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Abstract. Performing global sensitivity analysis on functional-structural plantmodels (FSPmodels) can greatly benefit bothmodel development
and analysis by identifying the relevance of parameters for specific model outputs. Setting unimportant parameters to a fixed value decreases di-
mensionality of the typically large model parameter space. Efforts can then be concentrated on accurately estimating the most important input
parameters. In this work, we apply the Elementary Effects method for dimensional models with arbitrary input types, adapting the method to
models with inherent randomness. Our FSP model simulated a maize stand for 160 days of growth, considering three outputs, namely yield,
peak biomass and peak leaf area index (LAI). Of 52 input parameters, 12 were identified as important for yield and peak biomass and 14 for
LAI. Over 70 % of parameters were deemed unimportant for the outputs under consideration, including most parameters relating to crop ar-
chitecture. Parameters governing shade avoidance response and leaf appearance rate (phyllochron) were also unimportant; variations in these
physiological and developmental parameters do lead to visible changes in plant architecture but not to significant changes in yield, biomass or
LAI. Some inputs identified as unimportant due to their low sensitivity index have a relatively high standard deviation of effects, with high fluc-
tuations around a low mean, which could indicate non-linearity or interaction effects. Consequently, parameters with low sensitivity index but
high standard deviation should be investigated further. Our study demonstrates that global sensitivity analysis can reveal which parameter values
have the most influence on key outputs, predicting specific parameter estimates that need to be carefully characterized.

KEYWORDS: Elementary effects; global sensitivity analysis; functional-structural plant model; Morris method.

1. INTRODUCTION
Models in the biological and environmental sciences typically
have many free parameters (Razavi and Gupta 2015; Qian and
Mahdi 2020; Puy et al. 2021). This is, in particular, true for
functional-structural plant models (FSP models) (Evers and
Bastiaans 2016; Henke et al. 2016; Zhu et al. 2017) which sim-
ulatpe growth and development of plants in 3D as a function of
environmental factors such as light, temperature and nutrition.
Calibration of these parameters often requires empirical data,
which can be costly or simply impossible to obtain (seeQian and
Mahdi (2020) and the references therein). However, often only
a small subset of input parameters in a system has a significant

influence on a specific system output (Box and Meyer 1986;
Razavi et al. 2021). As such, it is beneficial for model devel-
opment to identify unimportant parameters, so that they may
be set to a fixed value and so that efforts can be concentrated
on accurately estimating the most important input parameters.
This can greatly decrease dimensionality of the model parame-
ter space while increasing trust in the model. Sensitivity analysis
(SA), the study of how variability in the model output can be at-
tributed to the variability in the model inputs, is a common tool
for identifying (un)important input parameters.

Local sensitivity analysis techniques in the form of one-at-a-
time (OAT) methods involve changing one parameter at a time
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from a fixed base point and assessing the effect on themodel out-
put (Pianosi et al. 2016). This assessment may involve the use
of (potentially discretized) derivatives or might simply involve
visual inspection of the model outputs (Pianosi et al. 2016).
Because of their simplicity and ease of implementation, these
methods for local SA are commonly used, although local SA
methods may only prove informative in very specific situations
(e.g. inverse problems or approximating a model output in a
small region of output space) (Saltelli and Annoni 2010). In
general, local sensitivity analysis is not recommended for rigor-
ous SA; global methods (GSA) should be used instead (Saltelli
et al. 2008; Saltelli and Annoni 2010). Global sensitivity analy-
sis methods address the limitations of local OAT techniques by
considering the entire space of variability of the input param-
eters (Pianosi et al. 2016). A variety of approaches have been
proposed forGSA (Fig. 3 in Pianosi et al. (2016) compares some
of them), based on different philosophies and theories, leading
to different notions of (global) sensitivity (Saltelli and Tarantola
2002; Razavi and Gupta 2015). While there are certainly exam-
ples of GSA in FSP modelling (Cournède et al. 2013; Mathieu
et al. 2016; Streit et al. 2016; Sainte-Marie and Cournède 2019;
Zhu et al. 2021), in other cases, SA has not yet been applied or
analysesmay consist solely ofOATor visual inspection ofmodel
outputs (Vos et al. 2007; Buck-Sorlin et al. 2011; Henke et al.
2016; Coussement et al. 2018; de Vries et al. 2020; Bailey and
Kent 2021; Gauthier et al. 2021; Pao et al. 2021; van der Meer
et al. 2021; Pao et al. 2021). This does not invalidate the mod-
elling exercise, but does highlight that GSA is not yet typically
incorporated as standard into the study of FSP models.

The objective of this study is to show the benefit of per-
forming GSA in FSP models. In particular, we apply the ele-
mentary effects method (EE) (also known as Morris’ method
Morris (1991)) to an FSP model simulating maize to identify
(un)important parameters, assess the potential for model im-
provement and simplification and identify which biological pro-
cesses might be more or less important for three model out-
puts, namely leaf area index (LAI), aboveground biomass and
yield. The elementary effects method was chosen because it is
a simple and commonly used GSA method designed to screen
for (un)important parameters and is capable of identifying non-
linear or interaction effects. EE has been used to analyse crop
models (e.g. Richter et al. 2010; Vanuytrecht et al. 2014; Casade-
baig et al. 2016; Caubel et al. 2017; Silvestro et al. 2017), but
applications to FSP models are rare. We use the recently pub-
lished version with scaled effects here, as described in Rutjens
et al. (2023), which makes the method applicable to dimen-
sional models with inputs of arbitrary range and inputs of in-
teger or Boolean type and prevents erroneous rankings. Several
other common approaches, including those that take the depen-
dency structure of the inputs into account (Owen 2014) are de-
scribed in Saltelli et al. (2008), Razavi and Gupta (2015), Qian
and Mahdi (2020) and the references therein.

