
Black holes in multimetric gravity. II. Hairy solutions and linear stability
of the non- and partially proportional branches

Kieran Wood ,* Paul M. Saffin ,† and Anastasios Avgoustidis ‡

School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
and Nottingham Centre of Gravity, University of Nottingham, Nottingham NG7 2RD, United Kingdom

(Received 1 November 2024; accepted 5 January 2025; published 23 January 2025)

Owing to our work in part I of this series of papers, it is understood that the analytically known black
hole solutions in the theory of ghost-free multimetric gravity can be split into three distinct classes and that
one of these classes—the proportional branch—exhibits the Gregory-Laflamme instability at linear level
in the metric perturbations, whenever the black hole horizon size is smaller than (roughly) the Compton
wavelength of the theory’s lightest massive graviton. In this first of two sequels, we determine the linear
stability of the two remaining classes of black hole solutions—the nonproportional and partially
proportional branches—and discuss how our results likely differ at nonlinear level. We also give a
general prescription to construct multimetric solutions describing black holes endowed with massive
graviton hair, which may constitute the end state of the instability in the proportional branch. We utilize a
tractable example model involving three metrics to see how this works in practice and determine the
asymptotic form of its corresponding hairy solutions at infinity, where one can clearly see the individual
contributions from each of the graviton mass modes.
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I. INTRODUCTION

Theories of massive and multimetric gravity have gar-
nered considerable attention in recent years, owing to their
ability to potentially say something meaningful about a
number of problems at the interface between gravity and
particle physics [1–5]. These theories extend general rela-
tivity (GR) by introducing additional interacting massive
spin-2 fields over and above the single massless graviton of
GR, whose presence can influence the gravitational dynam-
ics in interesting and useful ways; for example, one can talk
about possibly solving the hierarchy problem [6–8], and the
theory may contain a viable dark matter candidate [9–12],
among other niceties. Nonlinearly, the inclusion of these
additional spin-2 fields manifests as a framework in which
multiple metric tensors interact with one another on the
same spacetime manifold (hence the name “multimetric
gravity” or sometimes just “multigravity”).

As with any theory of modified gravity, these multi-
metric theories must pass both observational and theoreti-
cal tests to at least as high a degree of precision as GR in
order to be considered viable alternatives. It is, therefore,
of paramount importance that we determine whether these
theories are, at the very least, theoretically consistent,
before we can then go on to investigate where they might
give predictions that are testably different from GR. One
such theoretical requirement is of course that a given
theory should possess stable solutions that are able to
describe real physical systems existing in our Universe; the
natural arena to probe in gravitational theories is that of
black holes, since they do exist and provide a convenient
window into the strong curvature regime in any classical
theory of gravity.
In part I of this series of papers [1]—which we will recap

in more detail in Sec. II of this work—we explicitly
constructed a wide class of black hole solutions to the
general theory of multimetric gravity (in arbitrary spacetime
dimension) and found that they can be separated into three
distinct classes depending on whether the various metrics
can be simultaneously diagonalized. We also showed that
the simplest of these three solution branches (the propor-
tional branch) can exhibit an instability whose defining
equations are equivalent to those governing the Gregory-
Laflamme instability afflicting black strings in theories with
extra dimensions [13–15], depending on the mass of the
theory’s lightest graviton. Our results directly extended and
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generalized the analogous results already known in four-
dimensional de Rham-Gabadadze-Tolley (dRGT) massive
gravity and bigravity [16–27] and shed some additional
light on the nature of the instability and its relation to
dimensional deconstruction [7,8,28,29]—we will have a
little more to say on this in Sec. II B as well.
This time, in part II, we determine the linear stability of

the remaining two branches of analytically known black
hole solutions (the nonproportional and partially propor-
tional branches) and conjecture upon how our conclusions
from the linear analysis may change dramatically if one
were to consider nonlinear effects. Building on from part I,
we also give a prescription to construct more generic
spherically symmetric black hole solutions in these multi-
metric theories that are posited to exist beyond the insta-
bility threshold in the proportional branch. That such
solutions should exist can be understood purely on the
grounds that once the instability ensues, it must necessarily
saturate somewhere, and if the initial state is spherically
symmetric, then so too should the final state be (unless one
wishes for cosmic censorship to be violated). In practice,
constructing these solutions is extremely difficult even for
the simplest of toy models and must be done numerically.
Nevertheless, one can still understand the generic procedure
one must follow in order to construct these solutions.
Moreover, perhaps more usefully, one can glean physical
information by considering the asymptotic behavior of these
solutions at infinity, where it can be clearly seen (analyti-
cally) that they describe black holes supplemented by
massive graviton hair. Such hairy black hole solutions have
been explicitly constructed already in bigravity [30–32],
where the solutions are built by analytically determining
their asymptotic form at infinity and then numerically
solving the boundary value problem defined by these
asymptotics. The presence of additional metrics complicates
matters significantly; indeed, we feel the full numerical
calculation warrants a separate article that will form the final
installment in this series of papers, but wewill still provide a
blueprint here that one may follow if one wishes to construct
these solutions for a generic multimetric model, as well as
an explicit calculation of the asymptotics for an example
model with three metrics that still contains the relevant
physics.
The structure of this work, then, is as follows: in Sec. II

we review multimetric theory and provide a recap of what
we did in part I; in Sec. III we determine the linear stability
of the nonproportional and partially proportional branches
of black hole solutions; in Sec. IV we provide a general
procedure by which one would construct the hairy black
hole solutions for any multimetric theory and use it to
determine the asymptotic form of one such solution in an
example model with three metrics (we will save the
numerics for part III); finally we conclude in Sec. V.
We work in natural units c ¼ ℏ ¼ G ¼ 1 throughout and

always use a mostly plus metric signature.

II. RECAP OF PART I: MULTIMETRIC THEORY,
BLACK HOLE SOLUTIONS AND INSTABILITY

OF PROPORTIONAL BRANCH

We begin this first sequel with a synopsis of our precursor
work [1]. The theory of multigravity can be formulated in
two different ways: one may work in either the metric
formalism, where the potential governing the interactions
between the various metrics is constructed from the metrics
directly, or the vielbein formalism (also known as the tetrad
formalism), where it is instead written in terms of a wedge
product between the different tetrad 1-forms associated to
each of the metrics. Both approaches have their benefits and
drawbacks and are useful in different situations; in part I, we
used them both to tackle different problems, though we still
explained how one may convert between formalisms if one
so wishes. In part II, we shall work exclusively in the metric
formalism, since to discuss stability we will be concerned
with linear perturbations around the background black hole
solutions; in [1] we saw that the metric approach is most
appropriate for this problem. Naturally, our intention is that
parts I, II and eventually III be read in conjunction with one
another, so if the reader wishes to know how the calculations
we shall present here would look in the language of
vielbeins, we direct them to [1].
The starting point for all our analysis, then, is the metric

version of the standard ghost-free multimetric action, I, in
vacuum1:

I ¼ IK þ IV; ð1Þ

IK ¼
XN−1

i¼0

MD−2
i

2

Z
dDx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det gðiÞ

q
RðiÞ; ð2Þ

IV ¼ −
X
i;j

Z
dDx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det gðiÞ

q XD
m¼0

βði;jÞm emðSi→jÞ; ð3Þ

where the kinetic term is simply N copies of the Einstein-
Hilbert action (one for each metric) and the interaction
potential is built by summing the elementary symmetric
polynomials em of the eigenvalues of the characteristic
building block matrices:

Si→j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
g−1ðiÞgðjÞ

q
; ð4Þ

along with some arbitrary constant parameters βði;jÞm ¼ βðj;iÞm

(of mass dimension D) to characterize the interactions

between gðiÞμν and gðjÞμν . In Eq. (4), the matrix square root is

1We shall in the later sections restrict ourselves to work in
D ¼ 4 dimensions, for simplicity of the stability analysis, but for
the moment we shall maintain generality.
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defined in the sense that ðS2i→jÞμν ¼ gðiÞμλgðjÞλν , while the
elementary symmetric polynomials can be explicitly con-
structed iteratively in terms of the trace of S, starting from
e0ðSÞ ¼ 1, as

emðSÞ ¼ −
1

m

Xm
n¼1

ð−1Þn TrðSnÞem−nðSÞ: ð5Þ

Lastly, since Si→j ¼ S−1j→i, there is a sense in which these
interactions are oriented: we say that a term in the potential,
Eq. (3), that contains Si→j (not Sj→i) is positively oriented
with respect to the ith metric and negatively oriented with
respect to the jth metric. The orientation of an interaction
with respect to a given metric affects the form of that
metric’s field equations, as we will see.
The simplest way to view the interaction structure of a

given model is as a directed graph [17,33], as depicted in
Fig. 1. Symmetries of a particular multimetric model under
permutations of the metric labels and swapping of inter-
action orientations can then be equivalently viewed as
symmetries of said model’s directed theory graph.
While somewhat unwieldy, it is crucial that the inter-

actions between the metrics take this form, lest the
Boulware-Deser (BD) ghost [34] be resurrected.
Precisely, there is a particular constraint within the theory
that kills the ghostly degree of freedom; departing from the
interaction structure given by Eq. (3) leads to this constraint
becoming dynamical and so revives the ghost [35–41]. The
requirement of ghost freedom further restricts one to
consider only those multimetric theories that do not involve
any interaction cycles (a cycle is e.g. 1 → 2 → 3 → 1, so
the potential contains all three of S1→2, S2→3 and S3→1); the
interactions between metrics must strictly form a tree
graph [42,43].
The vacuum field equations that arise from the action (1)

are as follows:

MD−2
i GðiÞμ

ν þWðiÞμ
ν ¼ 0; ð6Þ

where the new term W characterizes the effect of the
interactions over and above the standard GR interactions. In
the metric formalism, it is explicitly given by

WðiÞμ
ν ¼

X
j

XD
m¼0

ð−1Þmβði;jÞm Yμ
ðmÞνðSi→jÞ

þ
X
k

XD
m¼0

ð−1Þmβðk;iÞD−mY
μ
ðmÞνðS−1k→iÞ; ð7Þ

where (with respect to the ith metric) j denote positively
oriented interactions, k denote negatively oriented inter-
actions, and we define

YðmÞðSÞ ¼
Xm
n¼0

ð−1ÞnSm−nenðSÞ: ð8Þ

As an example, to see how this works more explicitly, the
metric furthest to the right in Fig. 1 has only a single
negatively oriented interaction with its nearest neighbor.
Denoting the furthest right metric as gðIÞ and the nearest
neighbor as gðJÞ, the vacuum field equations for gðIÞ read

MD−2
I GðIÞμ

ν þ
XD
m¼0

ð−1ÞmβðJ;IÞD−mY
μ
ðmÞνðS−1J→IÞ ¼ 0: ð9Þ

Finally, as a result of the Bianchi identities for each
Einstein tensor, the covariant divergence of each W tensor
must also vanish:

∇ðiÞμWðiÞ
μν ¼ 0 ∀ i: ð10Þ

We refer to this condition as the Bianchi constraint; it tells
us that there can be no flow of energy-momentum across
the interacting metrics.

