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Abstract
The main aim of this paper is to simplify and popularise the construction from
the 2013 paper by Apostolov, Calderbank and Gauduchon, which (among other
things) derives the Plebański–Demiański family of solutions of GR using ideas
of complex geometry. The starting point of this construction is the observation
that the Euclidean versions of these metrics should have two different commut-
ing complex structures, as well as two commuting Killing vector fields. After
some linear algebra, this leads to an ansatz for the metrics, which is half-way to
their complete determination. Kerr metric is a special 2-parameter subfamily
in this class, which makes these considerations directly relevant to Kerr as
well. This results in a derivation of the Kerr metric that is self-contained and
elementary, in the sense of being mostly an exercise in linear algebra.

Keywords: complex geometry, Kerr metric, Plebanski formalism

1. Introduction

Kerr metric [Ker63] is a 2-parameter stationary axisymmetric solution to the vacuum Einstein
equations, describing a rotating black hole. Its original derivation was by brute force, assuming
algebraic speciality and using the null tetrad formalism1. Standard textbooks on General
Relativity just state the metric and proceed to study its properties. Even a check that the Kerr
metric satisfies Einstein equations is a rather non-trivial exercise, even thought doable (by
hand) with the right formalism, see below. Books that do derive the Kerr metric are rare and
few, and the derivation that can be found in [Cha98] makes it clear why. The derivation is
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just too complicated. One can give an ‘elementary’ derivation of the Kerr metric using the
the Newman–Janis shift [NJ65], see the recent review [AN16] for this point of view, but this
derivation has a flavour of a magic trick. Another ‘elementary’ derivation is based on the Kerr–
Schild form of this metric, see e.g. chapter 8 of [DU18], or similar in spirit [NP12], but there
remains some mystery as to why this method should be expected to work. A good further dis-
cussion on the issues surrounding the question of simplifying the derivation of the Kerr metric
can be found in [BV22].

The Kerr family of solutions is a member of a more general Plebański–Demiański (PD)
family [PD76]. All metrics of this family can be analytically continued to produce Euclidean
signature metrics in 4D. Being an analytic continuation of a Lorentzian algebraically special
metric of type D, the resulting Euclidean metrics are type D with respect to both halves of
their Weyl curvature. A beautiful result of [Der83] states that a 4D Ricci-flat metric that has
the property that one of its Weyl curvature halves is of type D is conformal to a Kahler metric2.
In particular, there is an integrable almost complex structure. This theorem can be applied with
respect to both halves of the Weyl curvature, and tells us that the analytic continuation of any
Lorentzian metric that solves the vacuum Einstein equations and is type D is a Riemannian 4D
metric that has two distinct integrable almost complex structures. These are of two different
orientations, and complex structures in 4D that are of different orientations commute. This
means that the Euclidean Kerr metric is expected to have two different commuting complex
structures. By assumption, it also has two commuting Killing vector fields. This is a very
rigid geometric setup, and it turns out that to a very large extent the Ricci-flat Riemannian
metrics of this type can be described completely. This is the viewpoint taken by the work
[ACG13] that re-derived the PD family of metrics as examples of ‘ambi-toric’ 4D geometries,
i.e. metrics that are toric with respect to two different complex structures.We remind the reader
that a symplectic toric manifold of dimension 2n is a symplectic manifold endowed with a
hamiltonian action of the torus (S1)n.

The main aim of the present paper is to popularise the results of [ACG13] to the gravita-
tional physics community, and in particular re-derive the (Euclidean) Kerr metric in a rather
elementary fashion. The starting point of the analysis is the (motivated above) assumption
of two different commuting complex structures, together with two commuting Killing vector
fields. One can then introduce a coordinate system adapted to this rigid geometric setup, as
well as the corresponding set of one-forms. This leads to an ansatz for the metric. This ansatz
is half-way to the derivation of the Kerr metric, and the metric results by substituting the ansatz
into the vacuum Einstein equations, in more or less elementary fashion. We believe that the
derivation we present is sufficiently simple that it could be included into a GR textbook. Our
aim is also to streamline some of the arguments in [ACG13]. This paper is heavy in algebraic
geometry, and also its aims are very different from the aim of simplifying the derivation of
Kerr. Our aim here is to simplify the arguments in [ACG13] as much as possible and derive
everything using as elementary manipulations as possible.

Our other aim is to put to use the Plebanski formalism [Ple77] for 4D GR. In particular,
we will see that Derdziński’s theorem (quoted above) is an immediate consequence of the
Plebanski formalism. This makes this formalism well-adapted to the problem at hand. So, this
article can be read as a rephrasal of the derivation in [ACG13] using the Plebanski formalism.

Finally, our main motivation for undertaking this study was to search for a formalism that
would be best adapted to the problem of studying perturbations (in particular gravitational

2 The theorem in [Der83] is more general, and is to be reviewed in the main text.
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perturbations) of the Kerr metric. We believe the geometry we describe here will prove to be
useful for this purpose. More remarks on this are contained in the conclusion section.

This article is organised as follows. We begin, in section 2, with a review of works leading
to [ACG13]. In section 3 we describe the Plebański formalism. In particular, here we obtain
a characterisation of Killing vector fields that is best adapted to this formalism. The material
in this section is new. In section 4 we provide a new, Plebanski formalism based proof of the
result by Derdziński that type D metrics are conformal to Kähler. We also prove another result
by Derdziński, namely that type D metrics possess a Killing vector field. We review the Kerr
solution in section 5, and show by an explicit computation how the two commuting complex
structures arise. This sectionmotivates our geometric assumptions about the twoKilling vector
fields that we need to proceed with the derivation of the metric. In section 6 we, more or less,
follow [ACG13] and derive the PD family of metrics. The key point of this derivation is that
there exists a natural frame consisting of vector fields that all commute with each other. The
dual 1-forms are then all closed. This leads to a natural set of geometric coordinates. In terms
of these coordinates, the two complex structures can be characterised explicitly, in terms of
just two arbitrary functions, each of one variable. This leads to a remarkably simple ansatz for
the metric. To impose Einstein equations, we use the chiral Plebanski formalism. After some
analysis, Einstein equations are seen to reduce all unknowns to two quartic polynomials, each
of one variable.

2. Literature review

Since the discovery of the Kerr metric [Ker63] in 1963much effort has been put towards under-
standing the geometry and properties that it carries. The Kerr metric is a 2 parameter family
of type D solutions to Einstein’s equations. In 1969 Kinnersley parameterised all Lorentzian
type D solutions [Kin69]. This was not given in a compact form and many different metrics
were presented. Later in 1976 Plebański and Demiański found a single expression for the most
general black hole solution [PD76, GP05]. The PD family of metrics is a 7 parameter family
of solutions to the Einstein–Maxwell equations. Removing from the PD metric the electric
and magnetic charge parameters, as well as the cosmological constant, we are left with a 4
parameter family of solutions. All type D spacetimes have Euclidean analogues, obtained by
taking an analytic continuation. An analytic continuation of the 4-parameter PD subfamily
gives a double sided type D Euclidean Ricci-flat metric, which is also asymptotically loc-
ally Euclidean (ALE). More recently, Chen and Teo generalised the Ricci-flat PD metric to an
asymptotically locally flat (ALF) metric [CT15], which becomes ALE in the appropriate limit.
However, not all of the Chen-Teo metrics have Lorentzian counterparts. Recently, Biquard and
Gauduchon showed [BG21] that the ALF, Ricci-flat, Hermitian, toric metrics fall into one of
the 4 types: Kerr, Chen-Teo, Taub–NUT and Taub–bolt.

One of the first realisations of the complex properties of type D spacetimes was through
the Newman-Janis shift [NJ65]. The Newman–Janis shift links the Kerr and Schwarzschild
solutions of Einstein’s field equations through a complex coordinate transformation. It was
noticed by Flaherty [Fla74, Fla76] that this shift was related to the existence of an integrable
almost complex structure that all typeD spacetimes are equippedwith. TypeD spacetimeswere
thus known to be locally Hermitian. Later, Derdziński proved [Der83], in Euclidean signature,
that all one-sided type D metrics (with an extra condition implied by Einstein’s equations) are
conformal to Kähler. Soon after Derdzinński’s result, Przanowski and Baka, using this local
Hermiticity, reduced the vanishing of the Ricci tensor for a typeDmetric to a second order PDE
for a single function [PB84]. However, the PDE was written using the complex coordinates
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making solutions difficult to find. In 1991 LeBrun derived a related result, with the starting
point being a simple form of a Kähler metric with a U(1) symmetry [LeB91]. The metric is
parameterised by 2 functions u= u(x,y,z), w= w(x,y,z) and is given by

g= euw
(
dx2 + dy2

)
+wdz2 +w−1α2, α= dt+ θ, α= J(wdz) (1)

where θ ∈ Λ1(R3) and J is the complex structure. The Killing vector is ∂t, which generates the
U(1) symmetry. Vanishing scalar curvature for LeBrun’s ansatz becomes the so-called SU(∞)
Toda-Lattice equation

uxx+ uyy+(eu)zz = 0. (2)

The metric is Ricci flat when w= cuz for some constant c. This ansatz covers a large class
of Kähler metrics in dimension 4, however, the Toda equation is difficult to solve in general.
More recently, Tod [Tod20] analysed the case of one-sided type D metrics that have an addi-
tional commuting Killing vector field. A more recent related work is [Tod24]. In this case the
SU(∞) Toda equation linearises, as shown by Ward in a different context [War90]. The solu-
tions can then be obtained from axisymmetric solutions of the flat three-dimensional Laplacian.
However, even after the linearisation, deriving a general solution from equation (2) remains dif-
ficult. Apostolov, Calderbank and Gauduchon took a different approach in [ACG03, ACG13],
building upon the fact that many interesting type D metrics are type D with respect to both
halves of the Weyl curvature. This is also the approach we follow in the present work.

