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Generalized multirate models for conjugate transfer in heterogeneous materials
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We propose a novel macroscopic model for conjugate heat and mass transfer between a mobile region,
where advective transport is significant, and a set of immobile regions where diffusive transport is dominant.
Applying a spatial averaging operator to the microscopic equations, we obtain a multicontinuum model, where
an equation for the average concentration in the mobile region is coupled with a set of equations for the average
concentrations in the immobile regions. Subsequently, by mean of spectral decomposition, we derive a set of
equations that can be viewed as a generalization of the multirate mass transfer (MRMT) model. This new
formulation does not require any assumption on local equilibrium or geometry. We then show that the MRMT
can be obtained as the leading order approximation, when the mobile concentration is in local equilibrium. The
new generalized multirate transfer model (GMRT) has the advantage of providing a direct method for calculating
the model coefficients for immobile regions of arbitrary shapes, through the solution of appropriate microscale
cell problems. An important finding is that a simple rescaling or reparametrization of the transfer rate coefficient
(and thus, the memory function) is not sufficient to account for the flow field in the mobile region and the
resulting nonuniformity of the concentration at the interfaces between mobile and immobile regions.
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I. INTRODUCTION

Conjugate transfer in heterogeneous media is of piv-
otal importance for a wide range of applications rang-
ing from dispersion of contaminants in aquifers [1–5] and
stagnation/recirculation zones [6–9] to heat transfer in granu-
lar media and suspension flows [10], or colloid interface reac-
tions [11,12]. In all these systems, we are faced with one (or
more) flowing fluid exchanging mass or energy with a set of
quiescent regions or impermeable inclusions, where diffusion
can be assumed to be the dominant transport process. In this
work, we will refer to the first as a mobile region and the latter
as immobile regions. This terminology introduces a classifi-
cation based on the mathematical modeling of regions rather
than their physical meaning, and therefore allows to draw
conclusions that are widely applicable to a class of problems.
Similarly, we assume that heat and mass transfer processes
obey the same governing equations (therefore we do not con-
sider, for example, phase change or other critical phenomena).

While transport in weakly heterogeneous media can be
accurately described using stochastic perturbative approaches
[13] (see Refs. [14–16] for an extensive review), typical
flow structures and exchange phenomena arising from strong
heterogeneities (see, for example, Refs. [17,18]) can not be
captured by low order expansions. In fact, predictions from
these methods show significant discrepancies when compared
against observations from field experiments [19,20], numeri-
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cal simulations (for example, Ref. [21]) and laboratory exper-
iments [22].

To predict transport in strongly heterogeneous systems,
a large number of methods have been developed, the most
common of which are (1) integrodifferential formulations [4]
where the mass transfer to the immobile region is represented
as the convolution of the concentration with an appropriate
memory function over the past history of the system; (2) the
multiRate mass transfer [1], which consist in modeling the
transfer between mobile and immobile regions as a system
of first order reactions; and (3) the continuous time random
walk [13], where the movement of solute particles in the
heterogeneous medium is represented as random walks in
time and space.

Furthermore, it has been demonstrated that these methods
are substantially equivalent [13,23,24] and a unified formula-
tion based on the multirate mass transfer has been proposed
[24]. This somewhat arbitrary choice was based on the sound
basis that (i) the multirate mass transfer is generally more
intuitive than the other methods and that (ii) it allows local-
isation. In the present work, we will add one further reason
to motivate such choice: (iii) that the multirate mass transfer
can be derived from the microscopic equations exactly, and
intuitively interfaced with results from homogenisation (see
Refs. [25,26] for an extensive review of homogenisation the-
ory).

However, accurate estimation for the closure parameters
of the multirate mass transfer model is still a largely debated
topic. Specifically, the multirate mass transfer model of Hag-
gerty and Gorelick [1] requires a couple of parameters for
each first-order reaction: (1) αHG: the apparent exchange rate
coefficient and (2) βHG: the capacity ratio.

It was suggested [1,24] that while these parameters
are indeed functions of other variables (like material and
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geometrical properties) at a fundamental level, they should
really be considered as the fundamental coefficients for the
model. A formal approach to obtain these coefficient consists
in expressing the inter-region transfer as a memory term in
the governing equations for the mobile region [4,13]. Such
term results from the convolution of the accumulation term
with a memory function [11], which is then expanded in
series of other functions (generally exponentials). The free
parameters arising from this operation correspond to the pa-
rameters of Haggerty and Gorelick and they can be evaluated
on the basis of analytical solutions for simple geometries [27].
However, one notorious limitation of such approach is the
lack of theoretical basis to describe the dependence of the
apparent exchange rate coefficients on the Reynolds number
in the mobile region [28,29]. In fact, several studies [30–32]
showed that an exponential memory function is inadequate to
describe the dependence on the flow rate. As a result, more
complicated memory functions have been proposed as ad hoc
solutions [33–36], often based on the breakthrough curves and
lacking any sort of physical connection with the underlying
geometry or material properties. Therefore calibration using
laboratory experiments or numerical simulations [6,37] and
data fitting are often employed to obtain model parameters
in practice. As a result, current mathematical formulations of
multirate models still consider (at a macroscopic level) the
concentration in the mobile region in equilibrium for what
concern the inter-region exchange.

In this work, we propose a novel general derivation of
the multirate mass transfer model that address the following
modeling issues: (i) providing a unique way of calculating
the model parameters, like a set of equations that can be
solved once for a whole class of problems; (ii) including the
effect of advective transport on the conjugate transfer in a
way that is mathematically formal and physically sound; and
(iii) Derivation from first principles containing a limited and
clear set of assumptions. This with the aim of facilitating any
extension in future works.

