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Abstract 
The development of novel electrochemical energy storage (EES) technologies to enhance the performance of EES devices 
in terms of energy capacity, power capability and cycling life is urgently needed. To address this need, supercapatteries are 
being developed as innovative hybrid EES devices that can combine the merits of rechargeable batteries with the merits of 
supercapacitors into one device. Based on these developments, this review will present various aspects of supercapatteries 
ranging from charge storage mechanisms to material selection including electrode and electrolyte materials. In addition, strat-
egies to pair different types of electrode materials will be discussed and proposed, including the bipolar stacking of multiple 
supercapattery cells internally connected in series to enhance the energy density of stacks by reducing the number of bipolar 
plates. Furthermore, challenges for this stack design will also be discussed together with recent progress on bipolar plates.

Keywords  Supercapattery · Supercapacitor · Capacitive and non-capacitive Faradic processes · Nanocomposites · Non-
aqueous electrolyte · Device engineering
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1  Introduction

Energy derived from intermittent renewable sources such 
as solar, wind and tide must be stored and supplied in effi-
cient and affordable means to become viable alternatives 
to traditional non-renewable options. This need has led to 
the strong desire for energy storage technologies that can 
be applied to different sustainable energy applications. To 
address this, researchers have reported that electrochemi-
cal energy storage (EES) technologies can be suitable for 
energy harvesting at various scales and are more attractive 
than current popular technologies using pumped-storage 
hydroelectricity, for example [1]. Here, desirable EES 
devices should possess sufficiently large energy and power 
capabilities, long cycling lifespans and be commercially 
affordable. Although rechargeable batteries possess suf-
ficiently large energy capacities, and supercapacitors pos-
sess high-power capabilities and long cycle lifespans with 
great progress being made in both in the past two decades, 
each technology alone cannot satisfy all the requirements 
for successful commercialization. To address this, various 
hybrid EES devices have been proposed and preliminarily 
demonstrated in which such hybrid devices can combine 
the merits of supercapacitors with those of rechargeable 
batteries into one device. However, a unified generic term 
was lacking for these devices and researchers have gener-
ally referred to them using different nomenclatures such 
as ‘redox capacitors’ [2, 3], ‘Li-ion capacitors’ [4–8], ‘Na-
ion capacitors’ [8–10], ‘hybrid electrochemical capacitors’ 
[11–14], battery–supercapacitor hybrids [15] or ‘pseudo-
capacitors’ [16–18] corresponding to electrode material 
and device design and engineering. As a result, a generic 
term ‘supercapattery’ (= supercapacitor + battery) was 
proposed to represent these EES hybrid devices that are 
different from either supercapacitors or rechargeable bat-
teries in terms of fundamental principles and technologi-
cal prospects. Since the generic term ‘supercapattery’ was 
initially proposed in an industrial EES project initiated in 
2007, researchers have actively promoted its use, leading 
to its gradual recognition by the EES community [19–24].

Supercapatteries represent various hybrid EES devices 
that take advantage of both capacitive and non-capacitive 
Faradaic (or Nernstian) charge storage mechanisms at 
either the electrode material level or the device level. For 
example, Li-ion capacitors possess both a Li-ion battery 
electrode that can provide non-capacitive Faradaic charge 
storage and a supercapacitor electrode that can provide 
capacitive charge storage, meaning that Li-ion capacitors 
cannot be regarded as a capacitor because of the non-
capacitive Faradaic charge storage in the cell nor as a 
rechargeable battery because of its capacitive behaviour. 
This is also the case with Na-ion capacitors. Therefore, 

‘supercapattery’ as a generic term can be used to describe 
all devices consisting of a battery electrode and a capaci-
tive electrode such as Li-ion capacitors, Na-ion capacitors 
and other hybrid EES devices that combine the merits of 
both capacitive and non-capacitive Faradaic charge stor-
age mechanisms.

Various comprehensive reviews on supercapacitors and 
supercapatteries as well as critical reviews on electrode 
materials, electrolytes and engineering fundamentals of 
supercapatteries have been published in the past 3 years 
[25–30]. This review, however, intends to introduce the 
fundamentals of supercapatteries and present recent pro-
gress in supercapattery development in terms of electrode 
and electrolyte materials, device design and engineering and 
performance advantages and limitations.

2 � Fundamentals of Supercapatteries

Supercapatteries can exhibit capacitive performances simi-
lar to conventional capacitors including rectangular cyclic 
voltammograms (CVs) and linear galvanic charge and dis-
charge plots (GCDs). Because of this, the fundamentals of 
conventional capacitors can also be applied to supercapatter-
ies in which capacitance (C) is the proportionality between 
the stored charge (q) and the voltage (U) applied across a 
capacitor. This proportionality is also equal to the ratio of 
the stored charge change (Δq) to the voltage variation (ΔU) 
as the voltage of a capacitor is scanned at a constant voltage 
scan rate (v = dU/dt) in CVs. Because current (i) flowing 
through a capacitor is proportional to v, this proportionality 
is also equal to capacitance as described in Eq. (1).

