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Efficient post-selection in light cone correlations of monitored quantum circuits
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We consider how to target evolution conditioned on atypical measurement outcomes in monitored quantum
circuits, i.e., the post-selection problem. We show that for a simple class of measurement schemes, post-selected
light cone dynamical correlation functions can be obtained efficiently from the averaged correlations of a
different unitary circuit. This connects rare measurement outcomes in one circuit to typical outcomes in
another one. We derive conditions for the existence of this rare-to-typical mapping in brickwork quantum
circuits made of XYZ gates. We illustrate these general results with a model system that exhibits a dynamical
crossover (a smoothed dynamical transition) in event statistics, and discuss extensions to more general dynamical
correlations.
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I. INTRODUCTION

For closed quantum many-body systems consisting of a
subsystem A and its complement B, there are various ways to
describe the dynamical evolution [1–3]. The most fundamen-
tal is the coherent evolution of the total state |�A∪B〉 through a
unitary operator acting on A ∪ B. Discarding all information
about B, one can follow the evolution of the reduced state
ρA = TrB|�A∪B〉〈�A∪B|, with its dissipative dynamics given
by a quantum channel �, which is in general non-Markovian
[2,3]. When � is given (either exactly or approximately) by
a Markovian channel M [2–5], there is a third, intermediate,
level of detail where some information about B is retained.
This is the “unraveling” of M into quantum trajectories [2,3]:
B is measured, and the evolution of the state on A is con-
ditioned on the measurement outcomes, producing stochastic
dynamics [6–8]. Averaging over the trajectories recovers the
channel M.

The estimation of expectation values along specific trajec-
tories or sets of trajectories is known as post-selection [9–12]
and amounts to targeting rare events in the dynamics. This
gives much more information compared to the mere average,
including time correlations to all orders, and the probabil-
ities of atypical occurrences [13]. Unfortunately, it is very
challenging to achieve post-selection in practical experiments
[14,15] because of the inherent stochasticity of quantum
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measurement. The estimation of any expectation value already
requires many samples, but post-selection is much worse
because each individual sample is exponentially rare, and
one still requires large numbers of them. This introduces a
cost that scales exponentially in time, and sometimes also
in space.

Here, we present a general method to address the post-
selection problem in monitored quantum circuits by directly
accessing evolution conditioned on atypical measurement out-
comes. Quantum circuits have become a central platform
for studying quantum dynamics (see e.g., [9,16–33]), and
in this setting the post-selection problem is directly relevant
to the highly debated measurement-induced phase transitions
[34–36]. Through exact analytical calculations we show that
for a class of measurement schemes in “brickwork” circuits
the post-selected dynamics along the light cone can be ob-
tained efficiently from the dynamics of another brickwork
circuit. This connects rare measurement outcomes in a cir-
cuit to typical outcomes in a different (auxiliary) circuit in
the same class. That is, both circuits are defined on the
same Hilbert space, with the same interaction range, but no
post-selection is required in the auxiliary circuit. We derive
conditions for the existence of this rare-to-typical mapping
and illustrate our results with an example that exhibits a
dynamical crossover (a smoothed transition owing to finite
size) in the measurement statistics. We finish by discussing
extensions to more general scenarios.

II. SETUP

Our illustrative example is based on a well-studied one-
dimensional unitary brickwork quantum circuit, i.e., a chain
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FIG. 1. Diagrammatic representation of the quantum circuit. Red
boxes represent gate U and blue ones U †; each wire is associated
to the Hilbert space of a qubit and connected wires indicate a sum
over their internal states. (a) State at time t = 3 for 2L = 6 qubits.
(b) Measurement scheme, with red crosses denoting measurements.
(c) Light cone correlation function for a given quantum trajectory, red
dots denote projectors P(i) with i = 0 or i = 1 at each half time step,
depending on the trajectory. (d) Simplified light cone correlation
function, using unitarity.

of 2L qubits evolved in time by the staggered application of
two-qubit unitary gates [9]. The system state at time t ∈ N is
|�t 〉 = U t |�0〉 where |�0〉 is the initial state and

U =
L⊗

x=1

Ux−1/2,x

L⊗
x=1

Ux,x+1/2. (1)

We label sites by half integers, use periodic boundary
conditions, and denote by Ux,y the operator acting as the
two-qubit gate U ∈ U(4) on the qubits at positions x and
y (and the identity elsewhere). Figure 1(a) shows the cir-
cuit in the standard diagrammatic representation of tensor
networks [37], which greatly facilitates the analytical anal-
ysis. A self-contained review of the latter is presented in
Appendix A.

We now implement the following measurement scheme:
every half time step τ ∈ [0, t] ∩ Z/2 we measure in the com-
putational basis {|0〉, |1〉} the qubits at spatial positions τ ±
1/2 (i.e., along the direction of the light cone), see Fig. 1(b).
These measurements make the evolution stochastic. Denot-
ing by |�τ 〉 the state of the system at τ , the probability of
measuring at time τ + 1/2 the qubit at position τ in the state
|i〉 and that at position τ + 1 in the state | j〉 is given by

‖Ki j (τ )|�τ 〉‖2, where the many-body Kraus operators are

Ki j (τ ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

P(i)
τ P( j)

τ+1

L⊗
x=1

Ux−1/2,x τ ∈ Z + 1/2

P(i)
τ P( j)

τ+1

L⊗
x=1

Ux,x+1/2 τ ∈ Z

, (2)

and P(i) denotes a projector on the state |i〉 of the
computational basis. The (normalized) state of the system
after the measurement is then Ki j (τ )|�τ 〉/‖Ki j |�τ 〉‖.
A full measurement sequence generates the quantum
trajectory (i, j) = (i0, . . . , i2t , j0, . . . , j2t ) occurring with
probability ‖Ki j (t )|�0〉‖2, where Ki j (t ) ≡ Ki2t j2t (t −
1/2) · · ·Ki0 j0 (−1/2) [38].

Consider now the infinite temperature correlation function
for one qubit along the light cone passing through x = 0. For
a given trajectory this reads

Cab
(i, j)(t ) = 1

22L

∑
s

〈s|K†
i j (t )atKi j (t )b0|s〉, (3)

where {|s〉} is a basis of the Hilbert space and we used the
notation ax to denote the operator that acts nontrivially, as
a ∈ End(C2), only at site x. The correlation function (3) is
a prototypical example of an observable (at ) measured on a
post-selected trajectory (i, j). We find that it displays complex
rare-event behavior, while remaining simple enough for exact
analysis.

In graphical form Eq. (3) is given in Fig. 1(c). This tensor
network can be drastically simplified because the causal light
cones of the two operators overlap only on one line in the
discrete space time (cf. Refs. [22,39–41]). For L > 2t + 1 this
yields Fig. 1(d), or in formulas,

Cab
(i, j)(t ) = tr

[
aKi2t j2t−1

· · · Ki1 j0
bK†

i1 j0
· · · K†

i2t j2t−1

]
, (4)

where the single site Kraus operators are

〈m|Ki j |n〉 = 1√
2
〈im|U |n j〉. (5)

Summing over all trajectories, we recover the dynamical
correlator along the light cone of the unmeasured circuit
[22,39–41] ∑

i, j

Cab
(i, j)(t ) = Cab(t ) = tr

[
aM2t

U [b]
]
, (6)

where

MU [ρ] = 1
2 trA[U (ρ ⊗ 1B)U †], (7)

is the quantum channel for the average dynamics of a single
qubit along the light cone, with trA[·] the trace over the first
site. Equation (6) holds because the channel is “unraveled”
[42] by the {Ki j}[43]

MU [·] =
∑
i, j

Ki j · K†
i j . (8)
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FIG. 2. Post-selecting rare trajectories of one circuit as typical
trajectories of another. Tracing over a brickwork circuit (i) generates
a Markovian channel M, which is unraveled (ii) to yield Kraus
operators {K} and quantum trajectories. Post-selection is achieved
by reweighting the trajectories (iii) or equivalently by tilting the
channel with a biasing field s (iv). The quantum Doob transformation
(v) yields a new channel M̃s, which optimally generates the post-
selected (rare) trajectories. Finally, a dilation of this channel (vi)
provides a new brickwork circuit with gate Ũ .