A. Black hole solutions: Proportional, nonproportional
and partially proportional branches

The black hole solutions we constructed in part I can be
subdivided into three distinct classes, depending on
whether the various metrics are simultaneously diagonaliz-
able [1].
The cleanest and most unified way to construct these

solutions is to work with the following Kerr-Schild ansatz
for the multigravity metrics [25,44]:

gðiÞμν ¼ a2i

�
gðΛÞμν þ rs;i

U
lμlν

�
; ð11Þ

where the ai are constant conformal factors2 (one of which
can be fixed by coordinate rescaling but the rest are

FIG. 1. Directed theory graph representing some generic multi-
metric model. The nodes represent different metrics, the edges
indicate interactions and the arrows point in the direction of
positive interaction orientation. Each metric generically has a
number of interactions of either orientation, and each edge
contributes a term to the field equations of the two metrics it
connects; these terms are orientation dependent.

2In fact, the Bianchi constraint enforces their constancy [16].
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physical as all metrics live on the same spacetime mani-
fold), gðΛÞ is the D-dimensional (anti–)de Sitter [(A)dS]
metric with cosmological constant Λ, the rs;i are indepen-
dent Schwarzschild radii for each metric, U is some scalar
function of the coordinates, and l is a vector tangent to a
null-geodesic congruence on (A)dS. We again direct the
reader to part I for explicit expressions of these various
functions [1], as they are fairly long winded and can differ
depending on whether the spacetime dimension is odd
or even.
Continuing on with this ansatz, the Einstein tensors are

diagonal, with components

GðiÞμ
ν ¼ −

Λ
a2i

δμν ; ð12Þ

while the W-tensor components become

WðiÞμ
ν ¼ δμν

"X
j

XD
m¼0

βði;jÞm

�
D − 1

m

�
amj a

−m
i

þ
X
k

XD
m¼0

βðk;iÞD−m

�
D − 1

m

�
amk a

−m
i

#

þ lμlν
2U

"X
j

aj
ai

ðrs;i − rs;jÞσðþÞ
i;j

þ
X
k

ak
ai

ðrs;i − rs;kÞσð−Þi;k

#
; ð13Þ

where we have defined3

σðþÞ
i;j ¼

XD
m¼0

βði;jÞm

�
D − 2

m − 1

�
am−1
j a1−mi ; ð14Þ

σð−Þi;k ¼
XD
m¼0

βðk;iÞD−m

�
D − 2

m − 1

�
am−1
k a1−mi : ð15Þ

The plus and minus sigma variants are related to one
another by

σð−Þj;i ¼
�
ai
aj

�
D−2

σðþÞ
i;j ; ð16Þ

so we see that the σ’s live on the interaction links between
any given pairs of metrics (since for an interaction built

from Si→j, W
ðiÞμ
ν will contain σðþÞ

i;j while WðjÞμ
ν will contain

σð−Þj;i , but now we see these terms are just proportional to one
another; put another way, if one vanishes, so does
the other).
In order for the ansatz Eq. (11) to be a solution of the

multimetric field equations, two things must happen. First,
the diagonal (δμν) part of the W tensors must specify the
value of the effective cosmological constant. More pre-
cisely, directly from the field equations one finds that the
cosmological constant should satisfy the following set of N
simultaneous equations [1]:

ΛMD−2
i

a2i
¼

X
j

XD
m¼0

βði;jÞm

�
D − 1

m

�
amj a

−m
i

þ
X
k

XD
m¼0

βðk;iÞD−m

�
D − 1

m

�
amk a

−m
i ∀ i; ð17Þ

which, after fixing one of the ai via coordinate rescaling,
can be solved exactly for Λ and the remaining N − 1
conformal factors, the physical solutions being those with
real Λ and ai.
Second, the off-diagonal (lμlν) components of the W

tensors must vanish. This can be achieved in multiple ways.
The simplest is to take all of the Schwarzschild radii to be
the same:

rs;i ¼ rs ∀ i; ð18Þ

these are the proportional solutions, since all the metrics
become simultaneously diagonal, and are proportional to a
common GR black hole solution.
The next simplest is to make all of the σ’s vanish:

σðþÞ
i;j ¼ 0 ∀ i; j; ð19Þ

these are the nonproportional solutions, since all of the
Schwarzschild radii are independent and the metrics cannot

be simultaneously diagonalized. For a given set of βði;jÞm

(which fully specify the multimetric model in question)
these are polynomial equations that fix the ratios of
neighboring conformal factors. To ensure that the field
equations are satisfied, the same ratios that satisfy Eq. (19)
must also satisfy Eq. (17). This, however, is only true for

certain choices of βði;jÞm . That is to say, if we assert a priori

that σðþÞ
i;j ¼ 0, then only one of Eq. (17) actually fixes Λ,

while the rest act as constraints on which multimetric
theories permit this class of solutions.
Finally, the most general solutions allow for combina-

tions of both conditions (18) and (19) for different
interaction pairs; these are the partially proportional
solutions, since only some of the metrics share the
same Schwarzschild radii and can be simultaneously

3The eagle-eyed reader may note that we have changed

notation from part I slightly here, from Σð�Þ
i → σð�Þ

i;j . This is to
more readily account for general interaction structures with any
number of positively and negatively oriented interactions per
metric, as opposed to only accounting for the chain- and star-type
interactions as we did originally in [1] (as well as to avoid clutter
with the summation symbols).
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diagonalized. In detail, if there are n total interaction links

that have σðþÞ
i;j ¼ 0 (n can therefore be at mostN − 1), nþ 1

of the conformal factors are a priori fixed before checking
whether the cosmological constant equations are satisfied
(the additional 1 is fixed by coordinate rescaling).
Consequently, the N diagonal equations (17) split into
N − n algebraic equations for Λ and the remaining
N − n − 1 free conformal factors, as well as n equations

that become constraints on the βði;jÞm parameters of the
theory. Again, this means that only for finely tuned
interaction coefficients can these solutions exist.
In terms of the graph structure of Fig. 1, each edge in a

given theory graph corresponds to a specific interaction
between a pair of metrics and so comes equipped with its

own σðþÞ
i;j and its own pair of associated Schwarzschild radii

(one for each of the two metrics or nodes adjoined by the

edge in question). One may choose to either set σðþÞ
i;j ¼ 0 or

rs;i ¼ rs;j along every edge in the theory graph; the three
branches of solutions outlined above correspond to the
different choices one can make in implementing this
procedure. This diagrammatic picture also makes it clear
that the partially proportional branch exists only for N > 2
metrics: if one has exactly two metrics, then the corre-
sponding theory graph contains a single edge, so there is

only a single choice to make in setting either σðþÞ
i;j ¼ 0

(nonproportional) or rs;i ¼ rs;j (proportional) along it.
The three branches of black hole solutions described

above to date comprise all the analytically known black
hole solutions of multimetric gravity, and since they are
based on the Kerr-Schild ansatz (11), they contain the
multimetric analogs of all known black hole solutions of
GR—in part I we dubbed them “GR-adjacent” black holes
for this reason. Owing to the existence of non-GR-adjacent
solutions in bigravity describing black holes supplemented
by a cloud of massive graviton hair [30–32], we further
conjectured that similar hairy solutions should exist also in
the full multimetric theory but omitted their determination
due to the complexity of the calculation. As we mentioned
in the introduction, we shall begin to cease shirking this
responsibility this time around and give a procedure by
which one may construct them generally in Sec. IV,
alongside an explicit calculation of the asymptotic form
of the solution for a toy model with N ¼ 3 metrics,
although we still save the full numerical calculation for
part III. Before we get to that point, however, we would like
to discuss the stability of the GR-adjacent solutions. Part I
took care of the proportional branch, which we will recap
below; then in Sec. III we will extend these results to the
nonproportional and partially proportional branches.

B. Instability of the proportional branch

Perhaps the main result of part I was that the instabilities
of the proportional branch of solutions which have been

known for a decade in bigravity [26,27,45] carry over
naturally to the full multimetric theory. To see this, one
must linearize the field equations and consider the dynam-
ics of the metric perturbations. Around the proportional

solutions, which we can always write as gðiÞμν ¼ a2i ḡμν for
some GR black hole solution ḡμν, this calculation simplifies
greatly, as the perturbations acquire a standard Fierz-Pauli
mass term: we showed in [1] that the spin-2 mass

eigenstates HðiÞ
μν (which are linear combinations of the

original metric perturbations) have dynamics given by

□HðiÞ
μν þ 2R̄α β

μ νH
ðiÞ
αβ ¼ m2

i H
ðiÞ
μν ; ð20Þ

where the barred quantities are constructed from the
common background metric ḡμν and all indices are manip-
ulated with ḡμν. The graviton square masses m2

i are the
eigenvalues of the following mass matrix:

M2
ii ¼

a2i
MD−2

i

�X
j

aj
ai

σðþÞ
i;j þ

X
k

ak
ai

σð−Þi;k

�
; ð21Þ

M2
ji ¼

�
aj
ai

�
4−D

M2
ij ¼ −

a2i σ
ðþÞ
i;j

ðMjMiÞD−2
2

; ð22Þ

which one can show always possesses one 0 eigenvalue [8],
so the theory propagates at linear level a single massless
graviton and N − 1 massive gravitons.
Equation (20) with ḡμν taken as theD ¼ 4 Schwarzschild