3. Chiral formalism

In this section, we will briefly describe a well known and very useful projection of the 4
dimensional Einstein action into one of its chiral halves. This leads to what can be called a
chiral formalism for 4D GR. For an introduction to chiral and related formulations of General
Relativity see [Kra09, Kra20]. We will focus on the Euclidean signature metrics, although the
formalism generalises to Lorentzian and split signatures.

3.1. Plebanski action and field equations

The Hodge star operator on 2-form is an endomorphism, ⋆ : Λ2 → Λ2, which squares to the
identity ⋆2 = I. The Hodge star splits the space of 2-forms in two eigenspaces Λ2 = Λ+ ⊕Λ−,
with eigenvalues ±1 respectively. We call them self-dual (SD) and anti-SD 2-forms (ASD)
for +1 and −1 eigenspaces respectively. Each eigenspace has dimension 3 (as dimΛ2 = 6),
meaning we can prescribe bases Σi and Σ̄i for Λ+ and Λ−. The index i = 1,2,3 is an so(3) =
su(2) index, as the Hodge star split is related to the Lie algebra decomposition so(4) = su(2)⊕
su(2). The triple of 2-forms Σi is called an SU(2) structure, as the choice of such a triple
reduces the structure group GL(4,R) to the SU(2) preserving each of the 2-forms.

The Riemann curvature can be viewed as another endomorphism acting on the space of 2-
forms. It can then be decomposed with respect to the decomposition of the space of 2-forms.
As is well-known, the Riemann tensor takes the following form

Rµνρσ =

(
W+ +R R

R W− +R

)
(3)

where W± are the SD/ASD halves of the Weyl curvature tensor, R is the traceless part of the
Ricci tensor and R is the remaining trace of Ricci. The first row of equation (3) is the SD
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projection of the Riemann curvature with respect to one of the pairs of its indices. It is now
easy to see that the Einstein condition is equivalent to requiring the ASD part of the first row in
equation (3) to be zero. This is useful because one only needs half the of curvature components
to enforce the Einstein condition. The action that realises this idea and has Einstein metrics at
its critical points is the Plebański action [Ple77]

S=
ˆ

Σi ∧F i − 1
2

(
Ψij+

Λ

3
δij
)
Σi ∧Σ j. (4)

Here F i = dAi + 1
2ϵ

ijkA j ∧Ak is the curvature of the su(2) connection Ai ∈ Λ1 ⊗ su(2). The
Lagrange multiplier Ψ ij is required to be symmetric and traceless, Λ is the cosmological
constant. Varying with respect to Ψij,Ai and Σi one obtains the following Euler–Lagrange
equations

Σi ∧Σ j ∼ δij

dAΣi = dΣi + ϵijkA j ∧Σk = 0

F i =

(
Ψij+

Λ

3
δij
)
Σ j. (5)

The first of the above equations implies that the 2-forms describe only the 10 components of
the metric plus the 3 components defining an SO(3) frame. It is useful to know that given a
tetrad basis eI = e0,ei one can construct the SD and ASD 2-forms like so

Σi = e0 ∧ ei − 1
2
ϵijke j ∧ ek (6)

Σ̄i = e0 ∧ ei + 1
2
ϵijke j ∧ ek. (7)

The components of the 2-forms satisfy the quaternion algebra

Σi =
1
2
Σi

µνdx
µ ∧ dxν , Σi

µ
αΣ j

α
ν =−δijδνµ + ϵijkΣk

µ
ν . (8)

The second equation in (5) implies that the 1-form Ai corresponds to the SD part of the Levi–
Civita connection for the metric defined by theΣi’s, see [Kra09, Kra20], and also a more recent
[BK24a].

To analyse the final equation we look at the general decomposition of the SD part of the
curvature

F i =

(
Ψij+

R
3
δij
)
Σ j+RijΣ̄ j. (9)

The last line in equation (5) then imposes that R= Λ and Rij = 0, which are precisely (vacuum)
Einstein’s equations. This discussion shows that the critical points of the Plebanski action are
SU(2) structures that are Einstein, in the sense that the metric defined by the triple of 2-forms
according to the formula

g(u,v)νg =
1
6
ϵijkιuΣ

i ∧ ιvΣ
j ∧Σk (10)

is Einstein. Here νg is the volume form for the metric g, and both sides of the relation are top
forms.

5
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3.2. SU(2) structures and Killing vectors

Killing vectors fields are infinitesimal symmetries of the metric LXgµν = 0, where L is the
Lie derivative. For our purposes below we need to characterise Killing vectors from the point
of view of SU(2) structures. Given that the metric (10) defined by a triple of 2-forms Σi is
invariant with respect to the SO(3) action on Σi, it is suggestive that in order for a vector field
X to be infinitesimal isometry at the level of Σi, the Lie derivative of Σi should be an SO(3)
transformation

LXΣ
i = ϵijkθ̃ jΣk. (11)

We will call a vector field X satisfying this property a Σ-Killing vector field. Here θ̃i is an
arbitrary ‘internal’ vector.

The following lemma describes an equivalent way of stating the Σ-Killing condition

Lemma 1. Σ-Killing vectors X ∈ TM can be equivalently described as those satisfying

dAιXΣ
i = ϵijkθ jΣk, (12)

where dA is the exterior covariant derivative with respect to the Σ-compatible dAΣi = 0
connection Ai.

Proof. To see this we use the Cartan’s magic formula

LXΣ
i = ιXdΣ

i + dιXΣ
i. (13)

We now require this to be a gauge transformation

LXΣ
i = ϵijkθ̃ jΣk. (14)

Using dAΣi = 0 and equation (13) we find

LXΣ
i = dAιXΣ

i + ϵijk (ιXA)
j
Σk = ϵijkθ̃ jΣk ⇒ dAιXΣ

i = ϵijkθ jΣk (15)

where θi = θ̃i − ιXAi is the shifted SO(3) gauge transformation parameter.

Next we now link Σ-Killing vector fields with the usual Killing vector fields.

Proposition 1. A Σ-Killing vector field is a Killing vector field for the metric (10) defined by
the triple of 2-forms Σi.

Before we prove this statement, we need to remind the reader some facts about the decom-
position of su(2)-valued 2-forms. This construction is from [BK24a], and we will only sum-
marise the main points. Let us denote E= su(2), and consider the space of E-valued 2-forms.
We introduce an endomorphism acting on this space

J2 : Λ
2 ⊗E→ Λ2 ⊗E, J2 (B)

i
µν = ϵijkΣ j

[µ
αBk|α|ν], Biµν ∈ Λ2 ⊗E. (16)

The [BK24a] shows that this operator satisfies

J2 (J2 − 2)(J2 − 1)(J2 + 1) = 0, (17)

6
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and thus has eigenvalues 0,−1,1,2. The spaceΛ2 ⊗E decomposes into the eigenspaces of this
operator

Λ2 ⊗E=
(
Λ2 ⊗E

)
1
⊕
(
Λ2 ⊗E

)
3
⊕
(
Λ2 ⊗E

)
5
⊕
(
Λ2 ⊗E

)
9
. (18)

The subscript in (Λ2 ⊗E)k indicates the dimension of the corresponding space. The spaces
(Λ2 ⊗E)1,3,5,9 are the eigenspaces of J2 of eigenvalue 2,1,−1,0 respectively, see section 4.4 of
[BK24a] for more details. It can also be shown that (Λ2 ⊗E)9 = Λ− ⊗E. HereΛ− is the space
of anti-self dual 2-forms, withΛ2 = Λ+ ⊕Λ−. We also have the following explicit projections
to each of the eigenspaces

B(i
αβΣ

j)αβ ∈ S2 (E) ,

ϵijkB j
αβΣ

kαβ ∈ E, (19)

Bi(µ|α|Σ
iα

ν) ∈ S2 (T∗M) .

The described maps project away some of the irreducible components, while keeping the
others. Thus, the kernel of the first map is (Λ2 ⊗E)3+9, and so this is a projection onto the
(Λ2 ⊗E)5+1 component. The second map is a projection onto the (Λ2 ⊗E)3 component. The
last is a projection onto the (Λ2 ⊗E)1+9 component. The (Λ2 ⊗E)1 component, which con-
tains multiples of Σi, is contained in both the first and last projection as the trace part.

Proof. We now prove the proposition. To this end, we consider the E-valued 2-form dAιXΣi,
for an arbitrary vector field X, and compute its irreducible parts. We have(

dAιXΣ
i
)
µν

= ∂[µ

(
XρΣi

|ρ|ν]

)
+ ϵijkA j

[µX
ρΣi

|ρ|ν]. (20)

We can replace the partial derivative in the first term by the covariant derivative with respect
to the metric, because it is applied to a 1-form, and the result is µν anti-symmetrised. We thus
have (

dAιXΣ
i
)
µν

=∇[µ

(
XρΣi

|ρ|ν]

)
+ ϵijkA j

[µX
ρΣi

|ρ|ν]. (21)

We now use the fact that the connection 1-forms Aiµ are the ‘intrinsic torsion’ components of
the SU(2) structure, i.e. we have the following equation

∇µΣ
i
ρν + ϵijkA j

µΣ
k
ρν = 0. (22)

This fact is proven in [BK24a], by considering the E-valued 2-forms Xµ∇µΣ
i
ρσ, and show-

ing that only the (Λ2 ⊗E)3 projection is non-vanishing. This is then parametrised by XµAiµ.
Contracting (22) with Xρ and µν anti-symmetrising we see that we can rewrite (21) as(

dAιXΣ
i
)
µν

=Σi
[µ

ρ∇ν]Xρ. (23)

We can now use the algebra equation (8) of Σ’s to compute the projections of dAιXΣi onto the
irreducible components. We have(

Λ2 ⊗E
)
1
: Σiµν

(
dAιXΣ

i
)
µν

= 3∇µX
µ

7
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(
Λ2 ⊗E

)
3
: ϵijkΣjµν

(
dAιXΣ

k
)
µν

=−2Σiµν∇[µXν](
Λ2 ⊗E

)
5
: Σ⟨i |µν

(
dAιXΣ

|j⟩
)
µν

= 0(
Λ2 ⊗E

)
9
: Σi

⟨µ|
α
(
dAιXΣ

i
)
α|ν⟩ =−3∇⟨µXν⟩. (24)

Here ⟨µν⟩ denotes the symmetric traceless part. We now assume that the Σ-Killing equation
is satisfied and so dAιXΣi = ϵijkθ jΣk. The right-hand side here has the only non-vanishing
projection (

Λ2 ⊗E
)
3
: ϵijkΣjµν

(
ϵklmθlΣm

)
µν

= 8θi. (25)

It is then clear that the Σ-Killing equation is equivalent to

∇(µXν) = 0, θi =−1
4
Σiµν∇[µXν]. (26)

The first is the usual Killing equation, proving the proposition. The last relation gives θi in
terms of the vector field X. In words, θi is the vector giving the SD projection of dX♯, where
X♯ is the one-form corresponding to the vector field X.