2. ELEMENTARYEFFECTSMETHOD
The idea behind EE is to characterize the space of model out-
puts by a relatively low number of strategically placed simulation

points. From these simulation points, we are then able to calcu-
late finite differences (called elementary effects) as measures of
how the output changes when one input changes. Finally, by ag-
gregating these effects for each combination of input and output
in a certain way, we obtainmeasures of (global) sensitivity of the
outputs for the inputs. In this work, we define the sensitivity of
output Yj to input parameterXi to be the relative contribution of
the variability in the input parameter to the variability of the out-
put.Theasserted (finite) range of an input parameter is usedhere
as input variability and variance in the output as output variabil-
ity (which is a common choice (Razavi and Gupta 2015)), but
other notions of input and output variability can in principle be
used as well, such as mean, standard deviation or interquartile
range.This section follows (Rutjens et al. 2023).We refer to that
work and the references therein for further detail.

2.1. Definition of elementary effects
Let Xi, i = 1,… , k be dimensional input parameters with units
[Xi], taking values in [mini,maxi]uniformly. If the parameter can
only take integer values, it takes values in the set {mini,mini +
1,… ,maxi}. The same holds for Boolean parameters, but then
mini = 0 and maxi = 1, where 0 encodes false and 1 stands for
true. xi denotes the dimensionless equivalent scaled to the unit
interval, that is,

xi =
Xi −mini

maxi −mini
, (1)

henceforth referred to as scaled dimensionless parameters.The di-
mensional outputs of interest are denotedbyYj, j = 1,… , qwith
corresponding unit [Yj]. An elementary effect for outputYj and in-
put parameterXi at base pointXn = (Xn

1,… ,Xn
k) is then defined

as the finite difference

EEn
ij =

Yj(Xn
1,… ,Xn

i−1,Xn
i + Δn

i ,Xn
i+1,… ,Xn

k) − Yj(Xn)
Δn

i
.
(2)

Here, the superscript n is simply an index to distinguish different
X, to emphasize that theEEcanbe calculated at numerous points
in the parameter space. Δn

i represents the step in the actual pa-
rameter space, which depends on the scaled dimensionless step
𝛿n

i ∈ [0, 1] in the following way:

Δn
i = 𝛿n

i (maxi −mini). (3)

The value of 𝛿n
i follows from the chosen trajectory genera-

tion method and is calculated a posteriori (see Section 2.2 and
Supporting Information—Supplementary Material S1). The ef-
fect EEn

ij given by Equation (2) is dimensional with units
[EEn

ij] = [Yj]/[Xi].
While here we assume uniformly distributed inputs, this can

be relaxed to include arbitrary distributions. Scaling the sampled
parameter values from [0, 1] to the actual interval should then
be done using the corresponding inverse cumulative density
function (CDF).

2.2. Trajectory generation
It is generally not feasible (nor desirable) to calculate every pos-
sible effect; even with discrete-valued inputs, the number of
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Figure 1. Radial design sample in the unit cube with k = 3
parameters and r = 2 trajectories. x1 is a base point, x2, x3 and x4 are
perturbed points.

required simulations quickly becomes prohibitive. Instead, the
goal is to generate a small set of Q = r(k+ 1) simulation points,
typicallyQ ∼ 1000,which still provides goodcoverageof thepa-
rameter space.Here, r is the number of effects for each input.The
sensitivities are then characterized by some aggregationmeasure
and standard deviation over r effects. In this work, the Q simu-
lation points are clustered into r star-shaped trajectories (Fig. 1;
also called a radial design), where the base point (x1 in Fig. 1) is
used repeatedly in combination with the perturbed points (x2–
x4) for the calculation of the elementary effects. To ensure a uni-
form distribution of the r base points in the parameter space,
a quasi-random (QR) or low-discrepancy sequence is typically
used (MorokoffandCaflisch1994;Hickernell 2000; Saltelli et al.
2010; Campolongo et al. 2011). QR sequences are designed to
produce point sets that cover a space both efficiently (i.e. with a
low number of points) and evenly (i.e. approximating a uniform
distribution). In this work, we consider the recently presented
Rd sequence (Roberts 2021), which has been shown to perform
well in EE (Rutjens et al. 2023).TheQR sequence is used to gen-
erate a set of r base points (gathered in a r×kmatrixA) and a set
of r perturbation vectors (r×kmatrixB). Each pair of base point
and perturbation vector then leads to a star-shaped trajectory in
parameter space [see Supporting Information—Supplementary
Material S1].

For Boolean or integer input parameters, an adjustment is
required to avoid non-integer/Boolean parameter values in the
actual parameter space for these parameters (Rutjens et al.
2023).We pin the base point coordinates corresponding to inte-
ger/Boolean inputs to a discrete value and then use a fixed step
size. In other words, given a base coordinate xi in [0, 1] gener-
ated by aQR sequence, we transform the coordinate to a discrete
value ̃xi by:

̃xi = {
1 if xi = 1;
⌊pixi⌋
pi−1

else, (4)

where pi (the number of discrete values input i can take) satisfies

maxi −mini = m(pi − 1), (5)

for some m ∈ ℕ. While ̃xi is not necessarily integer/Boolean,
the coordinate in the actual parameter space is given by:

Xi = (maxi −mini) ̃xi +mini

= m(pi − 1) ̃xi +mini

= {maxi if xi = 1;
m⌊pixi⌋ +mini else

for some m ∈ ℕ, which is an integer/Boolean. Subsequently,
the perturbed point is found by stepping with fixed step size

|Δi| =
n(maxi −mini)

pi − 1
, (6)

where n ∈ {1, 2,… , pi − 1} is to be chosen, such that the per-
turbed point still lies in the parameter space.Whenever possible,
pi should be chosen to be even and n = pi/2 to ensure equal
sampling probabilities (Morris 1991).

