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1 Introduction

Many of the outstanding questions on values of L-functions associated to cusp forms and values
of their derivatives are subsumed under major conjectures of number theory such as those
of Birch–Swinnerton-Dyer, Deligne, Beilinson, Bloch–Kato etc. For example, an important
part of Beilinson’s conjecture reveals the algebraic nature of values of L-functions and their
derivatives in terms of periods.

In the interpretation of Kontsevich-Zagier ([15]), periods form a class P of numbers which
are arithmetically significant without necessarily being algebraic. Specifically, a complex num-
ber is called a period if its real and imaginary parts are absolutely convergent integrals of
rational functions over Q with a domain of integration defined by polynomial inequalities over
Q, e.g.

π =

∫∫
x2+y2≤1

dxdy and log(n) =

∫ n

1

1

x
dx (for n ∈ N).

With this terminology, we can state a part of Beilinson’s conjecture in a version given in [15].

Conjecture. ([15]) Let f be a weight k Hecke eigencuspform for SL2(Z), Lf (s) its L-function,
and m an integer. Then, if r is the order of vanishing of Lf (s) at s = m, we have

L(r)(m) ∈ P [1/π].

Although this conjecture is open in general, some cases have been settled, e.g. the case
r = 0, corresponding to values of L-functions (see [10, 5, 1] etc. or [15]).

However, even for r = 0, it turns out that other characterisations of the values of L-
functions are possible and important (besides their property of being periods). For instance,

i) Given that Lf (n) (n ∈ Z) are periods (up to a power of π), it is interesting to find
explicit expressions for values of L-functions and values of their derivatives as integrals,
in accordance with the above definition of periods. Methods to address this question for
specific L-functions have been developed in [3, 13] etc.

ii) In [2], non-critical values of L-functions (i.e. the case r = 0 and m ≥ k) have been
expressed in terms of multiple modular values. This connection emerged in a vastly
general algebro-geometric context which was driven by fundamental questions in the
theory of motives.
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iii) A characterisation of the field containing an arbitrary value of Lf (s) has been established
in [7]. It involves certain double Eisenstein series and applies even to s that are not
integers.

In this note we characterise ratios of non-critical values of L-functions based on a combination
of the methods of ii) and iii) together with a new element, namely shifted divisor sum Dirichlet
series. This Dirichlet series is given, in its domain of initial convergence, by

Dh(α, β; s) :=
∑
n∈N
n>h

σα(n)σβ(n− h)

ns
, α, β, s ∈ C, h ∈ N.

It has recently been studied, in a slightly different form, by M. Kıral who showed [8] that it
has meromorphic continuation to the entire C.

Our main result then is as follows.

Theorem 1.1. Let f be a normalized weight k cuspidal eigenform for Γ :=SL2(Z) and let
L∗f (s) be its completed L-function.

Denote by Dm the field generated over Q(πi) by

Dl(k +m− 2,−m− 2;n), (n = k − 2, . . . , k − 2 +m; l ∈ N), if m is odd, and by

Dl(k +m− 1,−m− 1;n), (n = k − 1, . . . , k − 1 +m; l ∈ N), if m is even.

Also, let Q(f) be the field generated by the Fourier coefficients of f.
Then, for each integer r ≥ 1 we have

L∗f (k + r)

L∗f (k + 1)
∈ DrD1Q(f) if r is odd and

L∗f (k + r)

L∗f (k + 2)
∈ DrD2Q(f) if r is even.

It should be stressed that the fields in the statement of the theorem are independent of the
cusp form f . It is not clear if a much more precise description of that field would be possible.
For example, in [9] it is actually proved that non-critical values cannot all belong to a finitely
generated Z-module. Other descriptions, e.g. in terms of finite transcedence degree, while not
disproved, do not seem to be anticipated by the main conjectures. It should also be noted
that we do not know yet how the fields Dr are exactly related to Zagier’s periods.

