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ABSTRACT: Bisphenol A (BPA) is a high-production-volume
plastic chemical, with ∼98% of its usage in China allocated to
producing polycarbonate and epoxy resin, and its fugitive release
threatens ecosystems. However, knowledge of its anthropogenic
cycles, environmental emissions, and ecological risks remains
incomplete, hindering effective plastic lifecycle management.
Herein, material flow analysis, multimedia environmental model-
ing, and ecological risk assessment were integrated to compre-
hensively map BPA dynamics in China. Results reveal a ∼ 90-fold
increase in BPA consumption between 1992 and 2022 and major
applications shifted from optics and packaging to automotive,
construction, and electronics. China held ∼34 Mt of in-use BPA
stock in 2022 (∼24 kg per capita), with no indication of reaching
saturation. BPA release occurred throughout its lifecycle, and soil and water were primary sinks. Aquatic BPA concentrations
exceeded the limit in national pollutant emission standards in ∼8.4% of Chinese mainland areas in 2022, and ∼4.5% of areas suffered
very high chronic ecological risks to aquatic organisms. Scenario analysis indicates that a 90% reduction in BPA emission factors
would be required to avoid BPA contamination in all areas of focus. Our findings contribute as a scientific basis for sustainable plastic
management and highlight the need for updated techniques, intensified monitoring, and standardized regulations.
KEYWORDS: plastic chemical, bisphenol A, material flow analysis, environmental concentration, ecological risk level, plastic management

1. INTRODUCTION
The exponential growth in plastic production and usage has
precipitated global concerns about plastic pollution and
management strategies.1,2 In response, the United Nations
Environment Assembly (UNEA) endorsed a landmark
resolution in 2022 for a legally binding international agreement
to eliminate the plastic crisis by the end of 2024. Chemicals of
concern in plastics are a key aspect of the treaty. Over 16,000
types of chemicals have been identified in plastics, with at least
4200 categorized as “major concerns” due to their Persistence,
Bioaccumulation, Mobile or/and Toxicity (PBMT) proper-
ties.3−6 These chemicals are inevitably released throughout the
lifecycle of plastics, posing severe threats to planetary
health.7−9 Therefore, it is imperative to focus on the lifecycle
management of plastic chemicals to develop effective strategies
for mitigating plastic pollution.
Bisphenol A (BPA), a high production volume (HPV)

plastic chemical,10 bolsters the strength, durability, resilience,
and transparency of plastic materials. Global BPA consumption
increased from 2.8 million tonnes (Mt) in 2002 to 6.2 Mt in
2020, outpacing other high-concern plastic chemicals like

diethylhexyl phthalate (DEHP)11 and polybrominated diphen-
yl ethers (PBDEs).12 This upward trend is expected to
continue, driven by the extensive applications of BPA in
electronics, automobiles, buildings, and packaging sectors.13,14

Given its widespread use, BPA has been detected in diverse
media, including soil, sediment, atmosphere, water, municipal
waste, food, and biota.15,16 Identified as an endocrine disruptor
and listed as a substance of very high concern (SVHC) under
the REACH (Registration, Evaluation, Authorization, and
Restriction of Chemicals) regulation,17 BPA is linked to
numerous environmental and health issues, notably impacting
reproductive, immune, and neuroendocrine systems through
dietary, inhalation, and dermal exposure.18−20 Moreover, BPA
substitutes, such as bisphenol S (BPS) and bisphenol F (BPF),
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also exhibit endocrine-disrupting effects due to their analogous
molecular structures.21,22 These problematic properties have
positioned BPA at the forefront of the intergovernmental
negotiations on plastic pollution. It has been included in the
“ban or elimination” list proposed by Norway, Cook Islands,
and Rwanda;23 and featured in Annex A of the European
Union’s text proposal on chemicals of concern in plastic and
plastic products.24 As the only representative of the bisphenols
category in these regulatory proposals, BPA’s pervasive use and
associated risks highlight the urgency of its inclusion in
lifecycle management frameworks to combat the plastic crisis.
China is the world’s largest producer, consumer, and

importer of BPA, representing approximately a quarter of
global consumption, driven by its polycarbonate polymer (PC)
and epoxy resin (EP) plastic industries.25,26 Due to health
concerns, the Chinese government has prohibited the import
and sale of BPA-containing baby bottles since 201127 and
imposed limits on BPA content in express packaging (GB
43352-2023) and food contact plastics (GB 4806.7-2023).
Chinese industries, including the automotive sector,28 are
evaluating the impacts of BPA restrictions on downstream
industries and pursuing green alternatives to meet corporate
criteria. However, many BPA-containing products remain
exempt from these regulations, and the full scale of the
Chinese BPA industrial chain remains unclear due to
insufficient information. Given the pressing management
requirements for plastic and the lack of relevant knowledge,
there is an urgent need to establish a robust scientific basis for
BPA management in China, which will also be critical to
tackling the global plastic problem.
Developing a systematic macroscopic understanding of the

sources and sinks of BPA, alongside tracing the interconnected
flows from a life-cycle perspective, are core prerequisites for
informing management decisions. Material flow analysis
(MFA) is an effective tool for obtaining such information by

assessing the flows and stocks of materials within a system
defined in space and time.29−31 Numerous studies have used
MFA to understand the anthropogenic cycles of elements,32,33

products,34,35 and materials,36,37 demonstrating its advantages
in informing policy decisions for sustainable resource manage-
ment, waste treatment, and circular economy transition.
However, MFA studies focusing on plastic chemicals,
particularly BPA, are still in the nascent stage.38 Few studies
have examined the material flows of BPA, confined to specific
industries39 or regions,25,40 and their applicability to the
current BPA landscape in China remains limited due to
variations in waste management, phase-out practices, and
downstream applications, as well as incomplete consideration
of lifecycle stages and flows.
Assessing the environmental exposure concentrations and

determining the ecological risk levels of BPA are also core
prerequisites for informing management decisions. Multimedia
environmental models (MEMs) are widely used as decision-
support tools by government agencies to describe the behavior
of target chemicals by integrating their emission inventories,
intrinsic properties, and ambient attributes of a system.41,42

