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Abstract
A pre-trained convolution neural network based on residual error functions
(ResNet) was applied to the classification of soot and non-soot carbon nanopar-
ticles in TEM images. Two depths of ResNet, one 18 layers deep and the other 50
layers deep, were trained using training-validation sets of increasing size (con-
taining 100, 400 and 1400 images) and were assessed using an independent test
set of 200 images. Network training was optimised in terms of mini-batch size,
learning rate and training length. In all tests, ResNet18 and ResNet50 had sta-
tistically similar performances, though ResNet18 required only 25–35% of the
training time of ResNet50. Training using the 100-, 400- and 1400-image training-
validation sets led to classification accuracies of 84%, 88% and 95%, respectively.
ResNet18 and ResNet50 were also compared for their ability to categorise soot
and non-soot nanoparticles via a fivefold cross-validation experiment using the
entire set of 800 images of soot and 800 images of non-soot. Cross-validation
was repeated 3 times with different training durations. For all cross-validation
experiments, classification accuracy exceeded 91%, with no statistical differences
between any of the network trainings. The most efficient network was ResNet18
trained for 5 epochs, which reached 91.2% classification after only 84 s of train-
ing on 1600 images. Use of ResNet for classification of 1000 images, the amount
suggested for reliable characterisation of soot sample, requires <4 s, compared
with>30 min for a skilled operator classifying images manually. Use of convolu-
tion neural networks for classification of soot and non-soot nanoparticles in TEM
images is highly promising, particularly whenmanually classified data sets have
already been established.

KEYWORDS
automotive, nanoparticles, neural networks, soot, TEM, vision learning

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2022 The Authors. Journal of Microscopy published by John Wiley & Sons Ltd on behalf of Royal Microscopical Society.

28 wileyonlinelibrary.com/journal/jmi J. Microsc. 2022;288:28–39.

https://orcid.org/0000-0003-0914-795X
https://orcid.org/0000-0002-0335-415X
mailto:ephraim.haffner-staton@nottingham.ac.uk
http://creativecommons.org/licenses/by/4.0/
https://wileyonlinelibrary.com/journal/jmi
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fjmi.13140&domain=pdf&date_stamp=2022-09-16


HAFFNER-STATON et al. 29

1 INTRODUCTION

Incomplete combustion of hydrocarbon fuel in internal
combustion engines (ICEs) lead major fraction of exhaust
particle matter (PM),1 accounting for 40% to >90% of
the total PM depending on operating conditions.2 Due to
severe negative effects on health and environment, PM
has been limited by the European Union emission stan-
dards in terms of both particle mass and particle number
since 2011.3 Despite trends towards electrified power-
trains and decarbonised fuels, continued improvement
and optimisation of ICEs still appear the best short-term
solution in terms of affordability, energy security and
impact of greenhouse gas emissions.4 Decarbonisation
of haulage/shipping faces difficulties in terms of perfor-
mance and infrastructure requirements, such that theUK’s
‘core’ NetZero strategy suggests only 13% of surface trans-
port fleet will be decarbonised by 2050.5 As such, it is likely
that engine PM emissions will remain an important target
for regulations for the next few decades at least.
Soot emissions from combustion are amajor concern for

both human health and climate change. Atmospheric car-
bon particles are considered second only to CO2 in terms
of contribution to the greenhouse effect and have been
shown to impact respiratory and cardiovascular health,6
while also being linked to cancer and impaired neurovas-
cular function.7 Themorphology of soot plays a critical role
in determining their effects on human and environmental
health. It has been observed that the fractal morphol-
ogy of soot8 and its hygroscopic properties9 influence the
depth of inhalation into the lungs, and the surface area of
soot nanoparticles has been correlated to their toxicity.10
The fractal morphology of soot has been seen to influ-
ence refractive properties in the atmosphere,11 influencing
light adsorption and contribution to the greenhouse effect.
As such, characterisation of soot morphology has been an
important topic of research over the last few decades, with
a view to more deeply understanding these soot-related
phenomena.12
Due to the nanoscopic size of soot (50–500 nm),13,14

transmission electron microscopy is required for imag-
ing. Transmission electron microscopy (TEM) has been
widely used to characterise properties such as maximum
length, fractal dimension, radius of gyration and primary
particle diameter.13,15–18 However, TEM produces 2D pro-
jections while soot nanoparticles are known to be complex
and highly irregular 3D structures, leading to significant
errors.17,19–22 Electron tomography (ET) has been used to
create 3D reconstructions of soot nanoparticles from a
series of 2D TEM images acquired over a wide range of
angles (e.g. ±60◦).17,20–25 ET can produce highly accurate
3D models of soot nanoparticles but is significantly slower
due to each particle requiring multiple images, and suit-
able particles being more difficult to locate on a TEM grid.