III. REWEIGHTING OF TRAJECTORIES
AND LARGE DEVIATIONS

We aim to characterize correlations along quantum tra-
jectories in a way that sidesteps the post-selection problem.
We follow the protocol of Fig. 2, in which steps (i) and (ii)
correspond to the derivation of MU and Ki j above. We now
execute steps (iii) to (v) (see Appendices B and C for details).

Instead of focusing on a specific trajectory, we consider
a “soft” post-selection of all trajectories characterized by a
certain pattern of measurement outcomes in the limit of large
time t . This is amenable to quantum large deviation methods
(LD) [44,45]. Starting from the sum over measurement out-
comes in Eq. (6), we (exponentially) reweigh some terms with
respect to others. The resulting biased ensemble of trajecto-
ries is encoded in a deformed (or “tilted”) quantum channel
MU,s [45].

Consider the trajectory determined by the sequence
[(i0, j1), . . . , (i2t−1, j2t )], where (ik, jk+1) denotes a binary
pair of outcomes for k = 1, . . . , 2t − 1 (cf. the configuration
of a classical Ising model on a ladder, where k denotes a rung).
We reweigh the trajectories based on how many rungs have
outcome pairs (0,0), (1,0), (0,1), and (1,1). This is achieved by
introducing four counting fieldss = {si j}i, j=0,1 and modifying
the sum in Eq. (6),∑

i, j

e−∑l,m slmQlm (i, j)Cab
(i, j)(t, t ) ≡ tr

[
aM2t

U,s[b]
]

(9)

where Qlm(i, j) =∑2t
k=1 δik−1,lδ jk ,m. Since the sums on each

rung are independent, the tilted channel reads [45]

MU,s[ρ] =
∑
i, j

e−si j Ki jρK†
i j . (10)

This result implements steps (iii) and (iv) of Fig. 2.
Note that since the sum of all Qμν (i, j) is fixed to 2t − 1,

the bias s corresponds to three nontrivial fields. The expo-
nential tilting in Eq. (10) controls the average number of

outcomes of each type, instead of their exact values, but these
“soft-constrained” (canonical) trajectory ensembles are equiv-
alent to “hard-constrained” (microcanonical) ensembles, for
large times [46].

The operator MU,s is not trace preserving [its leading
eigenvalue eθ (s) �= 1 in general], so it is not a physical quan-
tum map. Step (v) of Fig. 2 performs the quantum version
[45,47–49] of a generalized Doob transform [50,51], yielding
a new trace-preserving channel, which reproduces the biased
trajectory ensemble. Specifically

M̃U,s[·] =
∑
i, j

K̃i j ·K̃†
i j, K̃i j = e−si j/2

eθ (s)/2
l1/2
s Ki j l

−1/2
s , (11)

with ls the leading left eigenmatrix of MU,s (see Appendix D
for details). In terms of M̃U,s, the reweighted trajectories (9)
are

tr
[
aM2t

U,s[b]
] = e2tθ (s) tr

[
l−1/2
s al−1/2

s M̃2t
U,s

[
l1/2
s bl1/2

s

]]
. (12)

Hence, typical trajectories of the channel (11) reproduce the
rare trajectories of the original MU , as encoded in the tilted
MU,s.

A. Unitary circuit realizing the rare events

We now turn to step (vi) in Fig. 2, which is motivated by
the question:

Can one find an s-dependent unitary operator Ũ ∈
End(C2 ⊗ C2) such that M̃U,s is given by Eq. (7) with U
replaced by Ũ?

We emphasize that whenever the answer to this question is
affirmative the post-selection problem is solved: Rare quan-
tum trajectories can be targeted with the same cost as typical
ones; equivalently, hybrid quantum dynamics can be studied
with the same complexity as unitary dynamics. Below we
present cases where the answer is affirmative for the specific
protocol in Eq. (2) and the observable in Eq. (3). Note, how-
ever, that the same question can be asked for more general
settings.

One might expect that Ũ can always be found, because
Eq. (7) is an environmental representation MŨ [42]. The
Stinespring dilation theorem [52] guarantees existence of
some environmental representation, but our question is more
restrictive because (a) both system and environment in Eq. (7)
must be isomorphic to C2 (i.e., the dilation defines a unitary
circuit similar to the original one); (b) the environment has to
be in the maximally mixed state (i.e., we seek a unistochastic
channel [42]). In fact, Eq. (7) already implies that MŨ is
unital [MŨ (1) = 1], so existence of Ũ requires that M̃U,s
is also unital, which is not the case in general. Hence, while
steps [(i)–(v)] in Fig. 2 can be performed for any U and s,
step (vi) is restricted to specific cases of the post-selection
problem.

B. Example: XYZ gates

To illustrate this, we focus on circuits where U is an XYZ
gate: U = UXYZ({Ji}), with

UXYZ({Ji}) = e−i(Jxσx⊗σx+Jyσy⊗σy+Jzσz⊗σz )/2, (13)
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where {σi}i=x,y,z are Pauli matrices and (Jx, Jy, Jz ) ∈ [−π, π ].
This implies a Z2 symmetry M̃U,s[σz(·)σz] = σzM̃U,s(·)σz

for all s, which relies on the fact that σz is diagonal in the
measurement basis of Eq. (2). To replicate this, we also seek
Ũ in XYZ form with s-dependent couplings {J ′

s,i}i=x,y,z, i.e.,
we search for new circuits with exactly the same complexity
as the initial ones. This choice of Ũ implies the additional
symmetry MŨ [σx(·)σx] = σxMŨ (·)σx.

Writing explicitly the dependence of the channels on the
couplings, finding Ũ amounts to solving

M̃U,s({Ji}) = MŨ ({J ′
s,i}), (14)

for real couplings {J ′
s,i}. Note that the symmetries of MŨ

restrict solutions to cases where M̃s is both unital and Z2

symmetric.
As shown explicitly in Appendix E, Eq. (14) can be solved

analytically revealing several classes of solutions. The first
class is when any two of the Ji are equal to ±π/2, making
U dual unitary [22,23]. For example,

UXYZ
({

π
2 , π

2 , Jj
}) = Se−i(Jj−π/2)(σ j⊗σ j )/2, (15)

where Jj is the coupling not equal to π/2 and S is the
SWAP gate. In these cases a dual-unitary Ũ also exists of
the form (15). These post-selection problems are simple be-
cause Ki jK

†
i j = ci j1 for all i, j (with ci j � 0). This means that

the channel M is a classical mixture of unitary channels, a
measurement (ik−1, jk ) in C(i, j) occurs with probability cik−1, jk
independent of other measurements, and the count statistics is
multinomial. This simplicity is evident in the fact that ls = 1,
making the Doob transform (11) straightforward, with M̃U,s

a different mixture of the same unitaries as in M. This re-
sult establishes an interesting connection to random unitary
circuits [9]: Atypical measurement outcomes in (space-
time) translation invariant dual unitary circuits are equivalent
to the evolution under atypical sequences of indepen-
dently and identically distributed random unitaries along the
light cone.

