in 1D NMR after activation (Figure 5). Interestingly, no 

such broadening was observed for M96 after activation, either in 

their MQMAS spectrum (Figure 7) or in their 1D spectrum 

(Figure 5). Instead, narrowing of the signal, with only one strong 

signal for Al3+
6c, was observed, indicating a more homogeneous 

environment around Al after activation. 

In conclusion, we found that the framework structure of Al-MOFs 

plays a critical role in determining their catalytic activity. The 

MOF with MIL-100 (Al) framework structure was catalytically 

active, while the same Al-MOF with MIL-96 (Al) framework 

structure showed poor catalytic activity. A detailed catalytic 

study, which was aided by crystal structure analysis and solid-

state NMR studies, allowed us to explain this behavior. The sizes 

of the entrances to the cavities where active sites are located 

(catalytic pockets) play a crucial role. PCB molecules fit tightly 

into the entrance path of M96 but can easily enter M100 due to its 

larger cavity entrance size and area. M100 has more pores with 

dimensions higher than 5 Å (needed for PCB diffusion into the 

catalytic pocket), while M-96 has fewer such pores. The higher 

catalytic activity of the M100 MOF compared to the M96 after 

activation was also due to the role of coordinated water molecules 

(Brønsted sites), and the coordination of Al sites (Lewis sites). 

Thus, this study contributes to the fundamental understanding of 

the catalytic nature of active sites in Al-MOFs, and this 

knowledge may be used to design MOFs with greater catalytic 

activity.  

Supporting Information mentioned in the text accompanies this paper 

at doi:xxx. 
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