Work by our research group has aimed to optimise the ET
process for soot by implementing automated image acqui-
sition and processing to identify suitable particles over
large areas (∼40 μm2) of the TEM grid.17,19,23 This proce-
dure also permits rapid measurement of particles in 2D,
allowing greatly increased sample sizes and thus increased
reliability of TEM-derived measurements.26 However, due
to low contrast of soot against the TEM grid substrate,
and high concentrations of non-soot particles in samples,
a manual review process was required to separate real soot
structures from false positives.17,23
Deep learning is a statistical technique, which uses

data to classify patterns using neural networks.27 It can
be applied to automate the manual particle detection
procedure, classifying nanoparticles in a few seconds,
reducing operational time and contributing significantly
to the increased throughput of ET for soot. Artificial
neural networks (ANNs) are deep learning architectures
made of neurons, which receive inputs from other neurons
or external sources (e.g. pictures, words), weight them
using kernels and compare to a threshold value in order
to categorise them. Analysing images is the key to study
soot; however, to process an image using a simple artificial
neural network would require it to be converted into
a 1D vector. This approach does not take into account
important features such as pixel arrangements in corners,
which helps to differentiate an image from another.28 As
a result, convolutional neural networks (CNNs) are used
to analyse and process images by detecting key pattern
parameters and are used in software, which classifies
images.29 The machine learning tool detects and segments
patterns on the images and learns from them, making the
algorithm increasingly accurate as more images are used
for training.30
Examples of CNNs in research include segmentation

of magnetic resonance images of the brain31 and iden-
tification of ferrography wear particles through image
recognition to determine failure modes of metals depend-
ing on the shape of wear particles.32 Additionally, Raghu
et al. used pre-trainedCNNarchitectures to classify seizure
types.33 The technique used is called ‘transfer learning’ and
it consists of training a pre-trained architecture,34 which
was originally trained to recognise images of 1000 cate-
gories, to recognise images of the topic of interest. ResNet,
AlexNet, GoogleNet, VGG and SqueezeNet were the
pre-trained CNN architectures investigated.33 It has been
observed that deeper networks can be subject to degra-
dation problems when they converge: as size increases,
accuracy gets saturated and degrades rapidly.35 Hence, an
alternative approach to address the problem is formulating
an architecture based on residual functions. While stacked
convolutional layers learn features, residual learning uses
residual errors to study patterns. The pre-trained CNN
architecture ‘ResNet’ does this by subtracting features
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30 HAFFNER-STATON et al.

which are learned by the input layer, allowing the soft-
ware to be more easily trainable and to be subject to much
less degradation when layers are increased.36 ResNet
is pre-trained to learn 1000 categories of images to be
able to classify them. The architecture can be adapted by
replacing the final layer before the fully connected layers
(called ‘fc1000’), with a new layer which only contains
categories of interest. Xiang et al. compared ResNet18,
ResNet50 and ResNet101 to identify the ideal ResNet
architecture to classify two categories of images, with
ResNet18 found to be the more accurate despite being
the shallower network.37 Nibali et al. used pre-trained
ResNet18 to classify images of Pulmonary nodule,38 in a
study with similar scope to this work.
In this study two depths of ResNet, one 18 layers