Typical MEMs, such as QWASI,43,44 Globo-POP,45,46 and
BETR,47,48 have been adopted to predict concentrations, fates,
and distributions of chemicals across multiple environmental
compartments, providing a rational basis for chemical risk
management.49 However, these models may not fully account
for the unique conditions of China due to differences in
applicable scales and ambient attribute parameters. Once
environmental concentrations are determined, the ecological
risk analysis (ERA) method can be applied to evaluate the
levels and severity of risks associated with chemical
exposure.50,51 Despite extensive ERA research,52−54 most
studies rely on experiment data for chemical concentrations,
restricting the scope and efficiency of the analysis.

Figure 1. Material flow analysis (MFA) model framework for BPA in the mainland of China.
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Here we adopted a method combining MFA, MEM, and
ERA to bridge the knowledge gaps in China’s lifecycle
management of BPA amid the plastic crisis. Notably, this
approach provides a comprehensive coverage of processes,
polymers, products, periods, and the real-world conditions of
the Chinese plastic industry and environment. First, we
established an MFA framework including all lifecycle stages
and flows and traced the three-decade dynamic flows, stocks,
and emissions of BPA across six key sectors in the mainland of
China. Based on the emission flows, we employed a spatially
explicit MEM parametrized for China to quantify BPA
exposure concentrations in different environmental media.
Combining the predicted concentrations with the hazard
properties of BPA, we assessed the probability, magnitude, and
acceptability of BPA risks to ecosystems and their components.
We additionally explored the potential of phasing out,
substituting, and optimizing production technologies to
mitigate BPA pollution. The implications of the findings for
sustainable plastic management and BPA risk management
were finally discussed.

2. MATERIALS AND METHODS
2.1. Spatiotemporal Boundary. Given the dominant role

of the mainland of China in the production of BPA and its
associated polymers,55,56 the study confines its spatial
boundary to the Chinese mainland. According to the scientific
literature57 and expert consultations, the industrial production

of BPA in China commenced in 1992 at the Wuxi Resin
Factory (now Bluestar Nantong Star Synthetic Materials Co.,
Ltd.), the temporal scope of the study therefore spans from
1992 to 2022 to capture the long-period evolution of BPA
dynamics.
2.2. Material Flow Analysis Model. 2.2.1. Model

Conceptualization. Figure 1 outlines the model structure for
BPA material flows in the mainland of China from 1992 to
2022. The model is characterized by five lifecycle stages of
BPA (I−V): from (I) chemical production, where BPA is
synthesized from phenol and acetone; into (II) polymer
production, where BPA is involved in polymerization reactions
to produce plastic polymers; into (III) fabricating and
manufacturing (F&M), where these polymers are processed
into plastic materials and used in fashioning finished products;
followed by (IV) use, where these BPA-containing products
enter the market for consumption; and culminating in (V)
End-of-Life (EoL) waste treatment, where these products are
disposed of and managed within waste and recycling systems
upon reaching the end of their service life.
In China, approximately 98% of BPA is consumed by the PC

and EP plastic industries.18,58 This study incorporated flows
and stocks of BPA contained in the two industries. These
plastic polymers are mostly used as the building blocks for 24
kinds of key end-consumer products (Figure 1) that were
identified through consultations with experts from the China
Synthetic Resin Association (CSRA) and the leading Chinese
polymer manufacturing companies. These products span six

Table 1. Parameters Used to Estimate BPA Flows

parameters

market share
(P) weight (W) content factor (C)

polymers PC 95%71 90 wt %25,72

EP 90%71 70 wt %72

final
products

cell phone 17%73 0.4 kg PC per cell phone56

laptop 100%74 2 kg PC per laptop74

earphone 21%73 In the enclosure: <0.2 kg per unit 2.6 wt %25

camera 15%73 In the enclosure: >0.5 kg per unit 2.6 wt %25

printer 10%73 25 kg PC per printer56

television 72%73 2 kg plastic per television56

stereo 33%73 In the enclosure, diaphragm, and bracket: 1 kg per unit 2.6 wt %25

air conditioning 62%73 In the electric control box shell, wind deflector, and air outlet grille:
100 kg per unit

2.6 wt %25

refrigerator 21%73 In the lampshade, inside shelf, and relay: <50 kg per unit 70 wt %56

washing machine 56%73 In the cover plate and display panel: 50 kg per unit 2.6 wt %25

vacuum cleaner 7%73 In transparent fittings: <10 kg per unit 2.6 wt %25

microwave oven 6%73 In the case material: >20 kg per unit 2.6 wt %25

switch, plug, and socket 90%56 0.0032 kg PC per switch, plug,
and socket56

vehicle lighting 50%56 2.1 kg PC per vehicle lighting56

vehicle window 1%73 6 kg PC per m2 vehicle
window75

dashboard 100% 0.84 kg PC per dashboard
bumper 100% 0.338 kg PC per bumper
building board 40% 22.5 wt %25

