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Abstract 

Thick-walled cylinder (TWC) tests are widely used to obtain soil properties and 

investigate wellbore instability problems in laboratory-controlled conditions. This paper 

presents analytical cavity expansion and contraction solutions for modelling undrained 

TWC tests under three typical loading and unloading programs. Both cylindrical and 

spherical cavities in critical state soils with a finite radial extent subjected to monotonic 

loading or unloading under undrained conditions are considered. The solutions are 

developed in terms of finite strain formulations, and the procedure is applicable to any 

isotropically hardening materials. Parametric studies show the boundary effect may 

significantly affect the cavity expansion/contraction response. A limit outer-to-inner 

diameter ratio of the soil sample exists, beyond which the boundary effect becomes 

negligible. The limit ratio varies with the cavity geometry, soil stress history (OCR), and 

cavity deformation level. For undrained TWC tests, a diameter ratio over 20 should 

normally be adequate to remove the possible boundary effect. Predicted expansion and 

contraction curves by the new solutions are compared with published data of TWC tests 

in the literature, and good agreement is shown in each loading/unloading program. This 

indicates that the boundary effect, which greatly limits the application of conventional 

cavity expansion/contraction solutions into TWC problems, is successfully captured by 

the present solutions. The solutions can also serve as valuable benchmark for verifying 

various numerical methods involving critical state plasticity models. 

KEYWORDS: Cavity expansion, Cavity contraction, Thick-walled cylinder tests, 

Boundary effect, Critical state soil 
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1 Introduction  1 

Loading and unloading of a thick-walled cylinder (TWC) of soil in a triaxial cell or 2 

chamber have been used to investigate the soil behaviour involved in a wide class of 3 

geotechnical problems [3,5,27,36]. In laboratory-controlled conditions, three 4 

loading/unloading programs are commonly applied in TWC tests, namely internal loading 5 

(i.e. increasing the internal pressure), internal unloading (i.e. reducing the internal 6 

pressure) and external loading (i.e. increasing the external pressure), while keeping other 7 

confining pressures constant [1] (see Fig. 1). The internal loading program (also known 8 

as the boundary condition BC1 [27]) is often used to investigate the pressuremeter 9 

response [6,26,31,33,35,58]; the internal unloading and external loading programs are 10 

common in the study of wellbore instability problems [1,18,24,74]. 11 

For the purpose of saving energy, time, cost and space during sample preparation and 12 

testing and/or improving detectability or traceability of internal soil deformation with 13 

non-destructive measurement techniques (e.g. X-ray Computed Tomography), hollow 14 

cylinder triaxial apparatuses with outer-to-inner diameter ratios (or chamber diameter to 15 

pressuremeter diameter ratio) in a range of 2 to 20 have widely been used in the laboratory 16 

[3,5,6,23,26,31,33-36,43,58,60]. It has been reported that significant boundary effects (or 17 

container size effect) usually exist in the loading and unloading tests within such small-18 

sized containers, which may lead the measured soil response to be quite different from 19 

that in an infinite or ‘semi-infinite’ soil mass [3,25,29,35,47,49,54,55]. Cavity 20 

expansion/contraction theory is a useful theoretical tool for the study of pressuremeter 21 

tests and wellbore instability problems [14,18,28,32,42,71]. However, the focus of most 22 

previous studies has been on the analysis of a cavity embedded in an infinite soil mass 23 

ideally simulating the field conditions [69]. The aforementioned boundary effect is 24 

apparently overlooked in these infinite cavity expansion and contraction models. 25 

Consequently, they are not suitable for the analysis of pressuremeter and wellbore 26 

instability problems in TWC tests as discussed by Juran and BenSaid [34], Silvestri [57], 27 

and Abdulhadi [1], among others. To address this problem, this paper presents novel and 28 

general solution procedures for undrained cavity expansion and contraction analysis in 29 

soils with a finite radial extent under the aforementioned three loading/unloading 30 

programs, and a set of analytical/semi-analytical finite strain solutions for several Cam-31 

Clay-type soil models is derived. 32 
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Before presenting the theoretical analysis, some pioneering studies into quasi-static 33 

cavity expansion and contraction behaviour under the considered loading/unloading 34 

programs are briefly reviewed. For a cavity expanding and contracting in an infinite soil 35 

mass under the internal loading and unloading programs, undrained expansion and 36 

contraction solutions in the framework of critical state soil mechanics refer to some 37 

pioneering works from Collins and Yu [22], Chen and Abousleiman [15], Vrakas [61], 38 

Mo and Yu [40] and Yu and Rowe [73], Vrakas and Anagnostou [62], Chen and 39 

Abousleiman [17], Mo and Yu [39], respectively. For brevity, we focus here on reviewing 40 

relevant elastic-plastic solutions for the analysis of a cavity embedded in a finite soil mass 41 

as below. 42 

Existing analytical solutions for the problem of an internally pressurized cavity within 43 

a finite soil mass are mainly restricted to elastic-perfectly plastic models such as the 44 

Tresca model [30,34,69] and Mohr-Coulomb model [25,48,66,67]. When considering the 45 

hardening and softening behaviour of soil, a few semi-analytical drained solutions have 46 

also been developed so far. Salgado et al. [53] presented solutions for expansion analysis 47 

of a cylindrical cavity in Mohr-Coulomb soils considering non-linear elasticity and 48 

variations of friction and dilation angles. The solution was combined with stress rotation 49 

analysis to investigate the effects of several types of boundaries to the cone penetration 50 

resistance in sand [54]. Adopting an elastic-plastic constitutive model formulated in the 51 

critical state framework, Pournaghiazar et al. [48] developed approximate solutions using 52 

the similarity technique for both cylindrical and spherical cavities expanded from zero 53 

radius subjected to either constant stress or zero displacement at the finite boundary under 54 

drained conditions. For the same problem, a more rigorous spherical solution was 55 

obtained by Cheng and Yang [19] with the aid of the auxiliary independent variable 56 

proposed by Chen and Abousleiman [16]. Cheng et al. [20] further applied the method to 57 

the cavity expansion analysis in a finite unsaturated soil mass assuming that the 58 

contribution of suction to the effective stress is constant. Lately, Wang et al. [63] derived 59 

a solution for a spherical cavity expanding in modified Cam Clay of finite radial extent 60 

under undrained conditions. The development of these solutions highly relied on the 61 

assumption that the conditions at the elastic-plastic boundary satisfy the plastic and elastic 62 

governing equations simultaneously. This requires that the radius of the elastic-plastic 63 

boundary must always be smaller than the outer radius of the finite soil medium upon 64 

loading, which may valid for the cavity creation or cone penetration problems that were 65 
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studied in these references. However, this is not generally appropriate for the loading 66 

analysis of a hollow cylinder or spherical shell with small outer-to-inter diameter ratios 67 

as the entire soil mass may easily yields plastically [49,66,67], in particular for normally 68 

consolidated soils. In more general conditions, existing studies into this problem were 69 

mainly based on numerical techniques [4,11,35,49]. 70 

The external loading and internal unloading programs have often been applied in both 71 

laboratory tests [1,24,45] and numerical simulations [4,44,74] of TWCs, but a very 72 

limited number of analytical solutions were obtained for these cavity contraction 73 

problems in a finite soil mass. Durban and Papanastasiou [24] presented semi-analytical 74 

solutions for the external compression analysis of a thick-walled cylinder using non-75 

associated Mohr-Coulomb and Drucker-Prager models with arbitrary hardening. Very 76 

recently, focusing on the short-term contraction behaviour of soil around shallow tunnels 77 

in clay, Zhuang et al. [75] presented a set of undrained cavity contraction solutions for 78 

both thick-walled cylinders and spherical shells of Cam clays under the internal unloading 79 

program in the companion paper. However, solutions for undrained contraction analysis 80 

under the external loading program are not common in the literature to the best knowledge 81 

of the authors, particularly for advanced critical state models of soil. 82 

In the light of the above discussion, the novelty and importance of the present solutions 83 

mainly lie in the following: (a) three typical loading/unloading programs that commonly 84 

used in TWC tests are considered, and the associated boundary effect is captured in a 85 

rigorous semi-analytical manner; (b) the strain is finite, and the solution procedure 86 

applicable for any isotropically hardening materials; and (c) the solution for the unified 87 

state parameter model of CASM [68] is able to describe the cavity expansion and 88 

contraction behaviour in both clay (including heavily overconsolidated clay) and sand. 89 