This work is structured as follows. In Sec. II, we describe
the microscopic equations and the approximations we employ.
In Sec. III, we present the upscaling methodology in details
and in Sec. IV, we show how the model of Haggerty and
Gorelick can be obtained as a zero-order approximation of our
model. In Sec. IV, we also present higher-order models and
we summarize the model parameters in Sec. VI. We conclude
in Sec. VII with an outlook to future extensions of the current
model.

Additional details on the homogenisation procedures can
be found in Appendix.

II. ASSUMPTIONS AND MICROSCOPIC EQUATIONS

A. Heterogeneous domain

We consider the scenario presented in Fig. 1. Let us
consider a heterogeneous medium composed of a “mobile”
region and a number of “immobile” zones. Therefore � =
�m ∪Ni

i=1 �i, where �m is the region occupied by the mobile
region and Ni is the number of inclusions. The mobile region is
exchanging mass with the immobile regions through the inclu-
sions’ boundaries ∂�i. We also assume that the regions �i are

FIG. 1. Schematic representation of a domain containing multi-
ple inclusions. A velocity field u(x, t ) is defined in the mobile region
�m, while only diffusion processes occur in the immobile regions
�1 and �2. The diffusion coefficientD may have different values in
each region. This illustration also shows the hierarchy of domains in
the multiscale problem. �macro represents a large collection of similar
contiguous REVs, while � is a REV in �macro. Furthermore, � is
subdivided into �m (mobile region), �1, and �2.

completely included inside � and that they are disconnected
(i.e., they only border on �m).

In the following, we will assume that transport within in-
clusions �i is dominated by diffusion, while on �m, advection
might not be negligible. Thus we can define a Peclet number:

Pe = UL

Dm
, (1)

where U is a characteristic velocity of the fluid, L is a
characteristic length and D is a diffusion coefficient. We will
therefore assume that in the immobile regions:

Pei = UiRi

Di
� 1, ∀i = 1, . . . , Ni , (2)

while no assumption is made on the Peclet number in the
mobile region.

B. Microscopic governing equations

We assume that the concentration field cm(x, t ) in the
mobile region is obeying the advection-diffusion equation at
the microscopic scale:

∂cm

∂t
+ ∇ · (ucm −Dm∇cm) = 0, x ∈ �m . (3)

Furthermore, we have Ni diffusion equations for the concen-
trations in the immobile regions:

∂ci

∂t
= Di∇2ci, x ∈ �i, i = 1, . . . , Ni. (4)

We assume here the immobile diffusion coefficients Di to be
constant. This can be easily relaxed to smooth or piecewise
smooth coefficients and will be subject of future studies (by
decomposing into coupled subregions).
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At the interfaces ∂�i, we enforce continuity of fields and
fluxes:

ci = cm, Di
∂ci

∂n
= Dm

∂cm

∂n
, x ∈ ∂�i. (5)

This choice of boundary conditions implies that immobile
regions do not exchange mass with each other, but they are
only connected through the mobile region.

III. UPSCALING METHODOLOGY

A. Spatial filtering

Standard multicontinuum models [38] can be obtained
from Eqs. (3) and (4), by applying a spatial filtering operator
to the governing equation for the mobile region using a REV
(representative elementary volume) � as support. We will
assume that such REVs have a local periodic behavior or, in
other words, that their geometry changes very slowly with
x. Specifically, we assume that the number and geometrical
configuration of the immobile regions included in a region
�(x) centered on x is essentially equivalent to that of a region
�(x + δx) for a sufficiently small δx. This procedure produces
fields that are much smoother than the original ones.

It is important to notice that in our model described by
Eqs. (3) and (4), the diffusive modes are mostly excited by
the conjugate transfer with the immobile regions and not by
source terms due, for example, to bulk reactions.

Furthermore, we can consider a macroscopic domain
�macro given by the union of a number of REVs �. �macro

is taken sufficiently large to contain a large number of REVs,
but sufficiently small to consider all those REVs as equiva-
lent (i.e., disregarding any variation of the REVs geometry
and material properties with x). Therefore it is possible to
interchange between � and �macro when computing averages
without any loss of generality.

Thus we define the volume average of cm in the region �(x)
(but it can be trivially extended to �macro) as the top-hat filter
of volume V = ∫

�
dV centered on x:

cm(x, t ) =
∫

�

K�(x − x′)cm(x′, t )dV = K� ∗ cm, (6)

where K� is a filtering Kernel and ∗ is the convolution opera-
tor. A typical Kernel that is widely used in fluid dynamics and
multiphase flows is the top-hat [39–41]:

K�(x − x′) = 1

V

{
1, ∀x′ ∈ �(x)

0, otherwise
, (7)

where �(x) is a REV centered on x. In this formulation,
both cm and cm are both functions of the spatial coordinate
x. However, the integral operator results in cm to be much
smoother than cm and therefore we will consider as cm does
not depend on space at scales smaller than �. Similarly, V is
also a slowly varying function of x. We can therefore write an
explicit expression for cm:

cm(x, t ) = K� ∗ cm = 1

V

∫
�

cm(x′, t )dV. (8)

As commonly done for multiphase and compressible flows,
we also define the Favre top-hat Kernel [39] as the volume

FIG. 2. Illustration showing the smoothness properties of c̃m

compared to cm. Here, V represents the filter size. cm(x, t ) is filtered
at every point x ∈ �m, so that a value of c̃m(x, t ) is defined at every
x ∈ �. Notice that c̃m is defined on the union domain � and not on
the perforated domain �m.

average over the mobile region �m(x) centered on x and of
volume Vm = ∫

�m
dV :

K�m (x − x′) = 1

Vm

{
1, ∀x′ ∈ �m(x)
0, otherwise . (9)

And therefore, the Favre averaged concentration c̃m can be
written as

c̃m(x, t ) = K�m ∗ cm = 1

Vm

∫
�m

cm(x′, t )dV. (10)

The spatial filtering procedure is illustrated in Fig. 2, where
the resulting Favre averaged concentration is much smoother
than the original one.