deep (ResNet18) and one 50 layers deep (ResNet50), were
applied to the problem of classifying soot and non-soot car-
bonnanoparticles TEM images froma sample of soot-in-oil
taken from a GDI passenger vehicle. The two networks
were first assessed using training-validation sets of increas-
ing size: containing 100, 400 and 1400 images. Though
generally an increase in network accuracy with increas-
ing training-validation set size is expected,39 the rate of
this increase is of interest. Due to strong differences
in the composition of different soot samples (e.g. gaso-
line soot-in-oil vs. diesel exhaust soot), it is possible that
separate network trainings may be required for differ-
ent types of soot on a per-sample basis. As such, small
training-validation sets may be the only available train-
ing resource. Alternatively, similar soot samples (such
as those from repeated experiments of the same soot-in-
oil) may benefit from training networks on one another’s
data, so larger training-validation sets are also of inter-
est for a ‘best-case’ scenario. ResNet18 and ResNet50 were
also compared for soot/non-soot classification through
a fivefold cross-validation experiment using 1600 images
(with a 1:1 ratio of soot and non-soot images). Automated
classification of soot and non-soot carbon nanoparticles
would not only greatly increase throughput and reliabil-
ity of soot morphology characterisations, where upwards
of 1000 nanoparticles need to be measured,26 but also
permits future studies on the non-soot fraction of nanopar-
ticles in soot-in-oil samples, which at present are not well
understood. Modifying the architecture of the pre-trained
software and training it to recognise specific classes of
interest has the potential to be applied widely in the field
of nanoparticles research using TEM.

1.1 Methodology

Nanoparticles were extracted from a sample of soot-laden
oil taken from a passenger GDI vehicle, via a solvent

F IGURE 1 (Left) Typical soot-in-oil nanoparticle imaged at
×10,000 magnification. Note the clear presence of spherical
‘primary particle’ sub-units around 30 nm in diameter, and varied
grey-levels within the structure due to overlapping of primary
particles. (Right) Typical amorphous carbon ‘non-soot’ nanoparticle
from the same soot-in-oil sample. Note lack of primary particle
sub-units, less complex and more rounded structure, and more
consistent contrast/grey-levels due to more uniform structure

dilution process using heptane and diethyl ether (further
details can be found in a previous study).40 Nanoparticles
were prepared for TEM by deposition on 300-mesh cop-
per TEMgrids coatedwith graphene oxide on lacey carbon.
Previous study of this sample revealed high concentrations
of carbonaceous nanoparticles of similar size and den-
sity/contrast soot, but which lack the characteristic fractal-
like morphology, primary particle sub-units and graphitic
nanostructure of soot. An example of a soot nanoparticle
and non-soot amorphous carbon nanoparticle is shown in
Figure 1. These non-soot carbon nanoparticles have been
referred to as amorphous carbon or sludge-like nanoparti-
cles in previous studies of soot-in-oil,41 but as yet are not
well understood. The input data (i.e. TEM images) for the
present work is the same used in the development of the
semi-automated procedure,40 from which a total of 800
images of soot and 800 images of non-soot nanoparticles
were collected.
The procedure for rapid soot identification from our

previous work was based upon an automated TEM map-
ping and image processing. The open-source TEM control
software SerialEM was used to create large-scale (approx-
imately 20 μm2) maps of the surface of the TEM grid via
‘montaging’.42 Montaging works by acquiring a series of
overlapping images in a grid-like pattern over a pre-defined
area, and cross-correlating these images to stitch them
into a single large image (a ‘montage’, see Figure 2). Sev-
eral easily identified features of the stitched montage are
then aligned to their absolute position in the microscope
coordinate system, and a ‘montage map’ is created. Fea-
tures of interest in the montage map can then be selected
and the microscope is able to automatically locate that
feature in the live image feed for subsequent tilt-series
acquisition.
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HAFFNER-STATON et al. 31

F IGURE 2 Example of a large-scale stitched montage used for mapping (left) and zoome section showing soot nanoparticles at ×10,000
magnification (right)

F IGURE 3 (Left) Sub-section from a montage map showing two soot nanoparticles, one globular amorphous carbon structure, and
unclustered gold nanoparticles in the background. (Right) Automated selections from the image processing algorithm, showing two
true-positive selections of the soot nanoparticles, and a false-positive selection of the amorphous carbon

To identify features of interest, the montage maps are
rapidly processed using an automated image processing
algorithm implemented in ImageJ. A series of filtering and
thresholding processes, along with constraints on selec-
tion size and shape, are applied to automatically identify
potential nanoparticles. In practice, however, imaging of
soot extracted from engine lubricant oil was prone to false-
positives due to the presence of the non-soot amorphous
carbon nanoparticles (see Figure 3). Hence, a manual
review process by the human operator was required to
separate selections of soot nanoparticles and non-soot
nanoparticles. ResNet is used in this study as a potential
replacement for the manual review process, and its inte-
gration into the automated soot characterisation procedure
is summarised in Figure 4.
ResNet training and testing computations were car-

ried out on MATLAB using an NVIDIA GeForce GTX
1650 GPU. The architecture of ResNet was modified to
replace the fully connected layer with a layer containing
pre-classified images of soot and non-soot nanoparticles
(i.e. the training-validation set). The image input size
to ResNet is 224 × 224 pixels,33 as a result, both the
images used for training and the images used for testing

