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Abstract—One of the challenges in collaborative human-robot
object transfer is the robot’s ability to infer about the interaction
state and adapt to it in real time. During joint object transfer
humans communicate about the interaction states through mul-
tiple modalities and adapt to one another’s actions such that the
interaction is successful. Knowledge of the current interaction
state (i.e. harmonious, conflicting or passive interaction) can
help us adjust our behaviour to carry out the task successfully.
This study investigates the effectiveness of physical Human-
Human Interaction (pHHI) forces for predicting interaction states
during ongoing object co-manipulation. We use a sliding-window
method for extracting features and perform online classification
to infer the interaction states. Our dataset consists of haptic
data from 40 subjects who are partnered to form 20 dyads. The
dyads performed collaborative object transfer tasks in a haptics-
enabled virtual environment to move an object to predefined goal
configurations in different harmonious and conflicting scenarios.
We evaluate our approach using multi-class Support Vector
Machine classifier (SVMc) and Gaussian Process classifier (GPc)
and achieve 80% accuracy for classifying general interaction
types.

Index Terms—Classification, Feature Extraction, Haptics,
Physical Human-Human Interaction, Physical Human-Robot In-
teraction, Learning and Adaptive Systems

I. INTRODUCTION

Physical human-human interaction (pHHI) is complex; it
involves good interpersonal coordination and mutual role
adaption Melendez-Calderon et al. [1]. These help humans
to determine how and when their partner’s goals and the
overall interaction states change, allowing them to enhance
their movements Takagi et al. [2]. Learning how and when the
interaction states change in pHHI has important implications
for physical human-robot interaction (pHRI). A robot which
can accurately infer the current interaction state can use that
information to adjust its behaviour to better complement the
human partner during pHRI. In [3], we presented a feature
extraction method to perform online classification for distin-
guishing between interaction states during pHHI as an effort
to understand how two human partners’ interactive states
change over physical collaboration. This paper summarizes our
classification results using the data collected during a dyadic
object transfer using Madan et al.’s behavior taxonomy [4].

II. BACKGROUND

The data was collected using a virtual environment where
human dyads interact through the haptic channel [4]. 40 volun-
teers, who got randomly matched to form dyads, participated
in the study. The dyads collaborated in order to move an object
in between target configuration. Two scenes with various
scenarios that involve rotation and translation movements were
created to provoke a range of different interaction patterns
inducing conflicts and harmony.
Madan et al.’s taxonomy assumes that there are three main
types of interaction in any collaborative task between humans:
T1. Harmonious interaction, T2. Conflicting interaction, and
T3. Neutral interaction. Using this assumption we observed the
frequently emerging patterns from the interaction and classed
them into 6 task dependent interaction pattern classes as shown
in Figure 1. The interaction pattern classes fall under inter-
action type classes as follows: C1: Harmonious translation,
C2: Harmonious rotation with translation, C3: Harmonious
braking, C4: Persistent conflict, C5: Jerky conflict, and C6:
Passive agreement

Fig. 1. Interaction taxonomy proposed by Madan et al. [4].

III. METHODOLOGY

The dataset consists of variable length annotated interaction
segments. In order to perform online classification we set a
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short window to extract a small sequence to be used for feature
extraction. We extract 2 seconds worth of features every 1.5
seconds. The window parameters are empirically set such that
enough data is mined for accurate classification while also
taking into account human reaction times.

A. Online feature extraction

Before we begin with the extraction process, we prepare the
raw timeseries data for processing. We assign every data point
a label that matches the annotation defining the class of the
corresponding interaction segment. As we iterate through the
interactions, our window encounters segments that belong to
more than one class. This can result in ambiguity of the
segment’s class and training on such segments can reduce
the performance of our model. We deal with such ambiguity
by checking the prominence of each class, and drop the
window if the difference between the most prominent and
second most prominent label is less than 20%. From windows
that are not dropped, we extract features using the feature
definitions in [4]. For each window, we compute the mean,
standard deviation, median, and interquartile range for each
of the variables. The feature set contains 48 features, which
are normalized before being used for training and testing.

IV. RESULTS

We investigate online classification performance of Support
Vector Machine (SVMc) and Gaussian Process (GPc) classi-
fiers in two layers of Madan et al.’s hierarchy, namely on both
task-dependent and task-independent behaviours. The perfor-
mance of our model is evaluated using confusion matrices and
by reporting the correct classification rates.

A. Experiment 1: Online classification of interaction patterns

In the first experiment, we investigate how our approach
performs in distinguishing task-dependent interaction patterns.
Figure 2 shows the confusion matrices. Our results indicate
that SVMc reaches a 78.04% accuracy, whereas GPc achieves
an accuracy of 80.79% on the online feature set, with 2.75%
improvement on the performance of SVMc.

Fig. 2. Confusion matrices for SVMc and GPc for the online classification
of interaction patterns

B. Experiment 2: Online classification of interaction types

In the second experiment we look at our model’s performance
for distinguishing task independent behaviors, namely har-
monious, conflicting and neutral interactions. The SVMc and
GPc achieved 83.31% and 83.40% accuracy respectively. The
confusion matrices are shown in Figure 3

Fig. 3. Confusion matrices for SVMc and GPc for the online classification
of interaction types

The following table summarises the previously discussed on-
line classification performances and compares them to offline
classification performance.

V. FINDINGS

Our experiments indicate that haptic data can be used for
accurate classification of human interaction types and patterns
in real-time. We also demonstrate our windowing method
as a viable online feature extraction method for timeseries
classification to identify interaction states during ongoing
physical collaboration. The results indicate that both GPc and
SVMc perform well at online classification of interaction states
with our feature extraction techinque. GPc achieves a slightly
better accuracy but at the cost of much longer training time.

VI. FUTURE WORK

This study acts as a first step to build a proactive robotic
partner, which can assist a human, while being aware of
the interaction state that the partners are in. Our study also
demonstrates that haptic data is extremely useful for physical
interaction inference. In future work we intend to design and
experiment with more sophisticated haptic features, to see how
much useful information can be carried through the haptic
channel. We also aim to combine haptics with other modalities,
such as vision and muscle activity in order to build a more
comprehensive model for interaction and individual user states
and intentions. This model could then be used in HRI to define
proactive robot behaviours and/or role arbitration as described
in [5].
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