We were led to Theorem 1.1 by an approach based on comparing the kernels behind
characterisations ii) and iii) above. The former was a real-analytic kernel of L∗f (s)L

∗
f (w) given

by F. Brown for certain pairs of integers s, w ([2]). The latter was a kernel function, also
for L∗f (s)L

∗
f (w) but for all s, w ∈ C, which was holomorphic and had the form of a double

Eisenstein series E∗s ([7]).
This approach has several applications and here we present two of them: First, Prop. 2.3

gives a characterisation of the ratio of the “transcendental factors” in Manin’s Theorem [10],
whose nature has not been well understood. The second application is Theorem 1.1 which
answers a question left unanswered in [7], namely to interpret the Fourier coefficients of E∗s
(and, through them, the ratios of L-values) by recognisable quantities. Here we prove that
these quantities belong to the class of shifted divisor sum convolutions series. Elements of
this class are the focus of intense investigation by various methods because of their natural
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appearance in moment and other analytic problems. Shifted divisor sum convolutions, in
particular, are important for the binary additive divisor problem, for example.

It should be noted that, for the computation leading to Th. 1.1, the use of E∗s could be
avoided but we maintain it in the arrangement of the proof presented here because it allows
a more unified treatment of ratios of L-functions that works even in the cases not covered by
the construction of [2], e.g. in the setting of Prop. 2.3.

Acknowledgement. The author thanks the referee for a very careful reading of the
manuscript and for many useful comments and suggestions.

2 The field of L-values

Let f be a weight k cuspidal eigenform

f(z) =
∞∑
n=1

a(n)e2πinz

for SL2(Z) normalised so that a(1) = 1. Let Lf (s) denote its L-function and consider its
completed version

L∗f (s) = (2π)−sΓ(s)Lf (s).

We will now define the double Eisenstein series introduced in [7]. Set B = {( 1 n
0 1 ) ;n ∈ Z}.

Also set,
cγ := c and j(γ, z) = cz + d for ( ∗ ∗c d ) ∈ SL2(Z).

With the convention −π < arg(z) ≤ π define

Es(z, w) :=
∑

γ,δ∈B\Γ
cγδ−1>0

(cγδ−1)w−1

(
j(γ, z)

j(δ, z)

)−s
j(δ, z)−k. (1)

As shown in [7], this series can be thought of as a Rankin-Cohen bracket of not necessar-
ily integer index, applied to pair of Eisenstein series. We also define the completed double
Eisenstein series

E∗s(z, w) :=
Γ(s)Γ(k − s)Γ(k − w)ζ(1− w + s)ζ(1− w + k − s)

e−siπ/223−wπk+1−wΓ(k − 1)
Es(z, w). (2)

In [7] it is proved:

Theorem 2.1. The series E∗s(z, w) converges absolutely and uniformly on compact sets for
which 2 < Re(s) < k − 2 and Re(w) < min(Re(s) − 1, k − 1 − Re(s)). It has an analytic
continuation to all s, w ∈ C and, as a function of z, it is a weight k cusp form for Γ. We
have

〈E∗s(·, w), f〉 = L∗f (s)L
∗
f (w) (3)

for any normalised cuspidal eigenform f of weight k.
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With this theorem, we characterise the field of values of L∗f (s) using a method motivated by
Zagier’s technique ([17]). His technique is based on standard (positive integer index) Rankin-
Cohen brackets. We will state and prove a slightly more general version of the characterisation
given in [7].

For cusp forms f1, f2, . . . we will be denoting by Q(f1, f2, . . . ) the field obtained by ad-
joining to Q the Fourier coefficients of f1, f2 . . . .

Proposition 2.2. Let f be a normalised cuspidal eigenform f of weight k and let s0 ∈ C such
that L∗f (s0) 6= 0. Then, for all s, w ∈ C, with L∗f (s) 6= 0,

L∗f (w)

L∗f (s)
∈ Q(E∗s0(·, w),E∗s0(·, s), f).