The paper is structured as follows: Section 2 defines the problem; Section 3 presents the 90 

general solution procedure first, which is followed by solutions for several critical state 91 

soil models; Section 4 gives results of model validation and parametric studies; Section 5 92 

shows comparisons between predicted and measured cavity expansion and contraction 93 

curves for TWC tests under three different loading and unloading programs. Finally, some 94 

conclusions are drawn. 95 

2 Problem Definition 96 
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As depicted in Fig.1, in a hollow cylinder triaxial cell, the soil specimen is subjected to 97 

three independently controlled confining stresses: the axial stress ( ap ), the uniform radial 98 

pressures acting on the inner ( inp ) and outer ( outp ) surfaces. The height, the inner and 99 

outer diameters of the hollow cylinder specimen are denoted by Ht, Di and Do, 100 

respectively. It has been shown that, with constant axial confining stress, the height of the 101 

specimen has minimal effect on the radial expansion or contraction response as long as 102 

the ratio of Ht/Do is greater than 1.5 [1,3]. In this case, the hollow cylinder 103 

loading/unloading tests can be ideally modelled as plane-strain cylindrical cavity 104 

expansion/contraction problems. In Fig.1, the inner and outer radii of a soil annulus upon 105 

radial loading or unloading are expressed by a  and b , respectively, and 0a  and 0b  106 

represent their initial values, respectively. 107 

It was previously introduced that three typical loading/unloading modes (named as 108 

internal loading, internal unloading and external loading) are often applied in TWC tests 109 

for investigating pressuremeter and borehole instability problems in the laboratory. In the 110 

internal loading or unloading program, the internal radial pressure is increased or 111 

decreased monotonically, while keeping the external cell pressure and the axial confining 112 

stress constant [3,35,58]. With the external loading program, TWC tests are performed 113 

by increasing the external cell pressure, while keeping the internal cavity pressure and the 114 

axial stress constant [1,24,74]. In general, the rate of loading/unloading in TWC tests 115 

under undrained conditions is much faster than the rates of consolidation and creep of soil 116 

[2,4,58], hence the behaviour of soil is considered as rate-independent in this study. 117 

The TWC tests subjected to monotonic loading or unloading are transformed into a 118 

typical boundary value problem of one-dimensional quasi-static cavity expansion or 119 

contraction. It has been shown that the analyses of spherical and long cylindrical cavity 120 

problems under uniform stress conditions are quite similar and can be treated 121 

simultaneously by introducing a parameter k  ( k  is equal to 1 for a cylindrical cavity and 122 

2 for a spherical cavity) [12,22,72,73]. Hence, solutions for the analysis of a thick-wall 123 

spherical shell of soil are also derived. The spherical expansion and contraction solutions 124 

may offer a chance to model point injection tests (e.g. Au et al. [8]) and cone penetration 125 

tests(e.g. Cheng and Yang [19] in small sized calibration chambers and spherical sinkhole 126 

formation problems at shallow depths (e.g. Augarde et al. [9]), but this is considered 127 

beyond the scope of this paper. 128 
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For convenience, cylindrical coordinates (r, θ, z) and spherical coordinates (r, θ, φ) 129 

with the origin located at the centre of the cavity are employed for the analysis of thick-130 

walled cylinder and spherical shell, respectively. The cylindrical cavity 131 

expansion/contraction analyses are performed under plane strain conditions with respect 132 

to the z-axis. Taking compression as positive, the initial stress boundary conditions are 133 

expressed as: 134 

0
0r r a

p
=

=     ,      
0

0r r b
p

=
=  (1 a,b) 135 

where r  represents the total radial stress. r  is the current radial coordinate of a material 136 

element which was initially at 0r . 0p  is the initial total confining pressure. 0 0 0p p U= + , 137 

0p  is the initial mean effective stress, and 0U  is the initial ambient pore pressure. 138 

The expansion and contraction analyses are performed under undrained conditions. 139 

The surrounding soil is assumed to be homogeneous and isotropic. For convenience, the 140 

mean effective and deviatoric stresses ( p , q ) below are used for the quasi-static analysis 141 

of the axisymmetric cavity expansion/contraction problem following Collins and Yu [22] 142 

and Yu and Rowe [73]. 143 

1

r k
p

k

  +
 =

+
    ,    rq   = −  (2 a,b) 144 

where r   and    are the effective radial and circumferential stresses, respectively. 145 

The volumetric and shear strains ( ; ) are defined as: 146 

r k   = +     ,    r   = −  (3 a,b) 147 

where r  and   are radial and circumferential strains, respectively. It needs to be 148 

pointed out that for the cylindrical case the above definitions for the stress and strain 149 

invariants are slightly different from the usual three-dimensional definitions in critical 150 

state soil models. However, it has been shown (e.g. in references of Sheng et al. [56] and 151 

Chen and Abousleiman [15]) that the error due to these simplifications is negligible for 152 

the analysis of cylindrical cavity problems under an isotropic in-situ stress state which is 153 

of interest in this paper. 154 

3 Undrained cavity expansion/contraction analysis 155 

3.1 Governing equations 156 
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Quasi-static cavity expansion/contraction analysis is mainly concerned with two typical 157 

problems: (a) continuous pressure-displacement curves; and (b) stress and strain 158 

distributions in soil at a given instant. Solutions for them can be obtained by solving a set 159 

of equations of stress equilibrium, deformation compatibility and stress-strain 160 

relationships of soil (as defined below) with given boundary conditions. 161 

(1) Stress equilibrium 162 

Under uniform and monotonic loading or unloading, neglecting body force and 163 

dynamic effect, the stress equilibrium condition along the radial direction can be 164 

expressed in terms of total stresses (Eulerian description) as: 165 

d
0

d

r
r

r

k r



 − + =   (4) 166 

where   is the total circumferential stress. 167 

Since ( )1r p kq k = + +  and U p p= −  ( p : the mean total pressure; U : the pore 168 

pressure), the gradient of U  along the radial direction is given as: 169 

d d d

d d 1 d

U p k q k
q

r r k r r


= − − −

+
  (5) 170 

(2) Deformation compatibility 171 

For the axisymmetric cavity expansion/contraction problem under undrained 172 

conditions, the constant-volume condition can be expressed as: 173 

1 1 1 1

0 0

k k k ka a r r T+ + + +− = − =   (6) 174 

where T is the variable representing the volumetric change of soil at an arbitrary radius. 175 

While keeping the external confining pressure constant, internal loading will lead to 176 

outward expansions of the surrounding soil, whereas inward contractions will be caused 177 

by internal unloading. Compressive deformation is taken as positive in this paper. Based 178 

on Eq. (6), the corresponding deformation compatibility equations for these two cases can 179 

be readily obtained [22,73]. Rigorous relations between the finite shear strain and the 180 

radial coordinate without any restriction on the deformation level are given: (a) for a given 181 

particle (i.e. Lagrangian description in Eq. (7)), and (b) at a fixed instant of time (i.e. 182 

Eulerian description in Eq. (8)), respectively, as: 183 
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1

0

1

0 0

ln ( 1) ln
k

k

r T r
k

r r


+

+

 +
= = + 

 
           (internal loading/unloading)  (7) 184 

1
ln 1

k

T

r


+

 
= − − 

 
                               (internal loading/unloading)  (8) 185 

Hence relations between the radial coordinate and shear strain increments: (a) for a 186 

given particle, and (b) at a fixed instant of time, respectively, are: 187 

d
( 1) d

r
k

r
+ =     ,    

d d
( 1)

exp( ) 1

r
k

r




+ = −

−
     (internal loading/unloading) (9 a, b) 188 

In the external loading program, the surrounding soil moves inwards (i.e. cavity 189 

contraction) with increasing external pressures. The soil movement is similar to that 190 

which occurred in the internal unloading program, but the soil deforms under 191 

compression. Therefore, new relations between the finite shear strain and the radial co-192 

ordinate are constructed in Eqs. (10) and (11), which are: (a) for a given particle, and (b) 193 

at a fixed instant of time, respectively. 194 

1

0

1

0 0

ln ( 1) ln
k

k

r T r
k

r r


+

+

 +
= − = − + 

 
         (external loading)  (10) 195 

1
ln 1

k

T

r


+

 
= − 

 
                                    (external loading)  (11) 196 

and the incremental expressions of these relations become: 197 

d
( 1) d

r
k

r
+ = −     ,    

d d
( 1)

exp( ) 1

r
k

r




+ = −

− −
        (external loading) (12 a,b) 198 

(3) Stress-strain relationships 199 

The stress-strain relationships are conveniently defined in general forms appropriate 200 

for a wide class of two-invariant critical state soil models in this subsection. Before 201 

entering plastic, soil behaviour is purely elastic. The elastic constitutive law is expressed 202 

in rate forms as: 203 

o

( , )

e p

K p v



=


    ,    

o

2 ( , )

e q

G p v
 =


 (13 a,b) 204 

where e  and e  represent the elastic volumetric and shear strain rates, respectively. 205 

( , )K p v  and ( , )G p v  are the instantaneous bulk and shear moduli, which are pressure-206 
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dependent (e.g. Eq.14). v  is the specific volume. The symbol (
o

) denotes the material 207 

time derivative associated with a given material particle; (
•

) denotes the local time 208 

derivate, evaluated at a fixed position r . 209 

The hypoelastic model that commonly adopted in Cam-Clay-type models (e.g. Table 210 