For example, the CV of an ideal capacitor as derived from 
Eq. (1) is 50 mF with a Umax of 5 V (Fig. 1a). In addition, 
because current at a voltage scan rate remains constant, but 
current polarity (positive or negative) follows the voltage 
scan direction (Eq. 1), rectangular-shaped CVs are obtained 
with sharp current shifts at both ends of the voltage scan. 
Therefore, CVs can be used to evaluate the capacitive per-
formance of EES devices such as electrical double-layer 
capacitors (EDLCs), pseudocapacitors and supercapatter-
ies. Furthermore, the CVs of these capacitive EES devices 
may distort slightly due to the slow kinetics of electrode 
reactions. Despite this, the ratios of i/v or Δq/ΔU of these 
devices will remain constant and equal to the capacitance.

Ideal capacitors can also be charged and discharged 
at constant currents and exhibit triangular GCD plots 
(Fig. 1b) in which as these capacitors are charged, U will 

(1)C =
Δq

ΔU
=

dq∕dt

dU∕dt
=

i

v
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build up across the positive and negative electrodes. Here, 
Eq.  (2) can be used to calculate the energy (W) stored 
by a capacitor and indicates that W is proportional to the 
capacitance of the cell (Ccell) and the square of ΔU.

It should be noted that W must be calculated through 
the integration of GCD plots in the discharge portion as 
described in Eq. (3) and is applicable to all EES devices, 

(2)W =
1

2
CcellΔU

2

whereas Eq. (2) is a special case in which GCD plots in 
the discharge portion are linear (Fig. 1b).

Another important factor for capacitors is the maximum 
power output (Pmax), which can only be reached if the 
working load resistance is equal to the equivalent series 

(3)W =

t

∫
0

iUdt = i

t

∫
0

Udt

Fig. 1   a CVs at indicated cell 
voltage scan rates and b GCD 
plots at indicated constant 
currents of a hypothetical 
conventional capacitor of C = 50 
mF with Umax = 5 V derived 
from Eq. (1) [27, 30, 31]. c 
Schematic illustration of the 
charge storage mechanism in an 
EDLC using Act-C electrodes. 
The enlarged view in the point 
cycle shows charge storage on 
a single carbon particle through 
ion adsorption at the carbon–
electrolyte interface (i.e. EDL 
capacitance) [30]. CVs of d 
Act-C in 0.3 mol L−1 K2SO4 at 
5 mV s−1 in different potential 
ranges and e a symmetrical cell 
with equal amounts of Act-C on 
each electrode and 0.3 mol L−1 
K2SO4 as the electrolyte at 
5 mV s−1 in decreasing voltage 
ranges [32]
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resistance (ESR) of a capacitor. Equation (4) shows the 
relationship between Pmax, U and ESR.

Conventional capacitors usually possess small capac-
itances in the range of 10−6–10−2 F such as the 50 mF 
capacitance capacitor (Fig. 1a, b), meaning that even if 
U can be charged to 100 V, energy capacities can only 
reach 2500 J (~ 0.7 Wh) for this capacitor. Alternatively, 
the capacitance of supercapacitors can easily reach greater 
than 100 F. Despite these differences in capacitance, how-
ever, both capacitors and supercapacitors possess EDL 
charge storage mechanisms, and currently, the most widely 
used supercapacitor materials are high surface area acti-
vated carbons (Act-Cs) (Fig. 1c).

For example, Chae et  al. [32] investigated Act-Cs 
as a supercapacitor electrode and reported that Act-Cs 
can retain rectangular CVs at different potential ranges 
(Fig. 1d),indicating an EDL storage mechanism in which 
as the potential range gradually extended, cathodic and 
anodic reactions appeared at − 1.1 V and 0.5 V versus Ag/
AgCl, respectively. Here, these researchers attributed the 
reduction reaction to H+ + e → Had in the micropores of 
Act-Cs and reported that the reductive potential was more 
negative than the theoretical negative potential limit for 
water (− 1.0 V vs. Ag/AgCl) [33], suggesting that such 
negative reductive potentials were mainly due to the over-
potential of carbon-based materials. A small anodic current 
hump at 0.5 V (Fig. 1d) was also observed and was inter-
preted as evidence of the re-oxidation of produced Had in 
the micropores of Act-Cs. These researchers also reported 
that as the potential range was further extended (more 
positive than 0.9 V vs. Ag/AgCl), a further oxidation cur-
rent at potentials beyond 0.8 V was observed, which was 
attributed to the oxidation of water H2O = O2 + 4H+ + 4e 
[34] and/or carbon C + H2O = CO2 + 4H+ + 4e [32]. Fur-
thermore, the Act-Cs in this study exhibited satisfactory 
capacitive performances in both positive and negative 
potential scans between positive and negative limits in 
which a symmetrical supercapacitor with equal amounts of 
Act-Cs on each electrode was fabricated (Fig. 1e) and the 
obtained cell voltage easily reached 1.9 V or even higher 
due to the wide capacitive potential range of the Act-Cs 
in aqueous electrolytes.