The other classes of solution to Eq. (14) restrict the
counting fields to s00 = s11, ensuring that M̃s is unital (see Ap-
pendix E). This means that (0,0) measurement pairs cannot be
selected preferentially over (1,1). The Z2 symmetry requires
either (A) s01 = s10; or (B) sin Jx = sin Jy; or (C) Jz = ±π/2.
Post-selection is simple in case (A) because the counting fields
only differentiate the outcomes with ik−1 = jk from those with
ik−1 �= jk; these two possibilities are again independent for all
k, with ls = 1. In case (B) one has K01 ∝ K†

10 ∝ σ± ≡ (σx ±
iσy)/2 while K00, K11 both commute with σz. Here, ls �= 1
and measurements at different times are not independent, but
the post-selected trajectories simplify in a different way: For
sufficiently large times the conditional state Ki2t j2t−1

· · · Ki1 j0
|ψ〉

must be an eigenstate of σ z and the system behaves classi-
cally. Transitions between the two eigenstates are signalled
by (1,0) and (0,1) measurement pairs, which appear in an
alternating sequence, interspersed by random (0, 0)s and
(1, 1)s.

The final case (C) is not simple and exhibits an interesting
dynamical crossover under post-selection. We assume Jx > Jy

and Jz = +π/2 for concreteness. Defining μ ≡ (s10 − s01)/2

FIG. 3. Illustration of the subcase (C) for circuit parameters
Jx = 0.205π and Jy = 0.2π , and tilting parameters s00 = s11 = 0
and s01 = −s10. (a),(b) Mean and (normalized) variance of the ac-
cumulated number of (0,1) minus (1,0) measurements. (c) Typical
trajectories for μ = 0, ±10 [regimes (I, II, III)] and μ = ±5.282
[crossover points where 2tVar(q10 − q01) is maximized, marked by
(♣, ♠)]. Measurement outcomes (1,0) and (0,1) are marked in blue
and red; (0,0) and (1,1) are not shown. (d) The new circuit parameters
{J ′

i } that realize the Doob transformation of the original circuit.

and δ = sin[(Jx − Jy)/2]/ cos[(Jx + Jy)/2], one finds

K̃10 = A(μ, δ)

(
0

√
δ2 + e2μ

−δ
√

1 + δ2e2μ 0

)
,

K̃01 = A(μ, δ)

(
0 −δeμ

√
δ2 + e2μ

eμ
√

1 + δ2e2μ 0

)
, (16)

while K̃00 and K̃11 only depend on μ through a multiplicative
constant (see Appendix F for details). For δ � 1 we have the
following three regimes:

(I) K̃10 ∝ σy, K̃01 ∝ δ−1eμσ−, eμ � δ, (17)

(II) K̃10 ∝ σ+, K̃01 ∝ σ−, δ�eμ �δ−1, (18)

(III) K̃10 ∝ δ−1e−μσ+, K̃01 ∝ σy, eμ � δ−1, (19)

as shown in Fig. 3. Regime (II) includes typical trajectories
(μ ≈ 0): it resembles case (B) in that (1,0) and (0,1) alternate,
interspersed with (0,0)s and (1,1)s, although corrections to
(18) at O(δ) mean that this dynamics is still nonclassical. In
contrast, regimes (I, III) describe trajectories that are post-
selected for an overwhelming majority of either (1,0) or (0,1)
measurements, breaking the alternating structure. All three
regimes have highly structured measurement records (either
alternating or dominated by one outcome) and are separated
by crossovers where the records have much larger variance,
Figs. 3(b) and 3(c) and the conditional state features strongly
nonclassical correlations.

The behavior in the three regimes can be reproduced by
a suitable Ũ gate, whose couplings are plotted in Fig. 3(d).
From Eq. (7) the eigenvalues of the channel are given in terms
of the couplings by (1, sin J ′

x sin J ′
y, sin J ′

x sin J ′
z, sin J ′

y sin J ′
z )

(see Appendix F), meaning that the spectral gap of the Doob
channel does not close during the crossovers. Instead, Ũ
crosses over from Ũ � U in regime (II) to an almost dual-
unitary gate in regimes (I, III). The sharpness of this crossover
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reflects the rigid alternating structure of typical trajectories,
so that large counting fields |μ| ∼ log(1/δ) are required to
post-select any other outcomes.

IV. CONCLUSIONS

We studied the interplay between unitary dynamics and
rare measurements outcomes in quantum circuits. We showed
that a class of post-selection problems, specifically that of
biasing dynamics according to the large deviations in the
number of measurement outcomes along the light cone, can
be resolved by mapping to a different circuit for which the rare
events are the (easy to access) typical behavior. This provides
an efficient way to access properties of quantum trajectories
in real experiments avoiding post-selection overheads.

Even though our results are obtained in a heavily sim-
plified setting, they are in our view an important proof of
principle: It is sometimes possible to embed the effect of
measurements in a quantum many-body system by studying
the purely unitary dynamics of a different system. The method
that we have developed to achieve this goal is general and
can be applied to more realistic scenarios. First, as we briefly
discuss in Appendix G, one can extend our treatment to cases
where U �= UXYZ. One may also apply it to describe the quan-
tum trajectories for finite times going beyond the large time
limit considered here [47]. Another important application will
be to consider truly many-body quantum channels that can
reveal measurement-induced phase transitions. A promising
arena where to study this question is that of quantum circuits
with additional structure, such as integrability or dual unitar-
ity, which can give access to the fixed point of many-body
channels [53,54].
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APPENDIX A: DIAGRAMMATIC REPRESENTATION

Quantum circuits are conveniently described using a di-
agrammatic representation borrowed from tensor-network
theory [37]. For a two-qubit unitary U , the matrix elements
and the complex conjugate are represented by

(A1)

Using the representation above, many-body brickwork cir-
cuits U defined by Eq. (1) are built from the local two-qubit
unitary U ; for example, the diagrammatic representation for
brickwork circuits of 2L = 6 qubits is

(A2)

where we have used straight (connected) lines to represent
summing over the indexes. Here, and throughout, hooks at
the boundaries of the many-body circuits shown represent
contractions across the periodic boundaries. Similarly for the
Hermitian conjugate

(A3)

The unitary condition UU † = 1 = U †U is represented by
the following diagram:

(A4)

where the straight lines in the middle equation represent the
identity. The diagrams provide a visual way of performing
calculations and expressing physical quantities. The light cone
channel Eq. (7) can be represented as

(A5)

The focus of the paper is the unraveling of light cone
channels into quantum trajectories. We introduce further
diagrammatic representation. Figure 1(b) illustrates our mea-
surement scheme, where measurements are indicated by red
crosses. Figure 1(c) illustrates a quantum trajectory cor-
responding to a particular measurement record (a set of
measurement outcomes, each in {0, 1}). These measurements
appear as red dots with their values indicated; mathematically,
the red dots are defined in the main text as projectors P(i) =
|i〉〈i|. For measurement outcome i j, the action on the state is
given by the single-qubit Kraus operator Ki j ,

(A6)

[See also Eq. (5) in the main text].
To obtain Fig. 1(d) we use the unitarity formula Eq. (A4)

repeatedly in Fig. 1(c) [22].
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APPENDIX B: LIGHT CONE CHANNEL

