
1 

 

 
Intermittency and the social benefits of storage 

   
 

Monica Giulietti, Elisa Trujillo- Baute+ and Michael Waterson†   
 

 
March, 2017 

 
– Preliminary version, please do not quote – 

 
 
 
 
1. Introduction 
 

Energy storage is arguably a vital element in maintaining a healthy reliable balance 

between supply and demand in the presence of intermittent green technologies such as 

wind power. When trying to understand the current and future role of energy storage, 

the first consideration is on the potential social benefits which storage might generate 

in the context of intermittent technologies. In principle, we have:  

 

• Saving capital expenditure on new peaking plant (versus storage construction 

costs) 

• Reduced expenditure on grid reinforcement  

• Avoiding some curtailment of renewable energy 

• Fuel saved through reduced ramp rates  

• Reduced need for low efficiency plant to operate 

 

Private benefits have often been investigated by assessing arbitrage possibilities. 

However, not all these factors can be captured through arbitrage, so essentially, there 

is a missing market problem due to uncaptured positive externalities. The problem is 

then to identify the potential social benefits from storage which can be evaluated using 

market information, i.e. how can we use market information to quantify the social 

benefits of storage? To achieve this it is necessary initially to put capital expenditure and 

grid reinforcement to one side because these are not observable. We focus therefore 

on the potential social benefits of storage arising from reduced ramp rates and on the 

increased efficiency. 
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We approach the issue by considering grid-scale store capacity being used to flatten 

wind generation -as a measure to tackle the variability- and also capable of absorbing 

the wind forecast errors, therefore, mitigating the wind impact on the level and volatility 

of market prices. In the absence of storage, the impact of wind generation on price level 

and volatility comes from wind intermittency, which encompasses variability and 

imperfect prediction. The variability of output impacts on both the level and volatility of 

prices, given the underlying need to use generation with higher cost sources to a greater 

or lesser extent depending on the size of the deviation. The imperfect wind prediction 

results in forecast errors which are passed through the market price as additional price 

volatility.  

 

With these effects in mind, we set out to evaluate the market price effects of introducing 

grid-scale store capacity sufficient to absorb the wind generation impact on prices. To 

do so, it is first necessary to explore the possible alternatives to storage, namely: 

 

• Interconnectors – but these depend on what happens in other geographical 

locations, so it would bias any result   

• OCGT - runs on very few occasions (2% in 2015), and is not a good case to 

consider as new investment is unlikely  

• CCGT – runs much more often, but ramp-up and down exceed 1GW within 5 

minutes. This is a performance that grid-scales storage cannot emulate 

• which leads us to the fourth, and most attractive alternative, which is for storage 

to smooth wind to the extent that it emulates the output of a baseload plant. 

This is probably the most straightforward case to evaluate. 

 

Specifically we examine what happens if we transform the hourly wind generation into 

a smoother baseload plant generating the daily average of wind which, by combining 

wind and grid-scale storage, can also absorb the forecast error.  

 

 

2. Data 

 

Given that the power flexibility required for the integration of intermittent generation 

is provided through the balancing market, to answer the above question, our first data 

source is UK balancing market prices (APX mid- prices obtained from Elexon1) 

information for the period between December 2014 and June 2016.  We split the data 

into peak and off-peak periods to control for different system conditions. Figure 1 shows 

the balancing market index prices for peak (a) and off-peak (b) hours and Figure 2 shows 

the same data zooming on the prices below 120 £/MWh. These figures help to picture 

 
1 Elexon is the balancing and settlement code company which manages electricity trading arrangements 
in England and Wales (https://www.elexon.co.uk/) 
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both, the existence of price spikes (up to 296 £/MWh in peak hours and 117 £/MWh in 

off-peak hours) and the clearly higher price levels on peak hours (with average of 42.13 

£/MWh and 34.46 £/MWh, respectively). 