Proof. With Th. 2.1 we have

L∗f (w)

L∗f (s)
=
L∗f (s0)L∗f (w)

L∗f (s0)L∗f (s)
=
〈E∗s0(·, s), f〉
〈E∗s0(·, w), f〉

=
〈E∗s0(·, s), f〉/〈f, f〉
〈E∗s0(·, w), f〉/〈f, f〉

.

By a general result (see, e.g. [14], Lemma 4), the numerator of the last fraction belongs to
Q(E∗s0(·, s), f). Likewise for the denominator. This implies the result.

We state a result which can be deduced from this proposition.
According to Manin’s Periods Theorem [10] there are ω+(f), ω−(f) ∈ R such that

L∗f (s)/ω
+(f) ∈ Q(f) and L∗f (w)/ω−(f) ∈ Q(f)

for all s, w with 1 ≤ s, w ≤ k−1 and s even, w odd. Although we know that ω±(f) are periods
(cf. Sect. 3.4 of [15]) and that (when appropriately normalised) their product is 〈f, f〉, little
is known about their quotient. However, Prop. 2.2 implies the following characterisation of
the field to which their quotient belongs.

Proposition 2.3. Let f be a normalised cuspidal eigenform of weight k for SL2(Z) such that
L∗f (k/2) 6= 0. (In particular, k ≡ 0 mod 4. ) Then

ω+(f)

ω−(f)
∈ Q(π, i,E∗k/2(·, 4), f).

Proof. Set w = 4, s = 3 and s0 = k/2 in Prop. 2.2. Since L∗f (4)/ω+(f), L∗f (3)/ω−(f) ∈ Q(f),
we deduce

ω+(f)

ω−(f)
∈ Q(E∗k/2(·, 3),E∗k/2(·, 4), f).

With Prop. 2.4 of [7],
E∗k/2(·, 3) = E∗( k2−2)+2

(·, 2 + 1)

equals (up to an factor in Q(π, i)) the Rankin-Cohen bracket

[Ek/2, Ek/2]2 :=
2∑
r=0

(−1)r
(
k
2

+ 1

2− r

)(
k
2

+ 1

r

)
E

(r)
k/2E

(2−r)
k/2
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where

E2m(z) =
∑

γ∈Γ∞\Γ

j(γ, z)−2m = −B2m

4m
+
∞∑
n=1

σ2m−1(n)e2πinz.

From the general theory of Rankin-Cohen brackets, [Ek/2, Ek/2]2 is a cusp from, and it is clear
that it has rational Fourier coefficients (see, e.g. Section 5 of [17])

Remark. In [16] (5.13), it is shown that, in a different setting (odd weight k and higher
level of the group), this quotient does have a simple explicit expression.

3 Brown’s kernel

We maintain the notation of the previous section. In Section 9 of [2], F. Brown gives a kernel
for a certain product of values of Lf (s). We summarise the part of the construction we will
need.

Let i, j ≥ 0 be integers and let s be such that i+ j + 2 Re(s) > 2. For z = x+ iy set

Esi,j(z) =
1

2

∑
γ∈B\Γ

ys

j(γ, z)i+sj(γ, z̄)j+s
.

This series converges absolutely in the indicated region and satisfies

Esi,j(γz) = j(γ, z)ij(γ, z̄)jEsi,j(z) for all γ ∈ Γ and z ∈ H. (4)

It further has a meromorphic continuation to the entire complex plane since

Esi,j(z) = y−
i+j
2 Ei−j(s+

i+ j

2
)(z) (5)

where Em(s)(z) stands for the weight m Eisenstein series

Em(s)(z) =
∑

γ∈Γ∞\Γ

Im(γz)s
(
|j(γ, z)|
j(γ, z)

)m
.