Generally, � is itself a function of the coordinate x but,
since we assume symmetry of � under translation. the integral
commutes with spatial derivatives and we will therefore omit
its dependence of x for the sake of brevity. such that we obtain
the relation:

cm = βmc̃m , (11)

where we introduced the capacity of the mobile region βm

defined as Vm/V . Some authors (for example, Ref. [1]) define
βm as being multiplied by a retardation factor obtained from
a rescaling of the time coordinate. Without loss of generality,
we will not consider the retardation factor explicitly.

Thus the main difference between volume averaging and
Favre averaging is that the first is carried over all the space
(mobile and immobile regions), while the second is restricted
to a particular region. The main reason to introduce such
difference, is that it formally leads to Eq. (11), and thus to
the definition of capacity.

B. Multicontinuum formulation

Assuming that the immobile regions �i are fully included
into � (i.e., ∂� ∩ ∂�i = ∅ i = 1, . . . , Ni), applying the
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integral operator (6) to (3) and making use of the Green’s
theorem, we obtain:

βm
∂ c̃m

∂t
+

Ni∑
i=1

1

V

∫
∂�i

Di
∂ci

∂n
dS

= βm
∂ c̃m

∂t
+

Ni∑
i=1

Ṁi(t ) = −∇ · Jm , (12)

where we have defined the total average flux in the mobile
region:

Jm = ucm −Dm∇cm , (13)

and the average inter-region mass exchange rate for region i:

Ṁi(t ) = 1

V

∫
∂�i

Di
∂ci

∂n
dS . (14)

Since in this work our focus is on the interface exchange,
we do not perform an accurate upscaling of Jm, and we will
use a simplified expression without any loss of generality:

Jm,eff = ueffc̃m −Dm,eff∇c̃m , (15)

where ueff and Dm,eff are the effective velocity and the effec-
tive diffusivity in the mobile region. The capacity βm does not
appear explicitly into (15) since it is generally accounted for
within the effective parameters.

We then define the Favre averaged concentration in the
immobile regions as

c̃i(x, t ) = 1

Vi

∫
�i

ci(x, t )dV , (16)

where Vi = ∫
�i

dV is the volume occupied by region �i.
Thus we integrate (4) to obtain

∂ c̃i

∂t
= 1

Vi

∫
∂�i

Di
∂ci

∂n
dS = Ṁ(t )

βi
, (17)

where βi = Vi/V is the capacity of immobile region i. The
time derivative in Eq. (17) is a partial derivative since ci

depends on x at the macro scale (for example, due to the distri-
bution of immobile regions at the macroscale). Equation (17),
substituted into (12), leads to the multicontinuum equation for
the concentration field in the mobile region:

βm
∂ c̃m

∂t
+

Ni∑
i=1

βi
∂ c̃i

∂t
= −∇ · Jm,eff. (18)

In (18), we transformed the boundary conditions of the mi-
croscopic equation into source terms, one for each immobile
region. However, in this formulation c̃i still needs to be found
through an equation that is valid at the microscopic scale and,
thus, requires the complete knowledge of the concentration in
the immobile region.

C. Multirate mass transfer

In order to express c̃i in a closed form that only depends
on the geometrical and physical properties of the immobile
region (as well as from the boundary value of cm), we perform
the following decomposition:

ci(x, t ) = ψi(x, t ) + c′
i(x, t ), (19)

where the function ψi satisfies the following equation and
boundary conditions:

∇2ψi = 0, x ∈ �i
(20)

ψi(x, t ) = cm(x, t ), x ∈ ∂�i,

while c′
i is given by

∂c′
i

∂t
−Di∇2c′

i = −∂ψi

∂t
, x ∈ �i

(21)
c′

i = 0, x ∈ ∂�i.

Summing Eqs. (20) and (21), and using decomposition (19)
gives back Eq. (4) with the correct boundary conditions. Due
to Eq. (20), ψi satisfies the following Gauß-Green integral:∫

�i

∇2ψidVi =
∫

�i

∇ · ∇ψidVi =
∫

∂�i

∂ψi

∂n
dSi = 0, (22)

being n a field normal to ∂�i and Si the surface of ∂�i.
Therefore, in our formulation, the function ψi is simply re-

quired to satisfy the nonhomogeneous time dependent bound-
ary conditions, while ci satisfies a nonhomogeneous unsteady
diffusion equation with homogeneous boundary conditions.

The homogeneous form of Eq. (21) leads to an eigenvalue
problem following a separation of variables, and can therefore
be expressed in series of eigenfunctions without any loss of
generality:

c′
i =

∞∑
j=1

c′
i j (x, t )φi j (x), (23)

where c′
i j (t ) are series coefficients that depend on time and

on x at the macro scale only, while the eigenfunctions φi j (x)
carry the dependence on the spatial coordinate at the mi-
croscale and satisfy

D∇2φi j = λi jφi j, x ∈ �i

φi j = 0, x ∈ ∂�i
, (24)

where λi j is the eigenvalue corresponding to eigenfunction
φi j .

While our decomposition of the spatial dependence in (23)
may look arbitrary at first sight, in practice it simply mean
that there co-exist two problems for the immmobile regions:
(i) a local one and (ii) a global one. The local problem (i)
refers to the solution within the single immobile regions and
is described by Eq. (4) within the REV �. The global problem
(ii) involves how the fields in the immobile regions vary at a
macroscopic scale and how the immobile regions communi-
cate. In our case, the immobile regions are disconnected and
therefore, the spatial dependence of c′

i j is only keeping track
of the different initial conditions at the macroscopic scale
(since the boundary conditions are homogeneous). Therefore
we will take c′

i j out of any spatial derivative within the
immobile regions, since they are assumed to be negligible.