In general, the specific capacitance of electrode materi-
als (Csp) can easily be derived from relevant CVs. By con-
sidering the fact that equal amounts of electrode materials 
(m+ = m− = m) are used to fabricate symmetrical superca-
pacitors, the specific capacitance and specific energy of cells 
(Csp,cell and Wsp) can be expressed as the ratios of Ccell and W 
to the total mass of the electrode material (m+ + m− = 2 m), 

(4)Pmax =
U2

4ESR

respectively, in which Csp,cell =
1

2m
Ccell =

1

4
Csp and 

Wsp = W∕2m . And by considering Eq. (2) in these relation-
ships, Wsp can be rearranged as Eq. (5).

The above equations are also applicable to pseudoca-
pacitors and supercapatteries, both of which exhibit rec-
tangular CVs and linear GCD plots. Here, transition metal 
oxides (TMOs) and electronically conducting polymers 
(ECPs) have both been widely used as pseudocapacitive 
materials that can provide capacitive Faradaic charge 
storage from the transfer of delocalised valence electrons. 
Using metal clusters with different sizes as examples 
(Fig. 2a), the delocalisation of valence electrons corre-
sponds to energy levels in which as more atoms are bound 
to clusters, orbits will split into more sub-orbits, leading 
to smaller energy gaps between the neighbouring energy 
levels of sub-orbits. And if the energy gap (Eg) between 
the lowest energy level of the higher energy group and the 
highest energy level of the lower energy group is large 
enough, all valence electrons will occupy the energy levels 
of the lower energy group, leaving higher energy levels 
empty, meaning that these valence electrons are localised 
at these lower energy levels. Here, if materials possess-
ing these localised electrons are used to store charge, the 
Nernst equation (Eq. 6) [35] will govern reactions at a 
potential range near the equilibrium potential E0, leading 
to current peaks on CVs and potential plateaus on GCD 
plots.

Here, n is the number of electrons transferred, F is the 
Faraday constant, R is the gas constant, T is the tempera-
ture, and x is the mole fraction of the reduced species or 
sites. As an example of localised charge storage, Hu et al. 
[36] reported peak-shaped CVs from a non-conducting 
polymer, poly(o-aminophenol) (PoAP), with and without 
carbon nanotubes (CNTs) in an acidic electrolyte (Fig. 2b) 
in which PoAP was non-conductive and can provide local-
ised electrons for charge storage. In addition, TMOs and 
ECPs are semiconductors with delocalised electrons that 
can easily move between occupied and unoccupied orbits 
within valance bands (Fig. 2a) in which the difference of 
energy levels or potentials between neighbouring orbits 
is so small that every small potential variation will cause 
electron transfer, leading to constant currents with linear 
variations of potential in a capacitive manner the same as 
in EDLCs. Furthermore, Peng et al. [37] also reported that 
the polyaniline-CNT (PANI-CNT) composite, a type of 

(5)Wsp =

1

2
CcellΔU

2

2m
=

1

8
CspΔU

2

(6)E = E0 +
nF

RT
ln
(

1 − x

x

)
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ECP composite, can demonstrate rectangular CVs within 
a capacitive potential range (Fig. 2c).

In summary, three charge storage mechanisms exist 
in supercapatteries. The first mechanism involves EDL 
capacitance, which stores charge on electrode surfaces 
reversibly. The second mechanism is the Nernstian pro-
cess, also called the non-capacitive Faradaic process, 
which broadly follows the Nernst equation describing the 
transfer of localised valence electrons. The third mecha-
nism involves pseudocapacitance and is also called the 
capacitive Faradaic process, which proceeds in the capaci-
tive pathway based on the transfer of delocalised valence 
electrons. Here, all three charge storage mechanisms can 
be applied to electrode materials for supercapatteries.