1. Parameterization of two-qubit gates

To parameterize the brickwork circuits considered here, note that a general two-qubit unitary U ∈ SU (4) enjoys the following
decomposition known as the Cartan form [55]

U = (u3 ⊗ u4)UXYZ(u1 ⊗ u2), (B1)

where {ui} ∈ SU (2) and UXYZ is the nonlocal unitary gate [56],

UXYZ = exp

[
− i

2
(Jxσx ⊗ σx + Jyσy ⊗ σy + Jzσz ⊗ σz )

]

=

⎛
⎜⎜⎜⎜⎝

e−iJz/2 cos
( Jx−Jy

2

)
0 0 −ie−iJz/2 sin

( Jx−Jy
2

)
0 eiJz/2 cos

( Jx+Jy
2

) −ieiJz/2 sin
( Jx+Jy

2

)
0

0 −ieiJz/2 sin
( Jx+Jy

2

)
eiJz/2 cos

( Jx+Jy
2

)
0

−ie−iJz/2 sin
( Jx−Jy

2

)
0 0 e−iJz/2 cos

( Jx−Jy
2

)

⎞
⎟⎟⎟⎟⎠, (B2)

where (Jx, Jy, Jz ) ∈ [0, π ] and σi are the spin- 1
2 Pauli matrices. In this paper, we consider these nonlocal gates on the extended

domain (Jx, Jy, Jz ) ∈ [−π, π ], which we call XYZ unitaries here.
The local unitary u ∈ SU (2) (dropping the subscript) is parameterized as

u(θ, φ,ψ ) =
(

cos(θ/2)eiφ/2 − sin(θ/2)eiψ/2

sin(θ/2)eiψ/2 cos(θ/2)e−iφ/2

)
, (B3)

where θ ∈ [0, π ], (φ,ψ ) ∈ [0, 4π ]. Arbitrary two-qubit unitaries in U (4) are related to U ∈ SU (4) by multiplying a complex
phase, which plays no role in this paper.

2. Parameterization of the light cone channel

The light cone channels introduced in the main text are a family of single-qubit channels. We focus on the light cone channels
MU [·], which governs the two-point functions along the light cone in unitary circuits [22]. For a given unitary circuit U , the
light cone channel defines the state ρ ′ at the next discrete time step

ρ ′ = MU [ρ] = 1
2 TrA[U (ρ ⊗ 1B)U †], (B4)

where ρ is defined on subsystem A and the subscripts A and B denote a subsystem its complement; also † is the conjugate
transpose; the subscript A is dropped in the following. Note that the trace acts on subsystem A, in contrast to “tracing the
environment out” in standard considerations of quantum channels. Another obvious but worth-mentioning fact is that the
subsystem B is the maximally mixed state rather than a simple pure state.

For any unitary, the light cone superoperator |ρ ′〉 = MU |ρ〉 has the following decomposition:

MU = (u4 ⊗ u∗
4 )MUXYZ (u1 ⊗ u∗

1 ). (B5)

From now on we drop the subscript UXYZ in MUXYZ unless otherwise stated.
In particular, this work focuses on the channel of the XYZ unitaries so M(Jx, Jy, Jz ) take three real parameters and has the

following explicit form:

M(Jx, Jy, Jz ) = 1

2

⎛
⎜⎜⎜⎝

1 + sin(Jx ) sin(Jy) 0 0 1 − sin(Jx ) sin(Jy)
0 (sin(Jx ) + sin(Jy)) sin(Jz ) (− sin(Jx ) + sin(Jy)) sin(Jz ) 0
0 ( −sin(Jx ) + sin(Jy)) sin(Jz ) (sin(Jx ) + sin(Jy)) sin(Jz ) 0

1 − sin(Jx ) sin(Jy) 0 0 1 + sin(Jx ) sin(Jy)

⎞
⎟⎟⎟⎠,

(B6)

where (Jx, Jy, Jz ) ∈ [−π, π ].
Furthermore, M(Jx, Jy, Jz ) enjoys the following special properties that enable further analytical insights. The Hermitic-

ity M†(Jx, Jy, Jz ) = M(Jx, Jy, Jz ) guarantee a real spectrum. The four eigenvalues {λi} are λ0 = 1, λ1 = sin(Jx ) sin(Jy),
λ2 = sin(Jx ) sin(Jz ), and λ3 = sin(Jy) sin(Jz ).

The spectrum has the following structure. The real values of {Ji} introduce a set of constraints on the allowed spectrum and
they satisfy the following set of inequalities:

λ1 � λ2λ3,

λ2 � λ1λ3,

λ3 � λ1λ2.

(B7)
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Moreover, the channels are essentially defined by terms in a standard XYZ Hamiltonian, and also inherit the Z2 symmetries
(σx ⊗ σx )M(Jx, Jy, Jz )(σx ⊗ σx ) = M(Jx, Jy, Jz ), or equivalently MUXYZ (σxρσx ) = σxMUXYZ (ρ)σx. The same symmetry holds
also for σy and σz.

APPENDIX C: KRAUS FORM

1. Environmental unraveling

As discussed in the main text, we unravel the light cone channel in the computational basis. The Kraus operators are defined
as matrix elements of the light cone superoperator. For a unitary U with matrix elements (U )im

n j = 〈im|U |n j〉, we define the
Kraus operators to be

(K00)mn = 1√
2
〈0m|U |n0〉,

(K01)mn = 1√
2
〈0m|U |n1〉,

(K10)mn = 1√
2
〈1m|U |n0〉,

(K11)mn = 1√
2
〈1m|U |n1〉, (C1)

which corresponds to performing measurements along the light cone with four possible outcomes {00, 01, 10, 11}. This definition
follows naturally from the matrix elements of the light cone channel Eq. (B4) in the computational basis

〈i|TrA[U (ρ ⊗ 1B)U †]| j〉 =
∑

k

〈ki|U (ρ ⊗ 1B)U †|k j〉 =
∑

k,m,n,q

〈ki|U |nq〉〈n|ρ|m〉〈mq|U †|k j〉. (C2)

For the XYZ unitaries UXYZ(Jx, Jy, Jz ), the above definition gives the following explicit form of Kraus operators:

K00 = 1√
2

⎛
⎝e− iJz

2 cos
(

Jx−Jy

2

)
0

0 −ie
iJz
2 sin

(
Jx+Jy

2

)
⎞
⎠ K11 = 1√

2

⎛
⎝−ie

iJz
2 sin

(
Jx+Jy

2

)
0

0 e− iJz
2 cos

(
Jx−Jy

2

)
⎞
⎠, (C3)

K10 = 1√
2

⎛
⎝ 0 e

iJz
2 cos

(
Jx+Jy

2

)
−ie− iJz

2 sin
(

Jx−Jy

2

)
0

⎞
⎠ K01 = 1√

2

⎛
⎝ 0 −ie− iJz

2 sin
(

Jx−Jy

2

)
e

iJz
2 cos

(
Jx+Jy

2

)
0

⎞
⎠. (C4)

As usual, the Kraus decomposition is related to the superoperator of XYZ channel Eq. (B6) via M(Jx, Jy, Jz ) =∑i j Ki j ⊗ K∗
i j .

A similar light cone channel can be defined for any two-qubit unitary U . The Kraus operators for a general unitary given by
Eq. (B1) are given by the corresponding XYZ Kraus operators {Ki j} multiplied by local unitaries as {u4Ki ju1}.

APPENDIX D: LARGE DEVIATIONS

In this Appendix, we show how to apply large deviation
techniques to study the counting statistics of measurement
outcomes of a quantum trajectory [13,57,58]. We derive con-
ditions under which the Doob channel is unital.