1) can be recovered by combining Eqs. (13) and (14). 211 

( , ) /K p v vp  =     ,    ( , )
vp

G p v 



 =  (14 a,b) 212 

where 0.5[(1 )(1 2 )] / [1 ( 1) ]k k  = + − + − , and   denotes Poisson’s ratio of soil.   213 

denotes the slope of the swelling line in the v - lnp  space. 214 

The loading and unloading programs are treated in a single analysis by introducing a 215 

parameter   (i.e. 1 =  for internal and external loading; 1 = −  for internal unloading) 216 

in this paper. Then the yield function and the plastic flow rule that used to describe the 217 

plastic behaviour of soil (e.g. Table 1) are written in a general form as: 218 

( , )yq f p p =     ,    
/

( )
/

p

p

g p
D

g q






 
= =

 
 (15a,b) 219 

where g  is the plastic potential; ( )D   represents the stress–dilatancy function; 220 

/q p  = , is the stress ratio. 
yp  denotes the preconsolidation pressure, which controls 221 

the size of the yield surface as a hardening parameter. In usual Cam-Clay type soil models 222 

[50,51,68], hardening is attributed solely to accumulated plastic volumetric strains, and 223 

the volumetric hardening rule of Eq.(16) is usually adopted. 224 

d( )
d

yp

y

p

v p

 


−
=


  (16) 225 

where   denotes the slope of the normal consolidation line (NCL) in the v - lnp  space. 226 

Table 1 Critical state constitutive models considered in the present study. 227 

Model Yield function Stress–dilatancy function ( )D  * 

Original Cam-Clay 

[51] 
ln( / )yq Mp p p   =  ( ) ( )

( 1)

k
D M

k
  = −

+
 

Modified Cam-Clay 

[50] 
/ 1yq Mp p p   = −  

2 2

( )
( 1) 2

k M
D

k


 



−
=

+
 

CASM [68] 

1/

*

ln( / )

ln

n

yp p
q Mp

r


  
= − 
 

§ 
( ) ( )

9( )
( )

1 9 3 2

k M
D

k M M


 



−
=

+ + −
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* Note that the conjugate shear strain to the shear stress of Eq. (2b) is in the form of 228 

/ ( 1)q k k = + . Accordingly, expressions of ( )D   are modified by definition. 229 

§ n and *r  are the stress-state coefficient and the spacing ratio, respectively. *r  controls 230 

the intersection position of the the critical state line (CSL) and the yield surface; n  231 

defines the shape of the yield surface (see Fig.2) in CASM [68]. 232 

The critical state is defined by the following two equations [52]. 233 

lnv Γ p = −   (17) 234 

q Mp =   (18) 235 

where Γ  is the value of v  on the CSL at =1kPap . M  is the slope of the CSL in the p236 

- q  space, which can be expressed as    2( 1)sin / ( 1) ( 1)sincs csM k k k = + + − −  for 237 

the present problem with Eq. (2). cs  is the critical state friction angle of soil. It has been 238 

shown that cs  measured in plane strain tests is up to 10-20% larger than that in triaxial 239 

compression tests ( tc ) due to the shear mode effect (or intermediate effective stress 240 

effect) [13,65]. To account for this effect in the analysis, it is assumed that cs  equals 1.1-241 

1.2 times of tc  for the plane strain conditions (k=1) and cs = tc  for the spherical 242 

symmetric conditions (k=2) [20]. 243 

3.2 Analytical effective stress analysis under undrained loading and unloading 244 

The above stress-strain relationships define that one soil element may successively enter 245 

three stress states (including purely elastic state, elastic-plastic state, and critical state) 246 

upon monotonic loading or unloading. Solutions for each state are derived as follows. 247 

(1) Purely elastic state 248 

According to the constant-volume condition and Eq. (13a), the mean effective stress 249 

remains constant and equals its initial value 0p  at the purely elastic state. Therefore, the 250 

bulk and shear moduli also remain constant and equal to their initial values 0K  and 0G  251 

respectively. The elastic shear stress 
eq  can be obtained by integrating Eq. (13b) along a 252 

particle path as: 253 

02eq G =   (19) 254 

Then the effective radial and circumferential stresses ( e

r  and e

 ) are given as: 255 
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0
1

e e

r

k
p q

k
  = +

+
  ,  0

1

1

e ep q
k

  = −
+

  (20) 256 

(2) Elastic-plastic state 257 

The soil yields plastically when the shear stress invariant reaches the yield value of 
epq258 

, which will depend upon the particular yield criterion. According to Eqs. (7) (or (10)) 259 

and (19), plastic deformation occurs first at the inner wall of the cavity upon loading or 260 

unloading, and the corresponding limit elastic shear strain equals: 261 

02

ep

ep

q

G
 =   (21) 262 

The plastic zone propagates outwards with subsequent loading or unloading. From Eqs. 263 

(8) (or (11)) and (21), the current and initial radii of the elastic-plastic boundary ( c  and 264 

0c , respectively) at the instant of the cavity with a radius of a  under different 265 

loading/unloading programs can be expressed, respectively, as: 266 

1 1

0( / ) 1

exp( ) 1

k k

ep

a ac

a 

+ + − 
= 

− − 
    ,    

1

1 1
0 ( )k kc c T+ += +     (internal loading/unloading) (22a,b) 267 

1 1

0( / ) 1

exp( ) 1

k k

ep

a ac

a 

+ + − 
= 

− 
    ,    

1

1 1
0 ( )k kc c T+ += +     (external loading)  (23a,b) 268 

As 0e p + =  under undrained conditions, integrating Eqs. (13a) and (16) gives: 269 

0 0

ln ( )ln 0
y

y

pp

p p
  

  
+ − =        

 (24) 270 

Eq. (24) defines a relationship between the hardening parameter 
yp  and the mean 271 

effective stress, by which the functions of ( , )yf p p   and ( )D   in Eqs. (15 a,b) can be 272 

explicitly converted into functions in terms of p  solely (e.g. Table 2). Then the total 273 

elastic-plastic shear strain rate   can be expressed into Eq. (25) based on the constant-274 

volume condition and Eqs. (13)-(16). 275 

o

( )e p L p p    = + =   (25) 276 

where  277 
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( ) 1
( )=

2 ( ) ( ) ( )

q p
L p

G p K p D 

 
 −

 
  (26) 278 

Integrating Eq.(25) in terms of p  along a particle path starting from the initial yield 279 

time, at which 0p p =  and 
epq q= , gives an expression of   as: 280 

0( ) ( )ep I p I p   = + −   (27) 281 

where 282 

( )= ( )d
p

I p L p p


     (28) 283 

Note that Eqs. (24)-(28) suit for any case of stress-controlled proportional loading or 284 

unloading under undrained conditions [46], which certainly includes the 285 

loading/unloading programs considered in this study. 286 

(3) Critical state 287 

Under undrained conditions, the specific volume of soil remain unchanged. Therefore, 288 

once the soil has reached the critical state, the mean effective stress and shear stress 289 

remain constant (i.e. csp  and csq , respectively) as defined by in Eqs. (17) and (18), values 290 

of which will depend upon the particular yield criterion. 291 

(4) Solution procedure for effective stresses 292 

Taking the CASM model [68] as an example, here the procedure to derive the functions 293 

of ( )I p  and ( )L p  is further detailed. Based on Eq. (24), the yield function of CASM 294 

(see Table 1) is converted into Eq. (29) in terms of p , which is required for obtaining an 295 

explicit expression of ( )L p . 296 

 
1

1 2( ) ln
n

q p Mp A A p = +   (29) 297 

in which 298 

1

0 0
1 *

ln ln

ln

R p
A

r

− + 
= ,  

1

2 *ln
A

r

−
= − , and  

 



−
 = . (30 a,b,c) 299 

where 0R  is the isotropic over-consolidation ratio, defines as 0 0/yp p  . 0yp  is the initial 300 

value of yp . 0R  is different from the usual one-dimensional definition of the over-301 

consolidation ratio (i.e. OCR), and relationships between 0R  and OCR refer to the 302 
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references of Wood [64], Yu and Collins [71] and Chang et al. [13]. Eq. (29) can recover 303 

the yield surface of the original Cam-Clay model exactly by choosing n =1 and *r =2.718 304 

(e.g. Fig.2a); the ‘wet’ side of the modified Cam-Clay model can be approximated by 305 

choosing *r =2 in conjunction with a suitable value of n  (e.g. Fig.2b). 306 

With the given constitutive equations of CASM and Eq. (26), the function of ( )L p  is 307 

obtained as: 308 

( ) ( )
( ) ( )1/ 1/ 12

1 2 1 2

1 9 3 2
( )= ln ln

2 9( )

n n k M MAM
L p A A p A A p

vp n k M




 

− + + −  
  + + + −   −  

 (31) 309 

Then integrating Eq. (31) in terms of p  along the stress history of a particle gives: 310 

( ) ( )

( )

1 1
1

1 2 1 2

2

1
2

2

( ) ln ln
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  (32) 311 

in which 312 

( )1
2 1

2

1, 1; 2; / ( 1)
d

( 1)

nn n F n n M M n

M n n M

  