Both Eqs. (20) and (24) can be made dimensionless by
rescaling with respect to a characteristic length of the inclu-
sion Li and the diffusion coefficient in the immobile regionDi.
As a consequence, we can relate the dimensional eigenvalue
λi j with a dimensionless eigenvalue:

λ

i j = λi jL2

i

Di
. (25)
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Following this rescaling, Eqs. (20) and (24) are not just valid
for a particular geometry, but for class of similar geometries.

Substituting solution (23) back into Eq. (21) and projecting
into φik , we obtain

∂c′
ik

∂t
= λikc′

ik − 1

Ai

∂

∂t

∫
�i

ψiφikdV, (26)

where Ai = ∫
�i

φikφikdV is the normalisation factor of the
eigenproblem, which depends on the geometry only.

For reasons that will be clear in the next section, we
introduce the following definitions:

mi j =
∫

�i

φi jdV, wi j = mi j

Ai
, (27)

ci j = 1

wi j
c′

i j + 1

mi j

∫
�i

ψiφi jdV. (28)

Substituting into Eq. (26), we obtain

∂cik

∂t
= λik (cik − ψik ), (29)

where we introduced the projection of ψ into φik scaled over
the norm of φik:

ψik (t ) = 1

mik

∫
�i

ψi(x, t )φik (x)dV. (30)

Therefore ci is now given by

ci(x, t ) = θi(x, t ) +
∞∑

k=1

wikcik (t )φ(x), (31)

where

θi(x, t ) = ψi(x, t ) −
∞∑

k=1

wikφik (x)ψik (t ) (32)

is the correction function for the immobile region, which
accounts for the nonhomogeneity of cm(x, t ) at the interface.

1. Computation of the exchange rate

We now compute the Favre averaged concentration in the
i-immobile region:

c̃i(t ) = θ̃i +
∞∑

k=1

βikcik (t ), βik = wikmik

Vi
, (33)

where the Favre averaged correction function is given by

θ̃i = ψ̃i(t ) −
∞∑

k=1

βikψik (t ). (34)

The terms βik play the role of capacities (or a normalized
weighting function) since

∞∑
k=1

βik =
∞∑

k=1

( ∫
�i

φikdV
)2

Vi
∫
�i

φ2
ikdV

= 1. (35)

Equation (35) is the so-called partition of unity (notice that
βik is generally still functions of the spatial coordinates at
the macroscale) and it arises directly from the eigenproblem.

Recalling Eq. (17), we then obtain an expression for the
mobile-immobile exchange rate:

Ṁi(t ) = βi
∂θ̃i

∂t
+

∞∑
k=1

βiβik
∂cik

∂t
. (36)

It is important to notice that all the terms involved in the
multirate transfer can be computed a priori by solving a cell
problem, which consists in solving Eq. (20) for ψi and the
eigenvalue problem (24) for each immobile region i. However,
ψi(x, t ) is a non trivial function of cm(x, t ), and in the present
formulation its computation requires the solution of equation
(20) for each instant of time. This is clearly not desirable,
since it would mean that a numerical algorithm would have to
solve Eq. (20) at each time step. Furthermore, no information
regarding the functional dependence of cm on the flow rate
is provided in the current formulation. Therefore we need to
introduce some information regarding the micro-structure of
cm(x, t ) in order to make any further progress.

D. Representation of cm(x, t ) using homogenisation theory

So far, our formulation is exact, in the sense that we made
no assumption regarding the regularity of the fields and we
retained all the terms arising from the volume averaging.
However, we still do not have an expression for the concen-
tration field at the interface between mobile and immobile
regions since that would require the complete knowledge of
cm(x, t ).

In order to give a representation of the spatial variability
of cm(x, t ) without having to solve the microscopic unsteady
governing equations, one can employ the classical two-scale
expansion of homogenisation theory [26,42], and express cm

as

cm(x, t ) = c̃m(x, t ) +
∞∑

n=1

χn(x) : ∇nc̃m(x, t ), (37)

where χn is the corrector function corresponding to the n
order of the series and : represents the contraction between
the corrector and the n-order gradient ∇n.

c̃m and ∇nc̃m varies much slower than χn in x and can be
considered as constant1 when plugged into the microscopic
equations. One important feature of corrector tensors is that
they provide crucial information on the transport anisotropy.
For example, if the flow field is unidirectional, the first-
order corrector χ1 will be a vector field oriented towards the
flow direction but (unlike the velocity field) it will not be
zero at the interface between mobile and immobile regions.
Therefore employing Eq. (37) allows to reconstruct the in-
terface concentration from the gradients of c̃m weighted with
functions of the transport properties, provided that expansion
(37) is shown to be convergent (which is beyond the scope
of this work). We illustrate how the correctors and the above
expansion can be obtained using homogenisation theory in
Appendix.

1They are, in fact, constant at the microscale, when a two-scale
hypothesis is introduced.
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As a side note, we mention that homogenisation can be
also employed to obtain an expression for Jm,eff [43,44] and
it is therefore synergic to the current problem. Furthermore,
homogenisation theory can also be employed in place of
volume averaging to derive dual porosity models [45].

To introduce the information provided by the corrector
equation into our problem, we can expand ψi in a similar
fashion:

ψi(x, t ) = c̃m(x, t ) +
∞∑

n=1

�in(x) : ∇nc̃m(x, t ) (38)

where the functions �n are coupled with the correctors χn at
the interface and satisfy [owing the linearity of equation (20)]:

∇2�in(x) = 0, x ∈ �i

�in(x) = χn(x), x ∈ ∂�i. (39)

These are a set of partial differential equations for tensors
of rank n. Notice that �in satisfies a boundary integral relation
similar to Eq. (22). We can now substitute expansion (38) into

θ̃i to obtain

θ̃i =
∞∑

n=1

(
�̃in −

∞∑
k=1

βik

∫
�i

�inφikdV

)
:

∇nc̃m =
∞∑

n=1

(
�̃in −

∞∑
k=1

βik�ink

)
:

∇nc̃m =
∞∑

n=1

�

in : ∇nc̃m, (40)

where we introduced �

in as the internal corrector tensor of

rank n for immobile region i, which accounts for the internal
effects of the spatial variability of cm(x, t ) at the interface.
This formulation shows that, when we assume cm(x, t ) = c̃m

at the interface, then θ̃i = 0, which means that no correction
is necessary.

