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ABSTRACT
This article considers geometric patterns arising from infinite series
of concentric circles, whose radii converge to zero. As an archetype
of such design, the initial focus is on level curves of the surface given
by z = sin (1/r) in cylindrical polar coordinates, before generalizing
to other periodic functions. Since any horizontal section of this sur-
face comprises an infinite number of circles, there is no physical
medium on which a complete visualization can be achieved. As we
explore different computer-based representations, the readerwill be
presented with a sample of surprisingly stunning patterns involv-
ing intricate arrangements of moiré and related patterns. Especially
when considering rectangular grid approximations, these patterns
are reminiscent of mandala figures. We discuss how they arise due
to the finite nature of any computing or display device, epitomized
by floating-point approximations of real numbers. Code is provided
as a means to generate an endless supply of artworks.
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1. Introduction

The present paper explores patterns such as those seen in Figure 1, which represents a
translated form of the topologist’s sine curve sin(1/x), well known to mathematics under-
graduates. As we apply this infinitely bending function to

√
x2 + y2, we generate a surface

comprising infinite concentric circular waves. Since these level curves consist of infinitely
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Figure 1. ‘Heatmap’ of the function S(1/
√
x2 + y2)where S(x) = (1+sin(2πx/T))

2 with T = 0.01, using a
600 × 600 grid of values x, y in the interval [−1, 1]. Each pixel is given a colour representing the value of
the function using an colourmap, i.e. an interval of RGB values; see Section 4 for more details and alter-
native colourmaps. Generated using the command imshow from the matplotlib library (Hunter, 2007)
with default options. The colourmap is the perceptually uniform viridis. Note that the appearance
of the figure will vary depending on factors including the PDF viewing software, screen resolution or
printing device.

many concentric circles, no computer representation, nor in fact the use of any physical
medium, is able to represent this surface in its entirety. As a result of the approximation
using a grid of floating number, it appears in Figure 1 that intricate combinations of random
looking fluctuations appear, interwoven with classical moiré patterns (Amidror, 2009).
These figures are strongly reminiscent of patterns presented in a previous publication
(Kaplan, 2005) and references therein, as discussed in the following section. The remain-
der of this paper aims to provide some partial explanations to the patterns which are being
observed. It will turn out that these are to a large extent unpredictable, being dependent
upon fine details of the representation algorithm being used, and the device or material
being used for display. We produce a sample of patterns and figures, which can all be cre-
ated using very simple code instructions. The effect of varying different parameters, both
mathematical and those underlying visualization algorithms, is explored on a selection of
examples. It appears that the method provides an endless supply of artworks. All code is
provided with the paper for readers wishing to promptly produce their own pieces of art,
using examples in the paper as initial guide.
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2. Mathematical background

In this section, we present a mathematical model underlying the different figures which
will be presented subsequently. Besides providing some notations, in defining this model
we will find that the key ingredients are the combination of a periodic function, composed
with another which diverges at the origin. The exact nature of the periodic function will
turn out to be of little consequence; the fact that is periodic is the most important factor as
far as generating figures is concerned.

As a generic notation, we consider a real-valued function of the form

f (x) = S
(
1
xq

)
, (1)

where x>0, q>0 is a steepness parameter and S is periodic of period T>0. Assuming
S (i.e. f ) bounded, we set 0 � f (x) � 1 without loss of generality. Then the main focus in
this note are 2D patterns obtained by assigning colours to a grid of pixels using a function

f (r) = f (‖(x, y)‖). (2)

Specifically, one will use different colourmaps, i.e. the assignment of a colour (typically
RGB) for each possible value taken by f. As is often done, we call such 2d representations
of (2) ‘heatmaps’. Although commonly reserved for the Euclidean norm, the notation rwill
on occasion be abused to denote the �p norm for some p � 1. This extends to dependent
terms such as ‘circle’, to be understood as a closed curve ‖(x − xc, y − yc)‖ = β , for some
constant β > 0.