− + + + +  =
− +   (33) 313 

where ( )2 1 1, 1; 2; /F n n M+ +  is the Gaussian hypergeometric function in terms of 314 

/ M . 315 

With 0p p = , Eq. (29) gives the elastic limit of the shear stress in Eq. (34).  316 

1

0
0*

ln

ln

n

ep

R
q Mp

r


 
=  

 
  (34) 317 

Then by substituting Eq. (34) into Eq. (21), the elastic limit of the shear strain (
ep ) 318 

required for the determination of the finite shear strain in Eq.(27) is known. 319 

Similarly, solutions of ( )I p  and ( )L p  for the widely used original and modified 320 

Cam-Clay models are also derived as given in Table 2. The above procedure is applicable 321 

for any constitutive model in the form of that defined in the last subsection. 322 

Table 2 Solutions of ( )I p  and ( )L p  for original and modified Cam-Clay models. 323 

Model Solutions 



 

15 

Original 

Cam-Clay 

0

0

1
( ) ln ln

p
q p Mp R

p


 
 = − − 

 
 ,  

0 0lnepq Mp R =  

0

0

1 1 ( 1)
( )= + ln ln
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p k
L p M R

p vp k vp M
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 − − +  

    −   
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0 0

1 1 1 ( 1)
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v k vM
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   − + − − + −        

 

Modified 

Cam-Clay 

1/

0 0( ) ( / ) 1q p Mp R p p −    = −  ,  0 0 1epq Mp R = −  

2

2 2

1
1 ( ) 1 1

( 1) 22
( )=

2 / ( )

M kM
L p

vp M k vp M



  


  

   
− + −   +    − 

  − 
  

 

1 1 12( 1)
( )= (1 2 ) 2 tan tanh tan

2

k
I p M

v M k vM M M

    
 



− − − +     
 −  +  + −    

    
 

Once the soil has reached the critical state, the mean effective stress and shear stress 324 

remain constant (i.e. csp  and csq , respectively) under undrained conditions. For the 325 

constitutive models listed in Table 1, csp  and csq  can be expressed as: 326 

0
0 *

exp( )cs

R Γ v
p p

r 


− 

 = = 
 

    ,    cs csq Mp =   (35 a,b) 327 

where *r =2.718 and *r =2 for the original and modified Cam clays, respectively. 328 

In the above, the shear strain was expressed in two ways by means of strain 329 

compatibility analyses and integrations of the stress-strain relationships, respectively. 330 

Based on them, the effective stresses in the soil can be readily related to the kinematic 331 

process of cavity expansion/contraction. In summary, (a) during purely elastic loading or 332 

unloading, p  remains constant as 0p , and q  can be obtained by Eq.(19) in conjunction 333 

with the compatibility relations (i.e. Eqs. (7), (8), (10) and (11)); (b) in the elastic-plastic 334 

state, continuous changes of the effective stresses in a given soil element upon loading or 335 

unloading can be determined by equalling Eq. (27) with Eq. (7) (or Eq. (10)), and 336 

distributions of the effective stresses along the radial coordinate at a fixed instant can be 337 

determined by equalling Eq. (27) with Eq. (8) (or Eq. (11)); (c) in the critical state, both 338 

p  and q  remain constants as defined in Eq. (35). 339 

3.3 Calculation of excess pore pressures 340 
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The excess pore pressure ( U ) at a given instant can be determined by integrating Eq. 341 

(5) along the radial direction. Although all soil particles go through the same effective 342 

stress path, the total stress path of each element varies along the radial direction due to 343 

the difference in the total pressure between the inner and outer boundaries of the finite 344 

soil mass [35]. This is different to the self-similar cavity expansion or contraction problem 345 

in an infinite soil mass and makes the solution procedure for obtaining U  become more 346 

complicated. A general solution procedure for this typical non-self-similar boundary 347 

value problem is developed as follows. 348 

(1) Solutions for a cavity under loading or unloading 349 

In the internal loading or unloading program, the total radial pressure at the outer 350 

boundary (i.e. r b= ) is kept constant. With Eq. (9b), integrating Eq. (5) from r b=  351 

gives: 352 

d
( ) ( )

1 1 exp( ) 1b
b br b r r

k k q
U U p p q q

k k








  =  − − − − +

+ + −   (36) 353 

where 
r

U , 
r

p  and 
r

q  are excess pore pressure, mean effective stress and shear stress 354 

at an arbitrary radius of r . b  and 
b

U  are the shear strain and the excess pore pressure 355 

at r b= , respectively. 356 

It is clear that 
r

U  depends on the effective stress states of soil at both r b=  and the 357 

position of concern. According to the stress state at both positions, it is found that six 358 

phases possibly occur. To facilitate the calculation of 
r

U , Eq. (36) can be simplified 359 

into different forms at different phases as follows. 360 

(a) Purely elastic phase (elastic at both r b=  and r a= ) 361 

While the entire soil mass stays at the purely elastic state, the mean effective stresses 362 

in the whole field remain constant and equal 0p . The shear stresses are known with Eq. 363 

(19). Hence, by simplifying Eq. (36), a closed-form solution for 
r

U  in the elastic region 364 

is obtained as: 365 

02 d

1 1 exp( ) 1b
r

G kk
U q

k k





 


 = − +

+ + −   (37) 366 

in which 367 
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  2

2
1

1 exp( )d

exp( ) 1 2

i

i i

  





=

−
= − −

−
   (38) 368 

(b) Elastic-plastic phase (elastic at r b=  and plastic at r a= ) 369 

Upon further loading or unloading, soil particles enter the plastic state first at the inner 370 

cavity wall. Subsequently, the plastic region propagates outwards, the radius of which 371 

can be determined by Eq. (22). In the elastic-plastic phase that the soil at r b=  remains 372 

elastic while the soil at r a=  yields plastically already, 
r

U  in the outside elastic region 373 

can be calculated by Eq. (37). Thus the excess pore pressure at the elastic-plastic 374 

boundary (i.e. 
r c

U
=

 ) is obtained as the shear strain therein (i.e. 
ep ) is known from Eq. 375 

(21). Then the excess pore pressure within the inside plastic region is obtained from Eqs. 376 

(15a), (27) and (36) as: 377 

0( )
1

ep partialr r c

k
U U p p q q J

k=
    =  − − − − − +

  (39) 378 

in which 379 

0

d ( )d

exp( ) 1 exp( ) 1ep

p

partial
p

q qL p p
J







 





 
= =

− −    (40) 380 

With further loading or unloading, two phases may appear according to the stress states 381 

at r b=  and at r a= . One is that the soil at r a=  enters the critical state while the soil 382 

at r b=  still stays as elastic. The other is that the soil at r b=  yield plastically before the 383 

soil at r a=  enters the critical state. The sequence of occurrence of these two phases 384 

mainly depends on the ratio of 0 0/b a  and the stress history (e.g. 0R ). Therefore, solutions 385 

for them are given as follows in no particular order. 386 

(c) Elastic-critical-state phase (elastic at r b=  and critical state at r a= ) 387 

In this phase, elastic, plastic and critical state regions exist simultaneously within the 388 

surrounding soil from the outside in. 
r

U  in the outside two regions can be calculated 389 

with the procedure for the analysis of the elastic-plastic phase. Hence, the value at the 390 

plastic-critical-state boundary csr r=  (i.e. 
csr r

U
=

 ) can be obtained from Eq. (39) with 391 

inputs of the critical state effective stresses (i.e. csp  and csq  in Eq. (35 a,b). Then 
r

U  392 

within the critical state region (i.e. csa r r  ) can be obtained from Eq. (36) as: 393 



 

18 

exp( ) 1
ln

1 exp( ) 1cs

cs

r r r
cs

kq
U U

k



=

 − −
 =  +  

+ − − 
  (41) 394 

where cs  is the shear strain at csr r= . 395 

(d) Fully plastic phase (plastic at both r b=  and r a= ) 396 

In this case, Eq. (36) goes to: 397 

( )
1

b b fullr r b

k
U U p p q q J

k=
    =  − − − − − +

  (42) 398 

in which 399 

d ( )d

exp( ) 1 exp( ) 1b b

p

full
p

q qL p p
J







 





 
= =

− −    (43) 400 

At a known expansion/contraction instant, b  can be determined by Eqs. (6) and (7) 401 

as: 402 

( )
( )1/ 1

1

0 0( 1) ln
k

k

b k b T b
+

+ = + +
  

  (44) 403 

The mean effective stress at r b=  (i.e. bp ) in this phase can thus be back-calculated 404 

by equalling Eqs. (27) and (44), and the shear stress at r b=  (i.e. bq ) is then known from 405 

the yield function. Finally, as the external radial total pressure is kept constant, 
r b

U
=

  is 406 

obtained as: 407 

 0 / ( 1)b br b
U p p kq k

=
  = − + +   (45) 408 

(e) Plastic-critical-state phase (plastic at r b=  and critical state at r a= ) 409 