Expansion (38) can now be substituted into the evolution
equation for cik , leading to

∂cik

∂t
= λik

(
cik − c̃m −

∞∑
n=1

�ikn : ∇nc̃m

)
. (41)

IV. GOVERNING EQUATIONS OF THE GENERALIZED MULTIRATE TRANSFER MODEL

We can now write down a set of equations for the generalized multirate transfer (GMRT) model which can be closed using a
set of parameters corresponding to different geometries. When a specific geometry is selected, such parameters are constants or
are simple function of geometrical and material properties through a rescaling (as for the eigenvalue λik = λ


ikDi/L2
i ). The full

system of equations is

(GMRT-TS)

⎧⎪⎨⎪⎩
βm

∂ c̃m
∂t + ∑Ni

i=1 βi
∂
∂t

(∑∞
n=1 �


in : ∇nc̃m + ∑∞
k=1 βikcik

) = −∇ · Jm,eff,

∂cik
∂t = λik

(
cik − c̃m − ∑∞

n=1 �ikn : ∇nc̃m
)
,

i = 1, . . . , Ni,

k = 1, . . . ,∞,

(42)

In this system (GMRT-TS) mixed time-space derivatives
are present. In the next section, these will be replaced to obtain
a more convenient form. Nevertheless, GMRT-TS is exact as
long as cm(x, t ) can be expanded using the corrector Eq. (37),
and the series is convergent. In practical applications, one
would also truncate both the series in n and k to achieve the
desired accuracy or retain only a certain number of terms. In
that case, some considerations on the approach of the series
to convergence are required. However, if the macroscopic
field c̃m is sufficiently regular it is possible to obtain a good
approximation just with the first-order corrector χ1 [26].

A key feature of the current formulation is that accounts
for the nonuniform distribution of the concentration field at
the interface from a microscopic perspective and shows how
this can be upscaled to a macroscopic set of equations. Sur-
prisingly, this does not lead to a new exchange rate (which is
equivalent to the eigenvalue of the homogeneous problem λik),
but instead to an additional term in the equations for cik and a
new rate term. These terms lead to mixed and potentially high-
order derivatives in the governing equation for the mobile
concentration. However, in practical applications one rarely
goes beyond a second-order corrector and therefore this does
not alter the order of the differential equation.

A. A note on the truncation of the multirate series:
Equilibrium modes

Clearly, practical applications require the multirate series
to be truncated at some value kmax corresponding to βikmax ,
λikmax , cikmax , and �ikmaxn. While previous works enforced∑

k βik = 1 by rescaling the capacities [24], here we propose
a more accurate and rigorous approach based the above math-
ematical derivation of the GMRT.

It is easy to see that the truncated modes k > kmax will
approach equilibrium faster, since they correspond to small
perturbations inside the immobile region and to larger eigen-
values. They can be therefore assumed to be in equilibrium if
kmax is chosen sufficiently large, according to the physics of
the problem. Therefore one can write

∂cik

∂t
= 0 for k > kmax �⇒ cik

= c̃m −
∞∑

n=1

�ikn : ∇nc̃m for k > kmax. (43)

Furthermore, the corresponding eigenfunctions φik will be
highly oscillating for k > kmax in contrast with the corrector
�in, which we choose to be a smooth function (recall equation
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20). Therefore the projection of �in over φik will be very
small for k > kmax since �in will not have significantly high
modes. The regularity of �in is also connected to the change
of cm(x, t ) over ∂�i. In most of the applications (e.g., forced
convection) cm(x, t ) varies regularly over the interfaces, and
thus the correctors χn vary smoothly (and slowly) over ∂�i.
Therefore we can also assume that there exist a kmax such that

�ikn = 0 for k > kmax (44)

and, consequently,

cik = c̃m for k > kmax, (45)

which means that for sufficiently large k the modes are in
equilibrium with the average field. Therefore a more sensible
approximation of the truncated terms would be a scaling of
βi (and thus βm) to account for the removed modes compared
to simply rescaling βik . In practice, one would then have new
truncated immobile capacities β tc

i and mobile capacities β tc
m

defined as

β tc
i = βi −

∑
k>kmax

βik, β tc
m = βm +

Ni∑
i=1

(
βi − β tc

i

)
. (46)

Thus the system behaves as if the mobile region was larger
and the immobile regions were smaller (in terms of volumetric
occupation, not geometrical parameters). This is simply due
to the fact that we assumed that the dynamics of modes k >

kmax in the immobile regions is completely determined by the
mobile region.

B. The multirate model of Haggerty and Gorelick:
The leading order approximation

The original multirate mass transfer (MRMT) model pro-
posed by Haggerty and Gorelick [1] can be obtained as a spe-
cial case of our general formulation. More specifically, their
model can be considered as a leading order approximation for
ψ̃i, which results in the system:

(MRMT)

⎧⎨⎩
βm

∂ c̃m
∂t + ∑Ni

i=1

∑∞
k=1 βik

∂cik
∂t = −∇ · Jm,eff

∂cik
∂t = λik (cik − c̃m),

i = 1, . . . , Ni

k = 1, . . . , ∞
.

(47)

Therefore the model of Haggerty & Gorelick is obtained
under the approximation that the concentration at the interface
between each immobile region and the mobile region is uni-
form and equal to c̃m. This is acceptable for systems where
the mobile region is approximatively in local equilibrium
at the microscale. This can be the case of a well-mixed
concentration in the mobile region.