2.3. Scaled effects and sensitivitymeasure
Scaling effects in the input-direction and using a dimensionless
sensitivity measure are essential when input parameters are di-
mensional and take values on non-unit intervals, in order to pre-
vent erroneous rankings and to obtain results consistentwith the
notion of global sensitivity (Rutjens et al. 2023).This is not stan-
dard practice yet (see, e.g. Menberg et al. 2016; Pao et al. 2021;
Uys et al. 2021) and not all third-partyGSA implementations in-
clude both of these additional steps (in particular the use of a
dimensionless sensitivity measure) Iooss et al. (2021); Pianosi
et al. (2015). Following Rutjens et al. (2023), we scale effects by
the input range

cxi
= maxi −mini. (7)

The scaled effect EEn
ij ⋅ cxi

has units [Yj]. Subsequently, we define
the dimensionless normalized sensitivity measure

S𝜒(i, j) =
𝜒ijcxi

∑k
l=1 𝜒ljcxl

, (8)

where 𝜒ij is the median of the absolute effects {|EEn
ij|}n=1,…,r.

The S𝜒(i, j) take values in [0, 1] and sum to unity (over i for fixed
output j). This allows for a standardized way of identifying the
(un)important parameters (Wu2020). For a given outputYj, the
S𝜒(i, j)’s are sorted in ascending order leading to a sequence

S𝜒(i1, j) < S𝜒(i2, j) < … < S𝜒(ik, j). (9)

The q unimportant parameters are then those for which

q

∑
m=1

S𝜒(im, j) <
h

100
,

q+1

∑
m=1

S𝜒(im, j) ≥
h

100
, (10)

whereh is a predefinedpercentage (10% inWu(2020), although
they note a low h-value may lead to incorrectly identifying pa-
rameters as important). Important parameters for a given out-
put are those with a value of the sensitivity index S𝜒 above a
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pre-determined threshold S0j. This quantity may be a function
of the S𝜒(i, j)’s, making it a function of the threshold h through
Equation (10) (essentially q = q(h)); here

S0j(h) = �̂�0j + 3�̂�0j (11)

is used (as in Wu (2020) and Rutjens et al. (2023)), where
�̂�0j and �̂�0j are the sample mean and standard deviation of the
S𝜒(i, j)’s corresponding to unimportant variables, that is,

�̂�0j =
1
q

q

∑
m=1

S𝜒(im, j), (12)

�̂�0j =
√√√
√

1
q − 1

q

∑
m=1

(S𝜒(im, j) − �̂�0j)
2. (13)

Finally, to gain insight into the non-linear response of outputs
to inputs and detect potential interaction effects, we consider the
relative standard deviation (RSD) defined by

RSDij =
𝜎ij

𝜇⋆ij
× 100%, (14)

where 𝜎ij is the standard deviation of the (non-absolute) ef-
fects {EEn

ij}n=1,…r and 𝜇⋆ij is the mean of the absolute effects
{|EEn

ij|}n=1,…r. In other works (Ruano et al. 2012; Yang and
Becerik-Gerber 2015; Menberg et al. 2016), ratios of 𝜇⋆ and 𝜎
are used to classify levels of non-linearity, interaction effects or
general importance, but in this work, RSD is purely used as a
tool to inform which parameters might deserve a more detailed
follow-up (i.e. those with a small sensitivity index S𝜒 but a high
RSD).

3. MODELDESCRIPTION
The model considered here is a general modular FSP model us-
ing the modelling platform GroIMP (Hemmerling et al. 2008).
It simulates aboveground plant growth and architectural devel-
opment, driven by competition between plants for light and nu-
trients. It is an evolution of the model presented in Evers and
Bastiaans (2016).

In this study, we simulate maize plants at a daily time step
based on the principles of assimilate supply and demand. Plant
organs serve either as a pure sink for assimilates (the generative
organs and the roots) or both as a source and a sink depending
on their age and surface area (the leaves and the stem segments).

3.1. Environment
To accurately represent a realistic light field, a mix of direct and
diffuse light sources are placed in the scene. Seventy-two dif-
fuse light sources are configured in 6 rings at different heights
and 24 direct light sources describe an arc in the sky to emu-
late the sun’s path (Evers and Bastiaans 2016). The angle and
orientation of the arc depend on the day of the year and lati-
tude; the power of the light sources depends on the day of the
year, the location in the sky, latitude and transmissivity. The rel-
ative contribution of the diffuse and direct light sources is con-
stant over a simulation, with the fraction of diffuse light of the

total incoming radiation set to 0.8. Further details of the dif-
fuse/direct radiation calculation can be found in Goudriaan and
Van Laar (1994), Spitters et al. (1986) and Spitters (1986). At
each time step, rays of photosynthetically active radiation (PAR)
cast by the light sources are absorbed, reflected or transmitted
by leaves and stems according to organ-independent optical co-
efficients, using the stochastic ray tracer capabilities of GroIMP
(Hemmerling et al. 2008).

The average daily temperature follows a sinusoidal pattern
over the year, reaching its minimum value around day 20, mean
at day 111, and its maximum around day 202 (Evers and Basti-
aans 2016). It is characterised by a mean value (tav_a) and the
amplitude of the deviation around that mean (tav_b). Other at-
mospheric parameters such as CO2 level, vapour pressure deficit
and O2 level are kept constant throughout a simulation.

3.2. Physiology
At the organ level, the absorbedPAR is used to calculate the pho-
tosynthesis rate as a function of organ nitrogen level (Evers and
Bastiaans 2016). Assimilated CO2 is converted into growth sub-
strates, andmaintenance costs are deducted.This leads to a daily
pool of substrates available for organ growth.

Photosynthesis is described by a C4-equivalent of the
Farquhar–von Caemmerer–Berry (FvCB) model as in Yin and
Struik (2009). The FvCB model implemented here predicts the
net photosynthesis rate as the minimum of the Rubisco-limited
and the electron transport-limited rates ofCO2 assimilation.The
FvCB model is the standard in relating photosynthetic carbon
assimilation to the concentration of intercellular CO2 and ab-
sorbed photosynthetically active radiation (Dubois et al. 2007).
While parameter values for the original C3model have been cal-
ibrated fairly precisely, there are a number of parameters in the
C4-equivalentwithmore uncertainty (Yin and Struik 2009).We
take nine of the FvCB parameters into account in the sensitivity
analysis (Table 1, parameters 35–43).