The specific energy of EDLCs has a strong relationship 
with the maximum charging voltage and specific capaci-
tance. As for TMOs and ECPs, these are pseudocapacitive 
materials because of their semiconductor nature and pos-
sess higher specific capacitances than EDLCs but narrower 

potential ranges. Due to this, symmetrical devices com-
posed of pseudocapacitive materials are not favourable for 
high energy capacity EES devices and various asymmetri-
cal designs have been proposed to achieve high voltage. 
Currently, two main designs for asymmetrical devices exist 
in which one involves asymmetrical supercapacitors with 
positive and negative electrodes (the positrode: the posi-
tive electrode [24, 27, 38–43]; the negatrode: the negative 
electrode [24, 27, 39–44]) capable of capacitive charge 
storage typically through the permutation and combina-
tion of EDL and pseudocapacitive electrodes, whereas the 
other design involves hybrid configurations that combine 
supercapacitor electrodes with battery electrodes and have 
been reported under different names that mainly corre-
spond to the different electrode materials used. Overall, 
the word ‘hybrid’ is not a suitable unified expression for 
the future development of these asymmetrical devices 
because it is too abstract, whereas the terms ‘supercapat-
tery’ or ‘supercabattery’ are general enough to represent 

Fig. 2   a Schematics of charge 
storage mechanisms based on 
localised and delocalised elec-
trons and relevant split energy 
levels [27]. b Localised charge 
storage with peak-shaped CVs 
recorded from PoAP (red) and 
PoAP-CNT (blue) in 1 mol L−1 
HCl at 10 mV s−1 [36]. c CVs 
of PANI-CNT composite 
recorded in the first and the 
5000th potential scan cycles in 
1.0 mol L−1 HCl at 100 mV s−1 
[37]
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these asymmetrical devices vividly. And because super-
capatteries take advantage of Faradaic charge storage in 
typical non-capacitive Faradaic storage, pseudocapacitors 
also fall in the scope of supercapatteries in a broad sense. 
And more often, supercapatteries contain electrodes with 
battery-type charge storage.

3 � Materials for Supercapatteries

3.1 � Electrode Materials

Electrode materials with EDL capacitance, pseudocapaci-
tance or the Nernstian process can be utilised in supercapa-
tteries in which different types of electrode materials will 
result in different supercapatteries. In order to comprehen-
sively discuss these hybrid devices, several hypothetical 
supercapatteries were constructed by us [27] to illustrate 
their performance by using corresponding GCD plots one 
by one (Fig. 3a–d) and these hypothetical devices were 

Fig. 3   Calculated GCD plots 
of positrodes (blue lines), 
negatrodes (black lines) and 
relevant cells (red dash lines): a 
a hypothetical pseudocapacitor 
with an Act-C negatrode and 
a pseudocapacitive positrode 
and a hypothetical supercapat-
tery with a negatrode of Li 
metal or lithiated carbon and 
b an Act-C positrode or c a 
pseudocapacitive positrode [27]. 
d A hypothetical supercapattery 
with a typical battery-type nega-
trode and a pseudocapacitive 
positrode [27]. e Experimental 
demonstration of (a), (−) Act-C 
| KCl | PPy-CNT (+) [45]. f 
Experimental demonstration of 
(b), (−) Li | IL + LiClO4 | Act-C 
(+) [23]. g Experimental dem-
onstration of (c), (−) Li | PEO-
LiTFSI | LTAP | 1.0 M LiCl aq. 
| MnO2 (+) [12] (Reproduced 
with permission from Ref. [12]; 
permission conveyed through 
Copyright Clearance Center, 
Inc.). h Experimental demon-
stration of (d), (−) C-MnOy-
CNT | LiPF6 | MnOx-CNT (+) 
[22] (Reproduced with permis-
sion from Ref. [22]; permission 
conveyed through Copyright 
Clearance Center, Inc.)
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confirmed by using relevant experimental data from the lit-
erature (Fig. 3e–h).

The first hypothetical supercapattery that was considered 
was a pseudocapacitor consisting of a pseudocapacitive posi-
trode and an EDL capacitance negatrode. Here, the capaci-
tive potential range of the pseudocapacitive positrode was 
relatively narrow (3.5–4.0 V), whereas the EDLC negatrode 
operated from 1.5 to 3.5 V to match the charge stored by 
the positrode with the predicted behaviour of the electrodes 
and the cell being demonstrated by GCD plots (Fig. 3a). 
And because the balance of electrode mass and charge is 
important for all EES devices, the amount of charge passing 
through the positrode must be equal to the charge passing 
through the negatrode in a supercapattery. Based on this, 
the mass, specific capacitance, voltage variation and amount 
of stored charge of positrodes and negatrodes must follow 
Eq. (7)

where q represents the amount of charge passing through 
the electrode, m is the mass of the electrode, and the 
subscripts – and + represent the negatrode and the posi-
trodes, respectively. As for the hypothetical pseudoca-
pacitive positrode and the EDLC positrode, Csp,pseudo 
of 500 F g−1 and Csp,EDLC of 200 F g−1 were hypothesis. 
Furthermore, by rearranging Eq. (7) and using available 
values, the mass ratio of the positrode to the negatrode 
in the hypothetical pseudocapacitor was calculated to be 
mpseudo∕mEDLC = Csp,EDLCΔU−∕Csp,pseudoΔU+ =

500×0.5

200×2
= 0.625 

w i t h  C = 1∕2 × (1∕(0.625 × 500) + 1∕200) = 61 F g−1  . 
Equation (5) can also be applied to calculate the specific 
energy of this hypothetical pseudocapacitor because the per-
formance of the hypothetical cell is capacitive, leading to a 
value of 53 Wh kg−1,which is higher than values obtained 
from a symmetrical EDLC (Wsp,sym = 43 Wh kg−1) with the 
same ΔU.