LED lighting 36%73 0.1 kg PC per LED lighting76

optical lenses 10%56 0.01 kg per unit 0.03202 wt %77

CDs, DVDs, and discs 100%74 0.01818 kg PC per optical disc74

five-gallon bucket 12%78 0.78 kg per unit 0.76 kg PC per five-gallon
bucket74

antifouling paints and wood
varnish

70% 40 wt %79

adhesives and mastics 3%80 20 wt %79
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downstream sectors, including electronics, automotive, con-
struction, optics, packaging, and coatings. At the end of their
service life, these products enter waste streams, contributing to
various forms of plastic waste in China, which are commonly
subject to recycling, landfilling, incineration, or dispersed into
the environment (i.e., improperly discarded).59 Trade flows
across the system boundary, including imports and exports of
BPA, plastic polymers, and associated products between China
and the rest of the world, were factored into the study scope.
However, BPA contained in traded waste was excluded due to
insufficient data. Additionally, the life-cycle emissions of BPA
into different environmental media, including the atmosphere,
soil, and water bodies, were estimated to elucidate its
environmental fates and ecological impacts.
2.2.2. Data Compilation and Accounting. Based on the

developed analytical model, combined with collected data
(detailed below) and identified parameters, the dynamic flows
and stocks of BPA in the mainland of China were quantified
using the top-down MFA approach.
In stages (I)−(III), the material flows of BPA (FBPA,

measured in kilogram, kg) in these stages include domestic
production (Fdomesticproduction

BPA ), consumption (Fconsumption
BPA ),

imports (Fimport
BPA ), exports (Fexport

BPA ), and emissions (Femission
BPA ).

Each type of BPA-containing polymer and product adheres to
the following mass conservation principle (eq 1), where the left
and right sides denote the inputs and outputs of each process,
respectively.

F F F F Fdomesticproduction
BPA

import
BPA

consumption
BPA

export
BPA

emission
BPA+ = + +

(1)

Annual domestic production data were retrieved from the
China Industry Statistical Yearbooks, China petrochemical
economic analysis reports,60−62 industrial reports, and
scientific literature,25,63 measured in kg or the number of
units. Cross-border statistics were mainly obtained from the
advanced UN Comtrade database64−66 using specific Harmon-
ized System (HS) codes: 290723 for BPA, 390740 for PC, and
390730 for EP, all measured in kg. Product-specific HS
commodity codes are provided in Table S1. For items lacking
registered HS codes, data were collected from industrial
reports and scientific literature.25,63 Emissions were quantified
by multiplying production activity data by corresponding
emission factors. Emission factors were derived from the
Technical Guideline for the Assessment of Environmental and
Health Exposures to Chemical Substances of the Ministry of
Ecology and Environment (MEE),67 which is applicable to
various emission scenarios (e.g., different sectors, lifecycle
stages, operating conditions, and applications), as well as from
scientific literature.15,68−70 Details for the inputs are available
in Table S2.
Since the material flows of BPA represent the mass of BPA

within BPA-containing products, each type of BPA flow (FBPA)
was estimated by multiplying the material flow for BPA-
containing product (Fproduct, measured in the number of units)
by a series of parameters, as shown in eq 2. These parameters,
as shown in Table 1, include (1) Pproduct (in percentage): the
market share of PC- or EP-containing products, also referred
to as the penetration of these products, reflecting the
proportion of product numbers to the total when the content
factor is measured in mass per unit and the mass share when
measured in weight percentage; (2)Wproduct (in mass per unit):
the weight of BPA-containing product; (3) Cpolymer (in weight

percentage or in mass per unit): the content factor of PC or EP
in product; (4) Ppolymer (in percentage): the market share of
BPA-containing PC or EP, representing the mass proportion of
these polymers; and (5) CBPA (in weight percentage or in mass
per unit): the content factor of BPA in PC or EP.

F F P W C P
C

BPA product product product polymer polymer

BPA
= × × × ×

× (2)

In stage (IV), BPA accumulates in finished consumer
products that are currently in active use, forming in-use BPA
stocks (Sin−use

BPA ).81 These stocks represent the difference
between BPA flows entering (Fconsumption

BPA ) and leaving (FEoLBPA)
from the stage. The accumulated BPA in-use stocks for each
product in year i were calculated as follows (eq 3). For the
initial year, the BPA in-use stocks (Sin−use,1991

BPA ) were assumed to
be zero.

S S F Fi i i iin use,
BPA

in use, 1
BPA

consumption,
BPA

EoL,
BPA= + (3)

In stage V, BPA wastes flowing into this stage (FEoLBPA) were
estimated using the lifetime model, assuming that the life
expectancy distribution of each BPA-containing consumer
product follows a normal distribution, as shown in eqs 4 and 5.