As mentioned, closely related patterns have been previously discussed (Kaplan, 2005);
they were based on functions of the form (1) but with q<0. A number of the points dis-
cussed below would still apply to these patterns, but ‘in reverse’: in the present case, the
generating oscillation increases its frequency as one approaches the origin, whereas this
happens away from the origin in said reference. As an addition to the discussion in this pre-
vious work, which focuses on aliasing, one will see here that the theory of moiré patterns
provides further clarity on the nature of these patterns.

Since S is T-periodic, the level curves of the surface (2) are concentric circles, with radii
given by the relation, valid for all n ∈ N = {0, 1, 2, . . . }

1
rqn

= 1
rq0

+ nT ⇐⇒ rqn = rq0
1 + nTrq0

=⇒ f (r0) = f (rn) . (3)

Hence, any choice of r0 generates a sequence of decreasing radii {rn}n. By periodicity of S
it suffices to choose 1/rq0 over the range (0,T], i.e. rq0 over [

1
T ,∞) to generate the complete

surface specified by (2).

Remark 2.1: We introduce here a normalization convention. Any visualization of the level
curves for f will have to be restricted to a bounded region within the plane. Let us agree
on systematically using a square domain centred at the origin, say (x, y) ∈ [−α,α]2. Then,
rescaling it to [−1, 1]2 by considering (x̃, ỹ) .= (x/α, y/α), one has that r̃ = ‖(x̃, ỹ)‖ = r/α
for any norm. Hence, f (r̃) = S(αq

rq ). Noting that concentric circles of same height are given
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by the relation

1
rqn+1

− 1
rqn

= T ⇐⇒ αq

rqn+1
− αq

rqn
= 1

r̃qn+1
− 1

r̃qn
= αqT,

it appears that it is equivalent to consider 0 < r � α with a period T or 0 < r̃ � 1 with a
period αqT. Therefore, every figure in this paper will be defined on the square [−1, 1]2 (for
which axes labelling will typically be omitted) without loss of generality, using T as main
control parameter.

To obtain a representation which is independent of T we use a scaling parameter σ ∈
(0, 1] such that (3) gives rn in a simple form:

rq0 = rq0(σ ) = 1
σT

=⇒ rqn = rqn(σ ) = 1
(n + σ)T

. (4)

As σ ranges over (0, 1], (4) shows that for all natural numbers n, rqn(σ ) ranges over In
.=

[ 1
(n+1)T ,

1
nT ), where for n = 0 the upper bound is understood as ∞. From this property,

the punctured planeR
2 \ {(0, 0)} is indeed fully covered by a partition into annular regions

r ∈ In. Any given circle r = (r0(σ ))1/q, for r0 ∈ I0 has the same level as all rn(σ ), for any
other n. In equation, for any given σ one has a set of circles with a shared level and its
simplest expression is S(σT):

f (rn(σ )) = f
(

1
(n + σT)1/q

)
= S((n + σ)T) = S(σT) = f (r0(σ )).

The discussion above, including the expression for radii rn given in (4), is independent of
the exact form of the function S as long as it is T-periodic. Different choices of S will not
affect the location of level curves, but only their height. In particular, while circles corre-
sponding to a given σ always have the same level S(σT), the converse is only true if the
restriction Ŝ of S to its fundamental interval (0,T] is injective. We illustrate this fact in
Figure 2, featuring two graphs of the form S(1/r2), where S is 2-periodic. One is a trigono-
metric function for which each α ∈ (0, 1] has two pre-images in the fundamental domain
while the other, a saw wave function, is injective on (0,T].