4. One-sided type D metrics are conformal to Kähler

The aim of this section is to present an alternative (and new) proof of the theorem byDerdziński
[Der83]. We use the chiral formalism, which makes the statement almost manifest. We also
prove another statement from [Der83], namely that all one-sided type D Einstein manifolds
have a Killing vector.

4.1. Derdziński theorem

We start by using the chiral formalism to prove the following theorem

Theorem 1. Let (M, g) be a smooth 4-manifold that is one-sided type D, i.e. with one of the two
halves of the Weyl curvature, say SD, having two coinciding eigenvalues. Assume in addition
that the SD part of the Weyl curvature is divergence-free ∇·W+ = 0. Then g is conformal to
a Kähler metric.

This was first proved by Derdziński in [Der83]. Note that there is no assumption here that
the metric is Einstein, one only assumes that the SD Weyl tensor is divergence-free. This is
true for Einstein manifolds (as we will also see later), but is a weaker condition. The proof
we present here is an elementary consequence of the chiral Plebanski formalism. In fact, one
can motivate the usefulness of the chiral formalism by the fact that this, reasonably non-trivial
statement of Riemannian geometry, becomes apparent in this formalism.

We start by translating the devergence-free condition as a condition on objects in the
Plebanski formalism. As is clear from equation (3), the SD part of the Weyl curvature is dir-
ectly related to the matrix Ψ ij, we haveW+

µνρσ =ΨijΣi
µνΣ

j
ρσ. The condition that the SD Weyl

curvature is divergence-free translates to

0=
(
∇·W+

)
νρσ

=∇µW+
µνρσ =∇Aµ

(
ΨijΣi

µνΣ
j
ρσ

)
=∇AµΨijΣi

µνΣ
j
ρσ, (27)

8



Class. Quantum Grav. 42 (2025) 065013 K Krasnov and A Shaw

where ∇A
µ is the total gauge covariant derivative ∇A

µθ
i
ν =∇µθ

i
ν + ϵijkA j

µθ
k
ν and Ai is the SD

connection defined by dAΣi = 0. As we have already remarked in (22), by construction, this
covariant derivative has the property∇A

µΣ
i
ρσ = 0, which justifies the last equality.

The object on the right-hand side of (27) is SD with respect to the index pair ρσ. It can
therefore be converted to an E-valued one-form(

∇·W+
)
νρσ

Σiρσ = 4∇Aµ
(
ΨijΣ j

µν

)
= 4∇Aµ

(
Ψij
)
Σ j

µν . (28)

This can be rewritten in form notations. Considering the 3-form (∇AΨij)Σ j, and taking the
Hodge star we obtain a multiple of (28). Thus, we see that the following two statements are
equivalent (

∇·W+
)
= 0 ⇐⇒ dA

(
ΨijΣ j

)
= 0. (29)

We now have the following simple corollary of the Plebanski formalism

Proposition 2. Every Einstein 4-Manifold has divergence free SD Weyl curvature,
∇·W+ = 0.

Proof of proposition 2. The proof follows from the Bianchi identity dAF i = 0. In Plebanski
formalism, the Einstein equation takes the following form

F i =

(
Ψij+

Λ

3
δij
)
Σ j. (30)

Applying the exterior covariant derivative on the left, and using the Bianchi identity, we have

0= dAF i = dA
(
ΨijΣ j+

Λ

3
Σi

)
= dA

(
ΨijΣ j

)
= 0 (31)

where we have used dAΣi = 0 and that Λ is constant. Using equation (29) we see that Einstein
4-manifolds have divergence free SD Weyl curvature.

Proof of theorem 1. Let us denote the eigenvalues of Ψ ij as α,β,γ. We can assume, without
loss of generality that α⩾ β ⩾ γ. The traceless condition on Ψ ij imposes α+β+ γ = 0. This
means that α> 0 and γ < 0. There are then two possibilities for two eigenvalues to coincide.
One is when the middle eigenvalue coincides with the negative one β = γ. The other is when
the two positive eigenvalues coincide. Thus, the matrix Ψ ij is of the two possible forms

Ψij =

2α 0 0
0 −α 0
0 0 −α

 , Ψij =

α 0 0
0 α 0
0 0 −2α

 (32)

with α being a positive real function. The two cases differ by the sign of det(Ψ). See section
2 of [Biq23] for a related discussion. We consider the first case in details. The second case is
treated analogously, by observing that it can be mapped to the first by allowingα to be negative
and relabelling the basis vectors. In the proof below, we never need to assume that α> 0, and
so the proof covers both of the cases.
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We conclude that for every one-sided type D Riemannian metric, one can always pick a
basis Σi in the space of SD 2-forms, so that Ψ ij is diagonal and of the form of the first matrix
in equation (32). With this form of Ψ ij the equation (29) become

d
(
2αΣ1

)
+A2

(
−αΣ3

)
−A3

(
−αΣ2

)
= 0

d
(
−αΣ2

)
+A3

(
2αΣ1

)
−A1

(
−αΣ3

)
= 0

d
(
−αΣ3

)
+A1

(
−αΣ2

)
−A2

(
2αΣ1

)
= 0. (33)

Using also dAΣi = 0, these equations can be rewritten as follows

2dαΣ1 + 3αdΣ1 = 0 (34)

dαΣ2 + 3α
(
dΣ2 −A1Σ3

)
= 0, dαΣ3 + 3α

(
dΣ3 +A1Σ2

)
= 0. (35)

The first equation in the above can be written as

dω = 0, ω := α
2
3Σ1. (36)

We now introduce a scaled complex linear combinations of the remaining 2-forms

Ω := α
2
3
(
Σ2 + iΣ3

) (
resp. Ω̄ := α

2
3
(
Σ2 − iΣ3

))
, (37)

where the scaling factor in front is the same as for ω. The last two equations in equation (33)
can be rewritten as

dα
(
Σ2 + iΣ3

)
+ 3αd

(
Σ2 + iΣ3

)
+ 3iαA1

(
Σ2 + iΣ3

)
= 0. (38)

For later purposes, we note that using dAΣi = 0 we can also rewrite the last two equations as

dαΣ2 − 3αA3Σ1 = 0, dαΣ3 + 3αA2Σ1 = 0, (39)

and thus their complex linear combination gives

dα
(
Σ2 + iΣ3

)
+ 3iα

(
A2 + iA3

)
Σ1 = 0. (40)

This will be useful later.
We now use (38) to get an equation for Ω

dΩ+

(
iA1 − dα

3α

)
Ω= 0. (41)

We will rewrite this equation in a more suggestive way below. Finally, the algebraic equations
ΣiΣ j ∼ δij imply the following equations

ωΩ= 0, ΩΩ= 0, ω2 =
1
2
ΩΩ̄. (42)

We can now understand where the conformal to Kähler comes from. The second equation
in (42) implies that the complex 2-form Ω is decomposable. Its two 1-form factors can be

10
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declared to be the (1, 0) forms of an almost complex structure, which defines this almost com-
plex structure. The equation in (41) can then be rewritten in a better way. It is clear that it
states

dΩ+

(
iA1 − 1

3α
dα
∣∣∣
(0,1)

)
Ω= 0, (43)

because only the projection of dα to the space Λ0,1 survives the wedge product with Ω. We
can then add another term that is valued in Λ1,0 and rewrite this equation as

dΩ+ iaΩ= 0, a= A1 +
1
3iα

(
dα
∣∣∣
(1,0)

− dα
∣∣∣
(0,1)

)
. (44)

The connection 1-form a is now real-valued. We note that it can also be written as

aµ = A1
µ +ωµ

ν∂ν ln
(
α

1
3

)
. (45)

The equation (44) implies that this complex structure is integrable. Indeed, it implies that
dΩ has only a Λ2,1 part, which is equivalent to integrability. The first of the equations in (42)
implies that ω is in Λ1,1 with respect to this complex structure. It can thus be declared to be the
Kähler form. The last equation in (42) is the correct normalisation condition linking the volume
form as defined by the Kähler form ω and the volume form defined by Ω. The equation (36)
states that the Kähler form is closed. Altogether, we deduce that the metric defined by ω,Ω is
Kähler, with Ricci form ρ= da. It is also clear that the original metric, defined by the Σi’s, is
conformal to this Kähler metric

gK = α
2
3 gΣ. (46)

This proves theorem 1.

4.2. Killing Vectors in Einstein one-sided type D spaces

Another statement proven in [Der83] is about the existence of Killing vectors in every Einstein
manifold satisfying the assumptions of theorem 1.

Proposition 3. Let (M,Σi) be an Einstein manifold with type D SD Weyl tensor. Let Σi be a
basis for the triple of SD 2-forms chosen so that the SD part of the Weyl curvature is diagonal,
and Σ1 is in the direction of the special (non-repeated) eigenvalue. Then Xµ =Σ1µν∇να

− 1
3

is a Killing vector field. Here α with α2 = 1
6 TrΨ

2 is the repeated eigenvalue of the SD Weyl
tensor.