(analysis)must have a squared shape to preserve the aspect
ratio once the image sizes are converted. Trained networks
were testing by being used to classify an independent test
set containing 100 images of soot and 100 images of non-
soot nanoparticles. The primarymetrics used to determine
the quality of test set classification were accuracy and F1
score:

Accuracy =
TP + TN

TP + FN + FP + TN
, (1)

𝐹1score =
2×TP

2×TP + FN + FP
, (2)

where the true positive (TP) is the number of soot images
correctly classified as soot. The true negative (TN) is the
number of non-soot images correctly classified as non-
soot. The false positive (FP) is the number of non-soot
images incorrectly classified as soot. The false negative
(FN) is the number of soot images incorrectly classified as
non-soot. Table 1 shows how the values relate to each other.
Accuracy indicates the overall performance in detect-

ing the true positive (TP) and the true negative (TN), i.e.
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32 HAFFNER-STATON et al.

F IGURE 4 Current and improved procedure to rapidly identify and reconstruction soot nanoparticles in 3D. Details of electron
tomography procedure in steps 4 and 5 can be found in prior publications19,24

TABLE 1 Confusion matrix

Actual category
Predicted category Soot Non-soot
Soot True positive False positive
Non-soot False negative True negative

correctly classifying soot and correctly classifying non-
soot. Accuracy is equally balanced between TP and TN
classifications, so would not indicate if a network is much
better at classifying non-soot than soot, or vice versa.
The F1 score is the harmonic mean of the precision
(the proportion of ‘soot’ classifications that are actually
soot nanoparticles) and the recall (the percentage of soot
nanoparticles that were correctly classified as ‘soot’), and
thus isweighted towards TP selections. In a traditional soot
sample characterisation, a higher F1 score would be pre-
ferred as correct soot classifications are the primary goal.
However, as morphological characterisation of non-soot
nanoparticles is also of interest to our research, accuracy
is considered as the most important metric.

2 RESULTS AND DISCUSSION

First, the performances of ResNet18 and ResNet50 were
measured as a function of 3 training-validation set sizes.
As described in the methodology, an independent test set
of 200 images was separated from the rest of the data for

TABLE 2 Mini-batch sizes and learning rates used in
optimisation of network trainings settings

Learning rate
Mini-batch Size 0.01 0.001 0.0001
8 8, 0.01 8, 0.001 8, 0.0001
32 32, 0.01 32, 0.001 32, 0.0001
64 64, 0.01 64, 0.001 64, 0.0001

classification assessments. Three ‘training-validation’ sets
were created from the remaining 1400 images, containing
100, 400 and 1400 images each (a 1:1 ratio of soot and non-
soot images in all cases). The training-validation split was
70:30 in all cases, the validation frequency was fixed at
once per training epoch and the stochastic gradient descent
withmomentum (SGDM) solverwas used. Optimisation of
the network training settings was carried out via varying
the mini-batch size and the (constant) learning rate. Three
mini-batch sizes (8, 32, 64 images) and three constant
learning rates (0.01, 0.001, 0.0001) were tested, and at least
3 repeat network trainings were carried out for each com-
bination (see Table 2). These trainings were carried out for
an initial 100 training epochs, with the number of training
iterations varying depending on the mini-batch size and
training-validation set size. Following identification of the
optimal training settings, the number of epochs/iterations
for network training was also optimised as detailed in the
following section.
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HAFFNER-STATON et al. 33

F IGURE 5 Optimum accuracies of ResNet18 and ResNet50
networks trained with training-validation sets of increasing size,
and training time required in terms of seconds per iteration. Error
bars shown are 90% confidence intervals. Means and error bars are
calculated from 9 repeated networks trainings in each

Following the tests on the effect of training-validation
set sizes, ResNet18 and ResNet50 were ultimately com-
pared for quality on the classification of soot and non-soot
nanoparticles via a fivefold cross-validation. The total set
of 1600 images was divided into 5 equal ‘folds’ of 320
images, each containing 160 randomly selected images of
soot and non-soot. For a single cross-validation experi-
ment, ResNet18 and ResNet50 were trained with this data
5 times, with each fold being used as the validation data
once and as training data the other 4 times. At the end
of training, the final accuracy measurements were taken
by using the network to classify the validation set. The
accuracy was then averaged over the 5 trainings to give
the final accuracy of the network. For both ResNet18 and
ResNet50, training during cross-validation was carried out
using the optimal training settings found for the 1400-
image training-validation set. The fivefold cross-validation
experiment was repeated 3 times, with the networks being
trained for 5, 20 and 50 epochs, respectively.