Since two-dimensional representations such as Figure 1 are the main focus of this note,
the choice of S will effectively yield a device to associate colours to the concentric circles
discussed above, whose location is exclusively dictated by the period T. In more formal
terms, all figures presented in the remainder will be meant to represent a finite sample of
the infinite family of circlesC(σ , n) .= {(x, y) | r = (rn(σ )}. A colour scheme in the present
context is naturally described as a function from [0, 1] to a three-dimensional colourspace,
typically RGB values normalized between 0 and 1. Denote such a colour scheme by γ :
[0, 1] → [0, 1]3. Then, all circles C(n, σ) share the same colour γ (S(σT)). As mentioned,
if Ŝ is non-injective there will be several values of σ for which S(σT) is equal, and thus these
circles will be assigned the same colour γ (S(σT)). Since, in general, the colour scheme γ

itself may be non-injective (for instance to a colourblind observer), one may argue that
the fundamental structure underlying a visualization of the surfaces of the form (2) is that
of circles C(σ , n), which are independent of S. Given these circles, the function S can be
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Figure 2. Two choices of periodic functions, represented with a sample of initial radii parameterized
by σ ∈ (0, 1]. Each horizontal line has an infinite number of intersections with the graph of S(1/rq),
at abscissas rn(σ ), n ∈ N, see (4). In (a), the function S is non injective in (0, T], so that two values
of σ actually yield the same level curve. In contrast, in (b) injectivity ensures that each level f (r) = z
corresponds to unique family of circles {r = rn(σ ) : n ∈ N}. (a) Section profile of S(1/r2), r > 0 for a
trigonometric S(x), as shown in the insert. As σ varies, r0 ranges over [1/

√
T ,∞) = [1/

√
2,∞). (b)

Section profile of S(1/r2), r > 0 for a saw wave S(x), as shown in the insert. As σ varies, r0 ranges over
[1/

√
T ,∞) = [1/

√
2,∞).

thought of as a notational device to concisely encode the colour associated to each circle,
in cases where γ is linear (or perceptually uniform Kovesi, 2015). In some instances, one
will consider complex colourmaps, looking for aesthetic outcome rather than a precise
mathematical control of the object being depicted; in such cases the choice of Swill become
largely irrelevant (though not without effect).

3. Practical implementation

Given the previous section, it is clear that the patterns visible in Figure 1 are artefacts;
a correct figure should only include concentric circles. Since there are infinitely many of
these circles, it is also clear that any method, be it on a computer or an analogue device,
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Figure 3. Level curves f (rn) = α, where S is 2-periodic, rn as in (4), for 0 � n < 150 and σ as shown in
legend. The values of σ are exactly as in Figure 2, but colours are according to the height α. The non-
injectivity in (a) leads to pairs of σ ’s yielding the same level, whereas each σ is associated with a single
colour in (b). Depending on the device used to display this figure (especially, on print vs. digital), moiré
patternsmay be discerned near the origin, see zoomed-in versions in panels (c) and (d), where the range
for n has been increased to {0 . . . 1000}. (a) Level curves for the trigonometric function shown in Figure
2(a). (b) Level curves for the saw wave function shown in Figure 2(b). (c) Zoom of panel (a). (d) Zoom of
panel (b).

will only provide a finite approximation. An attempt at reducing the artefacts in Figure 1
is shown in Figure 3. The same two functions and σ values as in Figure 2 are used, now
representing circles instead of a one-dimensional section. There are various methods to
represent circles on a digital device (Blinn, 1987; Foley et al., 1995). In the figure, we use the
patches.Circle method from the Matplotlib library, in Python (Hunter, 2007). The
underlying algorithm builds a spline approximation of the circle. Further to this, by default
the actual display relies on a number of modifiable methods to assign colour values to each
pixel. For instance, anti-aliasing is performed by default, whereby colour intensity along
a curve is distributed among the pixels it intersects according to the size of the overlap,
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rather than as Boolean assignment (Foley et al., 1995). In a later section, we will consider
the visual effects of some display algorithms.