Proof. Inserting X into Σ1 we find(
ιXΣ

1
)
µ
= XνΣ1

νµ =Σ1νρ∇ρα
− 1

3Σ1
νµ =∇µα

− 1
3 ⇒ ιXΣ

1 = dα− 1
3 (47)

wherewe have used the quaternion algebra of the 2-forms. The other two 1-forms are computed
as (

ιXΣ
2
)
µ
=Σ1σρ∇ρα

− 1
3Σ2

σµ =Σ1
µ
σΣ2

σ
ρ∇ρα

− 1
3 , (48)

11
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where we have used the algebra of Σ’s to anti-commute Σ1,2. We similarly have(
ιXΣ

3
)
µ
=Σ1

µ
σΣ3

σ
ρ∇ρα

− 1
3 . (49)

Introducing Σ+ =Σ2 + iΣ3 we have(
ιXΣ

+
)
µ
=Σ1

µ
σΣ+

σ
ρ∇ρα

− 1
3 . (50)

We now use (40), which we rewrite as

dα−1/3Σ+ = iα−1/3A+Σ1, (51)

where we introduced A+ = A2 + iA3. Taking the Hodge dual we get

Σ+
µ
ρ∇ρα

−1/3 = iα−1/3Σ1
µ
ρA+

ρ . (52)

Using this in (50) we get(
ιXΣ

+
)
µ
= iα−1/3Σ1

µ
σΣ1

σ
ρA+

ρ =−iα−1/3A+
µ . (53)

We now summarise the above results

ιXΣ
1 = dα−1/3, ιXΣ

+ =−iα−1/3A+, ιXΣ
− = iα−1/3A−. (54)

Having computed the components of ιXΣi, we can compute its exterior covariant derivative
and use the characterisation of the Σ-Killing vectors to show that X is a Killing vector field. It
will be convenient to rewrite the formulas for the exterior covariant derivative of ιXΣi in terms
of the introduced objects Σ±,A±. We have

dAιXΣ
1 = dιXΣ

1 +
1
2i

(
A−ιXΣ

+ −A+ιXΣ
−) ,

dAιXΣ
+ = dιXΣ

+ − iA+ιXΣ
1 + iA1ιXΣ

+. (55)

Substituting (54) into the first line we see it vanishes dAιXΣ1 = 0. For the first term this is
manifest from d2 = 0. For the second term there is a cancellation of the two A+A− terms. For
the second line we have

dAιXΣ
+ =−id

(
α−1/3A+

)
− iA+dα−1/3 +A1α−1/3A+

=−iα−1/3
(
dA+ + iA1A+

)
. (56)

What arises here is the curvature

F+ = F 2 + iF 3 = dA+ + iA1A+. (57)

Using the Einstein equations in the form (30) we have

F+ =

(
−α+

Λ

3

)
Σ+. (58)

This means that all in all

dAιXΣ
1 = 0, dAιXΣ

+ =−iα−1/3

(
−α+

Λ

3

)
Σ+. (59)

12
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On the other hand, the Σ-Killing condition with the vector θi = (θ,0,0) becomes

dAιXΣ
1 = 0, dAιXΣ

+ = iθΣ+. (60)

We see that this is indeed satisfied, with

θ = α−1/3

(
α− Λ

3

)
. (61)

This finishes the proof.

5. Two complex structures of Euclidean Kerr

The aim of this section is to exhibit the structures described in the previous section for the
example of the Euclidean Kerr metric. This section serves only to motivate the considerations
that follow.

5.1. Metric and chiral objects

The Euclidean Kerr metric is given by

g=

(
1− 2Mr

ρ2

)
dt2 +

ρ2

∆
dr2 + ρ2dθ2

+

(
r2 − a2 − 2Mra2

ρ2
sin(θ)2

)
sin(θ)2 dϕ2 +

4Mrasin(θ)2

ρ2
dtdϕ, (62)

where

ρ2 = r2 − a2 cos(θ)2 , ∆= r2 − 2Mr− a2. (63)

This is obtained from the usual LorentzianKerrmetric in Boyer–Lindquist coordinates through
a transformation t→ it, a→ ia. A useful tetrad basis is given by

e0 =

√
∆

ρ

(
dt− asin(θ)2 dϕ

)
, e1 =

ρ√
∆
dr, e2 = ρdθ,

e3 =
sin(θ)

ρ

(
adt+

(
r2 − a2

)
dϕ
)
. (64)

5.2. SD objects

The SD 2-forms are readily calculated from the equation (6) using the tetrad basis. We obtain

Σ1 =
(
dt− asin(θ)2 dϕ

)
∧ dr− sin(θ)dθ∧

(
adt+

(
r2 − a2

)
dϕ
)

(65)

Σ2 =
√
∆
(
dt− asin(θ)2 dϕ

)
∧ dθ− sin(θ)√

∆

(
adt+

(
r2 − a2

)
dϕ
)
∧ dr (66)

Σ3 =
√
∆sin(θ)dt∧ dϕ − ρ2√

∆
dr∧ dθ. (67)
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The SD connections obtained by solving dAΣi = dΣi + ϵijkA j ∧Σk = 0 are the following

A1 =
M

z2+

(
dt− asin(θ)2 dϕ

)
+
rcos(θ)− a

z+
dϕ (68)

A2 =−
√
∆sin(θ)
z+

dϕ (69)

A3 =−asin(θ)√
∆z+

dr+

√
∆

z+
dθ (70)

where z+ = r− acos(θ). The SD curvatures can be computed (by hand!) and are given by

F 1 =
2M

z3+
Σ1, F 2 =−M

z3+
Σ2, F 3 =−M

z3+
Σ3. (71)

This verifies that Kerr is Ricci-flat, and also gives the components of the SD Weyl tensor
F i =ΨijΣ j

Ψij
+ =

2α+ 0 0
0 −α+ 0
0 0 −α+

 , α+ =
M

z3+
. (72)

The matrix Ψ ij of the SD Weyl is tracefree as expected. Note that we have just used Plebanski
formalism to verify that the Kerr metric is Ricci flat. This computation is doable by hand! This
once again demonstrates the usefulness and power of the Plebanski formalism.

5.3. ASD objects

The ASD 2-forms can also be calculated using equation (7) to find

Σ̄1 =
(
dt− asin(θ)2 dϕ

)
∧ dr+ sin(θ)dθ∧

(
adt+

(
r2 − a2

)
dϕ
)

(73)

Σ̄2 =
√
∆
(
dt− asin(θ)2 dϕ

)
∧ dθ+ sin(θ)√

∆

(
adt+

(
r2 − a2

)
dϕ
)
∧ dr (74)

Σ̄3 =
√
∆sin(θ)dt∧ dϕ +

ρ2√
∆
dr∧ dθ. (75)

The corresponding ASD connections are

Ā1 =−M

z2−

(
dt− asin(θ)2 dϕ

)
+
rcos(θ)+ a

z−
dϕ (76)

Ā2 =−
√
∆sin(θ)
z−

dϕ (77)

Ā3 =
asin(θ)√

∆z−
dr+

√
∆

z−
dθ. (78)

Here z− = r+ acos(θ). The ASD part of the curvature is

F̄1 =−2M

z3−
Σ̄1, F̄2 =

M

z3−
Σ̄2, F̄3 =

M

z3−
Σ̄3. (79)
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Clearly the ASD Weyl tensor is

Ψij
− =

2α− 0 0
0 −α− 0
0 0 −α−

 , α− =−M

z3−
. (80)

Note that the ASD and SD objects are related by the transformation t→−t, a→−a, which
is the Euclidean analogue of the complex conjugation in the Lorentzian signature.

5.4. Conformal to Kähler

Looking at both halves of the Weyl curvature we can see that Euclidean Kerr is of type D⊗D.
Then by Derdziński’s theorem we know Euclidean Kerr is conformal to two different Kähler
metrics. The two conformal factors are

λ± =
1
z±

≃ α
1
3
±. (81)

Conformally transforming the 2-forms Σ1 and Σ̄1 we find a pair of closed 2-forms

ω+ =
1
z2+

Σ1 =−dt∧ d
(

1
r− acos(θ)

)
+ dϕ ∧ d

(
a− rcos(θ)
r− acos(θ)

)
(82)

ω− =
1
z2−

Σ̄1 = dt∧ d
(

1
r+ acos(θ)

)
− dϕ ∧ d

(
a+ rcos(θ)
r+ acos(θ)

)
. (83)

The 2-forms ω± are the Kähler forms of the two Kähler metrics.

5.5. Complex Structures

We can extract the complex structures from the metric and the corresponding Kähler forms. It
is useful to introduce a basis for TM dual to the tetrad basis in equation (64), these are given
by

e0 =
r2 − a2

ρ
√
∆

∂t−
a

ρ
√
∆
∂ϕ, e1 =

√
∆

ρ
∂r, e2 =

1
ρ
∂θ,

e3 =
1
ρ

(
asin(θ)∂t+

1
sin(θ)

∂ϕ

)
. (84)

These are dual to the tetrads in the sense that eI(eJ) = eµI e
J
µ = δ JI . The complex structures can

be calculated at the level of the Einstein metric as they are conformally invariant. Hence, we
look for operators J± that satisfy g(·,J±·) = λ−2

± ω±. Written in terms of tetrads and their duals
this is simply

J± = e1 ⊗ e0 − e0 ⊗ e1 ∓ e3 ⊗ e2 ± e2 ⊗ e3. (85)

It is not difficult to see that J2± =−I. Substituting the expression in Boyer–Lindquist coordin-
ates we find

J± =
1
∆
dr⊗

((
r2 − a2

)
∂t− a∂ϕ

)
− ∆

ρ2

(
dt− asin(θ)2 dϕ

)
⊗ ∂r (86)
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∓ sin(θ)
ρ2

(
adt+

(
r2 − a2

)
dϕ
)
⊗ ∂θ ± dθ⊗

(
asin(θ)∂t+

1
sin(θ)

∂ϕ

)
. (87)

We have explicitly checked that these complex structures are integrable (by computing and
checking that their Nijenhuis tensor vanishes) and that they commute.