Another hypothetical supercapattery hypothesised in this 
study was a common supercapattery possessing a Li metal 
negatrode and an Act-C positrode. Here, based on the behav-
iour of the electrodes and the cell as shown by GCD plots 
(Fig. 3b), the behaviour of this hypothetical cell was highly 
capacitive, meaning that Eq. (5) can be used to calculate the 
corresponding energy capacity. The minimum potential of 
the Act-C positrode was also set to 0.5 V vs. Li/Li+ to pre-
vent the lithiation of the Act-C electrode during discharge. 
Furthermore, the mass of the positrode and the negatrode in 
this hypothetical supercapattery can be represented based on 
the charge passing through based on Eq. (8)

Here, Qsp,Li = nF/MLi = 13900 C g−1 = 3861 mAh g−1 for 
the Li metal negatrode in which n = 1, F = 96485 C mol−1 

(7)q− = m−Csp−ΔU− = m+Csp+ΔU+ = q+

(8)Q− = m−Qsp− = m+Csp+ΔE+ = Q+

and MLi = 6.941 g mol−1, whereas for the Act-C positrode, 
Csp,C = 200 F g−1 and ΔU = 4.0 V were hypothesised. And 
by taking into account all of the data in Eq. (8), the mass 
ratio of the positrode to the negatrode can be calculated to 
be mC∕mLi = Qsp,Li∕Csp,CΔE =

13900

200×4.0
= 17.4 . And because 

the ratio was so high, the mass of the Li metal negatrode was 
negligible as compared with that of the Act-C positrode in 
the supercapattery, whose capacitance value was approxi-
mately equal to the capacitance value of the Act-C positrode. 
Furthermore, because the minimum potential of the Act-C 
electrode was set to 0.5 V versus Li/Li+ instead of zero, then 
ΔU2 = (4.5V)2 − (0.5V)2 . Moreover, according to Eq. (5), 
the above data lead to Wsp = 555.6 Wh kg−1, which was much 
higher than that of the pseudocapacitor.

Another hypothetical supercapattery was constructed 
by replacing an EDLC positrode with a pseudocapaci-
tive electrode (Fig. 3c) in which the specific capacitance 
of the pseudocapacitor electrode was assumed to be 
500 F g−1 and the potential range of ΔE was assumed to 
be 1.0 V because pseudocapacitive materials are perceived 
to possess high specific capacitance and narrow potential 
range. Based on this, the mass ratio was calculated to be 
mC∕mLi = Qsp,Li∕Csp,CΔE =

13900

500×1.0
= 27.8 , again indicating 

that the mass of the negatrode was negligible in the super-
capattery. Similarly, by using Csp,cell ≈ Csp,C = 500 F g−1, 
Umax = 4.5 V and Umin = 3.5 V in Eq. (5), the specific energy 
of this hypothetic cell was calculated to be 555.6 Wh kg−1, 
which is equal to the value of the previous hypothetical 
supercapattery. Here, because Li metal electrodes work 
reversibly at negative potentials (Fig. 3b, c), sluggish curves 
can commonly be observed in the GCD plots of most battery 
electrodes (Fig. 3d). And because this hypothetical device 
consisted of a pseudocapacitance positrode and a battery 
negatrode, the battery negatrode charged/discharged at a 
more positive potential and the corresponding GCD plot was 
more sluggish as compared with the Li metal negatrode. In 
addition, the GCD plot of this hypothetical device was not 
linear in either the charge or the discharge portion, mean-
ing that the performance of this device was not capacitive. 
As a result, the GCD of the cell was integrated to evaluate 
the cell energy capacity by using Eq. (3) instead of Eq. (2). 
Moreover, the shadowed area under the discharge branch of 
the GCD plots was proportional to the energy capacity of 
the cell in which the GCD plot (Fig. 3d) was more like that 
of a battery, meaning that the term ‘supercabattery’ is more 
appropriate for this hypothetical device.