Potential organ growth rate is defined as the organ demand
for growth substrates (its sink strength), implemented using the
first derivative of a beta growth function (Yin et al. 2003; Evers
and Bastiaans 2016). To determine actual growth rate, the rel-
ative sink strength concept is used (Heuvelink 1996), in which
the sink strength of an organ is expressed as a fraction of total
plant sink strength. Depending on substrate availability and rela-
tive sink strength, organs grow at or below their potential rate.
Any excess growth substrates stored from all organs are made
available for growth in the next time step.

Finally, organ size is updated based on the substrates received
by each organ, using parameters for leaf mass per unit of leaf area
(LMA) for the leaves, and specific internode length (SIL) for the
internodes. Specifically for internodes, additional extension due
to shade avoidance (Huber et al. 2021) is implemented by mak-
ing SIL dependent on the level of competition experienced by
the plant (Evers and Bastiaans 2016).

3.3. Plant development
Plant development is temperature driven, with a daily thermal
time increment depending on the average daily temperature
(see Section 3.1) and the species base temperature. We suppose
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plants germinate on the sameday. Subsequent leaves are initiated
and appear at constant thermal time intervals (plastochron and
phyllochron, respectively). The total number of phytomers pro-
duced during a plant’s lifespan is taken as constant and equal for
all plants. If a leaf reaches a certain age or receives less light over
a day than a given threshold, it will be shed.

3.4. Plant architecture
To mimic maize architecture, the first given number of intern-
odes do not elongate (parameter 18: nrShortInternodes), re-
sulting in the corresponding leaves emerging near the soil level.
Leaves are represented by narrow oblong surfaces (see Evers and
Bastiaans (2016) and Figs. 7 and 8). Consecutive leaves appear
along the stem at a constant phyllotactic angle. The root system
architecture is not explicitly modelled.

4. SIMULATIONSANDANALYSIS
For each of the selected simulation points (as described in
Section 2), we simulate a field of 100 maize plants until harvest
at day 159.The field is cloned 10 times in each direction to elim-
inate border effects. Three outputs are considered: yield at the
final simulation day (grain biomass per m2), peak above ground
biomass and peak LAI (inm2 of leaf area perm2 of ground area).

4.1. Model parameters
Fifty-twoparameters are taken into account in this analysis.Their
input ranges and brief descriptions are included in Table 1. In-
puts are grouped into four categories, namely architectural, de-
velopmental, environmental and physiological (Table 1).

For each parameter, 40 effects (hence 40 trajectories) are
considered in a radial design as described in Supporting
Information—Supplementary Material S1, leading to a total of
40 × (52 + 1) = 2120 simulations per replicate (Section 4.2).
For determining what parameters are (un)important, an h-level
(Equation (10)) of 30 % is used.

Furthermore, a number of model parameters are fixed
throughout the analysis as they have known andfixed values (e.g.
latitude) or concern management practices (e.g. row distance).
Their values and descriptions are listed in Table 2 in Supporting
Information—Supplementary Material S2.

4.2. Inherentmodel randomness
EE is designed for deterministic models. Our model, however,
contains inherent randomness, not caused by the input parame-
ters, but, for example, by small random perturbations in intern-
ode orientation or leaf angle (to capture the natural variation of a
species population) or by inherent randomness in the light sub-
model. To address this, we repeat each of the simulations three
times, and average the outputs of the three replicates at each sim-
ulation point. We then calculate effects and sensitivity indices
of these averaged values. Since the relative standard devation
(RSD) of the output values of the different replicates at each
simulation point—the standard deviation of three replicates di-
vided by the mean—is low (Fig. 2), we argue three replicates is
sufficient in this case.

4.3. Effect outliers
Because we use a quasi-random (QR) sequence Roberts (2021)
to generate the simulation points, in a small number of cases
the distance from base point to perturbed point is relatively
very small (Fig. 3). This is not a problem if the model is de-
terministic, but since our model contains inherent randomness
it can cause effect outliers, which could cause changes in the
sensitivity indices. This can be seen as follows. We split the
output Y in a deterministic part (i.e. the value if the model
was deterministic) and a random part, which leads to the (un-
scaled) effect for input xi and trajectory n = 1,… , r given by:

EEn
i =

EEn
det,i
𝛿n

i
+

EEn
rnd,i
𝛿n

i
. (15)

A problem arises if there are a few n for which |𝛿n
i | ≪ 1. The

deterministic part EEn
det,i/𝛿n

i should be the same order of magni-
tude for alln, but for thenwith a very small (relative) step size the
stochastic part EEn

rnd,i/𝛿n
i may blow up and become dominant

(relative to the other n with larger step sizes).
In preliminary experiments (not shown here), we found up to

a thousandfold increase in the elementary effect compared to the
mean for that parameter. To remedy this issue, we remove effect
outliers. Specifically, assuming coordinates generated by a QR
sequence are identical and independent uniformly distributed
(so xn

i ∼ 𝒰([0, 1]), the scaled dimensionless step size |𝛿n
i | fol-

lows a triangle distribution with CDF F(|𝛿n
i |) = 2|𝛿n

i | − |𝛿n
i |2

for 0 ≤ |𝛿n
i | ≤ 1.

Outliers are then those effects for which the step size is an ex-
treme value of this distribution, here defined as those for which
F(|𝛿n

i |) < 0.005. It follows that all effects for which |𝛿n
i | <

1 − √398/20 ≈ 0.0025 are classified as outliers, and are thus
removed from the analysis. In the results presented below, we
removed 13 effects distributed over 12 inputs out of a total of
40 ⋅ 52 = 2080 elementary effects (Fig. 3).

5. RESULTS
With an unimportance threshold of h=30% (see Equation (10))
and the importance threshold given in Equation (11), 12
out of 52 parameters were classified as important (39 as
unimportant) for the outputs yield and peak biomass, and
14 parameters were found to be important (37 unimpor-
tant) for peak LAI (Fig. 4 and Table 1). This leaves one
parameter for each output that is neither unimportant nor
important.