5.6. Killing vectors

The Euclidean Kerr metric is conformal to two different Kähler metrics with opposite orient-
ations. The general statements of the previous section imply that there should be two Killing
vector fields, one coming from each of the two orientations. These are given by

Xµ
± = Jµ±ν

(
dλ−1

±
)ν

. (88)

Plugging in the conformal factors, equation (81), we calculate the intermediate objects

dλ−1
± = dr± acos(θ)dθ. (89)

The vector fields dual to the 1-forms are given by(
dλ−1

±
)♯

=
∆

ρ2
∂r±

asin(θ)
ρ2

∂θ. (90)

We get the Killing vectors by applying the complex structures

X± = J±
(
dλ−1

±
)♯

=−∂t. (91)

Thus, we find that the two Killing vectors coming from the two orientations coincide in the
case of Kerr. Thus, the Euclidean Kerr is covered by the case (iii) of proposition 11 from
[ACG13]. We note that the property that these two Killing vector fields coincide is related to
the fact that the Kerr Laplace operator is separable. Indeed, this property holds only when one
of the parameters of the PD solution is zero ϵ= 0, see below for the definition of ϵ. This is also
when the Laplace operator is separable. For more on these issues see e.g. [GM15].

Even though we see that for Kerr metric there is just one Killing vector field coming from
the general construction of proposition 3, there is still another Killing vector field ∂ϕ. The
two Killing vector fields ξ1 = ∂t, ξ2 = ∂ϕ commute, and they also span an isotropic subspace
ω±(ξ1, ξ2) = 0 with respect to either of the Kähler forms. It is also obvious that each of these
two Killing vector fields is J±-holomorphic, in the sense that Lξ1,2J± = 0. This is manifest
in the case of the Kerr metric, because all the geometric objects constructed for it are t,ϕ
independent. We will take these properties of ξ1, ξ2 as the starting point of the derivation of
the Kerr metric in the next section.

For completeness, let us also compute the result of the action of the complex structures J±
on ξ1,2. We have

J± (∂t) =
∆

ρ2
∂r±

asin(θ)
ρ2

∂θ (92)

J± (∂ϕ) =−asin(θ)2∆
ρ2

∂r±
(
r2 − a2

)
sin(θ)

ρ2
∂θ. (93)

It is clear that ξ1, ξ2,J(ξ1),J(ξ2) span all of TM, for each of the two complex structures. It can
also be checked that all four of these vector fields are mutually commuting, for either J. The
resulting frame will play an important role in the derivation of the next section.
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6. Toric double-sided type D metrics

We now proceed with a derivation of the Euclidean Kerr metric. In fact, our discussion will be
more general, and include the more general PD family of metrics. The PD spacetimes [PD76,
GP05] are Lorentzian algebraically special (type D) spacetimes that generalise many important
GR solutions. In general the PD spacetimes are solutions to the Einstein–Maxwell equations,
however, here we will only consider the subclass of metrics that satisfy the vacuum Einstein
equations. Our aim is to provide a ‘simple’ derivation of this class of metrics by building on
the conformal to Kähler ideas described in the previous section. Trying to setup Einstein’s
equation and solve them by brute force is doable but is far from the best strategy, see [Cha98,
BV22, NP12] for an example of this. Instead, we follow the approach of [ACG03, ACG13]
that is based on the availability of two different commuting complex structures in these spaces.

6.1. Properties of PD spacetimes

We begin by detailing properties of the spacetimes we aim to derive. We are interested in
Lorentzian signature spacetimes that are algebraically special (type D), although we will solve
for their Euclidean analytic continuations. For example, to obtain a Euclidean metric from the
Kerr metric one sends t→ it and a→ ia, where t and a are the time coordinate and the angular
momentum parameter respectively. The SD and ASD Weyl tensor in Lorentzian spacetimes
are complex conjugates of each other, i.e.W+ = (W−)∗. This is a consequence of the fact that
SD 2-forms are complex-valued objects and the ASD 2-forms are complex conjugates of their
SD counterparts. Unlike the Euclidean signature case, there are no one sided type D metrics in
Lorentzian signature. Thus, analytically continuing a type D Lorentzian metric to Euclidean
signature we get a Riemannian metric that is type D with respect to both W±.

We are looking for Einstein metrics, for which we know both W± are divergence free. We
can then resort to Derdziński’s theorem 1 which implies that the metric is conformal to two
Kähler metrics, in general not coinciding. We denote these two Kähler metrics by g±, so that
g= λ2

±g± where g is the Einstein metric of interest. Being conformal to two Kähler metrics
implies the existence of two integrable almost complex structures J±. Coming from the SD,
ASD sectors respectively, these two complex structures have different orientations, and are
not coinciding. Moreover, in 4D, two complex structures of different orientations commute.
Having two commuting complex structures is an extremely strong property.

By the discussion in the previous section, one-sided type D Einstein metrics are equipped
with a Killing vector, see proposition 3. In our situation of double-sided type Dmetrics we have
two Killing vector fields of this type. However, they may coincide, which, as we have seen in
the previous section, is indeed the situation in Kerr. However, the metric we want to reproduce
has two commuting Killing vector fields, one related to its stationary property, the other related
to it being axisymmetric. So, we will assume that there are two commuting Killing vectors
ξ1, ξ2. In the Euclidean setting both of these Killing vectors have compact orbits. This means
that we have the two-dimensional torus T2 acting on our space by isometries. Such spaces are
called toric. Moreover, in our setup with two different Kähler metrics g±, we have the action
of T2 on both g±. This is the reason why these spaces are called ambitoric in [ACG13].

The final condition we impose is that the Killing vectors ξ1, ξ2 are J-holomoprhic with
respect to both J±, that is Lξ1,2J± = 0, and that ω±(ξ1, ξ2) = 0. We have seen that this is true
in the case of Kerr, and so this is a well geometrically-motivated assumption. Havingmotivated
the geometry of the problem, we are ready to convert the assumptions into a concrete metric
ansatz.
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6.2. A frame of commuting vector fields

Let us consider just one of the two complex structures for the moment. The first statement that
we would like to prove is that the collection of vector fields ξ1, ξ2,J(ξ1),J(ξ2) spans TM and
mutually commutes. The first half of the statement follows from the fact that ξ1, ξ2 span an
isotropic subspace ω(ξ1, ξ2) = 0. This means that J(ξ1),J(ξ2) is the complementary subspace.

To prove commutativity we need to use both J-holomorphicity, as well as integrability of
J. Let us start by giving an equivalent way of stating J-holomorphicity. This is a standard
statement in complex geometry.

Lemma 2. A vector field X is J-holomorphic LXJ= 0 if and only if [X,JY] = J[X,Y],∀Y ∈ TM.

Proof. We have

LXJY= (LXJ)(Y)+ J(LXY) ⇒ (LXJ)(Y) = [X,JY]− J [X,Y] . (94)

This shows that (LXJ) = 0 if and only if [X,JY]− J[X,Y] = 0 for any Y.

We can now use this to show that most of the vector fields in ξ1, ξ2,J(ξ1),J(ξ2) commute.

Lemma 3. Let [ξ1, ξ2] = 0 and ξ1,2 be J-holomorphic. Then

[ξ1,J(ξ1)] = 0, [ξ1,J(ξ2)] = 0 [ξ2,J(ξ1)] = 0 [ξ2,J(ξ2)] = 0. (95)

Proof. This is obvious from the J-holomorphicity of ξ1,2 and the previous lemma.

To prove that J(ξ1),J(ξ2) commute, we need to show that the integrability of J implies that
they are also J-holomorphic.

Lemma 4. If J is integrable, and X is a J-holomorphic vector field, then J(X) is also J-
holomoprhic.

Proof. J is integrable if and only if the Nijenhuis tensor

NJ (X,Y) = [JX,JY]− J [X,JY]− J [JX,Y]− [X,Y] (96)

vanishes. Let us assume that X here is J-holomoprhic. Then the second and the fourth terms
annihilate each other, and the vanishing of NJ implies

[JX,JY] = J [JX,Y] , (97)

which is precisely the statement that JX is J-holomorphic.

Now,with both J(ξ1),J(ξ2) being J-holomorphic, it is clear that [J(ξ1),J(ξ2)] = J2[ξ1, ξ2] = 0.
We have established that ξ1, ξ2,J(ξ1),J(ξ2) are mutually commuting.

We end this subsection with another simple lemma.

Lemma 5. Let ξ1,2,3,4 span TM and all commute. Let θ1,2,3,4 be the dual 1-forms. Then all
these 1-forms are closed.

Proof. This follows from the standard formula

dθ (X,Y) = X(θ (Y))−Y(θ (X))− θ ([X,Y]) , θ ∈ Λ1, X,Y ∈ TM. (98)

Indeed, evaluating dθ for any of the 1-forms, on any pair of the vector fields ξ1,2,3,4, we see
that all the terms on the right-hand side are zero.
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6.3. Construction of the frame

This subsection is central. Here we use the availability of the two commuting complex struc-
tures to find a convenient parametrisation of the 1-forms dual to ξ1, ξ2,J(ξ1),J(ξ2). After such a
parametrisation is obtained, one can characterise the two commuting complex structures very
explicitly. Here we follow [ACG13] rather closely, and even keep some of the notations of
these authors. However, unlike this reference, we try to be as elementary as possible, which
means without using any algebraic geometry.

First, we note that we can always choose the frame dual to ξ1, ξ2,J(ξ1),J(ξ2) to be of the
form θ1,θ2,J(θ1),J(θ2). Since the original vector fields commute, these 1-forms are all closed.
This means that there are local coordinates such that

θ1 = dτ, θ2 = dφ. (99)

The condition that the other two 1-forms are closed becomes

dJdτ = 0, dJdφ = 0. (100)

We now come to the main statement of this subsection.

Proposition 4. There exists a choice of coordinates x,y, and of two functions F= F(x),G=
G(y), such that the two commuting complex structures J± are realised as follows

J±dφ =
1
F
dx± 1

G
dy,

J±dτ =
x
F
dx± y

G
dy,

J±dx=− F
y− x

(dτ − ydφ) ,

J±dy=± G
y− x

(dτ − xdφ) . (101)

Proof. Since dJ±dτ = 0,dJ±dφ = 0, there exist coordinates ξ,η such that

dξ =
1
2
(J+ + J−)dφ, dη =

1
2
(J+ − J−)dφ.