 

Figure 1. Peak and off-peak prices (£/MWh) 

 
 

Figure 2. Peak and off-peak prices (£/MWh) 

 
 

 

To analyse the extent of wind intermittency in terms of the wind generation variability 

we use a relativized indicator based on British actual wind generation information from 

National Grid. t is the relative deviation of the hourly wind generation (Wt) from its 

daily average (𝜇𝑤) measured as shown in Eq (1). Figure 3 shows the hourly wind 

generation (a) -with a maximum of 6.7 GWh, the daily average (b) -with a mean of 

2.9GWh, and the wind relative deviation (c) -with a maximum of 2.8 %. 

 

t = | (Wt  / 𝜇𝑤) -1|  (1) 
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Figure 3. Wind generation, daily average and relative deviation (GWh & %) 

 
 

To evaluate the extent of intermittency in term of imperfect wind prediction we use the 

wind forecast error (Kt) measured as the absolute difference between the actual (Wt) 

and the forecast (FWt) generation -see (Eq. 2). We use wind generation forecasts 

published for the next day by National Grid (day-ahead forecast), extracted from the 

archive of the “Gridwatch” website. Figure 4 shows the actual wind generation (a), the 

forecasted wind (b) and the wind forecast error (c) --with a maximum of 4.9 GWh. 

 

Kt= | Wt -FWt |  (2) 

 

Figure 4. Wind generation, forecasted and forecast error (GWh) 
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Given that we analyse the inclusion of a store facility operating as baseload, it is useful 

to have information on the hourly price pattern during the day. Figure 5 shows the 

hourly average price in our sample2. Here it is observable that within both peak and off-

peak periods prices might be higher or lower, hence, it is possible to identify four 

different states of prices, in order of magnitude: off-peak low, off-peak high, peak low 

and peak high. We follow a parsimonious modelling approach to capture these different 

states of prices. In the next section the models are detailed described.      

 

Figure 5.   Average prices (£/MWh) 

 
 

 

 

3. Methodology 

 

Although different methodological approaches can be followed to capture price 

fluctuations and answer our research question, two features of the prices we are 

analysing have driven our modelling choice of using Markov regime-switching models 

(RSM); first, the existence of price spikes (see Figure 1), and second, the four price states 

-roughly- identified within the day (see Figure 5). This type of pricing model, developed 

by Hamilton (1989), was highly used for analysing spikes in stock market prices (for 

instance in Pagan and Schwert [1990]; Sola and Timmermann [1994]), but since 

nowadays wholesale electricity markets work in a similar way, these models have been 

increasingly used to analyse the price of electricity in different contexts (Huisman and 

Mahieu [2003]; Weron et al. [2004]; Mount et al. [2006]; Huisman and Kilic [2013]; Kilic 

and Trujillo-Baute [2016]), with a very good fit (Huisman [2009]). Basically, in these 

models the price time series is divided into regimes, with each regime having different 

underlying price processes, so it is possible to identify different means, rates of mean 

reversion and volatilities depending on the state. More precisely, with this type of model 

 
2 For comparison purposes, Appendix 2 provides an analogous figure with price during a day of sample.  
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we obtain different parameters of electricity price dynamics for the electricity market 

price in a normal and a non-normal regime. The non-normal regime takes place at times 

when the price spikes occur, these spikes being positive or negative depending on the 

direction of the frictions in the market. So, in the first regime the parameters will 

characterise the dynamics of market price in its normal state and in the second regime 

the presence of spikes. 

      

This empirical exercise involves a two-part model. In the first part, we model the impact 

of wind generation intermittency (variability and forecast errors) on the level and 

volatility of the market price. In the second part, we evaluate what happens when we 

introduce a change in the system -i.e. a facility (or a groups of facilities), through which 

the generation from wind is flattened -to its daily average- and the forecast errors are 

absorbed. This may be seen as a first step towards examining the trade-offs over a range 

of storage levels covering different degrees of smoothing of wind output.  