Experimentally (Fig. 3e–h), Zhou et al. [45] reported 
that a supercapattery consisting of a polypyrrole-CNT 
(PPy-CNT) composite positrode, an Act-C negatrode and 
a 3 mol L−1 KCl electrolyte can exhibit typical capacitive 
behaviours (Fig. 3e). Furthermore, Yu et al. [23] success-
fully demonstrated another supercapattery consisting of an 
Act-C positrode and a Li/Li+ negatrode in an ionic liquid 
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(IL) electrolyte consisting of 1-butyl-1-methylpyrrolidin-
ium tri(pentafluoroethyl)trifluorophosphate (BMPyrrFAP), 
gamma-butyrolactone (γ-GBL) and LiClO4 and reported 
that the IL solution not only provided cations and anions for 
non-Faradic capacitive storage at the Act-C surface, but also 
enabled Li/Li+ redox reactions on the negatrode for non-
capacitive Faradic or Nernstian storage. In addition, these 
researchers reported that the GCD plot of this supercapattery 
demonstrated typical capacitive GCD features (Fig. 3f) and 
that the resulting specific energy reached 230 Wh kg−1 at 
1 mA cm−2 (based on active materials), which is the highest 
recorded for supercapatteries consisting of Act-C electrode 
materials. Makino et al. [12] also investigated a cell com-
posed of (−) Li | PEO-LiTFSI | LTAP | 1.0 mol L−1 LiCl 
(60 °C) | MnO2 (+) in which PEO-LiTFSI acted as a buffer 
layer and LTAP as a solid electrolyte made of LISICON-
type solid glass ceramics. Here, the obtained GCD plot 
(Fig. 3g) was similar to the calculated hypothetical GCD 
plot (Fig. 3c), indicating the validity of the hypothetical 
cells and corresponding equations. Furthermore, Zhou et al. 
[22] experimented on a typical supercabattery composed of 
MnOx-CNT composites (Fig. 3h) and reported calculated 
specific energy of 208.6 Wh kg−1 using Eq. (3), of which 
105.8 Wh kg−1 remained under ultrahigh specific power of 
3000 W kg−1.

Based on these experimental studies, pseudocapacitive 
materials composed of TMO and ECP composites can play 
vital roles in the engineering of electrode materials for 
supercapatteries. Here, researchers have reported that CNTs 
are suitable for the construction of these composites in situ-
ations requiring porous structures for the transportation of 
charge balancing ions. Furthermore, CNTs possess high 
electrical conductivity and can therefore improve the elec-
trical conductivity of composites. For example, Jin et al. [46] 
studied the two-stage progress of MnO2 redox deposition on 
CNTs due to the effects of nanoscaled micro-electrochemical 
cells. Here, these researchers reported that at the beginning 
stage of the redox deposition (Fig. 4a), MnO2 precipitation 
can only be found at or near the defect sites of CNTs as 
evidenced by TEM images of the MnO2-CNT composite 
(Fig. 4c) and that at a later stage (Fig. 4b), the electrically 
conductive CNTs created defects and other locations on the 
CNT wall as the anode and the cathode, respectively. These 
researchers also suggested that electron transfer in the micro-
electrochemical cell can promote the growth of MnO2 away 
from defects (e.g. inside the cavity of CNTs, Fig. 4d) and 
that this mechanism not only applies to MnO2-CNT com-
posites, but also applies to composites of various TMOs and 
other carbon-based nanomaterials such as graphene and sili-
con carbide.

3.2 � Electrolytes

Electrolytes are an indispensable component in all types 
of EES devices and allow for the transportation of ions to 
achieve ionic conductivity and the maintenance of electronic 
insulation between positrodes and negatrodes. In the case 
of supercapatteries, electrolytes also provide redox ions for 
electrode reactions (Fig. 2). More recently, electrolytes with 
additional redox species have attracted increasing attention 
because these redox electrolytes in supercapatteries can sig-
nificantly enhance energy capacity [24, 47–49].

As an example of an IL electrolyte comprising of bi-redox 
species for the enhancement of supercapattery energy capac-
ities, Mourad et al. [50] mixed an IL composed of 1-butyl-
3-methylimidazolium bis(trifluoromethylsulfonyl)imide 
(BMI-TFSI) with another bi-redox IL composed of the per-
fluorosulfonate anion bearing anthraquinone (AQ-PFS−) and 
the methyl imidazolium cation bearing 2,2,6,6-tetrameth-
ylpiperidinyl-1-oxyl (TEMPO-MI+) and used this IL mix-
ture (Fig. 5a) as the electrolyte in a capacitive EES device 
composed of EDCL electrodes. Here, these researchers 
postulated that the cations and anions in the BMI-TFSI can 
be drawn into the negatrode and the positrode, respectively, 
and be adsorbed on carbon surfaces without invoking any 
Faradaic reactions during supercapacitor charging. Alter-
natively, these researchers also suggested that as the redox-
active AQ-PFS− and TEMPO·-MI+ are electro-adsorbed on 
the surface of EDLC electrodes, redox species will undergo 
fast Faradaic reactions. Serious self-discharging can occur 
in EES devices if redox species are dissolved in electro-
lytes, especially for electrolytes in supercapacitors. However, 
in the case of the mixture of bi-redox IL and BMI-TFSI, 
this issue appeared to have been avoided by the bulky size 
and high viscosity of the IL. Mourad et al. [50] in the same 
study also used Act-Cs (from PICA) and the bi-redox IL 
to fabricate a supercapacitor and studied the CVs of the 
carbon-based symmetrical supercapacitor with 0.5 mol L−1 
AQ-PFS−and TEMPO·-MI+ in BMI-TFSI as compared with 
neat BMI-TFSI at 5 mV s−1 (Fig. 5b).And because micropo-
res and mesopores in PICA can restrict access for IL ions, 
these researchers reported that the current amplitude in the 
CVs of the resulting supercapacitor doubled as the electro-
lyte changed from BMI-TFSI to the 0.5 mol L−1 bi-redox 
IL. These researchers also reported that the broad oxidation 
and reduction peaks in the CVs appeared at intermediate 
voltages and attributed this to the redox processes of the 
bi-redox IL in the supercapacitor.