F F Pt
j

i

i t

i
j

i
t j

EoL,
BPA,

1992
consumption,
BPA, ,= ×

=

=

(4)

i

k

jjjjjjjjjjj

y

{

zzzzzzzzzzz
( )

P
t i

t
1

2
exp

2
di

t j

t

t

j

j

j

,

1

2

2=
·

·

(5)

where Pi, jt represents the probability that product j, produced
in year i, reaches its EoL in year t; μj and σj2 represent the mean
and standard deviation of the lifespan for product j,
respectively (Table S3), and were collected from the national
standard,82 plastic industry development blue book,56 and
market surveys. The BPA wastes treated by each EoL method
were quantified by multiplying the total EoL BPA waste flows
for each year by the proportion allocated to each EoL
treatment method (Table S4). These annual proportions were
derived from the government report,83 plastic industry
development reports,84,85 China Plastic Industry Yearbooks,
and scientific literature.63,86−88

BPA accumulates in wastes within landfills (FEoL landfill
BPA ),

forming BPA waste stocks (Swaste
BPA ), estimated as eq 6. The

waste stocks of BPA for the starting year (Swaste,1991
BPA ) were

assumed to be zero.

S S F Fi i i iwaste,
BPA

waste, 1
BPA

EoL landfill,
BPA

emission landfill,
BPA= + (6)

where F iemission landfill,
BPA represents BPA emissions in the landfill

process in year i.
2.3. Multimedia Environmental Model. The MFA-

derived emission flows were geographically allocated into 5506
interconnected grid cells (0.5° × 0.5°) using surrogate data
retrieved from the National Bureau of Statistics, including
gross regional production (GRP, for emissions production and
F&M stages), population (for emissions from in-use stocks),
and delivering quantity of house refuse (for emissions from
EoL management stage). These allocations cover the 31
provinces of the Chinese mainland to derivate total BPA
emission inventories.
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Based on the developed BPA emission inventories, environ-
mental concentrations of BPA in environmental compartments
across China were estimated by the multimedia environmental
model (MEM). The Sino Evaluative Simplebox-MAMI Model
(SESAMe v3.4 model),89 specifically parametrized and
spatially tailored for the Chinese mainland, was employed.
The model inputs include the developed BPA emission
inventories, physicochemical parameters of BPA (Table S5)
sourced from the PubChem database and scientific liter-
ature,15,90 as well as environmental attribute parameters of the
Chinese mainland that are built into the model. The model
generates the BPA concentration distributions in air, water,
and soil in China with a spatial resolution of 0.5°, serving as
outputs.
2.4. Ecological Risk Assessment. Based on the MEM-

simulated environmental exposure concentrations, an ecolog-
ical risk assessment (ERA) was conducted to inform BPA risk
management strategies in China. The risk quotient (RQ)
approach, widely used and recognized for its simplicity,
operational ease, and intuitive interpretation, was adopted to

quantitatively characterize the ecological risks associated with
BPA.91 The RQ was calculated by dividing the predicted
environmental concentration (PEC, in mol·m−3) by the
predicted no-effect concentration (PNEC, in mol·m−3), as
represented in eq 7. The PNEC was determined based on the
assessment factor (AF) method,92 as specified in eq 8. This
method prioritizes the most sensitive ecotoxicity end-point
values�whether acute or chronic�for aquatic, terrestrial, and
sediment species and plants (Table S6). An AF of 1000 is
applied when acute toxicity data are the most sensitive, while
an AF of 10 is used for chronic toxicity data.92

RQ PEC /PNECm i m i m, ,= (7)

L E CPNEC ( ) /AF or NOEC /AFm m m50,= (8)

where m refers to a specific environment compartment; i
represents a specific year. The half-lethal concentration (LC50)
and half-effect concentration (EC50) serve as acute toxicity
indices, while the no observed effect concentration (NOEC) is
utilized as a chronic toxicity index, sourced from the US EPA

Figure 2. BPA flows through domestic production and cross-border trade (a), BPA flows through consumption by end-use sector (b), BPA waste
flows by end-use sector (c), BPA waste flows by EoL treatments (d), BPA in-use stocks by end-use sector (e), and BPA waste stocks by end-use
sector (f) from 1992 to 2022 in the mainland of China. The PC (products) import, EP (products) import, PC (products) export, and EP
(products) export in (a) represent BPA flows embedded in these polymers or products. The uncertainty range is indicated by the area between the
dash lines, suggesting that 95% of simulated values lie in this range.
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Ecotoxicology (ECOTOX) database and European Union Risk
Assessment Report.93 Different RQ values indicate varying
levels of ecological risks: RQ < 1 suggests no significant risk, 1
≤ RQ < 10 suggests low potential risk, 10 ≤ RQ < 100
suggests high risk, and RQ ≥ 100 suggests very high risk.
2.5. Uncertainty Characterization. The results of MFA

studies may be subject to uncertainties arising from data
sources, data quality, study assumptions, and parameter
determination.94 In the current case, production and trade
data on BPA, PC, EP, and their associated products were
mainly obtained from Chinese government agencies, Chinese
industrial associations, and the United Nations Statistics
Division, which are officially registered and thus considered
reliable.
To address data limitations before 2000, linear or

exponential interpolation methods are applied based on the
trend of existing data. In instances of missing data spanning
certain years, the average of adjacent years was used to
interpolate the gaps to maintain the overall trends of the data
in time series and minimize potential biases. Given that BPA
consumption before 2000 constituted only ∼1.1% of the
temporal boundary (1992−2022), uncertainties from this
period are believed to have minimal impact on the overall
findings.
Parameters, including market shares of BPA-containing

polymers and products, content factors of BPA and polymers,
emission factors of each life-cycle stage, and life expectancy of
each product, were used to determine the BPA flows in
finished products and wastes. To examine the sensitivity of
model outputs in response to these input parameters, local
sensitivity analyses were conducted. Each individual parameter
(I) was scaled by 10% above and below its baseline levels (I0)
at a time, and the elasticity of model outputs (E) relative to
their present values was measured, as expressed in eq 9.