Here Γ∞ is the stabiliser of ∞.
For m ∈ Z+ let 〈·, ·〉m be the pairing on real-analytic functions whose product vanishes

exponentially at ∞ which is given by the formula of the Petersson scalar product in weight
m:

〈g, h〉m =

∫
F

g(z)h(z)ym
dxdy

y2

where F is a fundamental domain of SL2(Z). Notice that strictly speaking this is not the
standard Petersson scalar product because we do not require g, h to be Γ-invariant.

Corollary 9.14 of [2] implies:
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Theorem 3.1. [2] Let r ≥ 1 be an integer and let a, b ≥ 2 be integers such that

k = 2a+ 2b− 2r − 2. (6)

Then for each normalised cuspidal eigenform f of weight k and for each s ∈ C , we have

π2a−s−k−r

21−2a
Γ(s+ k + r − 2a)ζ(2s+ k + 2r − 2a)〈E2aEsk+r−2a,r, f〉k+r

= L∗f (s+ k + r − 1)L∗f (s+ k + r − 2a). (7)

Using this construction from [2], we can now combine it with the kernel E∗ of [7] to derive
a key relation between Petersson scalar products.

Specifically, Theorem 3.1 combined with Theorem 2.1 implies

Proposition 3.2. For each s ∈ C and for all cusp forms of weight k = 2a + 2b − 2r − 2
(a, b, r ∈ N and a, b ≥ 2) we have

π2a−s−k−r

21−2a
Γ(s+ k + r − 2a)ζ(2s+ k + 2r − 2a)〈E2aEsk+r−2a,r, f〉k+r

= 〈E∗s+k+r−1(z, s+ k + r − 2a), f〉k. (8)

This means that E∗s+k+r−1(z, s+ k + r − 2a) is a holomorphic projection of

π2a−s−k−r

21−2a
Γ(s+ k + r − 2a)ζ(2s+ k + 2r − 2a)E2aEsk+r−2a,r

in the precise sense of equation (8).

4 Fourier coefficients

In this section we will exploit the fact that both Th. 2.1 and Th. 3.1 give a kernel of
L∗f (s)L

∗
f (w) in order to compute the Fourier coefficients of E∗s+k+r−1(z, s + k + r − 2a). This

will then allow us to apply Prop. 2.2 to deduce Theorem 1.1.
Firstly, by the formula for Fourier coefficients of a cusp form in terms of inner products

against Poincaré series, (8) implies that

the l-th Fourier coefficient of E∗s+k+r−1(z, s+ k + r − 2a) =

π2a−s−k−r(4πl)k−1

21−2aΓ(k − 1)
Γ(s+ k + r − 2a)ζ(2s+ k + 2r − 2a)〈E2aEsk+r−2a,r, Pl〉k+r (9)

where

Pl(z) =
∑

γ∈Γ∞\Γ

e2πilγz

j(γ, z)k

is the l-th Poincaré series of weight k.
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Therefore, the determination of the field of L-values appearing in Theorem 2.2 reduces to
the computation of the inner products

〈E2aEsk+r−2a,r, Pl〉k+r. (10)

We will compute this integral using the Rankin-Selberg method. However, we have to modify
slightly the method because otherwise, along the way we obtain a series which cannot be
interchaged with integration. To overcome this difficulty we, essentially, use the “Hecke trick”.
Let

P t
l (z) :=

∑
γ∈Γ∞\Γ

Im(γz)t̄
e2πilγz

j(γ, z)k

is the l-th non-holomorphic Poincaré series of weight k. It is clear that

〈E2aEsk+r−2a,r, Pl〉k+r = 〈E2aEsk+r−2a,r, P
t
l 〉k+r|t=0. (11)

Let Re(t)� 0. With (4) we now have

〈E2aEsk+r−2a,r, P
t
l 〉k+r =

∫
F

∑
γ∈Γ∞\Γ

E2a(γz)

j(γ, z)2a

Esk+r−2a,r(γz)

j(γ, z)k+r−2aj(γ, z̄)r
Im(γz)t

e2πilγz

j(γ, z̄)k
yk+rdµz

=

∫
F

∑
γ∈Γ∞\Γ

E2a(γz)Esk+r−2a,r(γz) Im(γz)t+k+re2πilγzdµγz. (12)