2.1 Performance as a function of
training-validation set size

The optimal results from the network trainings using
the 3 training-validation sets are shown in Figure 5 and
summarised in Table 3.
For the smallest training-validation set, the optimal

training settings were a mini-batch size of 8 and a learn
rate of 0.0001 for both ResNet18 and ResNet50. For all
training-validation set sizes, the combination of a 64-image
mini-batch size and a learning rate of 0.0001 produced the
lowest accuracies. Previous studies have observed inverse
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34 HAFFNER-STATON et al.

F IGURE 6 (Left) Training-validation loss profile for ResNet18, trained for 100 epochs on the 100 image training-validation set. (Right)
Training-validation loss profile for ResNet50, trained for 100 epochs on the 100 image training-validation set. Note rapid initial decreases in
both training and validation loss, followed by period of steady difference between training and validation loss, without noticeable increase in
validation loss (i.e. overfitting)

relationships between mini-batch size and learning rate,
with larger mini-batch sizes observing improved training
when used alongside larger learning rates and vice versa.43
Following the training settings optimisation, the train-

ing length was optimised by observing the training-
validation accuracy and loss values. The aim of training
a network like ResNet is generalisation, i.e., producing a
network that accurately classifies new data from outside
of the training-validation set. Typically, training will con-
tinue until a point at which ‘overfitting’ beings to occur,
after which the network accuracy would start to decrease.
Overfitting occurs when the network begins to ‘memo-
rise’ features of the training images, at the expense of its
ability to generalise. Overfitting is seen when improved
classification of the training set occurs alongside decreased
accuracy when classifying the validation set. One method
to avoid overfitting and the associated generalisation errors
is to perform early stopping,44 ceasing training at a point
where the validation loss begins to increase above a certain
threshold. Training-validation loss curves for ResNet18
and ResNet50 trained on the 100-image set are shown in
Figure 6, where some interesting features can be observed.
For the majority of network trainings in this study,

the loss curves are similar to those shown in Figure 6.
A decrease in both training and validation loss is strong
during the first 5–10 epochs of training. After this point,
there quickly becomes a deviation between training and
validation loss, after which the separation between them
remains relatively constant with increasing training dura-
tion. Though there are small fluctuations in the validation
loss that occur there is generally no obvious onset of over-
fitting and as suchno obvious point atwhich early stopping

F IGURE 7 Effect of number of training epochs on the
accuracy of networks trained on the 100-image training-validation
set. Time required for training also shown

might be applied. To understand the effect of increasing
training length on the accuracy of these networks, a series
of tests were carried out at different training lengths. Train-
ingwas repeated on the 100-image set over a range of 2–400
epochs for both ResNet18 and ResNet50, results for which
are shown in Figure 7 (where all network trainings were
repeated at least 6 times).
For both ResNet18 and ResNet50 the highest average

accuracy was observed after training for 200 epochs, at
83.8% and 84.3%, respectively (these results are quoted
in Table 3). However, overlapping of the 90% confidence
intervals occurred from 50 epochs onwards for ResNet18,
and from 10 epochs onwards for ResNet50, showing that
there was little benefit of increased training duration
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HAFFNER-STATON et al. 35