J±dφ = dξ ± dη. (102)

The two coordinates introduced (ξ,η) form a good coordinate system together with τ,φ
because both complex structures map (dτ,dφ) to a complementary subspace, which we now
parametrised by (dξ,dη).

The action of the complex structures on (dξ,dη) gives a linear combination of (dτ,dφ), and
can be parametrised as follows.

J±dξ = α±dτ +β±dφ, J±dη = χ±dτ + δ±dφ. (103)
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Here α±,β±,χ±, δ± are eight at this stage arbitrary functions. However, with ∂τ ,∂φ being
Killing vectors, we can assume that these functions depend on ξ,η only. Next we impose that
J2± =−1 on dφ

J2±dφ = J±dξ ± J±dη = (α± ±χ±)dτ +(β± ± δ±)dφ =−dφ
⇒ α± ±χ± = 0, β± ± δ± =−1. (104)

Next we enforce that J+ and J− commute. We have

J−J+dφ = J−dξ + J−dη = (α− +χ−)dτ +(β− + δ−)dφ,

J+J−dφ = J+dξ − J+dη = (α+ −χ+)dτ +(β+ − δ+)dφ. (105)

The commutativity [J+,J−] = 0, together with the conditions in equation (104), implies that
the action of J± on dξ,dη can be parametrised by only two functions

J±dξ =−χdτ − (1+ δ)dφ, J±dη =±(χdτ + δdφ) . (106)

Lastly, we look at the action on dτ , in general it will have the form

J±dτ = a±dξ + b±dη

with 4 arbitrary functions a±,b±. Again we check

J2±dτ = a±J±dξ + b±J±dη = (−a± ± b±)χdτ +(−a± (1+ δ)± b±δ)dφ =−dτ

⇒ a± =− δ

χ
, b± =∓1+ δ

χ
. (107)

Hence the action on dτ is

J±dτ =− δ

χ
dξ ∓ 1+ δ

χ
dη. (108)

We have already imposed the closure dJ±dφ = 0. It remains to impose dJ±dτ = 0. We get

0= d(J±dτ) =

[(
δ

χ

)
η

∓
(
1+ δ

χ

)
ξ

]
dξ ∧ dη

⇒
(
δ

χ

)
η

= 0,

(
1+ δ

χ

)
ξ

= 0. (109)

These equations are easily solved by introducing two functions a= a(ξ), b= b(η) such that
δ =− a

a−b ,χ = 1
a−b . Summarising the results so far we have

J±dφ =dξ ± dη

J±dτ =adξ ± bdη

J±dξ =
1

a− b
(−dτ + bdφ)

J±dη =± 1
a− b

(dτ − adφ) . (110)
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From here we make a coordinate transformation x= a(ξ),y= b(η). Writing dx= a ′dξ ≡
Fdξ,dy= b ′dη = Gdη, we rewrite the action of the complex structures as

J±dφ =
dx
F

± dy
G

J±dτ =
xdx
F

± ydy
G

J±dx=− F
x− y

(dτ − ydφ)

J±dy=± G
x− y

(dτ − xdφ) , (111)

where F= F(x),G= G(y).

6.4. Product structure

We now consider the operator j :=−J+J−. This squares to the identity j2 = I. It is also clear
that, because both J± are orthogonal (i.e. metric-compatible) complex structures, the operator
j is also metric-compatible. Such an operator j : TM→ TM : j2 = I is known as an orthogonal
product structure. The reason for this terminology is that it decomposes the (tangent and)
cotangent space into the eigenspaces of eigenvalue ±1. It is easy to see that the subspaces of
opposite eigenvalue are metric orthogonal. Indeed, let η1,η2 ∈ Λ1 be arbitrary eigenforms of j
belonging to different eigenspaces

jη+ =+η+, jη− =−η−. (112)

We then have

(η−,η+) = ( jη−, jη+) =−(η−,η+) = 0. (113)

Here the bracket denotes the metric pairing.
Now, using one of the complex structures, say J+, we can introduce two more 1-forms

J+η−,J+η+ ∈ Λ1, s.t. j(J+η−) =−J+η−, j(J+η+) = +J+η+. (114)

It is easy to see that (J+η−,η−) = 0,(J+η+,η+) = 0 and so the basis of 1-forms

η+, J+η+, η−, J+η− (115)

is metric-orthogonal.

6.5. Metric ansatz

Using the complex structures defined in equation (101), it is now an easy exercise to check
that

j(dx) = dx, j(dy) =−dy. (116)

This means that the 1-forms

dx,dy,(dτ − ydφ) ,(dτ − xdφ) , (117)
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where the last two 1-forms are obtained by applying e.g. J+ to dx,dy, form a metric orthogonal
basis. This means that the metric we are considering is of the form

g= A(dτ − ydφ)2 +Bdx2 +Cdy2 +D(dτ − xdφ)2 . (118)

where A,B,C,D are functions of x,y only.
However, metrics of the form (118) are not always compatible with the 2 complex struc-

tures. To require this we impose that g(·,J±·) ∈ Λ2. Computing the tensor g(·,J±·) we find

g(·,J±·) =
A(x− y)

F
dx⊗ (dt− ydφ)−BF

(dt− ydφ)
x− y

⊗ dx

∓ D(x− y)
G

dy⊗ (dt− xdφ)±CG
(dt− xdφ)
x− y

⊗ dy. (119)

Imposing that this is a 2-form results in the following restrictions to the components of g,

A(x− y)
F

=
BF
x− y

,
D(x− y)

G
=

CG
x− y

. (120)

Which are most conveniently solved by introducing two new functions U= U(x,y) and V=
V(x,y) so that the solutions become

A=
FU

(x− y)2
, B=

U
F
, C=

V
G
, D=

GV

(x− y)2
. (121)

Thus, finally, the metric and the two compatible 2-forms (Σ1
± = g(·,J±·)) are given by

g= FU

(
dτ − ydφ
x− y

)2

+
U
F
dx2 +

V
G
dy2 +GV

(
dτ − xdφ
x− y

)2

(122)

Σ1
± =

U
x− y

dx∧ (dt− ydφ)∓ V
x− y

dy∧ (dτ − xdφ) . (123)

It should be appreciated how close this metric ansatz is to the Euclidean Kerr metric. We
emphasise that the only information that went into the construction of this ansatz is that there
are two commuting Killing vector fields, as well as two commuting complex structures. No
field equations have yet been imposed.

6.6. Conformal to two Kähler metrics

We now want to impose the requirement that g is conformal to two different Kähler metrics.
That is, we demand that Σ1

± are conformal to closed 2-forms

d
(
λ2
±Σ

1
±
)
= 0. (124)

with λ± = λ±(x,y) being the conformal factors for each Kähler metric. The Lee forms of Σ1
±

are 1-forms, θ±, defined by

dΣ1
± = θ± ∧Σ1

±. (125)
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When Σ1
± are conformal to closed 2-forms the Lee forms themselves are closed. In terms of

the conformal factors we find that θ± =−d ln(λ2
±), and hence closed. Using the 2-forms in

equation (123) and solving for θ± we find them to be

θ± =

(
Vx
V

± U
V(x− y)

)
dx+

(
Uy

U
∓ V
U(x− y)

)
dy, (126)

where we write Vx = ∂xV and similarly for y. We want to impose the condition that both of
these are closed 1-forms. It is more efficient to take linear combinations. Firstly, we demand

d(θ+ + θ−) = 0 ⇒ ln(U)xy− ln(V)xy = 0 (127)

which can be solved by reparameterising by new functions A= A(x), B= B(y) and H=
H(x,y), such that

U=
x− y
H2A

, V=
x− y
H2B

. (128)

The introduction of x− y here is to help simplify later formulae. The other linear combination
is

d(θ+ − θ−) = 0 ⇒ −
(
B2
)
y
(x− y)− 2B2 =

(
A2
)
x
(x− y)− 2A2. (129)

Taking derivatives twice with respect to x we get (A2)xxx = 0. Similarly taking the derivative
with respect to y twice we get (B2)yyy = 0. This means that these equations can be solved by A2

and B2 being quadratic polynomials in their respective variables, with arbitrary coefficients.
Further, substituting the quadratic ansatz for A2,B2 back into equation (129) we find that their
coefficients coincide, that is

A2 = R(x) , B2 = R(y) , R(z) = r0 + r1z+ r2z
2. (130)

We thus find that, given the two functions F(x),G(y) and the 3 constants r0,r1,r2 defining
A(x),B(y), the metric

g=
1
H2

[
F

A(x− y)
(dτ − ydφ)2 +

x− y
FA

dx2 +
x− y
BG

dy2 +
G

B(x− y)
(dτ − xdφ)2

]
(131)

is an ambitoric metric that is conformal to two Kähler metrics with opposite orientations. This
ansatz for the metric is half-way to determining the Kerr metric.