C. Computation of βik and λik

Coefficients βik and λik do not depend in any way on the
interface concentration cm(x, t ) and, following our approach,
they bear no dependence on the transport processes happening
in the mobile region. Therefore they can be calculated exactly
using only geometrical shape and material properties of the
immobile regions as input.

TABLE I. Evaluation of λik and βik for simple geometries for
which there is an analytical solution of the unsteady diffusion equa-
tion (see Ref. [46] for details). Here, L represents half the length
of the layer (the domain in the layer goes from −L to L), R is the
radius of the sphere or cylinder and ζk is the kth zero of the zero-order
Bessel function of the first kind.

Geometry λik βik

1d Layer (2k − 1)2π 2 Di
4L2

i

8
(2k−1)2π2

Cylinder ζ 2
k
Di
R2

4
ζ 2

k

Sphere k2π 2 Di
R2

6
k2π2

Table I shows the expression of λik and βik for a set
of simple geometries. Clearly, our coefficients match those
proposed by Haggerty and Gorelick [1], except for a factor
βm in βik , which is consistent with our formulation since we
do not divide the equation for c̃m by βm.

In this approximation. coefficients λik and βik have the
same meaning as in Haggerty and Gorelick, where λik plays
the role of exchange rate between cik and ψik . As demon-
strated in Table I, λik is a function of geometrical dimensions
and material properties through λik = λ


ikDi/L2
i , where the di-

mensionless eigenvalue depends on the shape of the immobile
region only. On the contrary, βik is a dimensionless weight that
depends only on the class of geometrical shapes.

V. BEYOND CLASSIC MRMT

While Eq. (42) allows to easily recover the standard
MRMT model in the limit of equilibrium concentration in
the mobile region, the presence of a mixed derivative makes
its physical interpretation rather cumbersome. Furthermore,
such term can introduce instabilities in numerical solution
algorithms.

To this end, it is useful to rewrite Eq. (36) using the integral
form of the exchange rate:

Ṁi = 1

V

∫
∂�i

Di
∂θi

∂n
dS +

∞∑
k=1

wikcik
1

V

∫
∂�i

Di
∂φik

∂n
dS.

(48)
Integrating the eigenvalue Eq. (24) over �i, we can obtain

the following relation for the eigenvalues:

λik = 1

mi j

∫
∂�i

Di
∂φik

∂n
dS. (49)

Expanding the first term on the right-hand side of Eq. (48)
leads to

1

V

∫
∂�i

Di
∂θi

∂n
dS

= 1

V

∫
∂�i

Di
∂ψi

∂n
dS − 1

V

∞∑
k=1

wikψik

∫
∂�i

Di
∂φik

∂n
dS

= −
∞∑

k=1

βiβikλikψik, (50)

013041-7



FEDERICO MUNICCHI AND MATTEO ICARDI PHYSICAL REVIEW RESEARCH 2, 013041 (2020)

where we employed Eq. (22) on the right-hand side. Then,
substituting expansion (38) results into

1

V

∫
∂�i

Di
∂θi

∂n
dS = −βi

∞∑
k=1

βikλik

(
c̃m +

∞∑
n=1

�ink : ∇nc̃m

)
.

(51)

The additional terms are consistent with the evolution
equation for cik , so that the mobile-to-immobile fluxes

are identical to the corresponding immobile-to-mobile
flux regardless the number of terms retained in the
expansions.

A. Generalized multirate transfer equations

The complete set of equations (42) can be therefore rewrit-
ten without mixed time-space derivatives as

(GMRT)

⎧⎨⎩βm
∂ c̃m
∂t + ∑Ni

i=1 βi
∑∞

k=1 βikλik
(
cik − c̃m − ∑∞

n=1 �ikn : ∇nc̃m
) = −∇ · Jm,eff,

∂cik
∂t = λik

(
cik − ceq

ik

)
,

i = 1, . . . , Ni,

k = 1, . . . ,∞,

(52)

where we defined the equilibrium concentration for term k of region i as

ceq
ik = c̃m +

∞∑
n=1

�ikn : ∇nc̃m. (53)

This system of equations does not pose any significant issue for corrections up to the second order, since the order of
the differential operators remains unchanged and no mixed derivatives arise. Physically, these additional terms change the
equilibrium concentration at which ∂cik/∂t = 0.

B. First-order correction and drift flux approximation

Retaining first-order corrections in Eq. (52) is equivalent to adding a drift like term to the standard multirate equation for the
mobile region. The governing equations are given by

(GMRT-1)

⎧⎨⎩βm
∂ c̃m
∂t + ∑Ni

i=1 βi
∑∞

k=1 βikλik (cik − c̃m) = −∇ · Jm,eff + ∑Ni
i=1 βi

∑∞
k=1 βikλik�ik1 · ∇c̃m,

∂cik
∂t = λik (cik − c̃m − �ik1 · ∇c̃m),

i = 1, . . . , Ni,

k = 1, . . . ,∞.

(54)

For the special case in which the material microstructure
does not vary in space and the flow field is macroscopically
homogeneous (i.e., ueff = const), �ik1 does not depends on
the spatial coordinates and we can define a drift velocity:

udrift = −
Ni∑

i=1

βi

∞∑
k=1

βikλik�ik1, (55)

and thus a new effective velocity

u

eff = ueff + udrift. (56)

Therefore the equation for the mobile region simply reduces
to a standard advection diffusion equation, with an additional
multirate reactive term:

βm
∂ c̃m

∂t
+ ∇ · (u


eff̃cm −Deff∇c̃m)

=
Ni∑

i=1

βi

∞∑
k=1

βikλik (c̃m − cik ). (57)

C. Physical considerations on �ik1

Equation (52) is describing a reactive system where the
equilibrium concentrations of the immobile regions are not
the same as the concentration in the mobile region. Thus, in
our model, the equilibrium point is shifted by the correctors,
based on the gradients of cm. This is a direct consequence of

nonequilibrium at the microscale (i.e., within �) and can be
attributed (at least asymptotically) to the flow field and to the
existence of boundary layers, which effectively results in a
different equilibrium concentration for each cik . Our approach
based on the synergy between homogenisation theory and
spectral decomposition provides a formal way to account for
such nonequilibrium.