F IGURE 8 Training-validation loss profile for ResNet50
trained on the 1400 image training-validation set. Note the increase
in validation loss occurring from around 2 epochs onwards
(overfitting)

within the region of steady training-validation loss differ-
ence. For each network, the training time varies approx-
imately linearly with the number of training epochs.
ResNet50 is around 3–4 times slower than ResNet18 for
trainings from 50 epochs upwards. Even with the limited
hardware used in this study, training times are modest.
For the 400-image training-validation set, the opti-

mum training settings shifted to a mini-batch size of 32,
and a learning rate of 0.0001. Similar tests were carried
out to understand the effect of training length, though
were limited to 100 epochs following the observations for
the 100-image set that increased training length above
50 epochs did not lead to significant improvements in
accuracy. An optimum training length of 50 epochs was
observed and resulted in a test-set classification accuracy
of 88.3% for ResNet18 (in 162 s) and 88.4% for ResNet50 (in
641 s).
For the largest training-validation set of 1400 images,

the optimum training settings were a mini-batch size of
32 and a learning rate of 0.001. For this set, the loss data
for ResNet18 trainings again showed relatively steady vali-
dation loss with increased training duration. However, for
ResNet50 the curves showed increasing validation losses
occurring from around 2 epochs onwards (see Figure 8).
Repeated network trainings were again carried out over a
range of lengths, from2 to 100 epochs. The effect of training
length on the accuracy of networks for the 1400-image set
is shown in detail in Figure 9, where all network trainings
were repeated at least 6 times.
For all trainings except the 2-epoch training with

ResNet18, test-set classification accuracy was >90%. Both

F IGURE 9 Effect of number of training epochs on the
accuracy of networks trained on the 1400 image training-validation
set. Time required for training also shown

networks observe increasing accuracy up to 50 epochs
of training, reaching 95.1% and 94.1% for ResNet18 and
ResNet50, respectively, before decreasing slightly with a
longer training duration of 100 epochs. Therewas nomajor
difference in the effect of different training lengths on the
accuracy of ResNet18 andResNet50, despite the differences
in the loss curves that were observed. As for the 100-image
set, training time varied approximately linearly with the
number of training epochs, and ResNet50 was around 3–4
times slower than ResNet18.
As may have been expected, increasing the number of

training-validation images led to an increase in the accu-
racy of both ResNet18 and ResNet50 networks. Accuracy
increased from 83–84% for a 100-image set to 94–95% for a
1400-image set. An interesting observation to notewas that
training with the 100-image set led to networks that were
better at classifying the non-soot nanoparticles than the
soot nanoparticles. The average number of correctly classi-
fied non-soot nanoparticles in the test set (true negatives)
was around 15% greater than the number of correctly clas-
sified soot nanoparticles (true positives). Networks trained
on the larger training-validation sets exhibited approxi-
mately equal numbers of true positives and true negatives,
reflected in almost identical accuracies and F1 scores,
suggesting similar ability to classify soot and non-soot.
As shown in Figure 10, when the number of training
epochs was kept constant the time required for training
varied approximately linearly with the number of train-
ing images. The time required per iteration of training did
not vary linearly (see Table 3), as the number of iterations
depends on the mini-batch size which changed between
the training-validation sets.
Overall, performance of ResNet18 and ResNet50 was

almost identical for each of the 3 training-validation sets,
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F IGURE 10 Network training time required for 50 epochs of
training at the 3 training-validation set sizes

F IGURE 11 Results of fivefold cross-validation experiment at
3 different training lengths

though training of ResNet18 took only 25–35% of the time
required for training ResNet50. Additionally, longer train-
ing durations were most beneficial for the 100-image set,
while training for longer than 5 epochs had only minor
benefits for the 1400-image set.
To ultimately compare the quality of ResNet18 and

ResNet50 for the problem of soot sample classification, a
fivefold cross-validation experiment was carried out. The
complete set of 1600 images was randomly divided into 5
‘folds’ of 320 images, each containing 160 soot and non-
soot nanoparticles. Network training was carried out 5
times, with each fold acting as the validation set once
and as a training set 4 times. Training was carried out
using themini-batch and learn rate settings derived for the
1400-image training-validation set. The cross-validation
experimentwas repeatedwith 3 different trainings lengths:
5, 20 and 50 epochs. Results are shown in Table 4 and
summarised in Figure 11. T
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All trainings in the cross-validation experiment showed
average accuracies above 91%, with no significant differ-
ence observed between ResNet18 and ResNet50. Addi-
tionally, the performance after just 5 epochs of training
(150 iterations) produced networks of similar quality to 50
epochs of training. Based on these results, the optimum
network for the classification of soot and non-soot parti-
cles is ResNet18 trained for only 5 epochs, where training
required only 84 s for 1600 images. The classification proce-
dure required only 1.7 s for 320 images, which is of similar
magnitude to manual classification of a single TEM image
by a human operator, highlighting benefits to throughput
when using CNNs for classification.
Overall, due to its faster training speed and similar lev-