Consider a quantum trajectory of length T = 2t , corre-
sponding to a sequence of measurement outcomes (i, j) in the
main text. Let Ki j be the number of times that measurement
(i, j) appears in the trajectory. We collect these accumulated
counts in a vector Q = (K00, K10, K01, K11). The probability
Prob(Q) of observing a certain Q satisfies the large deviation
principle in the large t limit,

Prob(Q) � e−T F (q), (D1)

where q = Q/T and F (q) is the rate function. The rate func-
tion determines the typical measurement outcomes given by
the minimizer, and fluctuations are exponentially suppressed.

Rare measurement outcomes can be made typical by defin-
ing a tilted (deformed) ensemble of trajectories, known as
the s ensemble, with the probability of finding the desired

outcomes

Prob(Q|s) = e−Q·sProb(Q)

Z (s)
, (D2)

where s = (s0, s1, ..., sr−1) is the counting field and Z (s) =∑
Q e−Q·sProb(Q) is the moment generating function and also

shows the large deviation principle.

Z (s) � eT θ (s), (D3)

where θ (s) is the scaled cumulant generating function
(SCGF).

The SCGF is related to the rate function by a Legendre
transformation

θ (s) = − min
q

[q · s + F (q)], (D4)

and can be obtained by tilting the original quantum channel

eθ (s) = max (Spec(Ms)), (D5)
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where Spec(·) denotes the spectrum and

Ms[·] =
∑

i j

e−si j Ki j · K†
i j (D6)

is the tilted channel.
The tilted channel Ms is not trace preserving. But a

trace-preserving channel can be recovered by via Doob trans-
formation by defining a new channel M̃s[·],

M̃s[·] =
∑

i j

K̃i j · K̃†
i j,

K̃i j = e−si j/2

eθ (s)/2
l1/2
s Ki j l

−1/2
s ,

(D7)

where ls is the leading left eigenmatrix of Ms such that

M†
s [ls] = eθ (s)ls. (D8)

Unital constraint

Here, we show there is a simple constraint on the leading
eigenmatrices for the Doob transformed channel to be unital.
The Doob channel is trace-preserving M̃†

s [1] = 1 by defini-
tion and unital if M̃s[1] = 1, which implies

M̃s[1] = e−θ (s)l1/2
s Ms

[
l−1
s

]
l1/2
s = 1, (D9)

equivalently, Ms[l−1
s ] = eθ (s)l−1

s . This condition is the same
as the definition of the right leading eigenmatrix of the tilted
channel Ms[rs] = eθ (s)rs. Thus, unital Doob channels have
their right and left leading eigenmatrices with the following
property:

lsrs = 1. (D10)

APPENDIX E: DOOB TRANSFORMED CIRCUITS FOR XYZ UNITARIES

1. Tilted XYZ Channel

In this Appendix, we analyze the structure of the tilted channel for XYZ unitaries. For a general counting field s =
(s00, s10, s01, s11) conjugate to the measurement outcomes {00, 10, 01, 11}, the superoperator MU,s(Jx, Jy, Jz, s00, s10, s01, s11)
reads

MU,s(Jx, Jy, Jz, s00, s10, s01, s11) =
∑

i

e−si j Ki j ⊗ K∗
i j = 1

2

⎛
⎜⎜⎜⎝

m00 0 0 m03

0 m11 m12 0
0 m∗

12 m∗
11 0

m30 0 0 m33

⎞
⎟⎟⎟⎠, (E1)

m00 = e−s00 cos2

(
Jx − Jy

2

)
+ e−s11 sin2

(
Jx + Jy

2

)
,

m03 = e−s10 cos2

(
Jx + Jy

2

)
+ e−s01 sin2

(
Jx − Jy

2

)
,

m11 = 1

2
i
(− eiJz−s11 + e−iJz−s00

)
( sin(Jx ) + sin(Jy)),

m12 = 1

2
i
(
eiJz−s10 − e−iJz−s01

)
( sin(Jx ) − sin(Jy)),

m30 = e−s01 cos2

(
Jx + Jy

2

)
+ e−s10 sin2

(
Jx − Jy

2

)
,

m33 = e−s11 cos2

(
Jx − Jy

2

)
+ e−s00 sin2

(
Jx + Jy

2

)
.

Note that the block structure of the original channel M(Jx, Jy, Jz ) is preserved under an arbitrary deformation.
Moreover, the block structure not only provides a simple expression for the spectrum but also constrains the leading

eigenvectors. The leading eigenmatrix of M(Jx, Jy, Jz ) comes either from the outer or the inner block, owing to the direct
sum structure. In the computational basis, this would mean the leading eigenmatrix rs is purely diagonal or off-diagonal, as
shown below: {(

r00 0
0 r11

)
,

(
0 r01

r∗
01 0

)}
. (E2)

The leading eigenmatrix must be positive because of the CP condition of the channel, and rs is only positive for the diagonal
one. This shows that the leading eigenmatrix is defined by the outer block and the leading eigenvalue eθ (s) is

eθ (s) = 1
4 (m00 + m33 +

√
(m00 − m33)2 + 4m03m30). (E3)
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2. Doob Transformation

The unital property of the channel is not necessarily preserved under both deformation and Doob transformation. As discussed
in the main text, we impose the unital property of the Doob transformed channel here. In this Appendix, we show all the possible
deformations of XYZ unitaries that remain XYZ unitaries under Doob transformation. Namely, we find special sets of {Ji} and
s such that the following equation hold:

M̃U,s(Jx, Jy, Jz, s00, s10, s01, s11) = MŨ (J ′
x, J ′

y, J ′
z ), (E4)

where {J ′
i } �= {Ji} in general. In the rest of the Appendix, the subscript U and Ũ are dropped.

The leading right and left eigenmatrices of the tilted XYZ channel s = (s00, s10, s01, s11) are

rs =
(

m00−m33+
√

(m00−m33 )2+4m03m30

2m30
0

0 1

)
(E5)

and

ls =
(

m00−m33+
√

(m00−m33 )2+4m03m30

2m03
0

0 1

)
. (E6)

We assume m30, m03 > 0 to avoid singular behavior in the eigenmatrices, which is essential for the Doob transformation to exist.
In fact, m30, m03 can be zero for the case of Jx = Jy = ±π/2, and we leave this special case for the end of the Appendix.

The product of the two leading eigenmatrices is

lsrs =
(

(m00−m33+
√

(m00−m33 )2+4m03m30 )2

4m03m30
0

0 1

)
, (E7)

which to be solved for the unital Doob unitaries constraint lsrs ∝ 1 shown in Appendix D 1. Taking m00 = m33 and using the
m30, m03 > 0 assumption above, the Doob channel is unital if and only if

m33 = m00. (E8)

This condition is always satisfied in the following two cases without imposing any conditions on the counting field:
(1) Either (Jx, Jz ) = (±π/2,±π/2), or (Jy, Jz ) = (±π/2,±π/2) or (Jx, Jy) = ±(π/2,−π/2); These correspond to dual-

unitary gates U . The spectrum of M has two eigenvalues with |λ| = 1, so one sees that these channels are not ergodic. The
existence of a quantum Doob transformation is not always guaranteed for nonergodic channels [51], but there are no difficulties
with the examples considered here. Physically, this reflects that while quantum trajectories of these nonergodic channels retain
information about their initial condition for all times, the statistics of Q are independent of the initial condition.