[-(A)dS] metric are precisely those equations studied in the
context of the Gregory-Laflamme (GL) instability plaguing
black string solutions in theories with extra dimensions
[13–15]. Therefore, the very same instability is present in
the multimetric theory too; precisely, it transpires that the
proportional Schwarzschild[-(A)dS] solution becomes
unstable if, for any of the mi [1,27],

mirs ≲ 0.876: ð23Þ

Put more plainly, a Schwarzschild black hole in any
theory containing massive gravitons becomes unstable if
the horizon size of the black hole in question becomes
comparable to or smaller than (roughly) the Compton
wavelength of the theory’s lightest massive graviton. The
form of this instability is exactly the same as the GL
instability of a black string.
In part I we argued that this should be unsurprising: one

may think of gravity in an extra compact dimension as the
so-called “continuum limit” of a multimetric theory with
chain-type interactions, where the various metrics are to be
thought of as corresponding to discrete locations in the extra
dimension, separated by some distance δy [7,8,28,29]. The
continuum limit is taken by sending N → ∞ and δy → 0
while keeping their product fixed (corresponding to the size
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of the additional compact dimension). The five-dimensional
black string solutions, which are well known to suffer from
the GL instability, are precisely what becomes of our
proportional multimetric black hole solutions in this limit,
so it makes sense that the same behavior should also be
present in the discrete theory.
The really interesting part is that the instability is present

purely in the four-dimensional multimetric theory, even
away from the continuum limit and even for more generic
interaction structures than the chain, suggesting that the GL
instability may not be an inherently extra dimensional
phenomenon but may in fact be related to the fundamental
nature of massive spin-2 interactions. Indeed, we would
like to propose that the reason the GL instability is present
in the black string system is not one of extra dimensional
origin at all; rather, it is a consequence of the fact that the
Fourier modes of the black string look like massive
gravitons.
If ḡμν is taken to be the D ¼ 4 Kerr metric, thus allowing

for black hole rotation, then the GL instability is still
present. The graviton mass threshold at which it becomes
active is altered but remains roughly at mirs ∼Oð1Þ [46].
There are also superradiant instabilities associated with the
azimuthal modes that are not present in the Schwarzschild
case [27,47–50], but it was shown in [46] that their growth
is subdominant to that of the GL mode in the vast majority
of the parameter space. Thus, a proper understanding of
how the GL instability saturates in the multimetric theory is
necessary, which will require a full nonlinear analysis using
numerical simulations (work is ongoing to make this a
well-posed dynamical problem—see [51] for the case of
dRGT massive gravity with flat reference metric). Still, we
shall see in Sec. IV that there is a strong suggestion that the
hairy solutions we provide a blueprint for may represent the
true end state of the instability.

III. LINEAR STABILITY OF NON- AND
PARTIALLY PROPORTIONAL SOLUTIONS

We turn now to look at the non- and partially proportional
black hole solutions. In bigravity, with N ¼ 2metrics, it has
been known for some time that the nonproportional
Schwarzschild solution is classically mode stable [45,52],
owing to a rather unconventional, non-Fierz-Pauli form for
the perturbation equations that leads to the black holes
sharing their quasinormal modes (QNMs) with those of the
standard Schwarzschild solution in GR. As a result, only the
two tensor modes of the massive graviton appear to
propagate at linear level, while the vector and scalar modes
are nondynamical. We will have some more to say on this
peculiar feature later; the goal initially, however, is to simply
extend the bigravity analysis to the full multimetric theory,
as well as to the partially proportional branch, to complete
our cataloging of the linear stability of multimetric
black holes.

As mentioned, away from the proportional branch the
structure of the perturbations becomes highly nontrivial, so
for simplicity we shall work in this section exclusively in
D ¼ 4 and restrict ourselves to nonrotating black holes
only [namely, multi-Schwarzschild-(A)dS black holes].
The spherical symmetry of these solutions will aid the
stability analysis to follow, as we will see.
Following the approach taken in bigravity [45,52], it

proves useful to express the background metrics in
(advanced) Eddington-Finkelstein coordinates as

ds̄2ðiÞ ¼a2i

�
−
�
1−

rs;i
r
−
Λ
3
r2
�
dv2þ2dvdrþr2dΩ2

2

�
; ð24Þ

which is of course related to the Kerr-Schild form in
Eq. (11) by a coordinate transformation. In these coordi-
nates, the characteristic building block matrices take the
simple form

Si→j ¼

2
6666664

aj
ai

0 0 0

aj
ai

ðrs;j−rs;iÞ
2r

aj
ai

0 0

0 0
aj
ai

0

0 0 0
aj
ai

3
7777775
: ð25Þ

By substituting this into Eq. (8) and then Eq. (7), one
finds that the only nonvanishing off-diagonal background
W-tensor components are the W̄ðiÞr

v terms, given by

W̄ðiÞr
v ¼

1

2r

"X
j

aj
ai

ðrs;i − rs;jÞσðþÞ
i;j

þ
X
k

ak
ai

ðrs;i − rs;kÞσð−Þi;k

#
; ð26Þ

reflecting the form of Eq. (13).
We now perturb the metrics as

gðiÞμν ¼ ḡðiÞμν þ δgðiÞμν : ð27Þ
The spherical symmetry of the background allows one to
decompose the perturbations into separate axial and polar
contributions, expanded in a complete basis of tensor
spherical harmonics. It also ensures that the various azimu-
thal modes of these contributions completely decouple from
one another. In Fourier space, the decomposition reads

δgðiÞμν ðv; r; θ;ϕÞ ¼
X
l;m

a2iffiffiffiffiffiffi
2π

p
Z

∞

−∞
dωe−iωvδg̃ðiÞlmμν ðω; r; θ;ϕÞ;

ð28Þ

where
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δg̃ðiÞlmμν ¼ δg̃ðiÞax;lmμν þ δg̃ðiÞpol;lmμν ; ð29Þ

with the axial and polar contributions explicitly given by [suppressing (i) indices, and indicating symmetric components with
asterisks] [27,52]

δg̃ax;lmμν ¼

2
66664
0 0 hlm0 ðω; rÞ csc θ∂ϕYlmðθ;ϕÞ −hlm0 ðω; rÞ sin θ∂θYlmðθ;ϕÞ
� 0 hlm1 ðω; rÞ csc θ∂ϕYlmðθ;ϕÞ −hlm1 ðω; rÞ sin θ∂θYlmðθ;ϕÞ
� � −hlm2 ðω; rÞ csc θXlmðθ;ϕÞ hlm2 ðω; rÞ sin θZlmðθ;ϕÞ
� � � hlm2 ðω; rÞ sin θXlmðθ;ϕÞ

3
77775; ð30Þ

δg̃pol;lmμν ¼

2
66666666664

Hlm
0 ðω;rÞYlmðθ;ϕÞ Hlm

1 ðω;rÞYlmðθ;ϕÞ ηlm0 ðω;rÞ∂θYlmðθ;ϕÞ ηlm0 ðω;rÞ∂ϕYlmðθ;ϕÞ
� Hlm

2 ðω;rÞYlmðθ;ϕÞ ηlm1 ðω;rÞ∂θYlmðθ;ϕÞ ηlm1 ðω;rÞ∂ϕYlmðθ;ϕÞ

� � r2
�
Klmðω;rÞYlmðθ;ϕÞ
þGlmðω;rÞZlmðθ;ϕÞ

�
r2Glmðω;rÞXlmðθ;ϕÞ

� � � r2 sin2 θ

�
Klmðω;rÞYlmðθ;ϕÞ
−Glmðω;rÞZlmðθ;ϕÞ

�

3
77777777775
: ð31Þ

Here, Ylmðθ;ϕÞ are the spherical harmonics, and the
functions Xlmðθ;ϕÞ and Zlmðθ;ϕÞ are given by

Xlmðθ;ϕÞ ¼ 2∂ϕð∂θYlm − cot θYlmÞ; ð32Þ

Zlmðθ;ϕÞ ¼ ∂
2
θYlm − cot θ∂θYlm − csc2θ∂2ϕYlm; ð33Þ

while all of the functions of ðω; rÞ are free.
The full details of the procedure to extract the linearized

field equations from metric perturbations around a generic
background (i.e. not necessarily proportional) are outlined
in Appendix A, following the framework laid out originally
in [53] for bigravity. The form of the contribution of a
particular interaction to the linearized W tensor is hugely

dependent on which option of rs;i ¼ rs;j or σðþÞ
i;j ¼ 0 is

chosen to make the off-diagonal part of the background W
tensor vanish along the associated link.

As we saw in Sec. II B, choosing the first (proportional)
option, where neighboring metrics share the same
Schwarzschild radius, leads to a contribution of the
standard Fierz-Pauli form; precisely,

δWðiÞ
μν ⊃

M2
ij

2
ðδgðjÞμν − ḡðiÞμνδgðjÞÞ: ð34Þ

Choosing the second (nonproportional) option, however,
leads instead to a highly nontrivial but remarkably simple
contribution, which using the decomposition given by
Eqs. (28), (30), and (31) takes the form

δWðiÞμ
ν ⊃

Að�Þ
i;j ðrs;i − rs;jÞ

4r
e−iωvðΔi;jÞμν; ð35Þ

where the matrix Δi;j has components [45,52]

Δi;j ¼

2
66666664

0 0 0 0

2½Klm�i;jYlm 0 −
� csc θ∂ϕYlm½hlm1 �i;j

þ∂θYlm½ηlm1 �i;j

�
sin θ∂θYlm½hlm1 �i;j − ∂ϕYlm½ηlm1 �i;j

−ðcsc θ∂ϕYlm½hlm1 �i;j þ ∂θYlm½ηlm1 �i;jÞ 0 ½Hlm
2 �i;jYlm 0

1
r2sin2θ ð∂θYlm½hlm1 �i;j − csc θ∂ϕYlm½ηlm1 �i;jÞ 0 0 ½Hlm

2 �i;jYlm

3
7777775
:

ð36Þ

BLACK HOLES IN …. II. HAIRY SOLUTIONS AND … PHYS. REV. D 111, 024057 (2025)

024057-7



Here we have introduced the notation

½x�i;j ≡ xðjÞ − xðiÞ ð37Þ

to denote differences between the various perturbation
functions of neighboring metrics. Lastly, the constants
out front are defined as

AðþÞ
i;j ¼ 2

�
a2j
a2i

βði;jÞ2 þ a3j
a3i

βði;jÞ3

�
; ð38Þ

Að−Þ
i;k ¼ 2

�
a2k
a2i

βðk;iÞ2 þ ak
ai

βðk;iÞ3

�
; ð39Þ

with the (þ) [(−)] variants associated to positively (neg-
atively) oriented interactions. Note that β1 is not present in

these expressions, as we have used σðþÞ
i;j ¼ 0 to express it in

terms of β2 and β3. Also note that in the bigravity case
where one typically takes a0 ¼ 1; a1 ¼ C then the linear-
ized W tensors given above reduce precisely to the
expressions quoted in [52], as they should.
If we denote the whole expression on the right-hand side

of Eq. (35) by Ξð�Þ
i;j , i.e.