S
E E
I I

E E

E
/
/

1
20%

I I

I I I I

I I

110% 90%

0

0 0

0

= = ·
=

= · = ·

= (9)

As shown in Figure S1, the absolute value of S (|S|) is
generally close to zero or moderately sensitive (|S| < 1) to
changes in most input parameters, indicating robust and
reliable results despite input variability. Notably, the average
lifetime of BPA-containing products emerges as a highly
influential parameter, affecting the outputs of waste flows and
stocks, with |S| values reaching 1.7 and 1.3, respectively, in
2022. Despite efforts to compile such information, data on
average lifetimes remains uncertain or unavailable for many
products, likely due to immense temporal and spatial variability
in product life spans.95 Addressing this gap is crucial for
ensuring simulation accuracy, necessitating the acquisition of
reliable and comprehensive lifespan data across diverse product
categories.
To understand the impact of different choices for the key

parameter (i.e., the average lifetime of each product) on the
results, a Monte Carlo simulation was further conducted,
assuming the key parameter follows a normal distribution.96

For each data point, random parameter values were generated
10,000 times based on the probability distribution, resulting in
a set of simulation outputs. From these outputs, a 95%
confidence interval was established, corresponding to the 2.5th
and 97.5th percentiles of the probability distribution. This
confidence interval provides a data range that allows decision-

makers to formulate policies by adopting results with fewer
deviations. Results show that key parameters have lower
coefficients of variation (with a maximum value of ∼10%),
suggesting less data volatility and greater certainty of the
results.

3. RESULTS
3.1. Evolution of BPA Material Flows and Stocks.

Since 1992, the annual flows of BPA into the mainland of
China have surged over 40-fold, peaking at about 4.2 million
tonnes (Mt) in 2022 (Figure 2a). This increase corresponds
with the expansion of production capacities among Chinese
enterprises in recent years,55 leading to a shift in BPA sources
from primarily imported primary products (i.e., BPA, PC, and
EP) to domestic production. Domestic production and
imports of BPA raw material, alongside imports of BPA-
containing polymers, collectively constituted ∼92% (1.6 Mt)
of the total BPA inflows, serving as the primary BPA sources in
the mainland of China. In contrast, BPA embedded in
imported products accounted for only ∼8.0% of the total
inflows.
Annually, China’s BPA outflows have also seen significant

growth (Figure 2a), reaching a maximum of 1.1 Mt in 2021.
The largest contributors to BPA outflows were exports of PC
(∼32% of total outflows) and its finished products (∼47% of
total outflows), serving as the primary pathways for BPA
leaving the Chinese mainland. Given the large inflows relative
to the minor outflows, China has become a major BPA net
accumulator, holding substantial BPA stocks, with an annual
net accumulation averaging around 1.2 Mt.
Figure 3 shows the overview of BPA material flows in 2004,

2013, and 2022, highlighting the development in China’s BPA
industry over the past two decades. China has achieved self-
sufficiency in EP production, with domestic BPA production
meeting approximately 60, 89, and 96% of the country’s EP
demand, respectively. Conversely, the demand for PC heavily
relied on BPA imports in 2004 (99%) and 2013 (75%). By
2022, this trend had reversed, with over 68% of PC demand
being fulfilled by domestically produced BPA, fueled by the
expansions in the Chinese BPA production capacity since
2010.57,97

The demand for BPA has surged, fueled by increased usage
of PC in the automotive, construction, and electronics sectors,
and EP in the coatings sector. BPA consumption grew from
0.77 Mt in 2004 to 1.6 Mt in 2013, and to 3.3 Mt in 2022,
reflecting an average annual growth rate of 9.6% (Figure 2b).
Notably, a shift in sectoral consumption patterns occurred
during this period. In 2004, the optics sector ranked the third
largest after coatings and electronics in BPA consumption.
However, with the advent of streaming media reducing the
need for physical discs, BPA consumption in optics declined.
By 2013 and 2022, the construction and automotive sectors
had overtaken optics.
The consumption growth has led to a doubling of BPA

waste flows, from 1.7 Mt in 2004 to 3.6 Mt in 2022, largely due
to the generation of construction waste and e-waste (Figure
2c). Most BPA waste ended up in landfills, although recycling
and incineration have become more prevalent (Figure 2d). In
2022, cumulative BPA waste amounted to 6.4 Mt, with nearly
40% landfilled, ∼25% recycled, and ∼19% incinerated. The
proportion of recycled BPA has increased from 20% in 2004 to
30% in 2022.

Environmental Science & Technology pubs.acs.org/est Article

https://doi.org/10.1021/acs.est.4c09876
Environ. Sci. Technol. 2025, 59, 1631−1646

1636

https://pubs.acs.org/doi/suppl/10.1021/acs.est.4c09876/suppl_file/es4c09876_si_001.pdf
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.4c09876?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


The in-use BPA stocks have witnessed a remarkable surge
from 1992 to 2022 (Figure 2e). As of 2022, the total in-use
stocks of BPA reached ∼34 Mt, marking an over 455-fold
increase compared to 1992. The coatings (14 Mt, ∼43%),
electronics (6.9 Mt, ∼20%), and construction (5.2 Mt, ∼15%)
sectors were the primary contributors, with key sources
including antifouling paints and wood varnish, PC building
boards, and refrigerators (Figure S2). The in-use BPA stock
per capita reached an estimated 24 kg in 2022 (Figure S3).