5.1. Important parameters
Anumber of parameters in themodel currently take a value from
the same input range for all species and/or organs, although it is
known these are actually species- or even organ-specific.The fact
that some of these—for example, growth respiration (parameter
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Table 1. Parameters included in EE analysis, which belong to the indicated categories (A: architectural; D: developmental; E: environmental;
P: physiological). All parameters are real numbers except 15, 18, 29 and 51 that are integers; in those cases, the description includes the
number of levels pi and step size |𝛿i|. Results from the GSA are shown in the right-most three columns, which indicate whether a parameter is
found to be unimportant (x), important (number indicates rank, 1 being most important; top 5 in red) or neither (–) for three outputs. *:
maximum plant biomass (before final simulation day); †: maximum leaf area index (before final simulation day).
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1 Ca E Atmospheric CO2 level ppm 300 600 x x x
2 VPD E Vapour pressure deficit kPa 0.3 3 12 12 x
3 tav_a E For average temperature calculation °C 9.095 12.305 4 4 14
4 tav_b E For average temperature calculation °C 6.4175 8.6825 9 10 –
5 specificInter-

nodeLength
A Internode length per unit biomass

(SIL)
m g−1 0.025 0.075 x – x

6 LMA A Leaf mass per unit area mg cm−2 4 7 7 6 1
7 lwRatio A Ratio of leaf blade length and width – 9.18 11.22 x x x
8 maxWidth A Location where leaf width is

maximal
– 0.6 0.7 x x x

9 shapeCoeff A Leaf shape coefficient – 0.7 0.8 x x x
10 leafAngleLower A Insertion angle of leafs with rank

equal to or below rankLower
° 40 75 x x x

11 leafAngleUpper A Insertion angle of leafs with rank
above rankLower

° 20 60 x x 11

12 leafCurve A Leaf curvature− angle between
bottom and top of leaf blade

° 10 100 x x 10

13 petioleFraction A Fraction of biomass partitioned to
the petiole

– 0.0425 0.0575 x x x

14 specificPetioleLength A Petiole length per unit biomass m g−1 2.125 2.875 x x x
15 rankLower A Number of lower phytomers that

contain nrLeavesLower leaves; this
partitions a plant in an lower and
upper part with (potentially)
different architectural properties
Integer-valued, pi = 3, |𝛿i| = 1/2

– 2 4 x x x

16 phyllotaxis A Angle between consecutive leaves
along the stem

° 110 250 x x x

17 sheathscalefactor A Determines sheath width – 20 40 x x x
18 nrShortInternodes P Number of bottom internodes that

do not elongate
Integer-valued, pi = 3, |𝛿i| = 1/2

– 3 5 x x x

19 wmaxRoot P Maximal root system biomass
(under ideal no-stress conditions)

mg 10 000 50 000 11 x 7

20 wmaxFlower P Maximal flower biomass mg 200 000 400 000 8 x x
21 wmaxInt P Maximal internode biomass mg 3000 5000 x x x
22 wmaxLeaf P Maximal leaf biomass mg 4000 6000 x x 9
23 teRoot P Growth duration in thermal time of

root system (no growth after this
time)

°C day 1620 1980 x x x

24 teFlower P Growth duration in thermal time of
flower

°C day 900 1100 x x x

25 teInt P Growth duration in thermal time of
internode

°C day 450 550 x x x

26 teLeaf P Growth duration in thermal time of
leaf

°C day 450 550 x x 13

27 nitro P Nitrogen content of fully lit leaf g m−2 1.5 4 2 1 3
28 leafLife P Life span of leaf since appearance

(expressed as number of times
teLeaf)

– 2 4 x x x

29 varDelay P Max variation in germination delay
Integer-valued, pi = 5, |𝛿i| = 2/4

day 2 6 x x x

30 seedMass P Seed endosperm mass mg 250 300 x x x
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Table 1.Continued.
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31 SASmax P Shade avoidance syndrome
amplitude factor (cSAS =
1+ (SASmax− 1) exp(−SASk ⋅ sr),
where sr is the plant source/sink
ratio)

– 10 30 x x x

32 SASk P Shade avoidance syndrome
exponent factor

– 1 15 x x x

33 reflectancePAR P Reflectance of PAR by leaves and
stem (fraction of incoming PAR)

- 0.07 0.15 x x x

34 transmittancePAR P Transmittance of PAR by leaves
(fraction of incoming PAR)

- 0.04 0.15 x x x

35 k2ll_a P In calculation of conversion
efficiency of incident light into
electron transport at strictly limiting
light

mol mol−1 0.0396 0.0484 x x x

36 k2ll_b P mol mol−1 0.1845 0.2255 x 11 x
37 Vcmax25_a P In calculation of maximum rate of

Rubisco activity-limited
carboxylation

𝜇mol m−2s−1 27.36 33.44 x x x

38 Vcmax25_b P 𝜇mol m−2s−1 3.924 4.796 – x x
39 Jmax25_a P In calculation of maximum rate of e-

transport under saturated light
𝜇mol m−2s−1 89.442 109.318 x x x

40 Jmax25_b P 𝜇mol m−2s−1 5.175 6.325 x x x
41 Rd25 P Day respiration (respiratory CO2

release other than by
photorespiration)

𝜇mol m−2s−1 1.08 1.32 x x x

42 TPU25_a P For calculation of triose-phosphate
utilization

𝜇mol m−2s−1 4.8303 5.9037 x x x

43 TPU25_b P 𝜇mol m−2s−1 0.837 1.023 x x x
44 rg P Growth respiration g g−1 day−1 0.255 0.345 10 9 12
45 kNkL P Ratio of leaf nitrogen and light

extinction coefficients (kN/kL)
– 0.2 1 6 5 5

46 rm P Maintenance respiration g g−1 day−1 0.01275 0.01725 x – x
47 fCO2 P Conversion factor of CO2 to

biomass
– 0.51 0.69 5 3 6

48 tb D, P Base temperature for thermal time
calculation

°C 6 10 1 2 8

49 plastochronconst D Plastochron (thermal time between
creation of two phytomers) is this
constant (∈ [0, 1]) times
phyllochron, to ensure that
plastochron is smaller than
phyllochron