Ξð�Þ
i;j ¼ Að�Þ

i;j ðrs;i − rs;jÞ
4r

e−iωvΔi;j; ð40Þ

then, like the σ’s, one finds that the Ξ’s are related by

ΞðþÞ
i;j ¼ −

a4j
a4i

Ξð−Þ
j;i ð41Þ

and so also live on the interaction links between pairs of
metrics.
In both the proportional and nonproportional cases,

δWðiÞμ
ν must satisfy the linearized version of the Bianchi

constraint; that is,

∇ðiÞ
μ δWðiÞμ

ν ¼ 0 ∀i: ð42Þ

For proportional interactions this enforces the transverse-
traceless gauge condition upon the mass eigenstates [1,26].
For nonproportional interactions, each term contributes to
the divergence as follows:

∇ðiÞ
μ ðΞð�Þ

i;j Þμν ∝ �

2
666664
rðr½Klm�i;jÞ0 þ lðlþ1Þ

2
½ηlm1 �i;j

½Hlm
2 �i;j

r½Hlm
2 �i;j − ðr½ηlm1 �i;j�Þ0
ðr½hlm1 �i;jÞ0

3
777775: ð43Þ

These terms live on the interaction links too, owing to
Eq. (41). Now we have all the information we need to

discuss the stability of the remaining two branches of black
hole solutions. We begin with the nonproportional branch.

A. Nonproportional branch

For the nonproportional solutions, every interaction has

σðþÞ
i;j ¼ 0, so all contributions to the W tensors are of the

form (35). Explicitly, the linearized field equations are

EðiÞαβ
μνδg

ðiÞ
αβ þΛδgðiÞμν þ 1

M2
i

"X
j

ΞðþÞ
i;j þ

X
k

Ξð−Þ
i;k

#
¼ 0; ð44Þ

where the Lichnerowicz operator EðiÞαβ
μν is defined in

Appendix A, while the linearized Bianchi constraints are

X
j

∇ðiÞ
μ ðΞðþÞ

i;j Þμν þ
X
k

∇ðiÞ
μ ðΞð−Þ

i;k Þμν ¼ 0: ð45Þ

At first glance, the sums over j and k, within which the
number of terms can differ from metric to metric, appear
to make the Bianchi constraints awkward to resolve.
Thankfully, this is not the case. To see why, one may
consider all of the metrics within the interaction structure
that possess only a single interaction (there must always be
at least two such metrics). The Bianchi constraints for these
metrics contain sums over j or k that have only one term,
which must therefore vanish on its own. However, since
these terms live on interaction links, there is always a
proportional term of opposite orientation in the neighboring
metric’s Bianchi constraint, which must also vanish, thus
reducing the number of terms present in said constraint by
one. This process propagates through the entirety of the
interaction structure until every metric ends up with only
one term left in its Bianchi constraint, which of course must
then also vanish; the result is that every term in the sums
over j and k must vanish individually. To convince oneself
that this must happen, consider a simple example with just
four metrics interacting in a chain structure—see Fig. 2.
The four Bianchi constraints read

∇ð1Þ
μ ðΞðþÞ

1;2 Þμν ¼ 0; ð46Þ

FIG. 2. Chain theory with four metrics and all interactions
positively oriented. Each edge (interaction) contributes a term to
the Bianchi constraint of each of the metrics it connects, and these
terms are proportional to one another [cf. Eq. (41)]. The Bianchi
constraint on metric 1 implies the vanishing of the term coming
from the 1 → 2 edge, and the Bianchi constraint on metric 4
implies the vanishing of the term coming from the 3 → 4 edge.
Together with the Bianchi constraints on metrics 2 and 3, these
then imply the vanishing of the term coming from the 2 → 3 edge.

WOOD, SAFFIN, and AVGOUSTIDIS PHYS. REV. D 111, 024057 (2025)

024057-8



∇ð2Þ
μ ðΞð−Þ

2;1 Þμν þ∇ð2Þ
μ ðΞðþÞ

2;3 Þμν ¼ 0; ð47Þ

∇ð3Þ
μ ðΞð−Þ

3;2 Þμν þ∇ð3Þ
μ ðΞðþÞ

3;4 Þμν ¼ 0; ð48Þ

∇ð4Þ
μ ðΞð−Þ

4;3 Þμν ¼ 0: ð49Þ

The vanishing of Eqs. (46) and (49) implies the vanishing
of the first term in Eq. (47) and the second term in Eq. (48),
which then implies the vanishing of the final remaining
divergence.
From Eq. (43), the vanishing of every term in the sums

over j and k can immediately be resolved to find the
following expressions for the differences in perturbation
functions:

½Hlm
2 �i;j ¼ 0; ð50Þ

½ηlm1 �i;j ¼
Ci;j

r
; ð51Þ

½hlm1 �i;j ¼
Di;j

r
; ð52Þ

½Klm�i;j ¼
Ei;j

r
þ Ci;jlðlþ 1Þ

2r2
; ð53Þ

for all i, j, and where the C, D and E are arbitrary
integration constants. Since these hold across all inter-
actions, one may express all of the perturbation functions in
terms of those of a single distinguished metric [e.g. one

may express all other ηðiÞlm1 in terms of ηð1Þlm1 simply by
using Eq. (51) repeatedly].

1. Quasinormal modes

To see that these results imply mode stability at the linear
level, one must consider the QNMs, as was shown in
bigravity [52]. These are the eigenvalues of the linearized
field equations with suitable boundary conditions, namely,
that the perturbations behave as ingoing waves near the
black hole horizon and as outgoing waves at infinity, viz.

δg̃ðiÞμν → AðiÞ�
μν e�k�r�i : ð54Þ

Here, the plus sign refers to the boundary condition as
r → ∞, the minus sign refers to the boundary condition as

r → rs;i, A
ðiÞ�
μν are typically polynomials in 1=r, and r�i

are the tortoise coordinates for each metric, defined
by dr=dr�i ¼ ð1 − rs;i=rÞ.
By simple inspection of Eqs. (50)–(53) together with the

decomposition (28) into axial and polar contributions, one
finds that it is impossible to satisfy these boundary
conditions unless all of the Ci;j ¼ Di;j ¼ Ei;j ¼ 0 [52].
This is easy to see: consider, for example, the rϕ compo-
nents; one has

½δg̃lmrϕ�i;j ¼ e−iωr�
�
Ci;j

r
∂ϕYlm −

Di;j

r
sin θ∂θYlm

�
; ð55Þ

which represents an ingoing wave of frequency ω

[cf. Eq. (28)], and the same must be true of δg̃ðiÞlmrϕ and

δg̃ðjÞlmrϕ individually. The near-horizon boundary condition
is therefore always satisfied, while the near-infinity boun-
dary condition never can be, unless the integration con-
stants vanish. The same is true for all components, and of
course for all interactions, since as we mentioned earlier,
the perturbation functions of any given metric may be

expressed in terms of those of, say, g̃ðiÞlmμν .
Therefore, for the nonproportional solutions, all of the

perturbation matrices Δi;j completely vanish, and the
linearized field equations reduce to just N copies of
the standard linearized GR equations:

EðiÞαβ
μν δg

ðiÞ
αβ þ ΛδgðiÞμν ¼ 0: ð56Þ

As a result, the eigenvalue problem defined by the multi-
metric field equations with boundary conditions (54) is
equivalent to that of N Schwarzschild[-(A)dS] metrics in
standard GR, just where each metric now has a different
Schwarzschild radius rs;i.
We already know that the Schwarzschild[-(A)dS] sol-

ution in GR has no unstable QNMs (and that its QNMs only
exist at all for l ≥ 2—there is no monopole nor dipole), so
the same is true here: the nonproportional multimetric
solutions are classically mode stable, thus generalizing the
result from bigravity. This behavior is in stark contrast to
that of the proportional solutions, whose QNM spectrum is
very different from the Schwarzschild solution in GR, as it
depends on the graviton masses and contains more dynami-
cal modes (one of which—the radial l ¼ 0 mode—is
unstable, as we have seen).

2. Generic gravitational perturbations

Although the QNMs of these nonproportional black hole
solutions coincide with those of a Schwarzschild black hole
in GR and so exhibit no modal instability, strictly speaking,
the absence of unstable modes in the quasinormal spectrum
of a black hole does not guarantee full stability of the
solution. In principle, one should also relax the QNM
boundary condition at infinity, to further allow for ingoing
waves, as this tracks the linear response of the spacetime to
perturbations wrought by external sources.
The full set of linear gravitational perturbations, upon

relaxing this boundary condition, were worked out for
bigravity in [52]. While, for both our nonproportional
solutions and the standard Schwarzschild solution in GR,
the QNM spectra contain only modes with multipoles
l ≥ 2, in principle the full set of perturbations, including
those caused by external perturbers, may also contain
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dynamical modes with l ¼ 0 and l ¼ 1. In GR, these modes
of the Schwarzschild metric are pure gauge and are hence
nondynamical. In contrast, the authors of [52] showed that
for the nonproportional black holes in bigravity, there are in
fact new physical modes that exist in both the axial and
polar sectors that cannot be gauged away. However, oddly,
these new modes feel no effective potential and so are not
backscattered at all by the black hole geometry (a property
more reminiscent of Minkowski spacetime); they describe
purely ingoing waves whose propagation is unaltered
throughout the entire space.
Since the structure of the perturbation equations is the

same in the full multimetric theory, the same qualitative
behavior occurs in the generic nonproportional solutions
here too, beyond bigravity to theories involving arbitrary
numbers of interacting metrics. This is due to the fact that
Eqs. (50)–(53) mean that the perturbation functions of all
the different metrics still take the same functional form, up
to arbitrary multiplicative constants.

3. Nonlinear instability?

All of this is a little strange: we have found that, around
the nonproportional solutions, only two of the five degrees
of freedom (the tensor modes) of each of the massive
gravitons actually propagate at linear level and that modes
exist in the complete spectrum of gravitational perturba-
tions that feel no effective potential, despite the (apparent)
presence of a black hole. Consequently, one may begin to
worry about the possibility of strong coupling or, relatedly,
whether problems arise when the interactions of the
missing degrees of freedom reappear at nonlinear level.
We touched upon this potentially troublesome feature very
briefly in part I. We will now be more bold as to make a
conjecture. First, some motivation: the condition on the
model parameters that gives rise to the nonproportional

branch of black hole solutions, σðþÞ
i;j ¼ 0, also rears its head

in the realm of multimetric cosmology. There, Friedmann-
Lemaître-Robertson-Walker (FLRW) solutions are also
split into three distinct branches, depending this time not
on how to make off-diagonal W-tensor components vanish
but on how one chooses to satisfy the Bianchi constraint
along each interaction link [8,54–56]. The analog of the
proportional branch involves fixing the lapses as functions
of the scale factors, while the analog of the non- and
partially proportional branches requires one to take pre-
cisely the same condition on the parameters of the model,

σðþÞ
i;j ¼ 0, across all or some of the interaction links.