The average annual increase in BPA in-use stocks per capita,
defined as the difference between annual per capita BPA
consumption and annual per capita BPA waste flows, increased
from 0.030 kg in 1992 to 2.1 kg in 2022, with the upward trend
expected to continue.
Landfilling remains the dominant method of EoL manage-

ment for BPA, resulting in substantial waste stocks (Figure 2f).
BPA waste stocks had accumulated to 2.5 Mt by 2022. Before
2010, the coatings sector dominated BPA waste stocks,
responsible for over 50% of the total. However, since 2010
BPA waste stocks from building materials have increased,
reaching 0.66 Mt in 2022 and accounting for ∼26% of total
waste stocks. E-waste stocks have also experienced significant
growth, approaching 0.55 Mt (∼22%) in 2022. This trend can
be attributed to the rapid advancement of urbanization and
digitalization in China, along with variations in the service life
of different end-consumed products.
Figure 4 shows the BPA emissions by environmental

compartment, sector, and life cycle stage. Total BPA emissions
in the mainland of China have grown dramatically, from 0.008
Mt in 1992 to 0.23 Mt in 2022. Among these emissions, ∼65%
seeped into the soil, ∼34% infiltrated water bodies, and
∼0.58% entered the atmosphere (Figure 4a), indicating the
prominent roles of soil and water as recipients of BPA within
the Chinese mainland. Soil contamination mainly originated
from the use of BPA-containing products, representing ∼84%
of total BPA soil emissions, whereas water contamination
largely arose from F&M (∼47%) and waste management
practices (∼38%), particularly landfilling and inappropriately
discarded items. Atmospheric pollution mainly resulted from
polymer production, comprising nearly 80% of total BPA air
emissions.
From a sectoral perspective (Figure 4b), BPA emissions

were highly concentrated in the construction and coatings
sectors, collectively contributing ∼88% of the cumulative BPA
emissions in the mainland of China. This is likely to be
attributable to the high BPA consumption in these sectors,
alongside the prolonged service life of building PC boards and
EP paintings. From a life cycle perspective (Figure 4a), the use
stage emerged as the leading contributor of BPA emissions,
responsible for nearly 58% of the total, followed by the EoL
management stage at ∼23%.
3.2. Environmental Fates, Distribution, and Ecolog-

ical Risk Levels of BPA. Figure 5 presents the spatially
resolved overview of BPA concentrations, which generally
increased across all environmental media during the past two
decades. In some regions, BPA levels in water bodies exceeded
the upper limit (0.1 mg L−1) set by the national pollutant
emission standards for the petroleum chemistry industry (GB
31571-2015, revised in 2024) and the synthetic resin industry
(GB 31572-2015, revised in 2024). In 2004, 0.65% of areas in
the mainland of China had BPA concentrations surpassing the
limit, rising to ∼3.5% in 2013 and ∼8.4% in 2022. The regions
with the highest levels of contamination in 2022 were mostly
located in Sichuan (accounting for ∼20% of the total polluted
areas), followed by Shanxi (∼9.5%), Shandong (∼6.9%),
Hebei (∼6.7%), and Shaanxi (∼6.5%).
Geographically, BPA levels were visibly higher in coastal

areas located in eastern, southern, and southwestern inland
China. Airborne BPA concentrations were centralized in the
Beijing-Tianjin-Hebei province cluster, Yangtze River Delta,
and Pearl River Delta, correlating with their significant gross
regional production and economic activities. Similarly, high

Figure 3. Overview of BPA material flows in the mainland of China in
2004 (a), 2013 (b), and 2022 (c).
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BPA concentrations were observed in the soil, water,
sediments, and vegetation of Sichuan and Beijing. This is
likely due to (1) the thriving manufacturing industries and
urban household refuse-delivering infrastructures in Beijing
responsible for BPA pollution in water bodies;98 and (2) the
extensive urban soil areas, unique basin topography, and
meteorological condition, alongside substantial runoff loss
from water to the soil in Sichuan,99 combined with vegetation
interception, exacerbating BPA contamination in soil and
vegetation. A comparison between modeled concentrations
and literature-reported measurements100−120 reveals that
average concentrations deviated by 1−2 orders of magnitude
in most environmental compartments (Figure S4). This
difference magnitude is consistent with previous studies,63,121

indicating the need for targeted pollution control measures and
more environmental monitoring to better validate modeling
approaches and assess accuracy.
Increasing environmental concentrations of BPA have led to

increased ecological risks, particularly chronic risks, as shown
in Figure 6. Organisms living in aquatic environments,
including pelagic and benthic organisms, faced the most severe
risks, whereas those that burrowed into soils and terrestrial
plants were at a much lower risk of harm (RQs < 1). In 2022,
approximately 4.5% of the mainland of China encountered
very high chronic risks to pelagic organisms, with an additional
∼27% facing high chronic risks. For sediment-burrowing
organisms, ∼0.56% experienced very high acute risks, and
∼10% faced high acute risks.
Spatial analysis indicates that ecological risks were more

pronounced in BPA contamination hotspots and their
surroundings, including Chongqing, Guizhou, Shanxi, Shaanxi,
Henan, Shandong, Fujian, and Zhejiang provinces. Such a
dispersive pattern, compared to the centralized pattern of
concentrations, reflects a “space-time lag” caused by the
persistence, bioaccumulation, and long-range environmental
transport of BPA.90 This results in prolonged exposure,
delayed risks, and broader distributions as BPA persists in
the environment bioaccumulates in the food chain, and spreads
to uncontaminated areas.
3.3. Mitigation Strategies for BPA Contamination.