 

3.1 The impact of wind 
 

The price of electricity using electricity generated from wind inherited the wind 

intermittency, involving both variability and imperfect prediction. The former affects the 

price level -to a higher or lower extent depending on the intensity of the deviation, and 

both are passed through the additional price volatility resultant from the variability and 

wind forecast error.  

 

In the RSM model (Hamilton, 1994) the price in logs (St) is assumed to be the sum of a 

deterministic component dt and a stochastic component Xt (see Eq. 3). The first 

component - see Eq (4)- consists of a constant mean price level 𝜇1, and the wind 

deviation -as described above- t. This component might also include some seasonality 

control, usually a peak/off-peak dummy. Instead, we are performing separate estimates 

for peak and off-peak hour to better capture the differences in all the parameters of 

price dynamics between the two periods.     

 

𝑆𝑡 =  𝑑𝑡 + 𝑋𝑡     (3) 

 

𝑑(𝑡) =  𝜇1 +  𝑡    (4) 

 

The stochastic component in the normal regime consists of a mean reversion 

component  with Speed of mean reversion and the error term in regime 1 1,t is 

assumed to be standard normally distributed multiplied with 1 that represents the 

standard deviation of the error term. The mean reverting stochastic component then is 

represented in Eq (5): 
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𝑋(𝑡) = (1 − )𝑥𝑡−1 + 𝜎1 є1,𝑡  (5) 

 

The stochastic component in the abnormal regime (see Eq (6)) consists of a constant 

mean price μ2, which is the increase in the price level in the abnormal regime. є2,t  is a 

normally distributed error term with standard deviation σ2. 

 
𝑥(𝑡)  =  𝜇2  + 𝜎2 є2,𝑡  (6) 

 

Note that when we condition on the regimes, the parameters of the model can easily be 

estimated by maximum likelihood. The transition probability is determined by a random 

variable that follows a Markov chain with different possible states (see Eq (7)). The 

transition probability for switching from one regime to the other regime as logistic 

functions ensures that predicted probabilities are between 0 and 1. The element Pi,t 

denotes the conditional probability that the process is in regime i at time t given that 

the process was in regime i at time t−1: Pi,t = Pr St=i|St−1 = i. The transition probability 1-

Pi,t equals the probability from being in regime i at time t−1 and moving to the other 

regime in the next hour. The transition probabilities for the regime-switching model are 

assumed to be depending on the wind deviation t and forecast error t. Higher wind 

deviation or forecast error will increase the need for system flexibility and effect the 

price volatility.  

 

𝑃𝑖,𝑡  =  𝜆𝑖  +  
𝑖
𝑡 + 𝑓𝑖  𝑡   (7) 

 
 
3.2. Introducing storage 

 

In this part of the model we evaluate what happen when we introduce a change in the 

system -i.e. the inclusion of a facility (or a groups of facilities), through which the 

generation from wind is flatten -to its daily the average minus the efficiency loss - and 

the forecast errors are absorbed. These will imply only two changes in the previous 

model, more precisely in Eq. (4) and Eq. (7), which are now as follow: 

 

𝑑(𝑡) =  𝜇1 +  τ𝑡  (4.1)  

 
𝑃𝑖,𝑡 =  𝜆𝑖  +  

𝑖
 τ𝑡   (7.1)   

 

where τ𝑡 is the generation from the store facility with a 70% efficiency round used 

system wide during the day. It is assumed that the 30% efficiency loss takes place when 
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the wind generation is input into the store3.  Summary statistic of the variables described 

in the models are presented in Table 1. 