els of accuracy, ResNet18 would be considered the better
network depth to use for the problem of classifying soot
and non-soot nanoparticles, especially in situations where
available hardware is limited. Based on the accuracies
measured, the use of the convolution neural network
ResNet for the problem of soot/non-soot classification is
most applicable when a larger amount of training data is
available (>400 images). This would equate to a scenario
where a sample to be studied is similar to one imaged
previously, for example, a repeat measurement or a sample
derived from the same engine test, where set of training
images would already exist. Applicability to novel samples
is limited, as accuracies for a 100-image training set
(83–84%) would lead a significant number of incorrectly
classified particles being measured and thus significant
errors in themorphological characterisation of the sample.
Based on the work of Kondo et al., it is suggested that
1000 individual nanoparticles are required to be measured
to reliably characterise a sample of soot. Using a manual
review process, a highly trained operator would require
at least 30 min to categorise images whereas a pre-trained
network could complete this almost instantly (<4 s), with
as little as 84 s required to train a network to>91% accuracy
with a training-validation set of >1000 images. Critically,
automated identification significantly reduces the human
labour cost and removes the need for a skilled operator,
which is a key aspect of a true high-throughput procedure.

3 CONCLUSIONS

This study focused on the development of an automated
procedure for soot nanoparticle recognition, for incor-
poration into a previously developed semi-automated
procedure for soot analysis in 2D and 3D. By implement-
ing ‘transfer learning’ on a pre-trained convolutional
neural network architecture, the 3D morphological
reconstruction procedure of soot nanoparticles is made
more efficient by reducing the time of operation. More

specifically, CNNs are used to replace human supervision
to classify the nanoparticles detected into ‘soot’ and ‘non-
soot’ categories, which can consequently be reconstructed
in three dimensions. This work compared two depths
of ResNet for the task of soot and non-soot nanoparticle
classification and included investigation of the effect of
training-validation set size on network accuracy.

- Accuracy of soot/non-soot nanoparticle classification
using ResNet increased with increasing number of train-
ing images. Training of ResNet with training-validation
set sizes of 100, 400 and 1400 images led to classifications
accuracies of 83–84%, 88% and 94–95%, respectively.

- For all the training-validation set sizes used in this study,
ResNet18 and ResNet50 had almost identical classifica-
tion accuracies, though ResNet18 required only 25–35%
of the time required for training ResNet50.

- Training with a 100-image training-validation set pro-
duced networks significantly better at classifying non-
soot nanoparticles than soot nanoparticles. Training
with larger sets of images produced networks with
equivalent ability to categorise soot and non-soot.

- Tests on the effect of training duration on network
accuracy showed that optimal training length was short
at around 50 epochs, with increased training dura-
tions leading to statistically insignificant differences in
accuracy.

- Training time varied approximately linearly with num-
ber of training images and with number of training
epochs. Training time per iteration depends on the
network training settings.

- CNNs appear most suitable for soot/non-soot classi-
fications when >400 images that could be used for
a training-validation set already exist, for example, a
repeat sample study or a sample derived from the same
engine testing procedure.

- The fivefold cross-validation experiment showed no sig-
nificant differences in the accuracy of ResNet18 and
ResNet50. No significant difference in accuracy was
observed between networks trained for 5, 20 or 50
epochs, showing that optimal network training length
was short.

- The optimal result of cross-validation was ResNet18
trained for 5 epochs (on a 1600-image training-validation
set). This training required only 84 s and reached 91.2%
classification accuracy.

- Classification time using trained networks was negligi-
ble, requiring only 1.7 s for 320 images and <4 s for
1000 images. By comparison, classification by a human
operator requires up to 2 s per single image, or >30
min to classify 1000 images (the amount suggested
to be necessary for reliable morphology characterisa-
tions). Classification time is decreased by a factor of
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approximately 400–500 when using the automated pro-
cedure rather than the manual identification.

- Furthermore, since the training procedure does not need
supervision, the software can run during low-demand
hours when trained with a large data set of thousands
of images.

- The technology proves to be effective when combined
with transmission electron microscopy, hence it can be
adapted to further research tasks involving nanopar-
ticles’ detection and TEM, opening a wide range of
opportunities to apply pre-trained convolutional neural
networks by adopting the ‘transfer learning’ approach.
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