– 0.8 0.95 x x x

50 phyllochron D Thermal time between appearance
of two leaves

°C day 25 35 x x x

51 finalPhytNum D Final number of main stem
vegetative phytomers
Integer-valued, pi = 6, |𝛿i| = 3/5

– 10 20 3 8 4

52 fallPAR D Light level below which leaf drops 𝜇mol m−2s−1 20 100 x 7 2

44: rg) or the conversion factor for CO2 to biomass (param-
eter 47: fCO2)—are identified as important suggests it might
be appropriate to make these parameters species- or organ-
dependent, for example, give them different input ranges for dif-
ferent species or organs. Likewise, average temperature parame-
ters being identified as important for yield and peak biomass in-
dicates that i) it is important tohave accurate temperature data or

predictions; and ii) it might be beneficial to add a more detailed
description (in time and/or space) of temperature.

This sensitivity analysis also suggests the description of some
species-dependent parameters is too simplistic. As an example,
leaf mass per unit area (parameter 6: LMA) is currently mod-
elled as homogeneous in space and constant in time. In reality,
this quantity is likely variable in both space and time (Zhou et al.
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Figure 2. RSD, in %, Equation (14) over 3 replicates of outputs at
each of the 2120 simulation points.

2020). This input is among the most important ones for all out-
puts, which implies itmay be useful to includemore detail in this
aspect of the model.

Interestingly, some of the important parameters cannot gen-
erally be measured in an experimental setting, or at best can
only be roughly estimated. Among these are theoretical maxi-
mumbiomass of the root system, flower and leaf (parameters 19:
wmaxRoot, 20: wmaxFlower and 22: wmaxLeaf).

5.2. Unimportant parameters
While two architectural parameters are identified as impor-
tant for the output peak LAI (leaf curvature (parameter 12:
leafCurve) and insertion angle of upper leaves (parameter 11:
leafAngleUpper)), the vast majority are deemed unimportant
for all outputs (Fig. 4). This suggests that, for the current maize
model, parameters such as internode length per unit biomass
(parameter 5: specificInternodeLength), petiole length per unit
biomass (parameter 14: specificPetioleLength), angle between
consecutive leaves (parameter 16: phyllotaxis) and a number
of leaf shape parameters (parameters 7: lwRatio, 8: maxWidth,
9: shapeCoeff), which might be time-consuming or costly to
measure, can be fixed or estimated more coarsely.

Furthermore, the parameters governing the strength of the
shade avoidance syndrome (SAS; parameters 31 and 32) (in this
case shade-induced internode extension) are identified as unim-
portant, even though the range for these parameters was quite
wide. This does not mean that the SAS mechanism itself is ir-
relevant, as plant architecture changes significantly depending
on the amount of competition Huber et al. (2021), but instead
our analysis suggests that variation in the strength of the SAS
response does not lead to significantly different LAI, yield or
biomass.

Surprisingly, phyllochron (parameter 50) and plastochron
(parameter 49) are also classified as unimportant. Simulations
with phyllochron set to theminimumandmaximumvalues of its
input range show a noticeable effect on the architecture (Fig. 8),
but, like SAS, our analysis suggests that this does not translate to
a significant impact on field-level outputs yield, peak biomass or
peak LAI (Fig. 6).

5.3. Relative standard deviation
A number of inputs have a low sensitivity index but high RSD
Equation (14), such asPARreflectance (parameter 33: reflectan-
cePAR) and transmittance (parameter 34: transmittancePAR)
by leaves and stem, and a photosynthesis parameter used in the
calculation of the maximum rate of Rubisco activity-limited car-
boxylation (parameter 37: Vcmax25_a) (Fig. S6 in Supporting
Information—SupplementaryMaterial S4).While themean re-
sponse of an output to changes in such an input is low, there are
high fluctuations around this mean, which would indicate non-
linearity or interaction effects. This makes it unclear whether
these parameters are actually unimportant. We found that there
can be a variety of reasons for a high RSD (see Fig. S6 in Sup-
porting Information—SupplementaryMaterial S4).Ononeend
of the spectrum are inputs with a single (absolute) effect that is
much larger than the others, solely causing a high standard de-
viation of effects. This might indicate very local non-linearity or
interaction effects, or suggest important parts of parameter space
have not been sufficiently covered by the chosen number of tra-
jectories. On the other end are the inputs for which effects are
evenly distributed around the mean, indicating a more general
non-linear trend or more global interaction effects. There does
not seem to be a clear correlation between large effects and small
step sizes for such effects (Fig. 3 and Supporting Information—
Supplementary Fig. S6).

5.4. Illustrative (local)OAT simulations
We performed an illustrative (local) OAT study for three pa-
rameters that were identified as important (nitrogen content
of fully lit leaf (parameter 27: nitro), maize base tempera-
ture (parameter 48: tb), conversion factor of CO2 to biomass
(parameter 47: fCO2)) and three inputs found to be unim-
portant for all outputs (leaf shape coefficient (parameter 9:
shapeCoeff), phyllochron (parameter 50: phyllochron), PAR re-
flectance by stem and leaves (parameter 33: reflectancePAR))
(Fig. 6). The baseline is taken to be the mean of each input’s
range, and the six inputs are then varied over their ranges uni-
formly. Consistent with the results from the GSA, the OAT
method shows that the three important parameters have a sig-
nificant effect on the outputs, while the unimportant param-
eters have negligible effects (Fig. 6). This is purely an illus-
trative example; OAT is not a replacement for rigorous GSA,
and the output response could be different at another base-
line in parameter space. Figures 7 and 8 show the effect on
the plant architecture of varying leaf nitrogen content (param-
eter 27: nitro) and phyllochron (parameter 50: phyllochron),
respectively.