Using default settings as in Figure 3, moiré patterns are visible near the origin. Their
hyperbola shape resembles patterns seen in the heatmap from Figure 1. This can be
explained using classic techniques in moiré patterns theory, namely using the approach
sometimes termed strain analysis (Amidror, 2009; Theocaris, 1969). In general, moiré
shapes become visible when two or more repetitive patterns are superimposed. When
these repetitive patterns are periodic, Fourier techniques provide powerful descriptive tool
(Amidror, 2009). However in our case, even though in Figure 1 the patterns partly result
from the digitized (x, y) grid of pixels, which is periodic, the series of concentric circles
described in the previous section are not periodic. Indeed, the distance between a pair of
successive radii rn(σ ) is given by

rqn(σ ) − rqn+1(σ ) = 1
(n + σ)T

− 1
(n + 1 + σ)T

= 1
(n + σ)(n + 1 + σ)T

, (5)

which depends on both n and σ .
Instead of Fourier methods, with strain analysis one explicitly describes the superim-

posed patterns, usually termed gratings in the literature, as level curve equations

f (x, y) = n, g(x, y) = k,

where n, k range over some integer values. Then visible patterns can be understood as series
of nearest intersection points, as long as no tangencies between gratings occur, such nearest
point series are given by the two statements

n ± k = α,

for a constant α, as illustrated in Figure 4.Which of the two series of intersections is visible
depends on the shape of ‘parallelograms’, formed by pairs of curves from each grating. This
turns out to be amenable to elementary vector calculus, with the property that

n ± k = α is visible if ± ∇f · ∇g < 0, (6)

as discussed in general references on moiré patterns (Amidror, 2009; Theocaris, 1969) or
more specific work related to the present discussion (Cullen, 1990).

This is best visualized using an explicit example. In our case, regardless of whether one
uses a heatmap or concentric circles, one conceives the displaying medium as composed
of pixels. Hence, there are three underlying gratings: the horizontal and vertical lines lying
between pixels in the pixel grid, and the concentric circles. Let ε designate the pixel size,
assuming pixels are perfect squares. Then we denote the gratings using integer indices, k,
l, n:

xk = kε, yl = lε, and rn(σ ) = 1
(n + σ)T

⇐⇒ 1
Trn

− σ = n. (7)

Then, from (6) we deduce that:

• Expectedly, patterns k ± l, which arise within the x, y grid alone, are never visible since
in that case using (6) ∇f · ∇g = (1/ε, 0) · (0, 1/ε) = 0.
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Figure 4. Gratings consisting of a Cartesian grid bounding ‘pixels’ and the concentric circles described
in the text. The insert zooms and removes horizontal lines for better visualization, showing how series
n ± k = α are constructed.

• Patterns n ± k, between circles and vertical lines, are visible when

±(1/ε, 0) ·
( −2x
T(x2 + y2)3/2

,
−2y

T(x2 + y2)3/2

)
= ∓2x

Tε(x2 + y2)3/2
< 0 ⇐⇒ ∓x > 0.

Note that using the �p norm would give the same inequality.
• Likewise, patterns n ± l are visible when ∓y > 0.

In summary, the upper (resp. lower) half plane will comprise moiré patterns n + l = α

(resp. n − l = α), while the left (resp. right) half-plane will comprise moiré patterns n −
k = α (resp. n + k = α). In each quadrant, these patterns can interfere, whereas in regions
of the form x ≈ 0, ±y > 0 or y ≈ 0, ±x > 0 only one type of pattern is expected. This is
consistent with Figure 1 and more so still Figure 3, where hyperbolic patterns are more
striking at the interfaces between quadrants.

The actual shape of the moiré patterns could be worked out using equations such as
n ± k = α in terms of x and y, using (7). However, this leads to implicit equations, which
are not straightforward to interpret. Alternatively, an elegant approach for a closely related
configuration has been previously presented (Cullen, 1990): regularly spaced gratings of
straight lines and circles. Using geometric arguments and the polar definition of a conic,
this previous work shows that moiré patterns are conics, whose eccentricity is given by the
ratio between the pitches of the circular and linear gratings, respectively. Hence, if circles
are closer to each other than lines one expects ellipses, whilst hyperbolas will occur when
the lines are closer.