Following the above phases, the soil at r a=  may enter the critical state upon further 410 

loading or unloading, which results in two stress regions within the surrounding soil, 411 

namely plastic and critical state regions from the outside in. Similarly, 
r

U  within the 412 

outside plastic region can be determined taking the previous procedure for the fully-413 

plastic phase (i.e. Eq. (42)); U  within the critical state region in this phase can be 414 

computed with Eqs. (41) and (42). 415 

(f) Fully critical-state phase of expansions 416 

If the entire soil mass enters the critical state, the excess pore pressures can be readily 417 

obtained from Eq.(36) as: 418 
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exp( ) 1
ln

1 exp( ) 1

cs cs

r b
b

kq
U U

k



=

 − −
 =  +  

+ − − 
  (46) 419 

where  0 / ( 1)
cs

cs csr b
U p p kq k

=
  = − + + . 420 

(2) Solutions for a cavity under external loading 421 

In the external loading program, the internal cavity pressure is kept constant. In this 422 

case, to determine the excess pore pressure 
r

U  within the surrounding soil, Eq. (5) 423 

should be integrated from the inner cavity wall (i.e. r a= ). With the use of Eq. (12b), the 424 

integration of Eq. (5) gives: 425 

d
( ) ( )

1 1 exp( ) 1a
a ar a r r

k k q
U U p p q q

k k








  =  − − − − +

+ + − −   (47) 426 

where 
a

U , ap  and aq  are the excess pore pressure, the mean effective stress and the 427 

plastic shear stress at r a= , respectively. a  is the shear strain at r a= . 428 

According to Eqs. (6) and (47), 
r

U  under the external loading program can be 429 

obtained in a similar procedure as that developed for the other two programs, although 430 

the paths of integration are opposite. The solution procedure is presented briefly as follow. 431 

(a) Purely elastic phase (elastic at both r b=  and r a= ) 432 

By simplifying Eq. (47), 
r

U  in the elastic region can be rewritten as: 433 

02 d

1 1 exp( ) 1a
r

G kk
U q

k k





 


 = − +

+ + − −   (48) 434 

in which 435 

 
2

1

1 exp( )d

exp( ) 1

i

i i

 





=

−
=

−
   (49) 436 

At a given instant, a  can be calculated from Eqs. (6) and (10) as: 437 

( )
( )1/ 1

1

0 0( 1) ln
k

k

a k a T a
+

+ = − + +
  

  (50) 438 

(b) Elastic-plastic phase (elastic at r b=  and plastic at r a= ) 439 
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The current and initial radii of the elastic-plastic boundary were given in Eqs. (23a,b). 440 

r
U  within the inside plastic region (i.e. a r c  ) can be expressed as: 441 

( )
1

a a partialr r a

k
U U p p q q J

k=
    =  − − − − − +

  (51) 442 

in which 443 

d ( )d

exp( ) 1 exp( ) 1a a

p

partial
p

q qL p p
J







 





 
= =

− − − −    (52) 444 

The mean effective stress ap  can be back-calculated by equalling Eqs. (27) and (50), 445 

and the plastic shear stress aq  is then known from the yield function. As the internal radial 446 

pressure is kept constant, 
r a

U
=

  equals: 447 

 0 / ( 1)a ar a
U p p kq k

=
  = − + +   (53) 448 

The excess pore pressure at the elastic-plastic boundary (
r c

U
=

 ) can then be computed 449 

by inputting 0p p =  and 
epq q=  into Eq. (51). Substituting the above values into Eq. 450 

(47), 
r

U  within the outside elastic region is obtained as: 451 

0
0

2 d
(2 )

1 1 exp( ) 1c
epr r c

kGk
U U G q

k k





 


=
 =  − − +

+ + − −   (54) 452 

(c) Elastic-critical-state phase (elastic at r b=  and critical state at r a= ) 453 

At this phase, 
r

U  in the inside critical state region (i.e. csa r r  ) can be obtained 454 

as: 455 

exp( ) 1
ln

1 exp( ) 1

cs a

r r a

kq
U U

k



=

 −
 =  +  

+ − 
  (55) 456 

With Eq. (55), the excess pore pressure at csr r= (i.e. 
csr r

U
=

 ) can be determined with 457 

inputs of csp  and csq . Taking the stress conditions at csr r=  as the initial values, 
r

U  458 

in the outside two regions can be calculated taking the above procedure for the analysis 459 

of the elastic-plastic phase. 460 

(d) Fully plastic phase (plastic at both r b=  and r a= ) 461 

In this phase, Eq. (47) can be simplified to be: 462 
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( )
1

a a fullr r a

k
U U p p q q J

k=
    =  − − − − − +

  (56) 463 

in which  464 

d ( )d

exp( ) 1 exp( ) 1a a

p

full
p

q qL p p
J







 





 
= =

− − − −    (57) 465 

Stresses at r a=  can be obtained with the same method that was just introduced above. 466 

(e) Plastic-critical-state phase (plastic at r b=  and critical state at r a= ) 467 

At this phase, 
r

U  within the inside critical state region can be computed using Eq. 468 

(55); 
r

U  within the outside plastic region can be determined from Eq. (56) with initial 469 

values of stresses conditions at csr r=  instead of those at r a= . 470 

(f) Fully critical-state phase 471 

When the entire soil enters the critical state, Eq. (47) can be simplified as: 472 

exp( ) 1
ln

1 exp( ) 1

cs cs a

r r a

kq
U U

k



=

 −
 =  +  

+ − 
  (58) 473 

where  0 / ( 1)
cs

cs csr a
U p p kq k

=
  = − + + . 474 

4 Solution validation and parametric analysis 475 

This section presents some selected results of cavity expansion and contraction curves 476 

under different loading/unloading programs. The following results were calculated with 477 

the critical state parameters relevant to London Clay ( 2.759Γ = , 0.161 = , 0.062 = , 478 

o22.75cs =  [22]), v =2.0 and  =0.3. All the results are normalised by the undrained 479 

shear strength us , which can be obtained with 2cs uq s=  as: 480 

( )*

0 00.5 /us Mp R r


=   (59) 481 

4.1 Cavity response under internal loading 482 

Solutions for cavity expansion in an infinite soil mass under internal loading have been 483 

developed by Collins and Yu [22] and Mo and Yu [40] for the (original and modified) 484 

Cam-Clay and CASM models, respectively. While taking the surrounding soil as infinite 485 

(i.e. setting 0 0/ 0a b  ), the present solutions can reduce exactly to their solutions. 486 
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Taking the solution for the modified Cam-Clay model as an example, selected results for 487 

clay samples with different values of 0R  and b0/a0 are compared in Figs. 3-5 to show their 488 

effects to the cavity expansion response and associated stress distributions. 489 

Fig. 3 shows that the present solution gave virtually the same results as Collins and Yu 490 

[22] while considering an infinite soil mass. For a finite soil mass under internal loading, 491 

the ratio of b0/a0 may greatly influence the cavity pressure-expansion response. For 492 

example, with an expansion level up to a/a0=4, three typical pressure-expansion 493 

responses are shown in Fig. 3, including: (a) In an infinite soil mass, a limit cavity 494 

pressure is reached (typically at around a/a0=2), and this value remains almost constant 495 

during afterwards expansions. (b) For a cavity embedded in an intermediate-thick soil 496 

mass, a maximum cavity pressure close to the aforementioned limit pressure is reached 497 

upon loading. However, the cavity pressure drops with afterwards expansions when the 498 

effect of the constant stresses at the outer boundary prevails. (c) For a thin hollow cylinder 499 

or spherical shell, the maximum cavity pressure that can be reached is much smaller than 500 

the limit pressure, and the cavity pressure drops after a local peak when the outside 501 

boundary effect is activated and eventually gets close to the outside radial confining 502 

pressure at sufficiently large deformations. Overall, the maximum cavity pressure that the 503 

surrounding soil can sustain may decrease significantly with a decreasing value of b0/a0. 504 

A limit value of b0/a0 exists, beyond which the cavity expansion response immunes from 505 

the outer boundary effect. The limit ratio of b0/a0 decreases with increases of the over-506 

consolidation ratio, and the limit ratio for a spherical cavity is generally smaller than that 507 

for a cylindrical cavity. 508 

The observed reduction in the total cavity pressure during expansion is further 509 

explained by plotting results of stress distributions in the soil (Figs. 4 and 5) and stress 510 

paths of soil at the inner wall (Fig. 6) for typical values of b0/a0 and the over-consolidation 511 

ratio. The results were calculated with expansions up to a/a0=4. Note the peak and 512 

ultimate points in Fig. 6(c) and 6(d) correspond to the points at which the peak and 513 

ultimate values of the internal cavity pressure were reached in Fig. 3, respectively. For 514 

the cylindrical case, increments of the out-of-plane stress were calculated using 515 

0( )z rv     =  +   according to the plane strain assumption [72]. It was shown that the 516 

outer boundary effect may alter the total stress path of a soil particle but applies no 517 

influence on the effective stress path, which is consistent with that has been observed by 518 