 

Table 1. Summary statistics 

 Peak Off-peak 

 Mean Std. Dev. Min Max Mean Std. Dev. Min Max 

𝑃𝑟𝑖𝑐𝑒𝑡 42.13 12.15 13.50 296.07 34.46 8.32 10.18 117.68 

𝑊𝑡 2675.96 1692.07 72.00 6779.00 2557.61 1589.40 53.00 6708.00 

FWt 3206.79 1987.58 174.00 7233.00 3116.40 1994.34 114.00 7377.00 

Kt 786.61 681.88 0.00 4719.00 793.17 714.34 0.00 4940.00 

t 0.19 0.17 0.00 1.31 0.28 0.27 0.00 2.80 

τ𝑡 2542.59 1490.29 133.08 6098.65 2542.38 1490.29 133.08 6098.65 

Note: Peak 6,936 obs. and Off-peak 6,935 obs. 

 

In sum, to evaluate the impact of wind on prices we estimate the first model including 

equation (3) to (7) and to analyse the effect of introducing storage we estimate the 

second model including equations (3), (4.1), (5), (6), and (7.1). The parameters of the 

two regimes switching models are estimated using maximum likelihood (see for instance 

Harvey, 1989). Results for peak and off-peak hours are presented below.  

 

 

4. Results 

 

Regression results from the first model -without storage- are presented in Table 2. 

Results on this model indicate as expected that the normal regime is characterized by 

lower price and volatility than in the non-normal regime (μ2 > 0 and σ1 < σ2). Deviations 

of the hourly wind generation from the daily average increase the price level (1 >0) and 

decrease the probability of remaining in the normal volatility regime (γ1< 0). In other 

words, the intermittency increases the probability of passing from the normal to the 

high volatility regime (from one hour to the next having started in the normal regime). 

Regarding the impact of wind forecast errors we observe different effects on off-peak 

 
3 To calculate the hourly based-load of the store facility with an input loss the following reasoning was 

use:   

First, during the hours when the wind generation is above the average the power is stored (𝑆𝑇𝑑).  

𝑆𝑇𝑑 =     ∑ (24
1 𝑊𝑡 −  𝜇𝑤)     𝑖𝑓    𝑊𝑡 ≥ 𝜇𝑤  (8) 

Second, the generation (𝑊𝑆𝑡) could be equal to the average without storage when the wind generation 
is above the average and equal to the actual wind generation when is below the average. 

𝑊𝑆𝑡 =  {
𝜇𝑤    𝑖𝑓    𝑊𝑡 ≥ 𝜇𝑤 
𝑊𝑡     𝑖𝑓    𝑊𝑡 < 𝜇𝑤  

    (9) 

Therefore, the hourly -daily average- generation of the store facility considering in addition the efficiency 

losses will be: 

 τ𝑡 = [∑ 𝑊𝑆𝑡
24
1 + (0.7 ∗ 𝑆𝑇𝑑) ]/24  (10) 
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and peak hours, but both acting to make price spikes more likely. During off-peak hours, 

the wind forecast error decreases the probability of remaining in the normal volatility 

regime (f 1< 0), in other words, the forecast error increases the probability of passing 

from normal to the high volatility regime (from one hour to the next starting in the 

normal regime). During peak hours, the wind forecast error increases the probability of 

remaining in the non-normal volatility regime (f 2> 0), in other words, the forecast error 

decreases the probability of passing from the non-normal to the low volatility regime 

(from one hour to the next starting in the non-normal regime).   

 

Table 2. Wind generation effect on market prices 

 Peak Off-peak 

μ1 3.666 (0.0125) 3.331 (0.0196) 

μ2 0.132 (0.0165) 0.187 (0.0240) 

 0.036 (0.0120) 0.004 (0.0066) 

 0.115 (0.0066) 0.099 (0.0063) 

λ1 2.024 (0.1257) 1.725 (0.1107) 

λ2 -0.452 (0.1929) -0.203 (0.1783) 

γ1 -1.370 (0.3318) -1.153 (0.2503) 

γ2 0.477 (0.5303) 0.831 (0.4518) 

f1  -0.011 (0.0879) -0.335 (0.0721) 

f2  0.204 (0.0137) -0.048 (0.1151) 