In our case, the distance between concentric circles is not a fixed quantity and themoiré
patterns may not be perfect conics. Yet these previous results (Cullen, 1990) provide a use-
ful heuristics, assuming some form of structural stability to the phenomenon: away from
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the origin, ε is small compared to the typical distance between circles, hence if the latter was
constant onewould expect hyperbolas (eccentricity> 1). As one approaches the origin, the
distance between circles shrinks to zero and will necessarily become much lower than ε,
however small the pixels may be, leading to ellipses as moiré shapes. This is confirmed in
practice by our attempts at producing visual representations of surfaces of the form (2).
For instance, Figure 1 comprises full circles at the periphery, where the pitch is too large to
create any significant interference with the digitized display grid, then hyperbolic patterns
which morph into ellipses as one approaches the origin. Eventually, the pixel size becomes
large compared to the circles’ typical pitch and moiré theory becomes ineffective.

Before presenting a series of figures based on the principles discussed thus far, we
should point out that the gratings used in this section are only a model of what is actually
happening. Indeed, rather that one-dimensional lines spanning the plane, pixels are two-
dimensional items. The colour and/or light intensity which they bear is representative of
neighbouring level curves, in a way which depends on the exact algorithm being used. This
introduces some inherently two-dimensional features in any figure, which are ignored in
the presentation above. Despite these limitations, the extensive literature onmoiré patterns
provides us with useful descriptive tools.

4. Sample of figures

In this section, we present a series of pictures created using the principles described above.
We explore the effect of varying parameters such as the number of grid points (denoted n),
the function S or its period T, the steepness exponent q, the norm �p. We also consider the
effects of some of themany possible algorithms used for displaying the figures, in particular
the choice of colour scheme and the anti-aliasing algorithm.

4.1. Perceptually uniform colour schemes

In this section, we rely only on colour schemes which are designed to be perceptually uni-
form (Hunter, 2007; Kovesi, 2015; van der Velden, 2020). As such, they give the closest
representation of the surface map (2) itself, ignoring any aesthetic consideration. Below
are a few figures, for different parameter choices.

First, we consider the effect of the grid resolution, controlled using the number of pixels
denoted n × n. From previous discussions, we expect conic like patterns to occur in a way
which depends on the interplay between pixel size (inversely proportional to n) and the
period T. We expect reducing the resolution (decreasing n) to have some similarity with
increasing T. However, since the inter-circle distance varies non-linearly with T, see (5),
we do not expect these two controls to be completely interchangeable. This is confirmed
in Figure 5, where we see a similar, but not identical pattern when simultaneously dou-
bling n and halving T. Other choices (not shown) confirm this principle. It is also generally
the case that large values of n (or large T) lead to figures which are closer to the ‘true’
series of concentric circles, whilst smaller n or T leads to the occurrence of noticeable pat-
terns. Below a certain limit of very small n or T, these patterns become less discernible
as in the centre of Figures 1 or 5. See an example with period T = 10−4 and n = 800 in
Figure 6.
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Figure 5. Heatmap of S(1/(x2 + y2)), i.e. q = 2, with S(x) = (1+sin(2πx/T))
2 . The period T and grid size

n are as shown above in each figure. The colourmap is viridis.

Figure 6. Heatmap of S(1/(x2 + y2)), i.e. q = 2, with S(x) = (1+sin(2πx/T))
2 , T = 0.0001 and n = 800.

The colourmap is viridis.

The parameters chosen for Figure 5 are in a range that yields striking patterns with a
sinusoidal function S and q = 2. Figure 7 summarizes the main effects that can arise from
varying S or q.
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Figure 7. Heatmap of S(1/(x2 + y2)q/2) where S has period T = 0.01 and n = 400. Top row: S sinu-
soidal as in Figure 6, q as shown. Bottom row: S ‘saw wave’ as in Figure 6, q as shown. The colourmap is
viridis.