Akinwolemiwa et al. [24] recently also conducted another 
study into redox electrolytes in which the electrochemical 
behaviour of dissolved redox species in electrolytes and 
supercapattery features from the standpoint of Act-C elec-
trode EDL capacitance was investigated. Here, based on the 
CVs and GCD plots of an equal electrode mass bi-electrolyte 
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cell (−) Act-C | 2.0 mol L−1 KOH || 2.0 mol L−1 KI | Act-C 
(+) (Fig. 6a, b), these researchers reported that the CV cur-
rent flow increased at high cell voltages from 0.8 to 1.5 V 
and that the redox reaction of KI did not contribute to charge 
storage in the negatrode, demonstrating a method to achieve 
current peaks at high cell voltages in supercapatteries with 
dissolved redox species.

In summary, dissolved redox species such as the bi-redox 
IL and KI can increase the energy capacity of supercapatter-
ies by storing significant amounts of charge and by retaining 
redox species in electrode pores or near electrodes. A more 
detailed discussion concerning the contribution of dissolved 
redox species in electrolytes to energy capacity can be found 
in a previous review [47].

Fig. 4   Schematics of the redox 
deposition of MnO2 on CNTs 
in two stages: a Stage 1: direct 
redox deposition of MnO2 near 
the defect on CNTs. b Stage 
2: nanoscale micro-electro-
chemical cell-induced cathodic 
reaction to further grow a 
coating of MnO2 on the external 
or the internal surface of CNTs. 
TEM images of c crystalline 
MnO2 coating on a CNT and d 
the cavity of a CNT filled with 
crystalline MnO2 [46]
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4 � Device Engineering

Electrode materials, especially TMO and ECP composites, 
are usually in the powder form unless electrodeposited on 
electrodes [51, 52]. Due to this, various methods have been 
applied to fabricate electrodes. For example, Zhou et al. [53] 
successfully screen-printed chemically synthesised ECP-
CNT composites onto titanium plates to produce supercapat-
tery electrodes including stable ink and thick screen-printed 
Act-C and PPy-CNT electrodes (Fig. 7a–c) and assembled 
two pieces of the screen-printed electrodes into a superca-
pattery (Fig. 7d), resulting in high IR drops being observed 
in the obtained GCD plots (Fig. 7e). Here, these research-
ers used titanium plates because they can be used as both 
current collectors and bipolar plates to reduce the weight 
of stacks with multiple supercapatteries. And although the 
supercapattery in this study with the screen-printed elec-
trodes operated properly, challenges for these screen-printed 
electrodes exist, including the lack of suitable current bind-
ers and surfactants for ink. This is because a high mass ratio 
of binders and surfactants needs to be added into the ink to 

produce strong, thick printed layers, which increases resis-
tivity as compared with electro-co-deposited ECP-CNT 
composites. Furthermore, the thickness of screen-printed 
electrodes needs to be more adjustable. Another approach 
reported by researchers is to fabricate composite electrodes 
with fewer binders or without binders.

The bipolar stacking is another effective engineering 
design to fabricate supercapatteries in which neighbour-
ing supercapattery cells are connected in series by bipolar 
plates in the stack (Fig. 8a), allowing almost half of the 
titanium plate to be removed as compared with ones fab-
ricated by using external cable connections (required the 
titanium plate number: n + 1 vs. 2n, n = the number of the 
cells). As an example of the bipolar stacking, Zhou et al. 
[45] fabricated 19 single cells with the configuration of (−) 
Ti | CMPB | 0.5 mol L−1 KCl | PPy-CNT | Ti (+) in which 
Ti is the titanium bipolar plate and CMPB is Cabot Mon-
arch 1300 pigment black, which is a specialty Act-C. Here, 
PPy-CNT composites were mixed with only 5 wt% poly-
vinyl alcohol as the binder in the positrode and the result-
ing GCD plots exhibited negligible IR drops at all GCD 