5.5. Further observations
While maximum biomass is typically attained at the last sim-
ulation day, there is a large variation in the time when max-
imum LAI is achieved, as the precise pattern of leaf senes-
cence hardly plays a role for biomass accumulation, while it
does for LAI (Fig. 9). The simulation day at which maximum
LAI is achieved approximately follows a normal distribution
with mean 103 (days) and standard deviation 17.74 (days),
noting that all the simulations where the maximum was at (or
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Figure 3. Scaled dimensionless step sizes (|𝛿n
i | ∈ [0, 1]) for each input parameter, which follow from the chosen trajectory generation method

(Section 2.2). Effects corresponding to step sizes smaller than the threshold (red line) are labelled as outliers and removed from the analysis.
The threshold is described in Section 4.3. The label colours represent the parameter categories. Black: architectural; red: developmental; green:
environmental; blue: physiological. See Table 1 for more information about the input parameters.

would be after) the final simulation day are grouped in the bin
for day 159.

Plotting the sensitivity indices for yield against those for peak
biomass (Fig. 10; R2 = 0.8946) shows that for only 6 out of 52
parameters, the sensitivity indices lead to different classifications
(e.g. important for yield, neither for peak biomass), and in only
three cases are the classifications opposite (e.g. important for
yieldbut unimportant for peakbiomass), indicatingbiomass and
yield are generally correlated. This agrees with previous findings
from field trials (Sinclair et al. 1990).

Finally, we considered the evolution of the sensitivity indices
for LAI, aboveground biomass and yield over time (Supporting
Information–Supplementary Material S3), and used collinear-
ity analysis (following De Swaef et al. (2019); Coudron et al.
(2021)) to assess identifiability of themodel.The collinearity in-
dex used here was proposed by Brun et al. (2001) as a measure
of linear dependencies between model parameters. Our results
show that the model is generally identifiable (Figs. S4 and S5),
with all collinearity values for LAI and biomass (and most for
yield) below the commonly used threshold of 20, and the ma-
jority of values for all three outputs below the stricter threshold
of 15.

6. DISCUSSION
Over recentdecades,manymodellers havedeveloped functional-
structural plant models to gain understanding of plant develop-
ment. However, as these models become more detailed, they
typically involve huge parameter sets, making it challenging to
explore the parameter space and infer how the choice of pa-
rameters influences model predictions. Furthermore, the size
of the parameter space makes it impractical to identify opti-
mal parameter regions that would be predicted to maximise

outputs like light capture, biomass production or grain produc-
tion. Modelling studies are therefore typically limited to us-
ing a defined parameter set and exploring the influence of a
handful of plant traits. A notable exception is found in Ran-
garajan et al. (2022), who performed multi-objective opti-
mization on an FSP model to identify optimal root pheno-
types.

Whenever models use parameter values estimated from the
experimental literature, it is often unclear whether any errors
in measurement or differences between species would influence
model predictions and where more detailed measurements
would be beneficial.

To address these challenges, we have explored the use
of global sensitivity analysis (GSA), which identifies impor-
tant (and unimportant) parameters for a given model out-
put. Our study has demonstrated that GSA provides useful
insights both for our biological understanding of plant de-
velopment and for guiding further model development and
parameterization.

Modelling insights In terms of model development, GSA en-
ables us to identify unimportant parameters, so that they may
be set to a fixed value, thereby decreasing dimensionality of the
typically large model parameter space. Efforts can then be con-
centrated on accurately estimating the most important input pa-
rameters. In addition, identifying themost importantparameters
can significantly ease the task of finding the optimal set of plant
characteristics for a given trait.

Out of 52 input parameters, only 12 were identified as im-
portant for yield and peak biomass (14 for LAI), while over
70 % of inputs were deemed unimportant (Fig. 4). This high-
lights the benefit of incorporating GSA in the modelling pro-
cess, as it suggests a rough estimate suffices for the majority of
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Figure 4. Sensitivity indices S𝜒(i, j) Equation (8) for different outputs. See Table 1 for more information about the input parameters.

input parameter values. Our analysis revealed that the important
parameters included leaf nitrogen content (parameter 27: nitro),
base temperature (parameter 48: tb), conversion factor of CO2
to biomass (parameter 47: fCO2) and leaf mass per unit area
(parameter 6: LMA). Interestingly, some of the important pa-
rameters cannot generally be measured in an experimental set-
ting, or at best can only be roughly estimated. Among these
are theoretical maximum biomass of the root system, flower
and leaf (parameters 19: wmaxRoot, 20: wmaxFlower and 22:
wmaxLeaf).

The FvCB photosynthesis model is calibrated fairly precisely
for C3 species, but as Yin and Struik (2009) note, several param-
eter estimates in the C4-equivalent contain more uncertainty.
None of the FvCB parameters taken into account (parameters
35–43) are classified as important in our analysis, which suggests
the C4 model can be reliably used with the values proposed in
Yin and Struik (2009).

Some inputs identified as unimportant due to their low sen-
sitivity index have a relatively high standard deviation of effects
(Fig. 5, e.g., parameters 33: reflectancePAR; 34: transmittan-
cePAR; 37: Vcmax25_a), with high fluctuations around a low
mean, which could indicate non-linearity or interaction effects.

To quantify the importance of these fluctuations there is no one
rule that fits all, but instead one should investigate those pa-
rameters with low sensitivity indices but high RSD further on
an ad hoc basis as described in Section . Expert knowledge of
the biological processes or model equations related to such in-
puts can help identify likely interaction effects and quantify their
importance.

Most parameters related to crop architecture were classified
as unimportant. This does not mean that architecture itself is
not relevant. If a model does not address aspects of architec-
ture, questions that rely on architecture cannot be addressed. As
changes in architectural parameters (e.g. leaf length/width ratio
or phyllotaxis) do lead to noticeable changes in plant architec-
ture, we hypothesize this is due to the choice of outputs (yield,
aboveground biomass and LAI), which are crop-level outputs.
As a result, many parameters that are routinely deemed to be im-
portant in conventional cropmodels are also identified as impor-
tant in our analysis. Considering specific structural outputs (e.g.
average leaf area, number of leaves) might result in more archi-
tectural parameters being classified as important. Additionally,
architectural parameters might play a bigger role in polycultures,
whereas here a monoculture was simulated.
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Figure 5. Sensitivity index S𝜒 Equation (8) and RSD Equation (14) for the three outputs ordered to the S𝜒 for yield. The label colours
represent the parameter categories. Black: architectural; red: developmental; green: environmental; blue: physiological.