We discuss some illustrative cases. If Jx = Jz = ±π/2 then ls = 1 + cσy is a left eigenmatrix of MU,s, independent of c. This
ls commutes with all Kraus operators so there is a unique Doob transformation: K̃i j = e−(θ (s)+si j )/2Ki j . (We take c ∈ (−1, 1) so
that ls is CP, as required for any quantum Doob transform.) For the case Jx = −Jz = ±π/2, there are eigenmatrices ls = 1 with
eigenvalue θ (s) and l−

s = σy with eigenvalue −θ (s). Again, both eigenmatrices commute with all Kraus operators and the Doob
transformation is simple: K̃i j = e−(θ (s)+si j )/2Ki j . The cases (Jy, Jz ) = (±π/2,±π/2) are exactly analogous, with σy → σx. The
cases (Jx, Jy ) = ±(π/2,−π/2) are very similar.

To explore solutions for a more generic choice of unitaries, two components of the counting field have to be

s00 = s11, (E9)

which leads to m00 = m33 and m11 = sin(Jz )e−s00 (sin(Jx ) + sin(Jy)) is real. The superoperator of the Doob transformed channel
reads

M̃s(Jx, Jy, Jz, s00, s10, s01, s00) = 1

eθ (s)

⎛
⎜⎜⎜⎝

m00 0 0
√

m30
√

m03

0 m11 m12 0
0 m∗

12 m11 0√
m30

√
m03 0 0 m00

⎞
⎟⎟⎟⎠, (E10)

and to solve Eq. (E4), the channel M̃s must have Z2 symmetry. We check this by writing

(σx ⊗ σx )M̃s(Jx, Jy, Jz, s00, s10, s01, s00)(σx ⊗ σx ) − M̃s(Jx, Jy, Jz, s00, s10, s01, s00) = 1

eθ (s)

⎛
⎜⎜⎜⎝

0 0 0 0
0 0 p 0
0 p 0 0
0 0 0 0

⎞
⎟⎟⎟⎠, (E11)
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where

p = i cos(Jz )e−s10−s01
(− e−s10 + e−s01

)
(sin(Jx ) − sin(Jy)).

So preserving Z2 symmetry requires p = 0, which can be achieved in three different ways:
(i) s10 = s01; The counting field for K01 and K10 have to be same and {Ji} are three free parameters. The leading eigenmatrix

is 1.
(ii) sin(Jx ) = sin(Jy); Two of the Kraus operators have the following simple form, K10 ∝ σ+ and K01 ∝ σ−. The leading left

eigenmatrix is nontrivial:

ls =
(

e(s10−s01 )/2 0
0 1

)
(E12)

.
(iii) cos(Jz ) = 0; This case is discussed in the main text extensively. The leading left eigenmatrix is nontrivial,

ls =

⎛
⎜⎝
√

e−s01 cos2
(

Jx+Jy
2

)
+e−s10 sin2

(
Jx−Jy

2

)
e−s10 cos2

(
Jx+Jy

2

)
+e−s01 sin2

(
Jx−Jy

2

) 0

0 1

⎞
⎟⎠. (E13)

Now we come back to the special case mentioned above.
(2) For Jx = Jy = ±π/2 the circuits are dual unitaries. One has m30 = m03 = 0 and m00 = m33 so Eq. (E6) is not applicable

but it is easily seen from Eq. (E1) that ls = 1 + cσz is an eigenmatrix of MU,s for all c. As in the previous dual unitary cases,
this ls commutes with all Kraus operators so the quantum Doob transformation exists with K̃i j = e−(θ (s)+si j )/2Ki j . For these
parameters, there are only two Kraus operators in the environmental unraveling, K01 = 0 = K10 in Eq. (C4).

For all the above choices of parameters, we can solve for M(J ′
x, J ′

y, J ′
z ). First, we introduce a compact notation by noting that

the matrix elements of the tilted channel Ms are closely related to its spectrum {λ(s)i},
eθ (s) = λ0(s) = m00 + √

m30m03,

λ1(s) = m00 − √
m30m03,

λ2(s) = m11 + m12,

λ3(s) = m11 − m12. (E14)

The set of {J ′
i } is given by solving the following two sets of equations:

sin2(J ′
x ) = λ3(s)λ1(s)

λ2(s)λ0(s)

sin(J ′
x )

sin(J ′
y)

= λ3(s)

λ2(s)
,

sin2(J ′
y) = λ2(s)λ1(s)

λ3(s)λ0(s)

sin(J ′
z )

sin(J ′
x )

= λ2(s)

λ1(s)
,

sin2(J ′
z ) = λ2(s)λ3(s)

λ1(s)λ0(s)

sin(J ′
z )

sin(J ′
y)

= λ3(s)

λ1(s)
. (E15)

Note that an arbitrary choice of parameters may exceed the range of sin(Ji ), and can lead to complex-valued {J ′
i }. Such

complex-valued {J ′
i } reproduces the correct Doob transformed channel in Eq. (E4), but the circuits are no longer unitary and will

be excluded here.
Overall, there are four classes of parameters for which Eq. (E4) can be solved, so that M̃s can be obtained as a trace over a

brickwork unitary circuit:
(i) Any two of {Ji} = ±π/2
(ii) s00 = s11 and s10 = s01

(iii) s00 = s11 and sin(Jx ) = sin(Jy)
(iv) s00 = s11 and cos(Jz ) = 0.

3. Making rare measurement outcomes typical

In this Appendix, we show how to build the equality between the rare measurement outcomes of {Ji} and typical ones in {J ′
i }

at the level of quantum trajectories as well as the level of accumulated counting statistics. To see this concretely, consider a trace-
preserving set of Kraus operators and normalized initial pure state |ψ0〉. The underlying stochastic process of the completely
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positive trace-preserving map is given by

|ψt+1〉〈ψt+1| = Ki j |ψt 〉〈ψt |K†
i j

Tr[Ki j |ψt 〉〈ψt |K†
i j]

(E16)

with probability Tr[Ki j |ψt 〉〈ψt |K†
i j].

Therefore, for a normalized initial state Tr(|ψ0〉〈ψ0|) = 1, the probability of observing a tilted trajectory of length T = 2t is
given by

Prob[i1 j0 · · · i2t j2t−1|s] = 1

Z (s)
Tr
[
Ki2t j2t−1 e−si2t j2t−1 /2 · · · Ki1 j0 e−si1 j0 /2|ψ0〉〈ψ0|e−si1 j0 /2K†

i1 j0
· · · e−si2t j2t−1 /2K†

i2t j2t−1

]

= e2tθ (s)

Z (s)
Tr
[
l1/2
s K̃i2t j2t−1 · · · K̃i1 j0 l−1/2

s |ψ0〉〈ψ0|l−1/2
s K̃†

i1 j0
· · · K̃†

i2t j2t−1
l1/2
s

]
. (E17)

Note that the summand in Eq. (9) of the main text is realized by taking b = |ψ0〉〈ψ0| and a = 1.
In the large-deviation limit e2tθ (s)/Z (s) = O(1), the probability is the same as the Doob transformed trajectory up to a transient

difference close to the first and the last time steps

Prob[i1 j0 · · · i2t j2t−1|s] � Tr
[
K̃i2t j2t−1 · · · K̃i1 j0 |ψ0〉〈ψ0|K̃†

i1 j0
· · · K̃†

i2t j2t−1

]
. (E18)

The accumulated counting statistics follow directly from the above

〈Q〉s(Jx, Jy, Jz ) = 〈Q̃〉(Jx, Jy, Jz ), (E19)

as shown in Ref. [47].
As discussed in the main text, we aim to reproduce the Doob transformed channel as the light cone channel of another XYZ

circuit Ũ with parameters (J ′
x, J ′

y, J ′
z ),

M̃s[ρ] = 1
2 TrA[Ũ (ρ ⊗ 1B)Ũ †]. (E20)

The relevant superoperator is given in Eq. (E4) and the Kraus operators {K ′
i j} in the computational basis are given by Eq. (C1).