Considering perturbations around the “nonproportional”
branch of cosmological solutions, one finds exactly the
same behavior that we find for the analogous black hole
solutions—namely, that the vector and scalar degrees of
freedom are not dynamical at linear level in the perturba-
tions [57,58]. However, after taking nonlinear effects into
account, these cosmological solutions turn out to be

unstable, owing to the emergence of (non-BD) ghosts as
the vector and scalar degrees of freedom reenter the
effective description [59–62]. Therefore, it is natural to
conjecture that the same thing will happen for the non-
proportional black hole solutions: that, ultimately, this
branch will prove to be ghostly and, consequently, patho-
logical. Proving this conjecture may be difficult—in
cosmology, it was done by considering linear perturbations
around an anisotropic Bianchi-I background as a proxy for
nonlinear perturbations around the isotropic FLRW back-
ground [60]. For the black hole solutions, one presumably
must go genuinely nonlinear, to at least quadratic order in
metric perturbations. We will not perform this calculation
here, but we have good reason to expect that the result will
be the same as in the cosmological case.
Similarly, if one were to consider perturbations around a

nonproportional Kerr background, thus allowing for black
hole rotation, the calculation of the linearized field equa-
tions for all modes becomes tricky because there is no
longer any spherical symmetry to allow one to decompose
the perturbations as in Eq. (28). Nevertheless, one expects
that at linear level these nonproportional rotating solutions
will share their QNMs with a standard Kerr black hole in
GR but will become unstable nonlinearly.
Another potential sign of a pathology in the nonpropor-

tional branch is that one may send signals from inside to
outside a black hole. For example, suppose we have two
metrics, gð1Þ and gð2Þ, with horizons at rs;1 and rs;2 < rs;1,
respectively, with matter (minimally) coupled to gð1Þ. An
observer, who is made of matter, sees the horizon rs;1 and
when they fall through it they may send a signal by
generating gravity waves of gð1Þ, before they reach rs;2.
However, gð1Þ and gð2Þ are coupled, so this means that
gravity waves of gð2Þ are created, which are outside their
horizon, rs;2, and so may freely propagate to infinity,
whereupon an observer may detect them through their
interaction with gð1Þ. From the perspective of gð2Þ, there is a
source of waves that is traveling outside the light cone of
gð2Þ and so will source Cherenkov radiation. We expect the
backreaction of this radiation to source an instability of the
geometry.

B. Partially proportional branch

To understand what happens for the partially propor-
tional solutions, it helps to begin with a simple example.
We will again choose to consider the four-metric chain
model depicted in Fig. 2 and work with the particular
partially proportional solution where metrics 2, 3 and 4 are
proportional to one another but metric 1 is not (one finds

this solution by choosing σðþÞ
1;2 ¼ 0 along the 1 → 2 edge

and choosing the Schwarzschild radii to be the same along
the remaining two edges). This means that the contribution
of the 1 → 2 interaction to theW tensors is of the form (35),
while the contributions of the 2 → 3 and 3 → 4 interactions
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to the W tensors are of the form (34). Explicitly, the
linearized field equations here read

Eð1Þαβ
μν δg

ð1Þ
αβ þ Λδgð1Þμν þ ΞðþÞ

1;2

M2
1

¼ 0; ð57Þ

Eð2Þαβ
μν δg

ð2Þ
αβ þ Λδgð2Þμν þ Ξð−Þ

2;1

M2
2

þM2
22

2
ðδgð2Þμν − gð2Þμν δgð2ÞÞ

þM2
23

2
ðδgð3Þμν − gð2Þμν δgð3ÞÞ ¼ 0; ð58Þ

Eð2Þαβ
μνδg

ð3Þ
αβ þΛδgð3Þμν þM2

32

2
ðδgð2Þμν − gð2Þμν δgð2ÞÞ

þM2
33

2
ðδgð3Þμν − gð2Þμν δgð3ÞÞþM2

34

2
ðδgð4Þμν − gð2Þμν δgð4ÞÞ ¼ 0;

ð59Þ

Eð2Þαβ
μν δg

ð4Þ
αβ þ Λδgð4Þμν þM2

43

2
ðδgð3Þμν − gð2Þμν δgð3ÞÞ

þM2
44

2
ðδgð4Þμν − gð2Þμν δgð4ÞÞ ¼ 0; ð60Þ

where in the latter three equations we consider the
perturbations as living in the common background of

gð2Þμν , since metrics 3 and 4 are both proportional to gð2Þμν .
As before, to talk about stability one must turn to the
QNMs, and we just showed that in order for the solutions to
Eqs. (57)–(60) to satisfy QNM boundary conditions this
implies that the contribution from the nonproportional

interaction, ΞðþÞ
1;2 , must vanish. Therefore, Eq. (57) reduces

to the field equations of linearised GR for metric 1, while

the Ξð−Þ
2;1 term drops out of Eq. (58) for metric 2, leaving

only the contributions from the Fierz-Pauli terms coming
from the proportional metrics.
Thus, the nonproportional part of the interaction struc-

ture completely decouples from the proportional part at
linear level; what remains is a proportional sector of the
complete four-metric theory, containing only metrics 2, 3
and 4, whose linearized field equations are the same as
those that would be derived from a completely proportional
black hole solution in a theory which contained only these
three metrics in the first place (i.e. chain trigravity, without
metric 1). Figure 3 shows this diagrammatically.
However, since it only accounts for the three proportional

metrics,M2 no longer represents the true mass matrix of the
full four-metric theory; i.e. its eigenvalues are not the
physical graviton masses. Nevertheless, its components
are precisely as in Eqs. (21) and (22) and so it does act
as a sort of “local mass matrix” for the proportional sector—
indeed, if one were to look at the linearized field equations
around proportional black holes in chain trigravity, rather

than this partially proportional solution in our four-metric
chain theory, then M2 would be the physical mass matrix.
What certainly is true, as we found in part I and recapped

briefly in Sec. II B of this work, is that the equations in the
proportional sector can exhibit an instability à la Gregory-
Laflamme, depending on the sizes of the eigenvalues ofM2

relative to rs;2—see Eq. (23). So, the partially proportional
black hole solutions in multimetric gravity also possess this
instability, precisely because it still exists in the remaining
proportional sectors. Around the fully proportional solu-
tions, we could interpret these eigenvalues as the genuine
physical masses of the various gravitons, but now, around
the partially proportional solutions, they are simply numbers
that tell us whether a given solution is unstable.
From this simple four-metric example it is clear how the

argument generalizes: a partially proportional solution in
some generic multimetric theory will contain a number of
both proportional (same rs) and nonproportional (σ ¼ 0)
interactions. The linearized Bianchi constraints, together
with QNM boundary conditions, force all of the contribu-
tions of the nonproportional interactions to the various W
tensors to vanish. Thus, one is left with (in principle)
multiple proportional sectors whose linearized field equa-
tions are the same as those of a fully proportional solution
in a multimetric theory containing the same number of
metrics as the sector in question, while the remaining
metrics with only nonproportional interactions follow the
standard linearized GR equations. Each of the proportional
sectors comes with its own local mass matrix, and the
eigenvalues of each of these matrices inform the conditions
upon which the partially proportional solution exhibits the
GL instability.4 Figure 4 makes this more transparent.
Of course, the discussion up to this point is based on a

purely linear analysis; if our conjecture about the non-
proportional solutions becoming unstable at nonlinear level
proves to be correct, then these partially proportional

FIG. 3. A partially proportional solution of the four-metric chain
theory introduced in Fig. 2. Since ΞðþÞ

1;2 ¼ 0 for the nonpropor-
tional interaction along the 1 → 2 edge, at linear level metric 1
completely decouples from the remaining proportional metrics,
whose linearized field equations are now equivalent to those one
would get by linearizing around a fully proportional solution of
the trimetric chain theory contained within the dashed oval.

4Note that every one of these matrices has a 0 eigenvalue, so
there are also as many local massless modes as there are
proportional sectors.
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solutions will suffer the same fate because of the surviving
nonproportional sectors. This potential nonlinear instabil-
ity is worse than the GL instability in the proportional
sectors, as it is related to the emergence of ghostly degrees
of freedom and so represents an instability of the vacuum.
Conversely, the GL instability simply indicates that the
metric perturbations undergo exponential growth and so
must backreact on the solution: it may be that the GL
instability evolves into some other, stable, final state. As a
result, we believe that the only really physically sensible
GR-adjacent solutions in multimetric gravity that might
describe real black holes are the proportional solutions
(which is handy, because they are the simplest) in the
regime where there is no GL instability. As for what might
happen after these solutions eventually turn unstable, we
continue into the next section.