Figure 6. OAT simulations of 3 important parameters (red) and 3 unimportant parameters (grey). Each parameter is uniformly varied over its
input range (Table 1), while the other parameters are set to the mean of their input ranges.

More generally, sensitivity results may change under differ-
ent scenarios (e.g.management or environmental) (Richter et al.
2010; Coudron et al. 2021). Architectural parameters might for
example become more important with increased competition
(higher plant densities) or with increased variability in plant
traits (e.g. intercropping several maize varieties). Sensitivity in-
dices may also change over time. In our analysis, this was the
case for the output peak aboveground biomass (see Fig. S3),
where parameters related to initial development (e.g. param-
eter 30: seed mass) were initially important, but became less
relevant at later points in time, while, for example, parameter
27: leaf nitrogen content became more important over time.

One should, therefore, carefully consider the applicability and
generalizability of sensitivity results.

Biological insights We expect several conclusions to extend
to different crop species, crop designs or environmental con-
ditions within this model. Parameters that are part of major
conserved mechanisms, such as photosynthesis and growth, are
likely to be equally insensitive independent of the species or con-
ditions (within biologically sensible ranges). For stress events
like drought or heat, GSA specific for such conditions would
need to be done. Interestingly, we found that several architec-
tural parameters were unimportant formodel output, in contrast
to somemodel-aided trait analyses for other species that do show
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Figure 7. Architectural differences in a stand of maize caused by a difference in leaf nitrogen content (parameter 27) (identified as an
important parameter) at the end of simulation day 99. The other parameters are set to the mean of their input ranges (Table 1). (A) nitro=
1.5 g m−2; lower bound of input range. Yield= 516 g m−2, peak biomass= 777 g m−2, peak LAI= 2.2. (B) nitro= 4 g m−2; upper bound of
input range. Yield= 884 g m−2, peak biomass= 1401 g m−2, peak LAI= 3.8. See also Fig. 6.

Figure 8. Architectural differences in a stand of maize caused by a difference in phyllochron (parameter 50) (identified as an unimportant
parameter) at the end of simulation day 99. The other parameters are set to the mean of their input ranges (Table 1). (A) Phyllochron= 25 °C
day; lower bound of input range. Yield= 700 g m−2, peak biomass= 1185 g m−2, peak LAI= 3.2. (B) Phyllochron= 35 °C day; upper
bound of input range. Yield= 700 g m−2, peak biomass= 1133 g m−2, peak LAI= 3.3. Despite these architectural differences, the model
outputs shown here and in Fig. 6 show that phyllochron is not important for yield, peak biomass or peak LAI.

Figure 9. Histogram of the simulation day when peak LAI (black;
primary vertical axis) and peak biomass (red; secondary vertical
axis) are achieved. The right-most box contains simulations where
the maximum was achieved at the final simulation day, so likely the
majority of those would have reached their global maximum after
that day.

the relevance of architectural parameters (Sarlikioti et al. 2011;
Barillot et al. 2014; Zhu et al. 2015; Li et al. 2021). This discrep-
ancy might have been caused by the difference in the output
under consideration. We focused on LAI, biomass growth and

yield, whereas the studies cited analysed the effect of architec-
tural traits on light capture andphotosynthesiswithout feedback
on plant growth.

Parameters governing shade avoidance response were identi-
fied as unimportant. This is not surprising, since the relatively
uniform maize canopy we simulated leads to approximately the
same response in all plants. This would likely be different in
more heterogeneous mixed-species stands where performance
depends on plastic plant responses to local conditions (Zhu et al.
2015).

Leaf appearance rate (phyllochron) is known to have a sig-
nificant impact on plant architecture, is typically deemed as an
important parameter in cropmodels, andhas received significant
interest as a potential breeding target to bring forward theflower-
ing date (Wilhelm andMcMaster 1995; Birch et al. 1998; Padilla
and Otegui 2005; Clerget et al. 2008; dos Santos et al. 2022).
Interestingly, phyllochron was classified as unimportant in our
study. Variations in phyllochron—as expected—did lead to vis-
ible changes in plant architecture (Fig. 8). However, these archi-
tectural changes did not lead to significant changes in field-level
outputs yield, biomass or LAI.Wehypothesize that the expected
increase in total leaf area as a result of lower phyllochron is coun-
teracted by increased competition between the higher number
of leaves. This leads to a near-constant peak LAI, which subse-
quently does not lead to significant changes in peak biomass and
yield.
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Figure 10. Peak biomass as proxy for yield, with indications of which
sensitivity indices agree and which do not. Green area (diagonal
lines top-left to bottom-right): indices agree; orange area (dotted):
input (un)important for one output, neither for the other; red area
(diagonal lines bottom-left to top-right): input important for one
output, unimportant for the other. Markers: grey: parameter
unimportant for both outputs; red: important for both outputs;
blue: disagreeing classifications for different output.

To conclude, this work shows that including global sensitiv-
ity analysis in the modelling routine for FSP models can lead
to a variety of insights about both the model and the biologi-
cal processes it describes. GSA is applicable to any model, and
should therefore become a standard consideration for any FSP
modeller. However, as sensitivity results may change under dif-
ferent scenarios or models, the applicability and generalizability
of sensitivity results should be inferred with caution.

SUPPORTING INFORMATION
S1.Trajectory generation
S2. Input parameters with fixed values
S3. Exploratory data analysis
S4. Effects for three unimportant inputs with high RSD

They contain the following:
S1: Detailed information on the used trajectory generation
method for our Elementary Effects analysis
S2:Table of parameter values used in EE analysis
S3: Additional figures showing results from EE analysis
S4: Figure of effects for three unimportant inputs with high
relative standard deviation
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