Note that the quantum trajectories are not the same

Prob[i1 j0 · · · i2t j2t−1|s] �= Tr
[
K ′

i2t j2t−1
· · · K ′

i1 j0 |ψ0〉〈ψ0|K ′†
i1 j0

· · · K ′†
i2t j2t−1

]
, (E21)

despite that {K ′
i j} and {K̃i j} produce the same channel.

As a unique feature of quantum mechanics without classical (stochastic process) analog, the same quantum channel can be
decomposed into different sets of Kraus operators, {K set1

i j } and {K set2
i j } that are related by an isometry V ,

K set1
i j =

∑
i′ j′

Vi j,i′ j′K
set2
i′ j′ . (E22)

For example, the Doob transformed Kraus operator {K̃i j} and the environmental unraveling {K ′
i j} of new unitaries for (J ′

x, J ′
y, J ′

z )
generate the same channel. However, they produce different quantum trajectories.

As indicated in the above equation, the probability of observing a certain trajectory depends on the choice of Kraus operators
even for the same quantum channel. Therefore, one has to transform {K ′

i j} into the Doob transformed Kraus {K̃i j} to achieve the
rare-typical mapping at the single-trajectory level. Such basis transformation can be computed directly since the explicit forms
of two sets of Kraus are known. Let ẽ be the basis formed by the basis vector |K̃i j〉 = (K̃i j )mn|mn〉,

ẽ =

⎡
⎢⎣ | | | |

|K̃00〉 |K̃10〉 |K̃01〉 |K̃11〉
| | | |

⎤
⎥⎦, (E23)

and similarly for e′ being the basis formed by |K ′
i′ j′ 〉 = (K ′

i′ j′ )m′n′ |m′n′〉 = (Ũ †)i′m′
n′ j′ |m′n′〉/√2. Note that the basis is nonorthogonal

in general.
Then, the tilted probability is recovered by acting V = (e′−1ẽ)T on the computational basis of the new unitary, such that

K̃i j =
∑
i′ j′

Vi j,i′ j′K
′
i′ j′ . (E24)
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Here, we find the basis transformation for the XYZ unitaries UXYZ explicitly. Owing to the block structure, the Kraus operators
for {00, 11} are decoupled from {10, 01}. Namely, there are V{00,11} and V{10,01} that transform the Kraus basis independently,

V{00,11} = e− θ (s)
2

2
√

2e
i
2 (J ′

z−Jz )

−1 − cos(J ′
x − J ′

y) + e2iJ ′
z (− 1 + cos(J ′

x + J ′
y))

(
V00 V03

V30 V33

)
, (E25)

V00 = −e− s00
2

(
cos

(
J ′

x − J ′
y

2

)
cos

(
Jx − Jy

2

)
+ ei(Jz+J ′

z ) sin

(
J ′

x + J ′
y

2

)
sin

(
Jx + Jy

2

))
,

V03 = ie− s00
2

(
−eiJ ′

z sin

(
J ′

x + J ′
y

2

)
cos

(
Jx − Jy

2

)
+ eiJz cos

(
J ′

x − J ′
y

2

)
sin

(
Jx + Jy

2

))
,

V30 = ie− s11
2

(
−eiJ ′

z sin

(
J ′

x + J ′
y

2

)
cos

(
Jx − Jy

2

)
+ eiJz cos

(
J ′

x − J ′
y

2

)
sin

(
Jx + Jy

2

))
,

V33 = −e− s11
2

(
cos

(
J ′

x − J ′
y

2

)
cos

(
Jx − Jy

2

)
+ ei(Jz+J ′

z ) sin

(
J ′

x + J ′
y

2

)
sin

(
Jx + Jy

2

))
,

V{10,01} = e− θ (s)
2

2
√

2e
i
2 (J ′

z−Jz )

β
(
1 − cos(J ′

x − J ′
y) + e2iJ ′

z (1 + cos(J ′
x + J ′

y))
)(V11 V21

V12 V22

)
, (E26)

β = +
√

m00 − m33 +
√

(m00 − m33)2 + 4m03m30

2m03
,

V11 = e− s10
2

(
β2ei(Jz+J ′

z ) cos

(
J ′

x + J ′
y

2

)
cos

(
Jx + Jy

2

)
+ sin

(
J ′

x − J ′
y

2

)
sin

(
Jx − Jy

2

))
,

V12 = ie− s10
2

(
β2eiJz cos

(
Jx + Jy

2

)
sin

(
J ′

x − J ′
y

2

)
− eiJ ′

z cos

(
J ′

x + J ′
y

2

)
sin

(
Jx − Jy

2

))
,

V21 = ie− s01
2

(
eiJz cos

(
Jx + Jy

2

)
sin

(
J ′

x − J ′
y

2

)
− β2eiJ ′

z cos

(
J ′

x + J ′
y

2

)
sin

(
Jx − Jy

2

))
,

V22 = e− s01
2

(
ei(Jz+J ′

z ) cos

(
J ′

x + J ′
y

2

)
cos

(
Jx + Jy

2

)
+ β2 sin

(
J ′

x − J ′
y

2

)
sin

(
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2
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.

APPENDIX F: DETAILS FOR THE EXAMPLE IN THE MAIN TEXT

In this Appendix, we give the details of the dynamical crossover example discussed in the main text. For cos(Jz ) = 0 and
s00 = s11, the tilted channel has a nonstationary steady state, the leading left eigenmatrix is a function of s10 − s01 of the following
diagonal form

l1/2
s =

(
α 0
0 1

)
, (F1)

where α = (
e−s01 cos2 (

Jx+Jy
2 )+e−s10 sin2 (

Jx−Jy
2 )

e−s10 cos2 (
Jx+Jy

2 )+e−s01 sin2 (
Jx−Jy

2 )
)
1/4

. The Doob transformed Kraus operators are

K̃00 = e−s00/2

eθ (s)/2
e− iπ

4
1√
2

⎛
⎝cos

(
Jx−Jy

2

)
0

0 sin
(

Jx+Jy

2

)
⎞
⎠ K̃11 = e−s00/2

eθ (s)/2
e− iπ

4
1√
2

⎛
⎝sin

(
Jx+Jy

2

)
0

0 cos
(

Jx−Jy

2

)
⎞
⎠ (F2)

and following the main text, we define μ = (s10 − s01)/2 and δ = sin ((Jx − Jy)/2)/ cos ((Jx + Jy)/2) for a compact notation

K̃10 = A(μ, δ)

(
0

√
δ2 + e2μ

−δ
√

1 + δ2e2μ 0

)
K̃01 = A(μ, δ)

(
0 −δeμ

√
δ2 + e2μ

eμ
√

1 + δ2e2μ 0

)
, (F3)
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FIG. 4. (a) The SCGF and (b) rate function for the example discussed in the main text, evaluated for the same parameters as Fig. 3.

where

A(μ, δ) = e
iπ
4√

2eθ (s)/2
e−s10/2 cos

(
Jx + Jy

2

)(
(1 + δ2e2μ)(δ2 + e2μ)