Fig. 5   a Molecular structures of BMI-TFSI and the bi-redox IL with 
the anthraquinone and 2,2,6,6-tetramethylpiperidinyl-1-oxyl group. 
b CVs of supercapacitors composed of PICA (Act-Cs) electrodes at 
5 mV s−1 with the 0.5 mol L−1 bi-redox IL in BMI-TFSI (the solid 
line) and pure BMI-TFSI (the dashed line) [50].(Reproduced with 
permission from Ref. [50]. Copyright © 2016, Springer Nature)

Fig. 6   a CVs of an equal electrode mass bi-electrolyte cell (−) Act-C 
| 2.0 mol L−1 KOH || 2.0 mol L−1 KI | Act-C (+) at 5.0 mV s−1 with 
different upper limits of cell voltage. b GCD plots of the same cell 
with a 1.5 V upper limit of cell voltage at 0.1 A g−1 [24]
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currents (Fig. 8b). These researchers also reported that the 
minimum ESR detected by electrochemical impedance 
spectroscopy was only 0.3 O and that according to Eq. (4), 
Pmax =

U2

4ESR
= 333W or 24 W g−1 against the total mass 

of the active materials.
And although laboratory demonstrations of the 19-cell stack 

have proven the feasibility of the bipolar stacking in scalable 
EES devices, the main concern of bipolar plates is the balance 
between plate weight and permeability. This is because per-
meability is directly related to plate material and thickness in 
which if bipolar plates were permeable to ions in electrolytes, 
internal short-circuiting can occur. To address this, Zhou et al. 
[45] used titanium bipolar plates (0.1 mm thickness) in their 
19-cell stack to prevent this permeability. Evanko et al. [54] 
also recently investigated stackable bipolar pouch cells and 
suggested that lightweight carbon/polymer composite films 
can also be suitable as bipolar plates with a minimum thick-
ness of 0.025 mm in which in their study, permeability testing 

was conducted on carbon black/polyethylene composite films 
and showed very low electrolyte permeability in a HBr solu-
tion for 72 h. Alternatively, these researchers also reported 
that HBr can easily permeate through a 0.13-mm-thick sheet 
of expanded graphite in acidic solutions.

Although bipolar stacking designs can effectively reduce 
the total weight of energy storage stacks, the ESR of stacked 
cells also needs to be carefully considered. This is because as 
EES cells are connected in series, their ESR will sum up in the 
stack. Because manufacture inconsistence is not uncommon, 
cells with high ESR in the stack can cause distorted GCDs, 
leading to serious performance degradation [53, 55, 56]. Here, 
researchers have suggested that stack designs involving par-
allel cells can minimise increased ESR and maintain output 
voltage as a single cell [56].

Fig. 7   Photographs of a the ink 
of the PPy-CNT composite, b 
the screen-printed electrode 
with Act-Cs on the titanium 
plate and c the screen-printed 
electrode with the PPy-CNT 
composite on the titanium plate. 
d Schematic of a unit cell with 
the screen-printed electrodes. 
e GCD plots of the unit cell at 
different currents [53]

Fig. 8   a Expanded schematic of 
a bipolar stack of 19 supercapat-
teries. b Corresponding GCD 
plots of the stack [45]
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5 � Summary and Prospects 
of Supercapatteries

‘Supercapattery’ is a generic term to describe a large group 
of hybrid EES devices that can combine the merits of 
rechargeable batteries with the merits of supercapacitors 
(Table 1). In these supercapatteries, three charge storage 
mechanisms can be applied to describe and compare the 
performance of electrode materials, including non-Faradaic 
capacitive storage (EDL capacitance), capacitive Faradaic 
storage (pseudocapacitive storage) and non-capacitive 
Faradaic storage (battery-type storage or Nernstian charge 
storage).In addition, because redox electrolytes can also 
contribute to the energy storage of EDLCs, such EDLCs 
also fall in the scope of supercapatteries. As for scalable 
supercapatteries, the selections of electrode materials and 
electrode fabrication methods are of equal importance in 
the performance of resulting devices in which the bipolar 
stacking with multiple supercapattery cells can achieve high 
energy density storage due to the reduction in almost half 
of the auxiliary materials (current collectors) if the perme-
ability of the bipolar plates is ensured.

Overall, supercapatteries have attracted increasing atten-
tion in the EES community based on the increasing num-
ber of publications using the expression ‘supercapattery’, 
which is a more accurate generic term to define various 
EES hybrids that can balance energy capacity with power 
capability in one device. Here, the development of battery 
and supercapacitor materials can benefit the development of 
supercapatteries. In addition, novel engineering designs for 
supercapatteries such as the bipolar stacking are required to 

cross the gap between the laboratory setting and industrial 
manufacturing. Furthermore, more consideration needs to 
be given to the adaptive process for the manufacturing of 
supercapatteries using existing equipment for commercial 
batteries and supercapacitors.
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