Juran and Mahmoodzadegan [35] in undrained TWC tests. At a given deformation level, 519 
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Figs. 4-6 show that the excess pore pressures generated throughout the hollow cylinder 520 

or spherical shell are typically smaller than that generated at the same radii in the 521 

corresponding case of an infinite soil mass when the outer boundary effect applies, and 522 

the reductions caused become larger for smaller values of b0/a0. This explains the 523 

specimen radius ratio (i.e. b0/a0) dependent behaviour that was observed in the cavity 524 

expansion curves of Fig. 3. Besides, the excess pore pressure generated at the inner cavity 525 

wall remains positive upon loading in normally consolidated soils, whereas it may 526 

become negative in heavily consolidated soils when the value of b0/a0 is sufficiently 527 

small. This is consistent with the experimental observations of Silvestri et al. [58] in 528 

laboratory pressuremeter tests with TWCs of undrained clay. 529 

Fig. 6 also shows that, once the soil element enters the plastic state, the mean effective 530 

stress reduces gradually before resting on the CSL for soft clays (i.e. *

0R r ), and, in 531 

contrast, it increases with expansions for heavily overconsolidated clays (i.e. *

0R r ) 532 

until reaches the critical state value. Although the effective stress path varies with the soil 533 

model or the values of n  and *r  used (e.g. Fig. 2) [22,40], it was found that the above 534 

conclusions about the effects of the b0/a0 value and the over-consolidation ratio to the 535 

cavity expansion response still validate for other models in Table 1. Therefore, results for 536 

other models are not presented here for brevity. 537 

4.2 Cavity closure under external loading 538 

In this subsection, the cavity closure response under external loading is discussed based 539 

on the results calculated using the solution for the CASM model (setting n =2 and *r =2) 540 

with different values of the ratio of b0/a0 and the over-consolidation ratio. For illustration, 541 

stresses at both the inner and outer boundaries of a hollow cylinder or spherical shell are 542 

presented in Figs. 7-10, plotted against the volumetric strain of the inner cavity 543 

1 1

0

1

00( / ) ( ) /k k k

r a
V a aV a + + +

=
 = − . 544 

The soil mass moves inwards with increasing external pressure, while keeping the 545 

internal cavity pressure constant (Figs. 7-10). Initially, the total external pressure rises 546 

rapidly with cavity contractions; then the speed of the increase slows down, followed by 547 

a sharp increase when the inner cavity becomes very small or almost filled (for example, 548 

with 0( / )
r a

V V
=

  larger than 0.8 for a cylindrical cavity and 0.9 for a spherical cavity). 549 

The external pressure required for compressing the soil to contract may decrease 550 
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significantly with a decreasing value of b0/a0 when it is smaller than a limit value, and 551 

this disparity slightly varies with the deformation level. Similar to that observed in the 552 

previous cavity expansion analysis, the limit ratio of b0/a0, beyond which the boundary 553 

effect to the cavity closure response become negligible, is also closely related to the stress 554 

history and cavity shape in this loading program. The limit value of b0/a0 decreases with 555 

increases of the over-consolidation ratio and is generally smaller for a spherical shell than 556 

a hollow cylinder. For example, it is approximately 20 (Fig. 7) and 10 (Fig. 8) for a hollow 557 

cylinder and spherical shell of normally consolidated soil (i.e. 0R =1.001), respectively, 558 

and the corresponding values while 0R =4 are 10 (Fig. 9) and 5 (Fig. 10), respectively. 559 

The effective stress state of soil is mainly dependent on the over-consolidation ratio 560 

and local deformation. Once the soil element enters the plastic state, the mean effective 561 

stress reduces gradually before resting on the CSL for soft clay, and, in contrast, it 562 

increases gradually to the critical state value for heavily overconsolidated clay (Figs. 7-563 

10). With the same level of cavity contraction, the compatibility conditions of Eqs. (6) 564 

and (11) describe that the shear strain at the outer boundary becomes smaller for a thicker 565 

soil sample, which results in the observed difference in the effective stresses at r b=  in 566 

Figs. 7-10. For example, the soil at r b=  may always remain elastic in a sufficiently thick 567 

soil sample, whereas it yields plastically or enters the critical state easily while the 568 

thickness of the surrounding soil is very thin. 569 

As the soil goes through the same effective stress path and the internal cavity pressure 570 

is kept constant in the external loading program, the stress path of soil particles at the 571 

inner wall of the cavity for different values of b0/a0 overlap in Figs. 7-10 (i.e. blue lines). 572 

Hence, at the same level of cavity contraction, the initial boundary values at r a=  for the 573 

integration of the excess pore pressure remain unchanged for different values of b0/a0. 574 

However, the difference in the effective stresses between at r a=  and r b=  becomes 575 

greater for a larger value of b0/a0. As a result, greater excess pore pressure will be 576 

generated at r b=  for a thicker soil cylinder or spherical shell according to Eq. (47), 577 

which leads to the increase of the total external pressure with the value of b0/a0 in Figs.7-578 

10. Although slight decreases may occur in a very thin cylinder or spherical shell of stiff 579 

clays (e.g. Figs. 9d and 10d), during contractions the excess pore pressure at r b=  580 

changes in a very similar way as the external cavity pressure. 581 

4.3 Cavity contraction under internal unloading 582 
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For the prediction of soil behaviour around shallow tunnels, undrained solutions for a 583 

cavity in a finite soil under the internal unloading program were derived by Zhuang et al. 584 

[75], adopting the original and modified Cam-Clay models. To investigate the unloading 585 

behaviour of TWCs, these solutions are also included in this paper together with the 586 

solutions for the internal loading program and new solutions for the CASM model under 587 

internal unloading. To briefly show the effect of the most relevant parameters (e.g. the 588 

over-consolidation ratio and b0/a0 value) to unloading response, some results obtained 589 

with the solution for the CASM model (taking *r =3 and n=2) are presented in this 590 

subsection. Detailed parametric studies into this problem with the Cam-Clay models refer 591 

to Zhuang et al. [75]. 592 

Considering the surrounding soil as infinite (i.e. setting 0 0/ 0a b  ), the present 593 

unloading solution for the CASM model reduces to the solution of Mo and Yu [39]. 594 

Therefore, they produced identical results in this special case (Fig. 11). From the 595 

comparison shown in Fig. 11, it can be concluded that: (a) The stability of the surrounding 596 

soil (e.g. evaluated by 0( ) /in up p s− ) [10]) may drop significantly with smaller values of 597 

b0/a0, and a spherical shell of soil has higher stability than a hollow cylinder, keeping 598 

other parameters the same. (b) A limit ratio of b0/a0 exists, beyond which the boundary 599 

effect is negligible. The limit radius ratio for a spherical shell of soil is smaller than that 600 

for a hollow cylinder, and it decreases slightly with the over-consolidation ratio. (c) The 601 

degree of unloading in pressure (i.e. 0 0( ) /inp p p− ) that the soil can sustain increases 602 

with the over-consolidation ratio (i.e. the cavity stability can be improved as R0 (or OCR) 603 

increased). This is consistent with the experimental observations of wellbore instability 604 

in undrained clays that were reported by Abdulhadi et al. [2]. 605 

5 Prediction of soil behaviour in TWC tests 606 

To demonstrate the relevance of the derived solutions for modelling soil behaviour in 607 

TWC tests, comparisons between predicted and measured results of cavity expansion and 608 

contraction curves under each loading/unloading program are presented in this section. 609 

5.1 Prediction of pressuremeter curves in TWC tests 610 

Cavity expansion tests in a triaxial cylinder cell or calibration chamber have been widely 611 

used to stimulate self-boring pressuremeter tests, and TWC apparatuses with a small 612 

outer-to-inner diameter ratio (i.e. b0/a0) of 2 to 20 were often used in the laboratory 613 
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[1,6,26,33,34,58]. Fig. 3 showed that the undrained cavity expansion response may be 614 

greatly influenced by the outer constant-stress boundary while b0/a0<20. This has also 615 

been reported by Pyrah and Anderson [49] and Juran and Mahmoodzadegan [35], among 616 

others. In this subsection, a comparison between predicted and observed expansion curves 617 

for TWC tests reported by Frikha and Bouassida [26] is presented to validate the ability 618 

of the derived solutions on capturing the outer boundary effect (or b0/a0 effect) in the 619 

interpretation of laboratory pressuremeter tests. 620 

A hollow cylinder cell of Di=20mm, Do=100mm and Ht/Do=3 was used in the 621 

undrained expansion tests of Frikha and Bouassida [26]. Keeping the outer confining 622 

pressure constant, the hollow cylinder specimens were loaded by increasing the internal 623 

cavity pressure. This conforms to the defined internal loading program. Therefore, the 624 

TWC test is simulated as an undrained cylindrical cavity expansion process based on the 625 

derived solutions for the internal loading analysis. The CASM model is used to describe 626 

the stress-strain behaviour of the normally consolidated Speswhite kaolin that used in the 627 

tests. With reference to the soil parameters that were reported by Atkinson et al. [7] and 628 

Frikha and Bouassida [26], model parameters of CASM are calibrated by simulating the 629 

undrained triaxial compression tests that were conducted with the same soil as shown in 630 