In order to understand the meaning of these corrector
terms, it is useful to consider the toy case depicted in Fig. 3.

Such system is fundamentally monodimensional, and can
be characterized by having

∂ c̃m

∂x
� 0, ∀x ∈ [0, L]. (58)

Now, we consider Eq. (37) at the first order:

cm(x, t ) = c̃m(x, t ) + χ1(x) · ∇c̃m. (59)

Considering the local concentration in the mobile region,
if all immobile regions have the same initial concentration, it
follows that the local maxima will be locate at the interfaces
as depicted in Fig. 3. Thus, considering that inequality (58)
holds, the same inequality holds for the x component of the
first-order corrector χ1,x:

χ1,x > 0, (60)
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FIG. 3. Illustration showing the state of a porous system com-
posed of repeating cells with spherical inclusions at a time t0. Here,
a fluid moving with a uniform macroscopic velocity U exchanges
mass with a set of immobile regions at the same concentration
(a), therefore c̃m increases with x, with negative second derivative
due to saturation (b). (c) shows the expected contours for the local
concentration around a spherical inclusion.

Therefore, if all components of ∇c̃m are positive, all the com-
ponents of χ1 are also positive. This positivity is transferred to
�i1 through Eq. (39) due to the properties of elliptic operators.
While �ik1 is not necessarily positive, the projection on the
first eigenfunction �i11 is positive.

It is easy to demonstrate that this positivity property holds
also when ∇c̃m < 0.

Therefore, as illustrated in Fig. 3, a in a system with ∇c̃m >

0, the equilibrium concentration in the immobile regions will
be larger than c̃m due to the higher value of cm at the interface.
On the contrary, in the case ∇c̃m < 0, this will be lower.

While such argument was based on the analysis of a simple
system, it is often valid for a large range of situations as, for
example, in aquifer remediation and in many applications it is
possible to guess the sign of the correctors by looking at the
gradients.

However, when different immobile regions have different
initial conditions or the transfer in the immobile regions is
strongly asymmetric, this positivity condition may be vio-
lated.

D. Second-order correction and diffusive flux approximation

We now consider correction terms up to second order. Such
term brings a second-order differential operator into Eq. (52):

(GMRT-2)

×
⎧⎨⎩βm

∂ c̃m
∂t + ∑Ni

i=1 βi
∑∞

k=1 βikλik (cik − c̃m) = −∇ · Jm,eff − ∑Ni
i=1 βi

∑∞
k=1 βikλik (�ik1 · ∇c̃m + �ik2 : ∇∇c̃m ),

∂cik
∂t = λik (cik − c̃m ) − λik (�ik1 + �ik2 · ∇) · ∇c̃m.

i = 1, . . . , Ni,
k = 1, . . . ,∞

(61)

Now, we can decompose tensor �ik2 into hydrostatic and
deviatoric components:

�ik2 = dev(�ik2) + 1
3 tr(�ik2)I, (62)

where tr(�ik2) is the trace of �ik2 and I is the identity tensor.
We now introduce the diffusion coefficient arising from the
conjugate transferDct:

Dct =
Ni∑

i=1

βi

∞∑
k=1

λikβik

3
tr(�ik2), (63)

which correspond to the second-order correction arising in
the case of macroscopically isotropic material with istropic
immobile regions.

Again, we make the approximation of homogeneous,
isotropic material with macroscopically homogeneous veloc-
ity field so thatDct does not depend on the spatial coordinate.
Under these approximations, the second-order correction term
becomes a purely diffusive contribution and we can thus
define a new total diffusion coefficient:

Dtot = Deff −Dct. (64)

Therefore the equation for the mobile concentration simplifies
to

βm
∂ c̃m

∂t
+ ∇ · (udrift̃cm −Dct∇c̃m)

=
Ni∑

i=1

βi

∞∑
k=1

βikλik (c̃m − cik ). (65)

VI. SUMMARY OF MODEL PARAMETERS

Clearly, the multirate series would be generally truncated
at a desired accuracy. All the correction terms arising in the
formulation of the present model can be evaluated based on
analytical or numerical analysis of the immobile and mobile
regions. All such parameters can be evaluate a priori and do
not require additional computation when solving the macro-
scopic problem.

Specifically, two parameters are independent on the flow
and geometry in the mobile region; [λik]: these are simply the
eigenvalues corresponding to the homogeneous eigenproblem
in the immobile region, and βik : these weights can be calcu-
lated similarly to λik , from the solution of the eigenproblem.
Once the eigenfunctions are known, βik is given by βik =
(
∫
�i

φikdV )2/(Vi
∫
�i

φ2
ikdV ).
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These are the same parameters of standard multirate mod-
els. Furthermore, there ore other parameters that require
the solution of a cell problem in the mobile region and there-
fore, that bring information regarding the interplay of conju-
gate transfer and transport in the mobile region. Such terms
make use of the correctors χin obtained from homogenisation
theory.

�ikn. Projection of the function �in on the eigenfunction
φik scaled with the norm of φik . Clearly, the number of these
parameters equals the number of terms in the multirate expan-
sion but one can exploit some knowledge of the microstructure
to simplify their expression.

Other quantities we introduced, like Dct, ceq
ik , or udrift, can

be obtained from the other parameters.
It is worth to notice that, as it is often suggested for

the standard MRMT, it is possible to consider each of the
parameter as unknown and obtainable (for example) trough
inverse analysis or data fitting. In this case, while the details of
the derivation of λik , βik , and �ikn become irrelevant, it is still
crucial to remember that all the physics of non equilibrium is
contained in �ikn.