IV. HAIRY BLACK HOLE SOLUTIONS

As a matter of necessity, the fact that the proportional
black hole solutions in multigravity suffer from the GL
instability means that they have to decay into something
(provided that they actually form in the first place—though

if they do not, we have just seen that this probably means
the theory has no viable black hole solutions). For the
proportional multi-Schwarzschild solution, the final state
should remain spherically symmetric, lest cosmic censor-
ship be violated. It was this point that prompted the authors
of [30–32] to search for other spherically symmetric
solutions in bigravity, where they indeed discovered addi-
tional solutions bifurcating from the Schwarzschild one at
precisely the point at which the GL instability switches on,
describing black holes supplemented by massive graviton
hair. It is important to stress that this was not confirmation
that the proportional Schwarzschild solutions in bigravity
genuinely decay into these hairy solutions. To find out for
sure, one would need to use numerical relativity simula-
tions, which do not even exist yet for bigravity in a well-
posed form, never mind for the full multimetric theory.
However, it is still a strong suggestion that this may be the
case, and it certainly motivates us to try to construct similar
hairy solutions in the full multimetric theory.
To that end, we consider the most general static and

spherically symmetric ansatz we can use for the multi-
gravity metrics:

ds2ðiÞ ¼ −p2
i ðrÞdt2 þ

U02
i ðrÞ

Y2
i ðrÞ

dr2 þU2
i ðrÞdΩ2

2; ð61Þ

where the pi, Yi and Ui are radial functions. There is
enough gauge freedom to allow us to fix one of the
UiðrÞ ¼ r, but the rest of the functions must remain free.
Therefore, for N metrics, there are 3N − 1 free functions to
solve for. One may additionally try to include off-diagonal
components in the metrics, but one finds that the only
solutions that exist turn out to be the non- or partially
proportional solutions we have already constructed [30], so
we stick with the diagonal ansatz (61) going forward.
The field equations and Bianchi constraints that result

from this metric ansatz are as follows (see Appendix B for
the explicit derivation):

2Y2
i UiY 0

i þ YiU0
i½ðY2

i − 1Þ þ AðþÞ
i;0 þ Að−Þ

i;0 � þ Yi

�X
j

U0
jA

ðþÞ
i;j þ

X
k

U0
kA

ð−Þ
i;k

�
¼ 0; ð62Þ

2Y2
i Uip0

i þ U0
i½piðY2

i − 1Þ þ BðþÞ
i;0 þ Bð−Þ

i;0 � ¼ 0; ð63Þ

UiYiU0
iY

0
ip

0
i þ YipiU02

i Y
0
i þ Y2

i ½p00
i U

0
iUi þ p0

iðU02
i −UiU00

i Þ�

þ U03
i ðCðþÞ

i;0 þ Cð−Þ
i;0 Þ þU02

i

�X
j

U0
jC

ðþÞ
i;j þ

X
k

U0
kC

ð−Þ
i;k

�
¼ 0; ð64Þ
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i

�
Yi

Yj
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�
EðþÞ
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��

þ
X
k

�
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0
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ð−Þ
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�
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Yk
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�
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��
¼ 0; ð65Þ

FIG. 4. Example partially proportional solution in some generic
multimetric theory. This particular example contains three dis-
tinct proportional sectors indicated by the dashed ovals: there is
an effective trigravity and two different effective bigravities. The
solution is unstable if the eigenvalues of any of the three local
mass matrices satisfy mirs;i ≲ 0.876.
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where the various functions Að�Þ
i;j , B

ð�Þ
i;j , C

ð�Þ
i;j ,D

ð�Þ
i;j and Eð�Þ

i;j

are functions of the U’s and p’s whose form is given
explicitly in Appendix B. We note that Eq. (65) are the
Bianchi constraints, which we know live on interaction
links, so each term in the sums over j and k here must
vanish individually, by the same argument as in Sec. III A.
One can check that by choosing

piðrÞ ¼ ai

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

rs
r
−
Λ
3
r2

r
; ð66Þ

YiðrÞ ¼
piðrÞ
ai

; ð67Þ

UiðrÞ ¼ air; ð68Þ

the field equations reduce down to those of the proportional
multi-Schwarzschild[-(A)dS] solution, with Λ given by
Eq. (17), as they should.
Solving these equations generally for a given multimetric

model is extremely difficult, and it must be done numeri-
cally—it is no surprise that the calculation has only been
performed so far in bigravity. Nevertheless, it can in
principle be done in the full multimetric theory, as we
demonstrate below. The idea is to treat the first derivatives
of the various free functions initially as variables, in order
to reduce the system into a set of coupled first-order
nonlinear ordinary differential equations (ODEs), which
can then be integrated up from the black hole horizon to
infinity to determine the solution. To see that the system is

solvable, we first consider the distinguished metric gði�Þμν ,
upon which we have used gauge freedom to fix Ui� ¼ r.
Equation (63) then allows one to find p0

i� in terms of r and
the other free functions. There are now 2ðN − 1Þ remaining
free U0

i and p0
i that are not yet isolated. Equations (63) and

(65) for the remaining metrics are 2ðN − 1Þ equations in
exactly these variables, so one may solve them as simulta-
neous equations for the remaining U0

i and p0
i. Finally, one

may substitute the now determined U0
i into Eq. (62) to

obtain equations for the Y 0
i, which then closes the system,

and one can integrate this mass of coupled ODEs to find a
solution. Note that Eq. (64) are redundant in this whole
procedure.
In practice, this process is incredibly tedious and is

complicated by the fact that the right-hand sides of all the
field equations are 0—this means that the determinant of
the (in principle, huge) matrix defined by the simultaneous
equations for p0

i and U0
i must vanish for a solution to exist

where the p0
i and U0

i are not simply 0 (which is obviously
unphysical). This determinant must of course be resolved,
and there are similar potential stumbling blocks at various
stages of the calculation. We will choose to work with a
simpler example model with just three metrics, which is

already complicated but nevertheless still contains the
relevant physics.

A. Example model: Star trigravity

As a tractable example, we will consider the three-
metric star theory which takes the same gravitational
coupling Mi ¼ M on all three sites and also the same
set of interaction coefficients for both interactions,

βð1;2Þm ¼ βð2;3Þm ¼ βm, specified by

β0 ¼ −6M2m2;

β1 ¼ 3M2m2;

β2 ¼ −M2m2;

β3 ¼ β4 ¼ 0;

introducing the new parameter m which is related to the
masses of the gravitons in a manner we specify below.
These β’s are chosen so that there is a solution where all
three metrics are equal to the standard Schwarzschild
metric (i.e. with Λ ¼ 0 and where the proportionality
factors are all ai ¼ 1) and because the graviton masses
around the proportional solutions can be determined
analytically [1] to be mi ¼ f0; m;

ffiffiffi
3

p
mg—we will see

why this becomes important later. The star structure is also
preferred over the chain here because the theory is
symmetric under the exchange of metrics 1 and 3, which
turns out to make the field equations slightly simpler to
deal with. The model’s theory graph is displayed in Fig. 5.
We will choose to use the gauge freedom to set on the

central metric U2ðrÞ ¼ r; the free functions we must solve
for are then p1, p2, p3, Y1, Y2, Y3, U1 and U3. The
procedure to reduce the system to a set of first-order ODEs
is outlined below; the complete form of many of the
expressions is extremely lengthy and uninstructive, though
we make the derivation publicly available in aMathematica
notebook online if one wishes to look at them and/or follow
the derivation [63].
(1) First, look at Eq. (63) on metric 3. Solve it for p0

2; the
solution looks like p0

2¼p1ð� � �Þþp3ð� � �Þþp2ð� � �Þ.
(2) Substitute this into Eq. (65) on metric 3. Together

with (63) on metric 3 these are a pair of simultaneous
equations for p0

3 and U0
3 both equalling 0. The

determinant of the matrix defined by these equations
must vanish for a nontrivial solution, which gives a
relation of the form p3 ¼ p2ð� � �Þ þ p1ð� � �Þ.

FIG. 5. Theory graph for star trigravity. The theory is invariant
under the exchange of metrics 1 and 3 (remember, a symmetry of
the theory is a symmetry of its directed graph).
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(3) Do the same thing as in step 2 but now for metric 1
instead of metric 3. One gets a pair of simultaneous
equations for p0

1 and U0
1 whose determinant must

vanish, which gives p1 ¼ p2ð� � �Þ þ p3ð� � �Þ.
(4) Steps 2 and 3 can be combined and resolved to write

p1 ¼ p2G1ðr; U1; U3; Y1; Y2; Y3Þ; ð69Þ

p3 ¼ p2G3ðr; U1; U3; Y1; Y2; Y3Þ; ð70Þ

so the explicit p dependence of the ð� � �Þ functions
has been extracted.

(5) Substitute Eqs. (69) and (70) into step 1 to find

p0
2 ¼ p2F2ðr; U1; U3; Y1; Y2; Y3Þ ð71Þ

and then solve Eq. (63) on metrics 1 and 3 for p0
1;3 ¼

ðp2ð� � �Þ þ p1;3ð� � �ÞÞU0
1;3 and substitute in Eqs. (69)

and (70) to get

p0
1 ¼ p2F1ðr; U1; U3; Y1; Y2; Y3ÞU0

1; ð72Þ

p0
3 ¼ p2F3ðr; U1; U3; Y1; Y2; Y3ÞU0

3: ð73Þ

(6) Use Eq. (62) on all three metrics to write Y 0
1 ¼

ð� � �ÞU0
1 þ ð� � �Þ, Y 0

2 ¼ ð� � �ÞU0
1 þ ð� � �ÞU0

3 þ ð� � �Þ
and Y 0

3 ¼ ð� � �ÞU0
3 þ ð� � �Þ.

(7) Together, Eqs. (69)–(73) tell us that

G0
1 ¼ F1U0

1 − F2G1; ð74Þ

G0
3 ¼ F3U0

3 − F2G3: ð75Þ

Taking the derivatives of G1 and G3 explicitly and
substituting in the expressions from step 6 gives two
simultaneous equations for U0

1 and U0
3. Solve them.

(8) Substitute the solutions for U0
1 and U0

3 into step 6,
and we finally get to a closed system of five coupled
first-order nonlinear ODEs for the Y’s and U’s:

Y 0
1 ¼ F 1ðr; U1; U3; Y1; Y2; Y3Þ; ð76Þ

Y 0
2 ¼ F 2ðr; U1; U3; Y1; Y2; Y3Þ; ð77Þ

Y 0
3 ¼ F 3ðr; U1; U3; Y1; Y2; Y3Þ; ð78Þ

U0
1 ¼ F 4ðr; U1; U3; Y1; Y2; Y3Þ; ð79Þ

U0
3 ¼ F 5ðr; U1; U3; Y1; Y2; Y3Þ: ð80Þ

(9) Solve (numerically) Eqs. (76)–(80) for the Y’s and
U’s. Substitute the solution into Eq. (71) and
integrate to find p2. Substitute this into Eqs. (69)
and (70) to determine the remaining free functions
p1 and p3; then we are done.

The same procedure will work in principle for any
generic multimetric theory beyond just the three-metric
star. The tedious part arises due to the fact that whenever
there are additional metrics one is necessarily forced to
propagate the Bianchi constraints through the whole inter-
action structure during steps 2–4, in a similar manner to how
we did in Sec. III A, but ultimately one should eventually be
able to arrive at equations of the form (69)–(71) for the p’s
and equations of the form (76)–(80) for the Y’s and U’s,
which can be integrated numerically. In practice, we of
course do not recommend actually doing this; it is tricky
enough with just three metrics. Indeed, we save the full
numerical calculation for this example model for the final
paper of this series. Despite the inherent complexity of the
field equations, it turns out that one can still glean some
useful physical information by looking at the asymptotic
behavior of these equations far away from the black hole
horizon, which we now turn to.