Fig. 12. It gives: 3.14Γ = , 0.136 = , 0.025 = , o

tc 22.5 = , 0.3 = , 2n = , and 631 

* 1.7 2.0r = . 632 

To account for the shear mode effect, tc1.2cs =  is taken in the cylindrical cavity 633 

expansion analysis [13]. For comparison, results without considering the shear mode 634 

effect (i.e. tccs = ) or the boundary effect (i.e. setting 0 0/b a   , corresponding to the 635 

infinite solutions) were also calculated. Predicted and observed expansion curves are 636 

compared by plotting the net total cavity pressures in 0( )p p−  against the cavity 637 

volumetric strain 0( / )
r a

V V
=

  in Fig. 13. From Fig. 13, it can be concluded that the 638 

present finite solution can accurately predict the pressuremeter curves of undrained TWC 639 

tests with due consideration of the boundary effect and the shear mode effect. Without 640 

considering the finite thickness of the TWCs of soil, the infinite solution significantly 641 

over-predicts the cavity pressure, and the over-prediction becomes more serious at larger 642 

cavity expansions. On the contrary, the required expansion pressure is under-estimated 643 

when the shear mode effect is neglected. 644 
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By plotting pressuremeter results in terms of cavity pressure against the logarithm of 645 

the volumetric strain, the plastic portion is almost a straight line (e.g. in the range of cavity 646 

strains between 5 and 15%) for tests performed in large containers or ‘semi-infinite’ field 647 

conditions, and the slope is often assumed to be equal to the undrained shear strength of 648 

the soil [21,28,38]. However, Fig. 14 shows that this method is not always suitable for 649 

the interpretation of laboratory pressuremeter tests in TWC apparatuses. An obvious 650 

reduction in strength is observed due to the boundary effect while 0 0/b a  of the soil 651 

specimen is smaller than 20. Yu [70] gave a comprehensive review of various sources of 652 

inaccuracy that may exist in this simplified interpretation method, including effects of 653 

pressuremeter geometry, water drainage conditions, strain rate and disturbance during 654 

installation. The present study further demonstrates that attention should also be paid to 655 

the outer boundary effect while small-sized hollow cylinder cells are used in laboratory 656 

pressuremeter tests. 657 

5.2 Contraction response under internal unloading and external loading 658 

A series of TWC tests were performed by Abdulhadi [1] to investigate the wellbore 659 

instability problem in soils under either internal unloading (e.g. TWC1 and TWC3) or 660 

external loading (e.g. TWC2). Tests TWC1, TWC2 and TWC3 were chosen for the 661 

comparison here as they were performed in fully saturated, uniform, isotropically 662 

consolidated hollow cylinder specimens. The inner and outer diameters of the hollow 663 

cylinder specimen were 25mm and 76mm, respectively. The specimen height was 664 

152mm, and it has been verified that this height to outer diameter ratio (Ht/Do=2) 665 

produced a minimal impact on the borehole response [3], which fulfils the plane strain 666 

assumption. Reconstituted Boston blue clay (RBBC) was used in the tests. To determine 667 

the soil parameters in CASM, the triaxial compression test on isotropically consolidated 668 

RBBC that reported by Ladd [37] is simulated as shown in Fig. 15. It gives: 2.671Γ = , 669 

0.184 = , 0.01 = , 0.28 = , o

tc 33.4 = , 1.5n = , and * 2.1r = . The soil parameters 670 

were determined by cross-referencing to the oedometric test data reported by Abdulhadi 671 

[1] and those summarised by Akl and Whittle [4]. These tests are simulated as a 672 

cylindrical cavity contraction process using the derived solutions. The same set of model 673 

parameters were used in the model predictions, and R0=1.001 was taken as the soil 674 

specimens were normally consolidated. 675 
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Predicted and measured cavity contraction curves for tests performed under internal 676 

unloading and external loading are compared in Figs. 16 and 17, respectively. In tests 677 

TWC1 and TWC3, the soil cylinder contracts due to the internal unloading (Fig. 16). 678 

Instead, the specimen deforms inwards driven by the external compression in test TWC2 679 

(Fig. 17). Compared to the experimental data, the theoretical solutions tend to 680 

underestimate soil stiffness during the initial contractions in both cases. A comparison 681 

between the idealised cavity contraction models and the experimental observations 682 

indicates that this discrepancy may be attributed to the following aspects. Firstly, it was 683 

observed that the pore pressures were not fully equilibrated across the width of the clay 684 

specimen with a loading or unloading rate of 10%/hour (approximately 80-90% 685 

equilibrated [2]). In other words, the applied pressures at the boundaries cannot transfer 686 

through the whole soil specimen immediately. Secondly, the predicted effective stress 687 

paths within soil slightly deviate from that occurred in the tests. Although RBBC has been 688 

used at MIT (Massachusetts Institute of Technology) for over 50 years, the raw Boston 689 

clay, the re-sedimentation procedure and consolidation pressures during sample 690 

preparations in the triaxial compression tests of Ladd [37] and the TWC tests of 691 

Abdulhadi [1] were not exactly the same, which may lead to some deviations in the stress-692 

strain behaviour. Moreover, the inherent boundary effect caused during sample 693 

preparation and the rate dependence in soil behaviour, which are ignored in the present 694 

model, may also result in differences between physical tests and theoretical models more 695 

or less [2]. It seems that the overall influences of the above factors produced relatively 696 

greater influences on the initial contraction response as the predicted and measured results 697 

are in close agreement at relatively large deformations (e.g. the steady contraction stage). 698 

Nevertheless, the comparisons in Figs. 16 and 17 indicate that, with due consideration of 699 

the shear mode effect, the predicted cavity contraction curves under either internal 700 

unloading or external loading are basically consistent with those measured in the tests, in 701 

particular, at the steady contraction stage (or the most vulnerable stage) which is of great 702 

concern for the borehole instability analysis. If the boundary effect is ignored (e.g. in the 703 

infinite solution), the soil stability under internal unloading could be significantly over-704 

predicted (Fig. 16). 705 

Tests TWC1 and TWC3 were performed with the same initial confining pressures. It 706 

is interesting to note these two tests show similar soil stability results if evaluated in terms 707 

of out in( ) / up p s− . However, the total stress paths or excess pore pressures are essentially 708 
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different in these two cases as also highlighted by Abdulhadi [1]. In addition, the results 709 

in Figs. 16 and 17 indicate that the back-calculated critical state friction angle cs  from 710 

the test under internal unloading (e.g. TWC1) is slightly smaller than that based on the 711 

test under external loading (e.g. TWC1). This minor difference might be caused by the 712 

loading path effect, but this needs to be justified with more experimental evidence. 713 

It should be pointed out that, in previous TWC tests, the pore pressure is mostly 714 

measured at the axial ends and only assumed average values across the width of the 715 

specimen are available. Therefore, only the total stresses are compared in the above cases. 716 

As a consequence, possible influences of local consolidation and rate-dependent 717 

redistribution of the pore pressure cannot be evaluated from these experimental results. 718 

These effects might be significant, in particular, for tests with relatively thick soil 719 

samples, and direct detection of them could be very useful for the investigation on 720 

relevant soil properties (e.g. hydraulic properties). Therefore, it is believed that TWC test 721 

apparatus equipped with more advanced imaging techniques such as X-ray Computed 722 

Tomography [36,41,59] can offer additional insight into the soil behaviour involved due 723 

to its ability to probe the 3D in situ soil porous architecture at high resolutions (i.e. 1 µm). 724 

6 | Conclusions 725 

We have presented a general solution procedure for undrained loading and unloading 726 

analyses of both cylindrical and spherical cavities embedded in soils with a finite radial 727 

extent, which is applicable to many two-invariant critical state soil models. Three stress-728 

controlled loading programs (internal loading, internal unloading and external loading) 729 

that are commonly used in TWC tests are considered. Following the proposed procedure, 730 

a set of large strain analytical/semi-analytical cavity expansion and contraction solutions 731 

are derived for several critical state soil models, which can provide valuable benchmark 732 

for verifying various numerical programs. The derived solutions are used to investigate 733 

the boundary effect (or specimen size effect) to the cavity expansion and contraction 734 

responses. It is shown that a limit value of b0/a0 exists in each loading/unloading program, 735 

below which the boundary effect could lead to significant reductions in the degree of 736 

loading or unloading that the surrounding soil can sustain. Although the limit value of 737 

b0/a0 may vary with the over-consolidation ratio and the cavity deformation level, it was 738 

found that, in general, 0 0/ 20b a   is a minimum practical requirement to remove the 739 
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boundary effect in common TWC tests under undrained conditions, and this value is much 740 

smaller for a spherical shell of soil (approximately 0 0/ 10b a  ).  741 

Using the published results of several TWC tests under different stress-controlled 742 

loading/unloading programs in the literature, comparisons between predicted and 743 

measured cavity expansion and contraction curves are made. Overall, the theoretical 744 

predictions show satisfactory agreement with the experimental data. The results of these 745 

comparisons suggest that the proposed cylindrical solutions are able to capture the 746 

boundary effect that is commonly observed in undrained TWC tests under the considered 747 

three loading/unloading programs. This is essential for the interpretation of laboratory 748 