6.7. Solving for the conformal factor

We are interested in a metric that is Einstein, so we now impose Einstein’s equations. The
easiest way to do this is using the chiral formalism explained in section 3. The derivation we
present here is different from that in [ACG13], and, we hope, more straightforward. From
equation (131) we choose a convenient basis for the frame

e0 =
1
H

√
F

A(x− y)
(dτ − ydφ) , e1 =

1
H

√
x− y
FA

dx, e2 =
1
H

√
x− y
BG

dy,

e3 =
1
H

√
G

B(x− y)
(dτ − xdφ) . (132)
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Using equation (6) we can build the SD 2-forms

Σ1 =
1
H2

(
1
A
(dτ − ydφ)∧ dx− 1

B
dy∧ (dτ − xdφ)

)
(133)

Σ2 =
1
H2

(√
F

ABG
(dτ − ydφ)∧ dy−

√
G
ABF

(dτ − xdφ)∧ dx

)
(134)

Σ3 =
1
H2

(√
FH
AB

dφ∧ dτ − x− y√
ABF

dx∧ dy

)
. (135)

The SD connection, obtained by solving dAΣi = dΣi + ϵijkA j ∧Σk = 0, in this basis becomes

A1 =

(
BF
A

− F 2

AH2

(
(x− y)AH2

F

)
x

)
dτ − ydφ

2(x− y)2
−

(
AG
B

+
G2

BH2

(
(x− y)BH2

G

)
y

)
dτ − xdφ

2(x− y)2

A2 =

√
FG
AB

[
AHx−BHy

H(x− y)
dτ +

H(A−B)+ 2ByHy− 2AxHx

H(x− y)
dφ

]
A3 =

1√
AB

[√
F
G
H(B−A)+ 2B(x− y)Hy

2H(x− y)
dx+

√
G
F
H(A−B)− 2A(x− y)Hx

2H(x− y)
dy

]
. (136)

The curvatures are given by rather long expressions. This is the only place where we needed
to resort to algebraic manipulation software. We state the curvature 2-forms by decomposing
them into their SD and anti-self dual components. We write

F i =MijΣ j+RijΣ̄ j. (137)

The nonzero components of Mij are

M11 =
AH2

24

(
F log(A)x
x− y

)
x

− AH3

12(x− y)

(
F

(
1
H

)
x

)
x

− AH2

24

(
F

x− y

)
xx

− AFH2

48(x− y)3

+
BH2

24

(
G log(B)x
x− y

)
y

− BH3

12(x− y)

(
G

(
1
H

)
y

)
y

− BH2

24

(
G

x− y

)
yy

− BGH2

48(x− y)3

+
ABH2

12

( G

B(x− y)2

)
y

−

(
F

A(x− y)2

)
x

− H2

16(x− y)3

(
A3G+B3F

AB

)
(138)

M22 =M33 =
ABH2

24

(
F

A(x− y)2

)
x

− ABH2

24

(
G

B(x− y)2

)
y

+
H2

48(x− y)3

(
A3G+B3F

AB

)

− AH3

12(x− y)

(
F

(
1
H

)
x

)
x

− AFH2

48(x− y)3
− AH2

24

(
F

(x− y)2

)
x

− BH3

12(x− y)

(
G

(
1
H

)
y

)
y

− BGH2

48(x− y)3
+
BH2

24

(
G

(x− y)2

)
y

(139)

M12 =M21 =−
√
FG
AB

H2

24(x− y)3

(
x− y
2

(
A2
)
x
−A2 +

x− y
2

(
B2
)
y
+B2

)
. (140)
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We remind that one of the Einstein equations states that the trace of the matrix Mij coincides
with the cosmological constant M11 +M22 +M33 = Λ. The components of Rij are

R11 =
AFH
12

(
H

x− y

)
xx

− AH2

24

(
F

x− y

)
xx

+
AHFxHx

12(x− y)
+
AH2

24

(
F log(A)x
x− y

)
x

− 7AFH2

48(x− y)3

− BGH
12

(
H

x− y

)
yy

− BH2

24

(
G

x− y

)
yy

+
BHGyHy

12(x− y)
+
BH2

24

(
G log(B)y
x− y

)
y

− 7BGH2

48(x− y)3

+
H2

16(x− y)3

(
B3F−A3G

AB

)
(141)

R22 =−
FH(AHx)x
24(x− y)

+
FH2Ax

24(x− y)2
− AFH2

48(x− y)3
+
GH(BHy)y
24(x− y)

+
GH2By

24(x− y)2
− BGH2

48(x− y)3

+
H2

48(x− y)3

(
B3F−A3G

AB

)
(142)

R33 =−
FH(AHx)x
24(x− y)

+
FH2Ax

24(x− y)2
− AFH2

48(x− y)3
−
GH(BHy)y
24(x− y)

− GH2By

24(x− y)2
+

BGH2

48(x− y)3

− H2

48(x− y)3

(
B3F−A3G

AB

)
(143)

R12 =

√
FG
AB

H

12(x− y)2

[
2AB(2(x− y)Hxy+Hx−Hy)+

(
2B2Hy−

H
2

(
B2
)
y

−2A2Hx+
H
2

(
A2
)
x

)]
(144)

R21 =

√
FG
AB

H

12(x− y)2

[
2AB(2(x− y)Hxy+Hx−Hy)−

(
2B2Hy−

H
2

(
B2
)
y

−2A2Hx+
H
2

(
A2
)
x

)
.

]
(145)

We find it useful to first analyse the equations imposed by R12 = 0,R21 = 0. Taking the sum
and difference of these equations we get

2(x− y)Hxy+Hx−Hy = 0 (146)

2A2Hx−
H
2

(
A2
)
x
− 2B2Hy+

H
2

(
B2
)
y
= 0. (147)

To solve the first equation we introduce a coordinate substitution t,r= (x+ y,x− y) such that
is becomes

Htt = r

(
1
r
Hr

)
r

. (148)

Looking for separable solutions of the form H= T(t)+R(r) we obtain the following class of
solutions

H(t,r) = c0r
2 ln(r)+ c3r

2 + c0t
2 + c1t+ c2. (149)

Another class of solutions is obtained by taking H= H(z) and z=
√
t2 − r2 the equation

reduces to

Hzz = 0 (150)
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which has a solution of the form

H(t,r) = c4
√
t2 − r2 + const. (151)

As the original PDE is linear in H, we can add these solutions. We note that other separable
solutions exist in terms of Bessel functions, but these will not be relevant. Substituting the
solution into equation (147) we can restrict the allowed values of the constants ci and ri, see
equation (130) for the definition of the latter. In doing so we find 3 different solutions for
H(x,y) and R(z)

1) H(x,y) = 1+ ε
√
xy, R= z

2) H(x,y) =
√
xy, R= z2 + 2εz

3) H(x,y) = 1+ ε(x+ y), R= 1 (152)

where we have renamed some constants for later convenience. In the main text we will focus
on case 1) as this gives the family that contains the PD metrics. The other cases are described
in [ACG13] and briefly in appendix. In case 1), we have that the solutions for H,A,B are

H= 1+ ε
√
xy, A(x) =

√
x, B(y) =

√
y. (153)

We now perform another change of variables to remove the square roots. We take x= r2, y=
q2, taking the positive branch of the square root. The metric in these variables becomes

g=
1

(1+ εrq)2

(
C

r2 − q2
(
dτ − q2dφ

)2
+
r2 − q2

C
dr2 +

r2 − q2

D
dq2

+
D

r2 − q2
(
dτ − r2dφ

)2)
(154)

where we have introduced C(r) = F/r, D(q) = G/q.

6.8. PD family of solutions

Having chosen a solution for the conformal factor function H2, we now calculate the Ricci
scalar condition M11 +M22 +M33 = Λ. The components of the matrix Mij for the metric
equation (154) are as follows

M11 =
1
6
(1+ εrq)2 (r+ q)3

q2 − r2

( C

(r+ q)3

)
rr

+

(
D

(r+ q)3

)
qq


+

(1+ εrq)5

12(q2 − r2)

( C

(1+ εrq)3

)
rr

+

(
D

(1+ εrq)3

)
qq

 , (155)

M22 =M33 =− 1
12

(1+ εrq)2 (r+ q)3

q2 − r2

( C

(r+ q)3

)
rr

+

(
D

(r+ q)3

)
qq


+

(1+ εrq)5

12(q2 − r2)

( C

(1+ εrq)3

)
rr

+

(
D

(1+ εrq)3

)
qq

 . (156)
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Taking the trace results in the following equation

12ε2
(
q2C+ r2D

)
− 6ε(1+ εrq)(qCr+ rDq)+ (1+ εrq)2 (Crr+Dqq) = 4

(
q2 − r2

)
Λ.

(157)

By taking derivatives of both sides 3 times with respect to r and q gives

Crrrrr = 0, Dqqqqq = 0. (158)

This shows that C and D are now 4th order polynomials of their respective variables. The only
remaining nonzero component of the traceless Ricci tensor is then

R11 =
(
r2 − q2

)
(1+ εrq)Dqq+

(
4q+ 6εrq2 − 2εr3

)
Dq− 4(1+ 3εrq)D

−
(
r2 − q2

)
(1+ εrq)Crr+

(
4r+ 6εr2q− 2εq3

)
Cr− 4(1+ 3εrq)C. (159)

This allows to further restrict C,D. We substitute a generic quartic polynomial ansatz for C,D
into M11 +M22 +M33 = Λ and R11 = 0. This gives the following solution

C=−b+ 2mr+ r2 + 2nεr3 −
(
ε2b+Λ/3

)
r4 (160)

D= b+ 2nq− q2 + 2mεq3 +
(
ε2b+Λ/3

)
q4. (161)

We have use the freedom of rescaling r,q→ λr,λq to set the coefficients in front of r2,−q2 to
unity.

We have thus derived the Euclidean version of the PD metrics with their 5 parameters,
b,m,n,ε,Λ [PD76, GP05]. This is the same result that was obtained in [ACG13], however the
approach here was, we believe, more elementary, without any need for algebraic geometry
considerations.

To check that the metric we obtained is indeed one sided type D⊗D we can calculate both
parts of the Weyl curvature. We get

Ψ =

2α 0 0
0 −α 0
0 0 −α

 , α=
n−m
6

(
1+ εrq
r+ q

)3

,

(162)

Ψ̄ =

2ᾱ 0 0
0 −ᾱ 0
0 0 −ᾱ

 , ᾱ=
n+m
6

(
1+ εrq
r− q

)3

.

Clearly both halves of the Weyl tensor are of type D. When m=±n one of the sides of the
Weyl curvature vanishes, in this case the spacetimes are called SD PD [NH15].

6.9. Kerr metric

To obtain the Kerr metric from the more general PD family of metrics we set Λ = 0. We want
the metric to be asymptotically flat, requires that grr → 1 as r→∞. For this to be the case
the polynomial C(r) must be at most quadratic, which necessitates ε= 0. Now both C,D are
simple quadratic functions

C(r) = r2 − 2Mr− a2, D(q) = a2 − q2, (163)
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where we renamed the constant terms suggestively, and also set the NUT charge (vanishing
in Kerr) n= 0. Now C(r) = ∆ of the Kerr metric, and setting q= acosθ makes D= a2 sin2 θ.
These choices can be motivated using the requirement that the metric is an appropriate analytic
continuation of a Lorentzian signature metric, and that the Lorentzian metric is axi-symmetric,
but we will not attempt this here. The main claim we are making is that the Euclidean Kerr
metric is a member of a large family of metrics whose determination reduces to an exercise in
linear algebra, determining the metric ansatz, following by a straightforward computation of
curvatures using the Plebanski formalism.