The steepness parameter q has the dual effect of bringing circles closer together and
adding a nonlinearity within each annular region r ∈ In. Departing from a sinusoidal S,
the piecewise-linear ‘saw wave’ function S can be used tomodulate the appearance of these
patterns. As predicted in previous sections, the choice of S has an effect on the distribution
of colours, but not on the overall geometry of the figure, which is determined by T and n.
The discontinuity of the saw wave at multiples of T leads to sharper changes between the
two extreme values of the colourmap, but this only of moderate impact, seeing how similar
are the top and bottom rows of Figure 7. For this reason, in the following we will rely only
on the sinusoidal S, since (i) we believe it yields slightly clearer patterns and (ii) it is widely
available, as opposed to other periodic functions which would have to be implemented de
novo.

Still using perceptually uniform colour schemes, additional patterns can appear as a
result of the rendering algorithm. Indeed, any display method will have to rely on some
form of interpolation of the data, to assign a colour value to each pixel; there are a variety of
algorithms, see the documentation for the imshow command used throughout this paper
(Hunter, 2007) .1 In Figure 8, one illustrates this aspect by comparing two perceptually
uniform colourmaps and two interpolation algorithms. We have selected two interpola-
tion algorithms, known as the ‘lanczos’ and ‘bicubic’ methods. Both produce ‘flower-like’
patterns (particularly so with the cet_rainbow4 colourmap Kovesi, 2015) which are
thicker and smoother for the ‘bicubic’ method. The surprising amount of green visible on
this figure is due to the nonlinearity of the interpolation method ‘bicubic’, which relies on
cubic spline interpolation. This method is known to be accurate with finer details, but to
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Figure 8. Heatmap of S(1/(x2 + y2)) where S is sinusoidal with period T = 0.01 and n = 400. Two
colourmaps are compared and shown in the side of each panel. Two interpolation algorithms, known as
the ‘lanczos’ and ‘bicubic’ methods, are used as shown above each panel.

induce artefacts otherwise. In the present context, this can be exploited for artistic aims.
Other methods seem to produce variations where these structures are barely visible (see
the default ‘antialiasing’ method in previous figures) or of intermediary thickness between
the two shown in Figure 8.

4.2. Other colour schemes

As discussed earlier, it is equivalent to change the profile of the function S or the colour
scheme being used in creating image. However, the latter is more practical since in most
implementations one expect colourmaps to be available as a standard option, whereas
designing complex periodic patterns require additional implementation. Given the very
large number of available colourmaps in a library such as matplotlib, and combining this
with different interpolation methods as discussed in the previous section, one can gener-
ate a myriad of figures based on a fixed choice of S, T, q and the resolution n. Combining
the default colourmaps frommatplotlib and those coming fromwell-documented libraries
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Figure 9. Heatmap of S(1/(x2 + y2)) where S is sinusoidal with period T = 1 and n = 800 and the
short wavelength periodic colourmap prism. The ‘bicubic’ interpolation method is used.

cmasher (van derVelden, 2020) and colorcet (Kovesi, 2015) (which automatically get added
to matplotlib’s), one has over 700 colourmaps available. A striking example, using a colour
scheme which is itself periodic with short period, is shown in Figure 9. We also show a
small sample of the possible images that can be created with a unique choice of S and asso-
ciated parameters in Figure 10, withmore homogeneous colourmaps and two interpolation
methods.

4.3. Interference patterns between �2 and �p norms

All figures seen so far are based on the �2 norm. However, much of the initial discussion
remains largely valid if one were to use an alternative �p, with p �= 2. In Figure 11, one
can see some more patterns arising as p is varied. In particular, the nature of the conic-like
patterns drastically changes at the critical value p = 1. As p becomes larger, square patterns
dominate the figure as expected.