σ1 0.082 (0.0017) 0.074 (0.0014) 

σ2 0.773 (0.0516) 0.989 (0.0931) 

 

 

Our conception of storage is of bulk storage that is less than perfectly efficient. The 

running costs of the store are incorporated into the assumption that the store is 70% 

efficient4 in transforming input into output; that is for every 10MWh input, useful output 

corresponds to 7MWh. Once storage is introduced in the system generation from wind 

is assumed flattened to its daily average (with a 70% efficiency) and the forecast errors 

are absorbed. Results (in Table 3) are consistent with those of the first model. Again we 

have two regimes -the first one with low price and volatility, and the second one with 

high price and volatility. The inclusion of the new storage facility has a price suppressing 

effect (1 <0). Regarding the storage effect on the transition probabilities, during peak 

hours the storage deceases the probability of remaining in the non-normal regime (γ2< 

0), and during the off-peak hours it increases the probability of remaining in the normal 

volatility regime (γ1> 0). 

 

 

 
4 Results with 100% and 60% are in Appendix 1. 
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Table 3. Storage effect on market prices 
 Peak Off-peak 

μ1 3.629 (0.015) 3.374 (0.020) 

μ2 0.176 (0.016) 0.191 (0.022) 

 -0.017 (0.003) -0.019 (0.003) 

 0.117 (0.007) 0.113 (0.006) 

λ1 1.858 (0.115) 2.963 (0.116) 

λ2 0.446 (0.149) -1.087 (0.184) 

γ1 -0.025 (0.039) 0.316 (0.034) 

γ2 -0.112 (0.052) 0.309 (0.523) 

σ1 0.080 (0.002) 0.073 (0.001) 

σ2 0.267 (0.007) 0.375 (0.009) 

 

Main implications 

 

Implications of these results on the effects of combining storage and wind generation 

can be classified in terms of price level, price volatility and transition probability. Results 

show that during peak hours there is a significant decrease in the price level of the 

normal and non-normal regime (see Table 4), implying a saving for consumers. The 

significant decrease in the price volatility (see Table 5) of the non-normal regime implies 

that spikes are softer and more predictable. The lower volatility of the non-normal 

regime combined with the lower mean price implies that the market will become more 

stable. Our results also show that when the storage is in the system there is a decrease 

the probability of observing spikes both in peak and off-peak hours, and that once we 

have a spike the probability of returning to the normal price increases (see Table 6).  

 

Table 4. Price levels 

 Wind Storage Diff. 

Peak   
 

Norma 40.556 37.057 -3.498 

Non-normal 46.291 44.212 -2.079 

Off-peak    

Norma 28.097 29.021 0.924 

Non-normal 33.865 34.910 1.045 

 

Table 5. Price volatility 

 Wind Storage Diff. 

Peak   
 

Norma 0.082 0.080 -0.003 

Non-normal 0.773 0.267 -0.506 

Off-peak    

Norma 0.074 0.073 -0.001 

Non-normal 0.989 0.375 -0.614 
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Table 6. Transition probabilities 

 Wind Storage 

Peak   
P (1,1) 0.66 0.86 
P (2,2) 0.56 0.58 

Off-peak   
P (1,1) 0.56 0.96 

 P (2,2) 0.64 0.31 

 

 

Beyond the probability of transition from one state to the other, to better assess the 

differences in the prices obtained for two models, it is relevant to know the probability 

of each state occurring. Following Hamilton (1989) it is possible to compute the 

probability of each state from the transition probabilities, with Eq. (11): 

  

𝜋(𝑖) ≡ (1 − 𝑞)/(1 − 𝑝 + 1 − 𝑞)  (11) 

 

where 𝑝 = 𝑃(1,1) and 𝑞 = 𝑃(2,2).  