With these choices the metric equation (154) becomes

g=
∆

ρ2
(
dτ − a2 cos2 θdφ

)2
+

ρ2

∆
dr2 + ρ2dθ2 +

sin2 θ
ρ2

(
adτ − ar2dφ

)2
. (164)

Now further changing the coordinates

dφ =−1
a
dϕ, dτ = dt− adϕ (165)

gives the usual form of the Kerr metric in Boyer–Lindquist coordinates, with the frame given
by equation (64). The Λ ̸= 0 Kerr metric is another member of the PD family, but we have not
attempted to exhibit it explicitly.

7. Conclusion

We have presented an alternative derivation of the (Euclidean) Kerr metric, one that proceeds
by deriving the more general PD family. The derivation we described is ‘elementary’ in the
sense that the most non-trivial step of the construction, which is establishing the ansatz (123),
proceeds by a calculation in linear algebra. Thus, one gets rather far without imposing any
differential equations whatsoever. Some differential equations are imposed at the next step,
which requires that the metric is conformal to two different Kähler metrics. This leads to the
metric ansatz (131). The rest of the analysis consists in imposing Einstein equations. This is
seen to reduce the arbitrariness to two quartic polynomials, each of one variable. One can then
recognise the Euclidean Kerr metric in the obtained family of solutions without difficulty. It
corresponds to the case of quadratic polynomials.

Ourmain reason to be interested in the geometrywe described is the fact that the (Euclidean)
Kerr metric exhibits the beautiful and rich geometry if viewed as a complex 4Dmanifold. This
is of course also one of the motivations of [ACG13]. It can also be seen from the derivation we
presented that the Plebanski chiral formalism is best-suited for viewing 4DEuclidean geometry
via the prism of complex geometry. Most of what we described is not new for mathematicians,
apart from our new characterisation of Killing vector fields in section 3.2 and the new proof of
Derdziński theorem in section 4. Some of the reasoning in section 6, in particular in the part
where we impose Einstein equations, is also different from [ACG13]. But our main motivation
in describing these results is our hope that the adopted here point of view of the Plebanski
formalism will make these beautiful ideas more digestible for the gravitational physicists.

Our final remark is that it is very likely that the described here rich ambi-Kähler and ambi-
toric geometry of the Kerr metric is useful for the problem of gravitational perturbations of
the Kerr BH. It is well-known that the problem of scalar, vector and tensor perturbations in the
Kerr background is separable, see e.g. [Cha98]. This is usually achieved by considering the
Teukolsky equations. On the other hand, it is also well-known that the separability of the Kerr
metric wave equation is due to the existence of a non-trivial symmetric rank 2 Killing tensor.
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This Killing tensor can be constructed as the square of the anti-symmetric rank 2 Killing-Yano
tensor. All this is intimately related to the construction described in this paper, as is explained
in [GM15]. Indeed, in this reference the authors show that the existence of a Killing 2-form in
4D is directly related to the metric being ambi-Kähler. All in all, the described here geometry
is known to be directly related to the separability of the Kerr wave equation. It thus appears
likely that there exists a formalism for gravitational perturbation theory in Kerr that is based
on the Plebanski formalism, and the geometry described in this paper. This could be distinct
from that given by the Teukolsky equation, and potentially more useful. The basic point is that
the Teukolsky equation reduces the problem of describing gravitational perturbations of Kerr
to a single scalar. This scalar is an appropriate potential for the metric. It is possible that the
geometry we described can lead to a different choice of a potential for the metric. In particular,
the pure connection formalism for 4D GR, see [Kra11] may be useful here, in that a potential
for the connection rather than the metric may give a more powerful description. We hope to
return to such questions in a future publication.

Data availability statement

No new data were created or analysed in this study.

Appendix. Alternative cases solution

Here we briefly explore the Einstein metrics that are solutions to the other cases in
equation (152).

A.1. Case 2

In case 2 we can make a slight change of coordinates r= x+ ε,q= y+ ε such that

H=
√

(r− ε)(q− ε), A=
√
r2 − ε2, B=

√
q2 − ε2. (166)

We redefine the functions in the metric C= FA, D= GB such that the metric becomes

g=
1

(r− ε)(q− ε)

(
C
(dτ − (q− ε)dϕ)2

(r2 − ε2)(r− q)
+
r− q
C

dr2 +
r− q
D

dq2 +D
(dτ − (r− ε)dϕ)2

(r− q)(q2 − ε2)

)
.

(167)

The functions C,D are then quartic polynomials, in which case the Einstein’s equations are
satisfied when

C(r) =−ε
(
4Λ+mε2 + nε3

)
+mε2r+

2nε3 +mε2 + 4Λ
ε

r2 −mr3 − nr4 (168)

D(q) =−C(q) (169)

where m,n,Λ,ε are 4 parameters. This gives another class of ambitoric Einstein metrics.

A.2. Case 3

For case 3 we do not need a change of coordinates and can remain in x,y. Similarly to the
main text we require the trace of the Ricci tensor to be equal to the cosmological constant,
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this becomes

(1+ ε(x+ y))2 (Fxx+Gyy)− 6ε(1+ ε(x+ y))(Fx+Gy)+ 12ε2 (F+G) = 24(y− x)Λ
(170)

taking derivatives w.r.t x 3 times and alternatively with y 3 times we obtain the equations

Fxxxxx = 0, Gyyyyy = 0 (171)

which have solutions such that F,G are quartic polynomials in their respective variables.
Substituting this back into equation (170) and solving for the constants reveals that

F(x) = b+mx+ γx2 +
(
2γε− 2mε2 − 4Λ

)
x3 +

ε
(
2γε− 2mε2 − 4Λ

)
2

x4 (172)

G(y) =−F(y) . (173)

where b,m,γ,ε,Λ are arbitrary constants. This solution for F,G automatically satisfies Rµν =
Λ
4 gµν . The Einstein metric is of the form

g=
1

(1+ ε(x+ y))2

[
F

x− y
(dτ − ydϕ)2 +

x− y
F

dx2 +
x− y
G

dy2 +
G

x− y
(dτ − xdϕ)2

]
.

(174)

ORCID iD

Kirill Krasnov https://orcid.org/0000-0003-2800-3767

References

[ACG03] Apostolov V, Calderbank D M J and Gauduchon P 2003 The geometry of weakly self-dual
Kähler surfaces Compos. Math. 135 279–322

[ACG13] Apostolov V, Calderbank D M J and Gauduchon P 2016 Ambitoric geometry I: Einstein
metrics and extremal ambi-Kähler structures J. Reine Angew. Math. 721 109–47

[AN16] Newman E T and Adamo T 2014 The Kerr-Newman metric: a review Scholarpedia 9 31791
[BG21] Biquard O and Gauduchon P 2023 On toric Hermitian ALF gravitational instantons

Commun. Math. Phys. 399 389–422
[Biq23] Biquard O, Gauduchon P and LeBrun C 2024 Gravitational instantons, Weyl curvature and

conformally Kähler geometry Int. Math. Res. Not. 2024 13295–311
[BK24a] Bhoja N and Krasnov K 2024 SU(2) structures in four dimensions and Plebanski formalism

for GR (arXiv:2405.15408 [math.DG])
[BL67] Boyer R H and Lindquist RW 1967Maximal analytic extension of the Kerr metric J. Math.

Phys. 8 265–81
[BV22] Baines J and Visser M 2022 Physically motivated ansatz for the Kerr spacetime Class.

Quantum Grav. 39 235004
[Cha98] Chandrasekhar S 1998 The Mathematical Theory of Black Holes (Oxford University Press)
[CT15] ChenY and Teo E 2015Afive-parameter class of solutions to the vacuumEinstein equations

Phys. Rev. D 91 124005
[Der83] Derdzinski A 1983 Self-dual Kähler manifolds and Einstein manifolds of dimension four

Compos. Math. 49 405–33
[DU18] Deruelle N and Uzan J P 2018 Relativity in Modern Physics (Oxford University Press)
[Fla74] Flaherty E J 1974 An integrable structure for type D spacetimes Phys. Lett. A 46 391–2

30

https://orcid.org/0000-0003-2800-3767
https://orcid.org/0000-0003-2800-3767
https://doi.org/10.1023/A:1022251819334
https://doi.org/10.1023/A:1022251819334
https://doi.org/10.1515/crelle-2014-0060
https://doi.org/10.1515/crelle-2014-0060
https://doi.org/10.4249/scholarpedia.31791
https://doi.org/10.4249/scholarpedia.31791
https://doi.org/10.1007/s00220-022-04562-z
https://doi.org/10.1007/s00220-022-04562-z
https://doi.org/10.1093/imrn/rnae200
https://doi.org/10.1093/imrn/rnae200
https://arxiv.org/abs/2405.15408
https://doi.org/10.1063/1.1705193
https://doi.org/10.1063/1.1705193
https://doi.org/10.1088/1361-6382/ac9bc5
https://doi.org/10.1088/1361-6382/ac9bc5
https://doi.org/10.1103/PhysRevD.91.124005
https://doi.org/10.1103/PhysRevD.91.124005
https://doi.org/10.1016/0375-9601(74)90931-1
https://doi.org/10.1016/0375-9601(74)90931-1


Class. Quantum Grav. 42 (2025) 065013 K Krasnov and A Shaw

[Fla76] Flaherty E J 1976 Hermitian and Kählerian Geometry in Relativity (Springer)
[GM15] Gauduchon P and Moroianu A 2017 Killing 2-forms in dimension 4 Special Metrics and

Group Actions in Geometry (Springer INdAM Series vol 23) ed S Chiossi, A Fino,
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