Our findings reveal that BPA concentrations in ∼8.4% of
aquatic environments in the mainland of China in 2022
exceeded the limit specified in the national emission pollutant
standards. To further explore the extent to which key
parameters, including market share, content factor, and
emission factor, can be adjusted to align BPA levels with the
national standards, we evaluated three mitigation strategies:

PO (i.e., BPA phase-out by the plastic industry), SU (i.e., BPA
substituted by toxic-free plastic chemicals), and TO (i.e.,
optimization of production techniques by the BPA industry).
BPA consumption was assumed to reduce accordingly under
the PO and SU scenarios but remained unchanged under the
TO scenarios. We analyzed the reduction in the percentage of
areas in the mainland of China exceeding BPA concentration
limits set by the national pollutant emission standards,
compared to the baseline (i.e., current conditions), by
adjusting key parameters by 10% (PO1, SU1, TO1), 30%
(PO2, SU2, TO2), 50% (PO3, SU3, TO3), 70% (PO4, SU4,
TO4), and 90% (PO5, SU5, TO5) under each scenario,
respectively. The gradient levels were designed to reflect the
varying extents of potential interventions that could reduce
BPA environmental concentrations in water bodies across the
mainland of China, aligning them with national standards.
These percentages offer decision-makers a range of plausible
intervention scenarios, with higher values indicating more
significant reductions in BPA emissions. Details on the
scenario description are provided in Table S7.
As shown in Figure 7, at reductions of 10, 30, and 50%

conditions, the PO and SU scenarios were more effective,
whereas at reductions of 70 and 90% conditions, the TO
scenario proved more effective. This suggests that phasing out
BPA in the market and replacing it with safer alternatives could
be an effective short-term strategy, while target interventions
such as advancing production and recycling technologies, offer
substantial long-term potential for reducing BPA levels and
related ecological risks. The TO5 scenario achieved the largest
reduction, with nearly all areas in the mainland of China
meeting the national pollution emission standard and escaping
from BPA pollution, indicating the greatest potential for
emission factors in reducing the environmental concentration
of BPA.

4. DISCUSSION
4.1. Theoretical Implications. Our study is one of the

first attempts to map spatially and temporally resolved BPA
material cycles, detailing its dynamics within both the
anthroposphere and the ecosystem. By integrating MFA,
MEM, and ERA, our research presents a novel and reliable
methodology for efficiently capturing granular-level knowledge
on anthropogenic cycles, emission inventories, and ecological
risks associated with BPA in China. This integrated approach
advances previous studies25,63,121,122 by adopting the localized
MEM tailored to China’s environmental conditions, introduc-
ing the “market share” parameter for precise MFA modeling,

Figure 4. BPA emissions by life cycle stage (a) and by end-use sector (b) from 1992 to 2022 in the mainland of China. The uncertainty range is
indicated by the area between the dash lines, suggesting that 95% of simulated values lie in this range.
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and integrating real-world data from government sources,
industry investigations, and expert consultations. These refined

data sets and methods provide a robust theoretical basis for
government agencies to develop data-driven, tailor-made

Figure 5. Spatial distribution of BPA concentrations in air, soil, water, sediment, and vegetation across the mainland of China (excluding Hainan
province) in 2004, 2013, and 2022. The blank areas indicate data unavailable.
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management strategies addressing regional BPA risk and
plastic pollution issues. Further, this framework offers a
reference for broader research into other plastic chemicals,
such as per- and polyfluoroalkyl substances (PFAS) and
phthalate esters (PAEs), which are increasingly relevant in the
context of the global plastic treaty.38

4.2. Practical Implications for Material Management.
Material stocks provide critical insights into the sources and
scales of future material flows. Our study identifies key sectors
and products holding large in-use BPA stocks, notably epoxy
coatings, electronic devices, and construction materials

(Figures 2e and S2), serving as a warning about the potential
for substantial plastic waste generation from these downstream
applications. The findings underscore an urgent need for
proactive countermeasures within these hotspots to avoid
potential environmental burdens induced by BPA. Strategies
may include identifying the flow pathways of relevant products
and considering recalls of substandard ones.
Waste stocks represent sustained sources of chemical release.

In 2021, the Chinese government enacted the “14th Five-Year”
Plastic Pollution Control Action Plan, aiming to curtail direct
landfilling of plastic waste and enhance recycling by 2025. Our