)− 1
4 (F4)

and the leading eigenvalue

eθ (s) =
√(

e−s10 cos2

(
Jx + Jy

2

)
+ e−s01 sin2

(
Jx − Jy

2

))(
e−s01 cos2

(
Jx + Jy

2

)
+ e−s10 sin2

(
Jx − Jy

2

))

+ e−s00

(
cos2

(
Jx − Jy

2

)
+ sin2

(
Jx + Jy

2

))

= e−s10 cos2

(
Jx + Jy

2

)√
(1 + δ2e2μ)(δ2 + e2μ) + e−s00

(
cos2

(
Jx − Jy

2

)
+ sin2

(
Jx + Jy

2

))
. (F5)

Furthermore, we focus on the case s01 = −s10 and assuming e−s00 ( cos2 ( Jx−Jy

2 ) + sin2 ( Jx+Jy

2 )) is order one, and show the
asymptotic behavior of Doob transformed Kraus operators up to a complex phase in various limits:

(i) For eμ � δ, eθ (s) ∼ e−μδ, A(μ, δ) ∼ δ−1, K̃10 ∼ σy and K̃01 ∼ eμδ−1σ−.
(ii) For δ � eμ � δ−1, eθ (s) ∼ 1, A(μ, δ) ∼ e−μ, K̃10 ∼ σ+ and K̃01 ∼ σ−.
(iii) For eμ � δ−1, eθ (s) ∼ eμδ, A(μ, δ) ∼ e−2μδ−1, K̃10 ∼ e−μδ−1σ+ and K̃01 ∼ σy,

where ∼ indicates proportionality with an unimportant constant of order one.
In Figs. 3(a) and 3(b) of the main text, we have calculated the mean

〈q10 − q01〉 = ∂θ (s)

∂s01
− ∂θ (s)

∂s10
(F6)

and (normalized) variance

2t Var(q10 − q01) = ∂2θ (s)

∂s2
10

+ ∂2θ (s)

∂s2
01

− 2
∂2θ (s)

∂s01∂s10
(F7)

of the accumulated counting of {10} minus {01}. Here, we plot the SCGF and rate function in Fig. 4. The Kraus operators are
different for the three asymptotic limits discussed above and are consistent with the mean accumulated counting. The SCGF
shows a clear change in the gradient at the dynamical crossover point.

In Fig. 3(c), typical trajectories are shown for five different μ. They are sampled by applying Eq. (E16) at every time step.
Starting from a Haar random initial state |ψ0〉〈ψ0| (which is the same for all five trajectories), the measurement outcome i j
occurs on step t with probability

Tr[K̃i j |ψt 〉〈ψt |K̃†
i j]. (F8)

(These probabilities are normalized because
∑

i j K̃†
i j K̃i j = 1). If the measurement outcome is i j, the new normalized state at time

t + 1 is given by

|ψt+1〉〈ψt+1| = K̃i j |ψt 〉〈ψt |K̃†
i j

Tr[K̃i j |ψt 〉〈ψt |K̃†
i j]

(F9)

similar to Eq. (E16).
In the large μ limit, the new circuit parameters are given by Eq. (E15), which is a dual unitary circuit (π/2,−π/2, π/2). The

environmental unraveling defined by Eq. (C1) for {10, 01} are represented by Kraus operators (−1 + i)σy/2 and (1 − i)σy/2.
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The basis transformation to the Doob transformed is explicitly given by Eq. (E26)

V{10,01} = 1√
2

(
1 1

−1 1

)
, (F10)

and the Doob transformed Kraus operators are K̃10 = 0 and K̃01 = (1 − i)σy/
√

2.

APPENDIX G: GENERAL UNITARIES

The previous appendices considered circuits where U =
UXYZ, i.e., u1, u2, u3, u4 = 1 in Eq. (B1) and the light cone
channel is given by Eq. (B6). In this Appendix, we provide
some comments on the more general cases where the local
unitaries ui = u(θi, φi, ψi ), following Eq. (B3).

First, we note that only two local unitaries in Eq. (B1)
appear in the general light cone channel Eq. (B5), so u2 and
u3 do not affect the dynamics at the level of density matrices.
However, u2 and u3 can affect the Kraus operators defined by
Eq. (C1) so they change the statistics of the environmental
measurements. This is equivalent to a change of measurement
basis, just like the change of basis in Eq. (E22).

On the other hand, the local unitaries u1 and u4 change the
light cone channel. A simple case is when u1 = u†

4, and the
local unitaries act as a similarity transformation on the XYZ
unitaries [because u1u4 = 1]. Then the spectrum of MU,s =
(u†

1 ⊗ uT
1 )MUXYZ,s(u1 ⊗ u∗

1 ) matches that of MUXYZ,s, while
the leading right eigenmatrix of MU,s is u†

1rsu1, where rs is the
corresponding eigenmatrix of MUXYZ,s. Similarly the leading
left eigenmatrix of MU,s is

lu = u†
1lsu1. (G1)

Using Eq. (D7), one sees that the Doob channel becomes
M̃U,s = e−θ (s)(l1/2

u ⊗ l1/2
u )MU,s(l−1/2

u ⊗ l−1/2
u ).

More generally, note that (u† ⊗ uT )1 = 1 for any unitary
u. Hence if ls = 1 for a tilted XYZ channel MUXYZ,s [that is,
M†

UXYZ,s(1) = eθ (s)1] then one always has

M†
U,s(1) = (u†

1 ⊗ uT
1

)
M†

UXYZ,s

(
u†

4 ⊗ uT
4

)
1 = eθ (s)1. (G2)

That is, the leading left eigenmatrix of the tilted channel is
the identity, whatever one takes for u1, u4. As discussed in
the main text, the Doob transform tends to be simple in these
cases. This allows (for example) case A of the main text to be
generalized to non-XYZ gates with arbitrary u1, u4. The cor-
responding Doob-transformed channel lacks the symmetries
[(σi ⊗ σi ),MU,s] = 0 but a Ũ can be found that reproduces
its behavior, albeit not of XYZ form.

A similar (but weaker) result holds for all XYZ chan-
nels, because the leading eigenmatrix ls of MUXYZ,s is always
diagonal, see Eq. (E6). For ui = u(θi = 0, φi, ψi ) in the
parametrization of Eq. (B3) then ui is diagonal [and in-
dependent of ψi]. Then one has (u†

i ⊗ uT
i )ls = ls (diagonal

matrices commute). Repeating the argument of (G2), this
implies that the leading left eigenmatrix of MU,s is unchanged
by adding the (diagonal) local unitaries. In this case, the
Doob-transformed channel commutes with σz ⊗ σz but not
with σx ⊗ σx. This allows cases B and C of the main text to be
generalized to suitable non-XYZ gates U , such that a suitable
Ũ can be found (again with non-XYZ form).

Given these results, we end with one further comment. We
have shown in Appendix E that there are only four cases where
Eq. (E4) holds, assuming that M̃s is the Doob channel for
a XYZ unitary and M(J ′

x, J ′
y, J ′

z ) is the light cone channel
for another XYZ unitary. We discussed here some additional
cases where analogous relations hold for non-XYZ unitaries.
However, the full extension of Eq. (E4) to generic unitaries
remains open: when can M̃U,s = MŨ be solved for Ũ? An
obvious constraint is that MŨ has to be unital, but this still
leaves many possibilities for the unitaries and deformation
parameters. For example, even if U = UXYZ, there might be
solutions with Ũ �= ŨXYZ, for appropriate deformation param-
eters s. Classifying the existence of solutions for Ũ requires a
more complicated theory and remains an interesting direction
for future work.
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