VII. CONCLUSIONS

In this paper, we propose a novel approach to derive the
multirate mass transfer model that is different from that of
the memory function or that of Haggerty and Gorelick. Our
model is derived starting from the microscopic equations and
it is parameter free, i.e., it is possible to directly evaluate all
the closure parameters in a unique manner. While our method
agrees with previous results obtained by Haggerty and Gore-
lick, it also contains their multirate model as a special case
and allows extension to nonequilibrium situations, where the
concentration in the mobile region is not uniform. Especially,
when homogenisation techniques are employed to evaluate the
effective transport in the mobile region, our method provides
an exact framework for the upscaling of the conjugate transfer
problem, the accuracy of which is given by the terms retained
from the infinite series.

Our model predicts that additional arise in the governing
equations of the multirate mass transfer when accounting
for the effect of transport processes in the mobile region
on the inter-region exchange. These terms are brought into
the framework by the corrector equation resulting from ho-
mogenisation, which at the second order have the form of a
drift and a diffusive contribution.

Furthermore, under the assumptions of isotropy and ho-
mogeneity these terms can be absorbed into the effective
diffusivity and effective velocity, thus leaving the form of
the governing equations in the mobile region unchanged.
However, the concentration in each immobile region will now
depend on high-order spatial derivatives of the concentration
in the mobile region.

Despite the self-consistency of this model (all the parame-
ters can be evaluated from first principles without calibration)
and its completeness with respect to the initial hypothesis
(we never introduced additional hypothesis or simplifications
in the development of our formulation), there are still some
significant phenomena that should be accounted for when
modeling real systems. Some examples are exchange between

immobile regions; multiple mobile regions with different
mobility (e.g., fractures); chemical reactions at interfaces;
multiphase flow, heat, and mass transfer; and internal flow
currents in the immobile regions. Future works could focus
on one or more of these topics to improve the range of
applicability of this proposed model.
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APPENDIX: HOMOGENISATION: EVALUATION OF THE
FIRST-ORDER CORRECTOR

Homogenisation is a perturbative method that allows to
separate the original multiscale problem into a hierarchy of
problems acting at different scales. In the following, we show
how an equation for the immobile concentration similar to
Eq. (12) can be obtained using homogenisation and how to
calculate the first-order corrector χ1. The purpose of this
Appendix is simply to illustrate the method applied to the
current study. For a detailed and rigorous description of the
homogenisation procedure see, for example, Ref. [44].

The process starts defining an expansion parameter

ε = R

L
� 1 (A1)

and a microscopic scale y such that

y = x
ε
, (A2)

where R is a characteristic length of the immobile regions
and L is a characteristic length at the macroscale. The field
cm(x, y, t ) is then expanded in asymptotic series of ε:

cm(x, y, t ) =
∞∑

n=0

εncmn(x, y, t ). (A3)

Spatial differential operators are expanded to account for the
microscopic scale:

∇ = ∇x + ε−1∇y. (A4)

Here, y represents the variation across the REV �, while x is
a coordinate on the macroscopic volume �macro. This splitting
is also known as two-scale asymptotics.

Then, Eqs. (A3) and (A4) are substituted into Eq. (12) and,
retaining terms up to O(ε−2):

ε−2{∇y · (ucm0 −Dm∇ycm0)}
+ ε−1{∇x · (ucm0 −Dm∇ycm0)

−∇y · [Dm(∇xcm0 + ∇ycm1) − uc1]}

+ ε0

{
∂cm0

∂t
− ∇x · [Dm(∇xcm0 + ∇ycm1)]

−∇y ·Dm[(∇xcm1 + ∇ycm2)]

+∇x · (ucm1)

}
= O(ε).
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The boundary conditions are of the second type, in agreement
with Eq. (5):

Dm∇cm = Di∇ci = −ε f i(x, y, t ), x ∈ ∂�i, (A5)

where the order ε is taken due to the scaling of f i with the
specific surface and the negative sign takes into account for
the vectors normal to the surface. This can be considered as an
approximation of “slow flux,” we are fundamentally assuming
that the diffusion is dominant at the macroscale with respect
to the inter-region flux.

The boundary conditions are also expanded (and multiplied
by ε−1 to account for the surface-to-volume ratio).

Dm[ε−2(∇ycm0) + ε−1(∇ycm1 + ∇xcm0)

+ ε0(∇xcm1 + ∇ycm2)] = − f i. (A6)

Matching the orders, we obtain the following.
O(ε−2). The first equations simply gives the independence

of the leading order from y (required by homogenisation):

cm0 = cm0(x, t ). (A7)

O(ε−1).
This equation can be solved posing

cm1 = χ1(y) : ∇xcm0(x, t ). (A8)

Introducing the first-order corrector χ1, which then satisfies

∇y · [Dm(I + ∇yχi ) − uχ1] = u, y ∈ �m

I + ∇yχ1 = 0, y ∈ ∂�i. (A9)

O(1). Matching the orders and applying Favre averaging
over �m, this results in an upscaled equation for cm0:

βm
∂cm0

∂t
+

Ni∑
i=1

Ṁi

= −∇x ·
[
Ucm0 −Dm

(
I +

∫
�m

∇yχi

Vm
dV

)
∇xcm0

]
,

(A10)

where Ṁi = ∫
∂�i

f i · nidS is the same as Eq. (14). Further-
more, U = ∫

�m
(u/Vm)dV .

This also allows us to obtain an expression for the effective
diffusivity, and to connect volume averaging and homogeni-
sation, as c̃m = cm0. This formulation can be seen as an
alternative to spatial filtering for the mobile region, although
it is possible to obtain the same correctors equations using the
volume averaging method (see, for example, Ref. [48]).
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