TWC tests. Inversely, the finite cavity expansion and contraction solutions may be 749 

calibrated or validated with relevant TWC tests which require less energy, time and space 750 

than site tests. Then setting 0 0/b a   , the calibrated solutions can be used to simulate 751 

field pressuremeter tests and investigate the in-situ wellbore instability problem as the 752 

infinite cavity expansion or contraction solutions often did [14,18,71]. 753 
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Figure captions 956 

Fig.1. Schematic of a thick-walled cylinder. 957 

Fig.2. Example yield surfaces of Cam-Clay models and CASM. 958 

Fig.3. Total pressure and excess pore pressure at the inner cavity of modified Cam clay: 959 

(a) cylindrical solution with R0=1.001; (b) spherical solution with R0=1.001; (c) 960 

cylindrical solution with R0=4; (d) spherical solution with R0=4; (e) cylindrical solution 961 

with R0=16; (f) spherical solution with R0=16. 962 

Fig.4. Stress distribution in modified Cam clay with R0=1.001: (a) cylindrical model in 963 

an infinite soil mass; (b) spherical model in an infinite soil mass; (c) cylindrical model 964 

with small values of b0/a0; (d) spherical model with small values of b0/a0. 965 

Fig.5. Stress distribution in modified Cam clay with R0=16: (a) cylindrical model in an 966 

infinite soil mass; (b) spherical model in an infinite soil mass; (c) cylindrical model with 967 

small values of b0/a0; (d) spherical model with small values of b0/a0. 968 

Fig.6. Typical stress paths in modified Cam clay: (a) cylindrical model with b0/a0=1000; 969 

(b) spherical model with b0/a0=1000; (c) cylindrical model with b0/a0=2; (d) spherical 970 

model with b0/a0=2. 971 

Fig.7. A thick-walled cylinder of normally consolidated London clay (R0=1.001) under 972 

external loading. 973 

Fig.8. A spherical shell of normally consolidated London clay (R0=1.001) under 974 

external loading. 975 

Fig.9. A thick-walled cylinder cavity of stiff London clay (R0=4) under external loading. 976 

Fig.10. A spherical shell of stiff London clay (R0=4) under external loading. 977 

Fig.11. Cavity contraction curves under internal unloading: (a) and (c) cylindrical 978 

model; (b) and (d) spherical model. 979 

Fig.12. Model prediction for undrained triaxial compression tests with soft Speswhite 980 

kaolin. 981 

Fig.13. Predicted and measured cavity expansion curves in a thick-walled cylinder of 982 

kaolin clay. 983 

Fig.14. Pressuremeter curves with different values of b0/a0 (Speswhite kaolin). 984 

Fig.15. Model prediction for an undrained triaxial compression test on isotropically 985 

consolidated RBBC. 986 
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Fig.16. Predicted and measured cavity contraction curves in thick-walled cylinders of 987 

RBBC under internal unloading. 988 

Fig.17. Predicted and measured cavity contraction curves in a thick-walled cylinder of 989 

RBBC under external loading.  990 
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Notation 991 

ap , inp , outp  axial stress, internal and external radial pressures 992 

  1 =  for loading and 1 = −  for unloading 993 

k 1k =  for a cylindrical cavity and 2k =  for a spherical cavity 994 

r, θ, z coordinates of the cylindrical coordinate system 995 

r, θ, φ coordinates of the spherical coordinate system 996 

0r  initial value of the radial co-ordinate r 997 

p , q  mean effective stress and deviatoric stress 998 

csp , csq  mean effective stress and deviatoric stress at the critical state 999 

p  mean total pressure 1000 

0p , 0p  initial values of p  and p  1001 

U , 0U , U  total, initial ambient, excess pore pressures 1002 

r a
U

=
 , 

r b
U

=
  excess pore pressures at r a=  and at r b=  1003 

r a
U

=
 , 

r b
U

=
  excess pore pressures at r c=  and at csr r=  1004 

r  ,    effective radial and circumferential stresses 1005 

r ,   total radial and circumferential stresses 1006 

r ,   radial and circumferential strains 1007 

 ,   volumetric and shear strains 1008 

0a , a ; 0b , b ; 0c , c  initial and current radii of the inner cavity wall, the outer cavity 1009 

wall, the elastic-plastic boundary 1010 

csr  radius of the plastic-critical state boundary 1011 

ap , aq  mean effective and shear stresses at r a=   1012 

bp , bq  mean effective and shear stresses at r b=  1013 

a , b  shear strains at r a=  and at r b=  1014 

ep , 
epq  shear strain and shear stress at the state just enters plastic yielding 1015 

K , G  instantaneous bulk and shear moduli with initial values of 0K  and 1016 

0G  1017 

M  the slope of the CSL in the p - q  space 1018 

  slope of the normally compression line 1019 

Γ  the value of v  on the CSL at 1kPap =  1020 
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v ,   specific volume and Poisson’s ratio of soil 1021 

  slope of the swelling line 1022 

  plastic volumetric strain ratio, equals ( )  −  1023 

0R  isotropic over-consolidation ratio, defines as 
0 0/yp p   1024 

n, *r  stress-state coefficient and spacing ratio in CASM 1025 

yp , 
0yp  preconsolidation pressure and its initial value 1026 

us  undrained shear strength of soil 1027 

 , 
ep   stress ratio and its value at the elastic-plastic boundary 1028 

cs  critical state friction angle, Hvorslev friction angle 1029 

tc  critical state friction angle under triaxial compression and plane 1030 

strain 1031 

0/V V  cavity volumetric strain 1032 

  1033 
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 1034 

Fig 1 Schematic of a thick-walled cylinder 1035 

 1036 

 1037 

 1038 

Fig 2 Example yield surfaces of Cam-clay models and CASM.   1039 
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 1042 

Fig. 3. Total pressure and excess pore pressure at the inner cavity of modified Cam clay: 1043 

(a) cylindrical solution with R0=1.001; (b) spherical solution with R0=1.001; (c) 1044 

cylindrical solution with R0=4; (d) spherical solution with R0=4; (e) cylindrical solution 1045 

with R0=16; (f) spherical solution with R0=16. 1046 

  1047 
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 1048 

 1049 

  1050 

 1051 

  1052 

Fig. 4. Stress distribution in modified Cam clay with R0=1.001: (a) cylindrical model in 1053 

an infinite soil mass; (b) spherical model in an infinite soil mass; (c) cylindrical model 1054 

with small values of b0/a0; (d) spherical model with small values of b0/a0. 1055 
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  1057 

 1058 

  1059 

Fig. 5. Stress distribution in modified Cam clay with R0=16: (a) cylindrical model in an 1060 

infinite soil mass; (b) spherical model in an infinite soil mass; (c) cylindrical model with 1061 

small values of b0/a0; (d) spherical model with small values of b0/a0. 1062 
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 1065 

 1066 

 1067 

Fig. 6. Typical stress paths in modified Cam clay: (a) cylindrical model with 1068 

b0/a0=1000; (b) spherical model with b0/a0=1000; (c) cylindrical model with b0/a0=2; 1069 

(d) spherical model with b0/a0=2. 1070 
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 1072 

 1073 

Fig 7. A thick-walled cylinder of normally consolidated London clay (R0=1.001) under 1074 

external loading. 1075 
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 1076 

Fig 8. A spherical shell of normally consolidated London clay (R0=1.001) under 1077 

external loading. 1078 
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 1080 

Fig 9. A thick-walled cylinder cavity of stiff London clay (R0=4) under external loading. 1081 
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 1082 

Fig 10. A spherical shell of stiff London clay (R0=4) under external loading. 1083 
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 1085 

Fig 11. Cavity contraction curves under internal unloading: (a) and (c) cylindrical 1086 

model; (b) and (d) spherical model. 1087 

 1088 
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 1089 

Fig 12. Model prediction for undrained triaxial compression tests with soft Speswhite 1090 

kaolin. 1091 

 1092 

 1093 

Fig 13. Predicted and measured cavity expansion curves in a thick-walled cylinder of 1094 

kaolin clay. 1095 
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 1100 

 1101 

 1102 

 1103 

Fig 14. Pressuremeter curves with different values of b0/a0 (Speswhite kaolin): (a) 1104 

normally consolidated clay (R0=1.001); (b) heavily overconsolidated clay (R0=10). 1105 
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 1112 

 1113 

 1114 

 1115 

Fig 15. Model prediction for an undrained triaxial compression test on isotropically 1116 

consolidated RBBC. 1117 
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 1124 

 1125 

 1126 

Fig 16. Predicted and measured cavity contraction curves in thick-walled cylinders of 1127 

RBBC under internal unloading. 1128 
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Fig 17. Predicted and measured cavity contraction curves in a thick-walled cylinder of 1131 

RBBC under external loading. 1132 
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