 

Results, presented in Table 7, indicates that storage meaningfully decreases the 

probability of a high price and volatility regime in both peak and off-peak periods, or the 

same in another way, increases the probability of having lower and less volatile prices. 

More precisely, in the peak period the probability of having lower prices increases from 

0.56 in the model with only wind to 0.75 when including storage, and in the off-peak 

period this increase is from 0.45 to 0.95.     

 

Table 7. Probability of states 

 Wind Storage 

Peak   
𝜋 (1) 0.56 0.75 

𝜋 (2) 0.44 0.25 

Off-peak   

𝜋 (1) 0.45 0.95 

𝜋 (2) 0.55 0.05 

 

 

Results from the two models are graphically illustrated in Figure 6 (wind) and Figure 7 

(storage), with the four different states of prices -average and probability- identified in 

each model. From these figures is possible to observe, first, a considerable similarity 

between Figure 6 and Figure 5 with the hourly average price in our sample, and second, 

the price level and volatility decreasing effects from the inclusion of storage in the 

system. 
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Figure 6. Wind model results illustration 

 
 

  Figure 7. Storage model results illustration 

 
 

Finally, combining prices and probabilities obtained from the models we have the 

simulated weighted average prices in the different electricity system conditions. Results, 

shown in Table 8, highlights the price suppressing effects from storage and the 

consequent savings in terms of costs per MWh. Average price decreases during the peak 

period in 4.24 £/MWh (from 43.063 £/MWh to 38.827 £/MWh) and in 2.33 £/MWh 

(from 31.275 £/MWh to 28.944 £/MWh) during the off-peak period. With the calculated 

cost savings from transforming the hourly wind generation into a smoother baseload 

plant with storage, the case from a system perspective is apparent, as mitigating 

intermittency effects through storage captures the value of flexibility.  

Table 8. Simulated weighted average prices (£/MWh) 
 Wind Storage 

Peak 43.065 38.827 

Off-peak 31.275 28.944 
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5. Conclusions 

 

Overall our results imply that introducing storage to render wind hourly generation into 

the activity of a smoother baseload plant and to absorb the forecast error, makes it more 

likely that lower and more stable market prices will be observed. Finally, under the 

assumption that the effects on market prices are passed-through to final consumers and 

ignoring the facility construction costs, these results strongly suggest that there are clear 

potential social advantages resulting from storage in the presence of intermittent wind 

generation. 
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Appendix 1 - Summary to compare results with different levels of efficiency 

 

Price        

 Wind Store 100 Store 70 Store 60 Diff (S-W) Diff (S7-W) Diff (S6-W) 

Peak        
Norma 40.556 37.048 37.057 37.076 -3.507 -3.498 -3.480 

Non-normal 46.291 44.195 44.212 44.236 -2.096 -2.079 -2.055 

Off-peak        
Norma 28.097 28.642 29.021 29.081 0.545 0.924 0.984 

Non-normal 33.865 34.660 34.910 34.888 0.795 1.045 1.023 

 

Volatility        

 Wind Store 100 Store 70 Store 60 Diff (S-W) Diff (S7-W) Diff (S6-W) 
Peak        

Norma 0.082 0.080 0.080 0.080 -0.003 -0.003 -0.003 
Non-normal 0.773 0.267 0.267 0.267 -0.506 -0.506 -0.506 

Off-peak        
Norma 0.074 0.073 0.073 0.073 -0.001 -0.001 -0.001 

Non-normal 0.989 0.375 0.375 0.375 -0.614 -0.614 -0.614 

        
 

T. Probabilities    

 Wind Store 100 Store 70 Store 60 

Peak     
P(1,1) 0.66 0.86 0.86 0.86 

P(2,2) 0.56 0.58 0.58 0.58 

Off-peak     

P(1,1) 0.56 0.96 0.96 0.96 

P(2,2) 0.64 0.31 0.31 0.31 

 

 

Appendix 2 – Price during a day of sample (£/MWh) – First day  

 