1. Asymptotic behavior at infinity

For the model specified by our choice of βm, as r → ∞,
the spacetime becomes approximately Minkowski on all
three metrics. Therefore, we shall consider the following
asymptotic form of the free functions:

piðrÞ ¼ 1þ δpiðrÞ; ð81Þ

YiðrÞ ¼ 1þ δYiðrÞ; ð82Þ

UiðrÞ ¼ rþ δUiðrÞ; ð83Þ

where the variations are small. Substituting these expan-
sions into Eqs. (76)–(80) and keeping only the linear terms
leads to a remarkable simplification; one finds

δY 0
1 ¼ m2δU1 −

1

3r
ðδY1 þ δY2 þ δY3Þ; ð84Þ

δY 0
2 ¼ −m2ðδU1 þ δU3Þ −

1

3r
ðδY1 þ δY2 þ δY3Þ; ð85Þ

δY 0
3 ¼ m2δU3 −

1

3r
ðδY1 þ δY2 þ δY3Þ; ð86Þ

δU0
1 ¼

�
1þ 4

3m2r2

�
δY1 −

�
1þ 2

3m2r2

�
δY2

−
2

3m2r2
δY3; ð87Þ

δU0
3 ¼ −

2

3m2r2
δY1 −

�
1þ 2

3m2r2

�
δY2

þ
�
1þ 4

3m2r2

�
δY3: ð88Þ
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These equations are symmetric under 1 ↔ 3 exchange, as
we expect from the star interaction structure. They can be
solved analytically to find

δY1 ¼ −
A
2r

þ B
r
ð1þmrÞe−mr þ C

r
ð1þ

ffiffiffi
3

p
mrÞe−

ffiffi
3

p
mr;

ð89Þ

δY2 ¼ −
A
2r

−
2C
r
ð1þ

ffiffiffi
3

p
mrÞe−

ffiffi
3

p
mr; ð90Þ

δY3 ¼ −
A
2r

−
B
r
ð1þmrÞe−mr þ C

r
ð1þ

ffiffiffi
3

p
mrÞe−

ffiffi
3

p
mr;

ð91Þ

δU1 ¼ −
B

m2r2
ð1þmrþm2r2Þe−mr

−
C

m2r2
ð1þ

ffiffiffi
3

p
mrþ 3m2r2Þe−

ffiffi
3

p
mr; ð92Þ

δU3 ¼
B

m2r2
ð1þmrþm2r2Þe−mr

−
C

m2r2
ð1þ

ffiffiffi
3

p
mrþ 3m2r2Þe−

ffiffi
3

p
mr: ð93Þ

In principle there are also exponentially growing terms,
but we have set to 0 their associated integration constants
since their presence would spoil the asymptotic flatness of
the solutions. Accounting for this fact numerically requires
a deft hand [32]; we will give more details in part III.
Lastly, the equations for the δp’s linearize to

δp0
2 ¼

1

3r
ðδY1 þ δY3 − 5δY2Þ; ð94Þ

δp1¼ δp2−
2

3m2r2
ð3m2rδU1þ2δY1−δY2−δY3Þ; ð95Þ

δp3¼ δp2−
2

3m2r2
ð3m2rδU3þ2δY3−δY2−δY1Þ: ð96Þ

Again these equations are symmetric under 1 ↔ 3
exchange as we expect. Substituting in the solutions we
have just obtained for the δY’s and δU’s, they imply

δp1 ¼ −
A
2r

þ 2B
r
e−mr þ 2C

r
e−

ffiffi
3

p
mr; ð97Þ

δp2 ¼ −
A
2r

−
4C
r
e−

ffiffi
3

p
mr; ð98Þ

δp3 ¼ −
A
2r

−
2B
r
e−mr þ 2C

r
e−

ffiffi
3

p
mr: ð99Þ

So, we have now solved for all of the asymptotic
functions: the δU’s are given by Eqs. (92) and (93), the
δY’s by Eqs. (89)–(91), and the δp’s by Eqs. (97)–(99). The

physical meaning of each of the terms in these expressions
is also clear: the A=r piece is the standard Newtonian
potential coming from the massless graviton, but there are
also Yukawa pieces coming from two massive gravitons
whose masses are m and

ffiffiffi
3

p
m—precisely the masses we

expected from diagonalizing the mass matrix. The manner
in which the superposition of these different effects appears
in the form of the metric functions is not a trivial matter and
clearly depends on the field equations, which are compli-
cated (e.g. metric 2 does not see the graviton of mass m in
either its δp or δY functions, and it appears that the sum of
the pieces coming from the massive gravitons across all
three δp’s or δY’s must vanish—this happened in bigravity
too [30–32]). However, the behavior is qualitatively sen-
sible, and the same should be true in any more generic
multimetric theory: that is, the asymptotic behavior will
always consist of a massless Newtonian piece together with
some superposition of Yukawa pieces corresponding to
gravitons whose masses one may determine by diagonal-
izing the mass matrix around a particular proportional
solution. Explicitly, we expect that the result will be of
the form

δYi ¼ −
A
2r

þ
XN−1

j¼1

Bi;j

r
ð1þmjrÞe−mjr; ð100Þ

δUi ¼
XN−1

j¼1

Ci;j

m2
jr

2
ð1þmjrþm2

jr
2Þe−mjr; ð101Þ

δpi ¼ −
A
2r

þ
XN−1

j¼1

Di;j

r
e−mjr; ð102Þ

where the Ci;j and Di;j are constants related by simple
rescalings to the arbitrary Bi;j and one has, for any given
j ¼ J,

P
i Bi;J ¼

P
i Di;j ¼ 0. Our results here for three

metrics are certainly of this form, as are the bigravity results
of [30–32]; we expect the same to be true in general.
The structure of these asymptotic solutions as a super-

position of graviton mass modes is the reason that we
interpret the solutions as describing black holes endowed
with massive graviton hair. In order to determine the full
solution, one must numerically integrate the complete set of
coupled first-order nonlinear ODEs from the horizon to
infinity and ensure that the initial conditions are chosen such
that the asymptotic behavior given above is recovered. The
asymptotics define a boundary value problem for the set of
coupled ODEs, but they are only known up to arbitrary
integration constants which we must somehow fix. The
calculation is a challenging one, so we save it and its results
for the eventual final paper of this series. Nevertheless, we
have still given a general procedure one may follow if one
wishes to construct hairy black hole solutions in generic
multimetric models.
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V. CONCLUSION

In this work, we sought to build upon what we did
previously in part I [1] by determining the linear stability
of the nonproportional and partially proportional branches
of black hole solutions in the general theory of ghost-free
multimetric gravity, generalizing and extending analogous
results from dRGT massive gravity and bigravity. We
showed that, as is the case in bigravity, the nonproportional
multi-Schwarzschild solutions in the full multimetric
theory (at least in D ¼ 4) are mode stable at linear level,
as each metric shares its quasinormal spectrum with the
standard Schwarzschild solution in GR. On the other hand,
the partially proportional solutions (which only exist for
N > 2 metrics) are unstable at linear level, as they inherit
the Gregory-Laflamme instability from the sectors of the
solution in question that do still remain proportional.
One should not be so hasty to accept these findings as

statements of the full stability of the solutions, however, as
linear stability does not always guarantee nonlinear sta-
bility. Indeed, the conclusions from our linear analysis
may, and likely do, change at nonlinear level, as one
expects the scalar and vector graviton helicity states—that
do not propagate at linear level around the nonproportional
solutions and the nonproportional sectors of the partially
proportional solutions—to reappear nonlinearly and give
rise to ghostlike instabilities. Such behavior is known to
occur already in the analogous branch of cosmological
multimetric solutions, where the disappearance of the
vector and scalar degrees of freedom at linear level occurs
similarly to here, so it is natural to conjecture that the
nonlinear ghost instability might also arise for these classes
of black hole solutions.
The consequence of this would be that the only physi-

cally sensible GR-adjacent black hole solutions in multi-
metric gravity are the proportional solutions, at least in the
regime where these solutions are stable. However, we also
know from part I that even the proportional solutions
become unstable when the black hole horizon size drops
below the Compton wavelength of the theory’s lightest
(massive) graviton. All is not lost though—the GL insta-
bility in the proportional branch is not necessarily as fatal as
the aforementioned ghost instability in the nonproportional
and partially proportional branches, as it only signifies an
exponentially growing metric perturbation (rather than a
genuine instability of the vacuum), which may backreact on
the solution to eventually saturate into a new, stable
final state.
To that end, we also considered a generic spherically

symmetric ansatz for the multigravity metrics and showed
how one may construct solutions describing black holes
endowed with massive graviton hair. These solutions are
expected to bifurcate from the multi-Schwarzschild one at
the point at which it becomes unstable and so provide a
good candidate for the end state of the instability. We
considered an example model involving three metrics that

is tractable enough to see how the procedure to construct
hairy solutions works in practice. Although we save the full
numerical methodology and calculation for part III, we
showed how to reduce the system to a set of coupled
nonlinear first-order ODEs amenable to numerical integra-
tion and analytically determined the asymptotic form of
their solution far away from the black hole horizon, where
one clearly sees the contributions from each of the
individual graviton mass modes. Our plan for the final
installment is to develop the numerical technology to fully
integrate these equations from the horizon in order to
determine the complete solution and investigate how the
resulting hairy solutions depend on the multigravity
parameter space and on the masses of the gravitons.
Obviously there is still much to learn about all of these

black hole solutions, not least whether they genuinely do
form from gravitational collapse in these multimetric
theories and whether the GL instability in the proportional
branch genuinely does evolve to one of the hairy solutions.
These are questions which require numerical relativity
simulations to answer with certainty—we again stress
the importance of developing a well-posed dynamical
formulation of multimetric gravity for this and many other
purposes. That said, we have in this series of papers
constructed a complete cataloging of all the known black
hole solutions, including their linear stability properties, of
any generic multimetric theory of gravity. We hope that this
will prove invaluable to anyone wishing to study black
holes in theories involving massive spin-2 fields.
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APPENDIX A: LINEARIZED FIELD EQUATIONS
AROUND GENERIC BACKGROUNDS

Around the proportional backgrounds, the linearized
field equations are not overly difficult to compute; indeed,
we showed how to do this in Appendix B of part I [1].
Around generic backgrounds, the calculation is much more
complicated, but it can still be done in a systematic manner.
The prescription for doing so was first laid out in detail in
[53]; we outline it here to show how we determined the
structure of the perturbations around the nonproportional
solutions.
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We begin by perturbing the metrics as in Eq. (27). It is
well known (see e.g. [2]) that the Einstein tensor linearizes
to the Lichnerowicz operator acting on the perturbation,
that is,