Since overall the patterns we have seen so far can all be described as resulting from an
overlap between squares (the pixels) and circles, this led us to represent figures where both
the Euclidean and �p norms are used, with patterns being superimposed. This was done by
considering either the sum or product of two functions f (r) = f (‖(x, y)‖p) of the form (1),
one with p = 2 and the other with p �= 2. This resulted yet again in a new catalogue of
striking geometric figures, of which a sample is shown in Figure 12. One particularity of
these patterns is that they are most visible for larger values of the period T compared to
previous figures.
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Figure 10. Heatmap of S(1/(x2 + y2)) where S is sinusoidal with period T = 0.01 and n = 600. Nine
colourmaps are compared and their names are shown above each panel. The ‘antialiased’ (resp. ‘sinc’)
interpolation method is used on top (resp. bottom).
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Figure 11. Heatmap of S(1/
√
x2 + y2) where S is sinusoidal with period T = 0.01 and n = 600.

Increasing values of the exponent p of the �p norm being used.

In Figure 12 as in previous images, a pleasant aesthetic experience results from the
contrast between the large-scale interference of concentric patterns on the outer part of
the figure, and the more intricate moiré patterns occurring at the centre. The chosen
colourmap is reminiscent of patterns seen on stained glass in some gothic cathedrals.

5. Discussion

We have shown how a simple expression such as (2) is able to generate a variety of strik-
ing geometric figures. Their complex appearance results from the tension between the
infinite nature of the object being represented and the necessary finiteness of any display
medium. This was clearly identified in the previous literature (Kaplan, 2005) for very sim-
ilar patterns, using a function whose frequency increases away from the origin instead of
towards it and a gray-scale colourmap. In particular using the most widespread visualiza-
tion device currently available, i.e. an electronic visual display, one observes interfering
patterns resulting from the imperfect overlap between the square shape of pixels and the
circles underlying the surface (2). It is not straightforward, in general, to guarantee that a
computer generated plot is faithful to the mathematical object it represents (Melquiond,
2021). In the present context, the object is infinite and it is precisely by giving up on any
attempt to be faithful that we can generate remarkable figures. A multitude of similar but
unique patterns could be created by varying some of the parameters discussed in this note.
To this effect, we provide a simple Jupyter notebook, which was used to create all figures
in this paper and has been designed to allow for more patterns to be easily produced. This
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Figure 12. Heatmap of S(1/(x2 + y2)) · S(1/(xp + yp)2/p) where S is sinusoidal with period T = 0.5
and n = 800. Increasing values of the exponent p of the �p norm being used.

includes animations where one ormore of these parameters are varied by small increments
within a range of values.

To include a speculative note, one may find it remarkable that the different figures we
have presented are loosely reminiscent of archetypal patterns including mandalas (Jung,
1953) as well as hallucinatory figures (Blom, 2010; Klüver, 1942). Previous work has
included algorithmic methods to create mandalas (Zhang et al., 2020). There are also a
number of mathematical models describing hallucinations in mathematical neuroscience
(Bressloff et al., 2001; Ermentrout & Cowan, 1979).

The present note does not allow us to bring any new argument about any mechanism
underlying the prevalence of such patterns in human artistic and mental productions.
However, it provides a very simple and concise mathematical device which allows to
generate a vast array of attractive figures. One may notice in passing that the function
A sin(1/r) + B cos(1/r) (for arbitrary constantsA,B) is a general solution to the differential
equation

r4u′′ + 2r3u′ + u = 0.
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Although this differs dramatically from equations featured in the references above, one
may wonder whether this form, or another admitting solutions of the form (1), may arise
as models of the brain activity in some specific circumstances.

To conclude, let us put aside these hypothetical speculations, and hope that the reader
will have found the figures shown above as enjoyable to contemplate as it has been to
produce them.

Note

1. Also https://matplotlib.org/stable/gallery/images_contours_and_fields/interpolation_methods.
html (accessed Jan. 2025).
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