Figure 6. Spatial distribution of BPA ecological risks to aquatic, terrestrial, and sediment organisms across the mainland of China (excluding
Hainan province) in 2004, 2013, and 2022. The blank areas indicate data unavailable.
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results indicate that there has been a decrease in the average
landfilling rate from 35 to 32% and an increase in the recycling
rate from 26 to 30% over the past three years, the average
growth rate of BPA waste stocks has reduced from 5.7 to 4.8%
annually (Figure 2f). This reflects a shift in China’s waste
management system from being “landfilling-led” to “recycling-
driven,” although the effect remains modest. Given the large
BPA waste stocks in the construction and electronic sectors,
prioritization of these areas is needed as part of ongoing plastic
waste management reforms in China. Further, real-time
tracking of BPA waste flows in these sectors and strengthened
oversight of waste management practices among relevant
enterprises, may be required.
Material stocks per capita normally have a saturation point,

beyond which incoming and EoL flows approximate an
equilibrium. While previous studies have revealed saturation
points for metals123−125 and bulk materials,126−128 less
attention has been given to chemicals embedded in products.
In terms of BPA, our research suggests that the in-use stock per
capita was ∼11 kg in 2014, increasing by ∼0.73 kg annually.
This result aligns with Jiang et al.,25 who reported an estimated
10 kg in 2014, with an annual increase of around 0.80 kg. Our
estimates further reveal that by 2022, the in-use BPA stock per
capita has risen to approximately 24 kg, with each year adding
∼1.6 kg since 2014, which suggests that stock accumulation
per capita for BPA is still ongoing. Thus, it is necessary to
continue tracing the saturation point of in-use BPA stock per
capita and other plastic chemicals for gaining future insights
into plastic management.
Our study reveals large environmental emissions of BPA

across its entire life cycle, highlighting the need for a holistic
approach to environmental mitigation, targeting all stages. This
begins with enhancing source controls by modernizing
production techniques and equipment designed to lower
emission factors. Considering the large emissions from the use
stage (Figure 4a), minimizing or phasing out BPA content in
end-use plastic products is critical, which is achievable by
seeking alternatives and enacting regulatory bans. Further, it is
imperative to provide clear product labels or warning signals to
guide consumers toward BPA-free options, thereby decreasing
its market prevalence. The EoL stage requires improvements in
the waste management system, including enhanced waste
classification, collection, and resource recycling processes. In
practice, challenges in downstream plastic waste treatment,
such as BPA migration from PC to polyethylene terephthalate
(PET) due to poor waste classification,129 degrade the quality

of recycled materials and complicate BPA-related waste flows.
Further, increasing demand for recycled plastics has prompted
manufacturers to add more chemical additives to address
viscosity, degradation, color, and aging issues,130 resulting in
higher emissions during recycling. These highlight the
necessity of promulgating standardized regulations governing
plastic disposal processes and limiting toxic chemical contents
in recycled materials. Our scenario analysis serves as an
illustration of the potential for reducing BPA emissions
through these initiatives, suggesting that addressing BPA
consumption would be more effective in the near term,
whereas focusing on production and EoL stages would be
impactful in the long term.
4.3. Practical Implications for Risk Management. Our

study underscores the urgent need for effective risk manage-
ment strategies to address the toxicity of BPA in plastics, which
has garnered public and policy attention. By linking material
flows to environmental consequences, we provide insights into
macroscopic strategies for mitigating BPA’s ecological risks.
Our findings indicate a large magnitude of BPA emissions from
construction materials, epoxy coatings, and electronic devices,
which create severe ecological risks (Figure 4b), necessitating
stringent sectoral-specific regulations. Packaging materials,
although contributing less to BPA emissions, are particularly
concerning health risks due to their direct contact with food.
Several regions, such as the US,77 France (Law no. 2012-
1442), Denmark (Statutory Order No. 822), U.K. (Materials
and Articles in Contact with Food (England) Regulations
2012), and China,27 have banned the certain use of BPA in
human-contact products such as baby bottles. These measures
emphasize the need for further research on BPA-induced
human health risks to evaluate the effectiveness of existing
regulations and guide future actions.
Our research identifies key regions and environmental

compartments with severe BPA contamination and related
ecological risks (Figures 5 and 6), facilitating spatially defined
interventions for BPA release control, especially in heavily
polluted areas. Soil pollution induced by toxic chemicals like
BPA is characterized by its concealment, hysteresis, and
accumulation,131 leading to groundwater pollution. Thus, it is
crucial to enhance soil pollution remediation and control
technologies. Water pollution, which disperses rapidly,132

demands advanced monitoring and control technologies. Our
findings suggest that aquatic environments in the mainland of
China faced the highest chronic ecological risks from BPA,
underscoring the need for intensified risk monitoring and

Figure 7. Impact of key strategies on BPA emissions in the mainland of China.
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control measures in water bodies and sediments. The regions
identified with high risks are also closely linked to potential
health risks suffered by local communities, such as endocrine,
immune, and oncological diseases,19,133 and thus warrant
further evaluation in future studies. Moreover, the large waste
stocks call for regular risk assessment for landfills and their
surroundings. Advanced monitoring techniques, such as
satellite remote sensing and crewless ships, could improve
detection accuracy and efficiency in BPA pollution control and
risk management.
4.4. Limitations. Due to model restrictions, this study fails

to differentiate the life expectancy of BPA itself from that of
BPA-containing consumer products when calculating waste
flows. Since BPA is gradually released during the product use
stage, its residence time is likely shorter than that of the
products themselves. This omission could introduce a slight
“imbalance” in the modeling.134 Given the low magnitude of
BPA emissions, such imbalance is considered to have limited
impacts on the results, though it could be addressed in future
research. Moreover, certain parameters, including market
shares of polymers and products, BPA emission and content
factors, and product lifespans, are treated as fixed values in this
work, with appropriate justification. While this approach is
supported by uncertainty and sensitivity analyses (Section 2.5),
indicating the model’s reliability and robustness, future studies
could benefit from extending these parameters into a dynamic
domain by adopting probabilistic MFA,135,136 which integrates
uncertainties of parameters as probabilistic distributions.
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