δGðiÞ
μν ¼ EðiÞαβ

μνδg
ðiÞ
αβ ; ðA1Þ

where [26]

EðiÞαβ
μνhαβ ¼

1

2

h
−□ðiÞhμν þ∇ðiÞ

μ ∇ðiÞ
α hαν

þ∇ðiÞ
ν ∇ðiÞ

α hαμ −∇ðiÞ
μ ∇ðiÞ

ν hþ gðiÞμν□ðiÞh

− gðiÞμν∇ðiÞ
α ∇ðiÞ

β hαβ − 2RðiÞα β
μ ν hαβ

i
; ðA2Þ

so, as in part I, we shall skip this part of the derivation here
and focus on the potential. To that end, the first-order
variation of the W tensor is

δWðiÞμ
ν ¼ δgðiÞμλW̄

ðiÞλ
ν þ

X
j

XD
m¼0

ð−1Þmβði;jÞm δYμ
ðmÞνðSi→jÞ

þ
X
k

XD
m¼0

ð−1Þmβðk;iÞD−mδY
μ
ðmÞνðSi→kÞ: ðA3Þ

The variation of the Y’s is given (in matrix notation, and for
any given i → j interaction) by

δYðmÞðSÞ ¼
Xm
k¼1

ð−1Þk
�
Sm−kδekðSÞ

− ek−1ðSÞ
Xm−k

n¼0

SnδSSm−k−n
�
; ðA4Þ

where, by virtue of Eq. (5), we have

δekðSÞ ¼ −
Xk
n¼1

ð−1Þn TrðSn−1δSÞek−nðSÞ: ðA5Þ

The complication lies in the fact that δS is given by the
matrix equation:

SδSþ δSS ¼ δS2; ðA6Þ

and so one cannot simply determine it by starting from
S2i→j ¼ g−1ðiÞgðjÞ and then Taylor expanding the square root

(unless S ∝ 1, which is the case for the proportional
solutions and is the reason that they are simpler to deal
with). Around a generic background solution, this is a
Sylvester matrix equation, of the form

AX − XB ¼ C; ðA7Þ

where A, B and C are given constant matrices and one
wishes to solve for the unknown matrix X. The solution to
the Sylvester equation is known in the mathematical
literature and is given by the following expression [65]:

X ¼ q−1B ðAÞ
XD
k¼1

Xk−1
n¼0

ð−1ÞkeD−kðBÞAk−n−1CBn; ðA8Þ

where qBðAÞ is the unique polynomial in the matrix A
whose coefficients are the same as those of the character-
istic polynomial of B (q−1B ðAÞ is then the inverse of this
matrix), that is,

qBðAÞ ¼
XD
m¼0

ð−1ÞmeD−mðBÞAm: ðA9Þ

In our case, comparison with Eq. (A6) tells us that we
have A ¼ S, B ¼ −S and C ¼ δS2. Therefore, the solution
for δS is

δS ¼ q−1−SðSÞ
XD
k¼1

Xk−1
n¼0

ð−1ÞnþkeD−kð−SÞSk−n−1δS2Sn:

ðA10Þ

One can easily obtain δS2i→j in terms of either the metric
perturbations of gðiÞ and gðjÞ, or of their inverses, by starting
from S2i→j ¼ g−1ðiÞgðjÞ and substituting in Eq. (27) for the

perturbed metrics. The result is

δS2i→j ¼ g−1ðiÞ ½δgðjÞ − δgðiÞS2i→j� ðA11Þ

¼ ½S2i→jδg
−1
ðjÞ − δg−1ðiÞ �gðjÞ; ðA12Þ

or in components

ðδS2i→jÞμν ¼ gμλðiÞ½δgðjÞλν − δgðiÞλσðS2i→jÞσν � ðA13Þ

¼ ½ðS2i→jÞμλδgλσðjÞ − δgμσðiÞ�gðjÞσν: ðA14Þ

Substituting either of these expressions into Eq. (A10)
determines δS, which one can then substitute into Eq. (A4)
to get the Y variations and lastly substitute these into
Eq. (A3) to determine the linearizedW tensors. Around the
nonproportional black hole solutions, one finds that the
linearized W tensors take the form of Eq. (35).

APPENDIX B: BACKGROUND FIELD
EQUATIONS FOR GENERIC SPHERICALLY

SYMMETRIC DIAGONAL METRICS

With the ansatz Eq. (61) for the metrics, the Einstein
tensor components are
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GðiÞ0
0 ¼

Y2
i

U02
i

�
2
Y 0
i

Yi

U0
i

Ui
þ U02

i

Y2
i U

2
i
ðY2

i − 1Þ
�
; ðB1Þ

GðiÞr
r ¼ Y2

i

U02
i

�
2
p0
i

pi

U0
i

Ui
þ U02

i

Y2
i U

2
i
ðY2

i − 1Þ
�
; ðB2Þ

GðiÞθ
θ ¼ GðiÞϕ

ϕ

¼ Y2
i

U02
i

�
Y 0
i

Yi

�
U0

i

Ui
þ p0

i

pi

�
þ p00

i

pi
þ p0

i

pi

�
U0

i

Ui
−
U00

i

Ui

��
: ðB3Þ

For positively oriented interactions, the contributions to the W tensors are given by

WðiÞ0
0 ⊃

�
βði;jÞ0 þ 2βði;jÞ1

Uj

Ui
þ βði;jÞ2

U2
j

U2
i

�
þ YiU0

j

YjU0
i

�
βði;jÞ1 þ 2βði;jÞ2

Uj

Ui
þ βði;jÞ3

U2
j

U2
i

�
; ðB4Þ

WðiÞr
r ⊃

�
βði;jÞ0 þ βði;jÞ1

pj

pi

�
þ 2

�
βði;jÞ1 þ βði;jÞ2

pj

pi

�
Uj

Ui
þ
�
βði;jÞ2 þ βði;jÞ3

pj

pi

�
U2

j

U2
i
; ðB5Þ

WðiÞθ
θ ¼ WðiÞϕ

ϕ

⊃
�
βði;jÞ0 þ βði;jÞ1

Uj

Ui

�
þ
�
βði;jÞ1 þ βði;jÞ2

Uj

Ui

�
pj

pi
þ YiU0

j

YjU0
i

��
βði;jÞ1 þ βði;jÞ2

Uj

Ui

�
þ
�
βði;jÞ2 þ βði;jÞ3

Uj

Ui

�
pj

pi

�
: ðB6Þ

For negatively oriented interactions, one should replace in the above expressions j → k and βði;jÞm → βðk;iÞ4−m.
The Bianchi constraints have only one nonvanishing contribution from each interaction, which is (written for a positively

oriented interaction—again make the exchanges j → k and βði;jÞm → βðk;iÞ4−m to obtain the appropriate expression for a
negatively oriented interaction)

∇ðiÞ
μ WðiÞμ

r ⊃
�
βði;jÞ1 þ 2βði;jÞ2

Uj

Ui
þ βði;jÞ3

U2
j

U2
i

�
p0
j

pi
−
YiU0

j

YjU0
i

��
βði;jÞ1 þ 2βði;jÞ2

Uj

Ui
þ βði;jÞ3

U2
j

U2
i

�
p0
i

pi

þ 2

��
βði;jÞ1 þ βði;jÞ2

Uj

Ui

�
þ
�
βði;jÞ2 þ βði;jÞ3

Uj

Ui

�
pj

pi

��
1 −

Yj

Yi

�
U0

i

Ui

�
: ðB7Þ

Substituting the above expressions into the field equations M2
i G

ðiÞμ
ν þWðiÞμ

ν ¼ 0, and simplifying, leads to the

equations (62)–(65), with the various functions Að�Þ
i;j , B

ð�Þ
i;j , C

ð�Þ
i;j , D

ð�Þ
i;j and Eð�Þ

i;j defined as

AðþÞ
i;0 ¼ 1

M2
i

X
j

ðβði;jÞ0 U2
i þ 2βði;jÞ1 UiUj þ βði;jÞ2 U2

jÞ; ðB8Þ

Að−Þ
i;0 ¼ 1

M2
i

X
k

ðβðk;iÞ4 U2
i þ 2βðk;iÞ3 UiUk þ βðk;iÞ2 U2

kÞ; ðB9Þ

AðþÞ
i;j ¼ Y2

i

Y2
j
Að−Þ
j;i ¼ 1

M2
i

Yi

Yj
ðβði;jÞ1 U2

i þ 2βði;jÞ2 UiUj þ βði;jÞ3 U2
jÞ; ðB10Þ

BðþÞ
i;0 ¼ 1

M2
i

X
j

h
ðβði;jÞ0 pi þ βði;jÞ1 pjÞU2

i þ 2ðβði;jÞ1 pi þ βði;jÞ2 pjÞUiUj þ ðβði;jÞ2 pi þ βði;jÞ3 pjÞU2
j

i
; ðB11Þ

Bð−Þ
i;0 ¼ 1

M2
i

X
k

h
ðβðk;iÞ4 pi þ βðk;iÞ3 pkÞU2

i þ 2ðβðk;iÞ3 pi þ βðk;iÞ2 pkÞUiUk þ ðβðk;iÞ2 pi þ βðk;iÞ1 pkÞU2
k

i
; ðB12Þ
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CðþÞ
i;0 ¼ 1

M2
i

X
j

h
ðβði;jÞ0 Ui þ βði;jÞ1 UjÞpi

þ ðβði;jÞ1 Ui þ βði;jÞ2 UjÞpj

i
; ðB13Þ

Cð−Þ
i;0 ¼ 1

M2
i

X
k

h
ðβðk;iÞ4 Ui þ βðk;iÞ3 UkÞpi

þ ðβðk;iÞ3 Ui þ βðk;iÞ2 UkÞpk

i
; ðB14Þ

CðþÞ
i;j ¼ Y2

i

Y2
j
Cð−Þ
j;i ¼ 1

M2
i

Yi

Yj

h
ðβði;jÞ1 Ui þ βði;jÞ2 UjÞpi

þ ðβði;jÞ2 Ui þ βði;jÞ3 UjÞpj

i
; ðB15Þ

DðþÞ
i;j ¼ Dð−Þ

j;i ¼ βði;jÞ1 U2
i þ 2βði;jÞ2 UiUj þ βði;jÞ3 U2

j ; ðB16Þ

EðþÞ
i;j ¼ Eð−Þ

j;i ¼ 2
h
ðβði;jÞ1 Ui þ βði;jÞ2 UjÞpi

þ ðβði;jÞ2 Ui þ βði;jÞ3 UjÞpj

i
: ðB17Þ
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