Since E2aEsk+r−2a,r has polynomial growth at the cusps, we have uniform convergence when
Re t is large enough and we can complete the unfolding as usual. Then the last integral
becomes ∫ ∞

0

∫ 1

0

E2a(z)Esk+r−2a,r(z)yt+k+r−2e−2πlye−2πilxdxdy. (13)

To complete the computation we need the Fourier expansion of the completed version of
Em(s)(z) as given in Prop. 11.2.16 of [4] (or Th. 3.1 of [6]), for integer s with s+r−a+k/2 > 0
which will be the case that interests us. It gives

Esk+r−2a,r(z) = ya−r−
k
2Ek−2a(s+ r − a+

k

2
)(z) =

πs+
k
2

+r−aΓ(s+
k

2
+ r − a+

k − 2a

2
)−1ζ(2s+ k − 2a− 1 + 2r)−1

{
ya−r−

k
2 a0(y)+

∑
n≥1

σ2s+k+2r−2a−1(n)

ns+r−a+ k
2

 ∑
a− k

2
≤j≤s−1+ k

2
+r−a

α+
j (4πny)−j

 e−2πnyya−r−
k
2

 e2πinx

+
∑
n≤−1

σ2s+k+2r−2a−1(|n|)
|n|s+r−a+ k

2

 ∑
k
2
−a≤j≤s−1+ k

2
+r−a

α−j (4π|n|y)−j

 e2πnyya−r−
k
2

 e2πinx

}
. (14)

Here

a0(y) =

∣∣∣∣k2 − a
∣∣∣∣!((s+ r − a+ k

2
− 1 +

∣∣k
2
− a
∣∣∣∣k

2
− a
∣∣

)
Λ(2s+ 2r − 2a+ k)ys+r−a+ k

2 +

7



(∣∣k
2
− a
∣∣− s− r + a− k

2∣∣k
2
− a
∣∣

)
Λ(2− 2s− 2r + 2a− k)y1−s−r+a− k

2

)
,

where Λ(s) := π−s/2Γ(s/2)ζ(s) and

α±j := (−1)j(j +
|k − 2a|

2
)!

(
s+ r − a+ k

2
− 1 + |k−2a|

2

j + |k−2a|
2

)(±k−2a
2
− s− r + a− k

2

j ± k−2a
2

)
.

Here
(
a
b

)
with a < 0 are defined in accordance with the convention that, if a < 0 and j ≥ 0,

then
(
a+j
j

)
= (a+ j)(a+ j − 1) . . . (a+ 1)/j!.

Therefore the coefficient of e2πilx (l > 0) in the Fourier expansion of E2a(z)Esk+r−2a,r(z) is∑
n≤l

bn(y)σ2a−1(l − n)e−2π(l−n)y

where, if n 6= 0,

bn(y) :=
σ2s+k+2r−2a−1(|n|)
|n|s+r−a+ k

2

 ∑
sgn(n)(a− k

2
)≤j≤s−1+ k

2
+r−a

α
sgn(n)
j (4π|n|y)−j

 e−2π|n|yya−r−
k
2 and

b0(y) := ya−r−k/2a0(y).

Also, for convenience, we set σ2a−1(0) := −B2a/(4a).
Therefore, with (13) we have that for Re t� 0,

〈E2aEsk+r−2a,r, P
t
l 〉k+r =

∫ ∞
0

e−2πly

(∑
n≤l

bn(y)σ2a−1(l − n)e−2π(l−n)y

)
yt+k+r−2dy. (15)

Since the finitely many terms corresponding to bn(y) with n ≥ 0 can be directly evaluated at
t = 0 to give rational linear combinations of powers of π and i, we will focus on the infinitely
many terms indexed by n < 0.∫ ∞

0

e−2πly

(∑
n<0

bn(y)σ2a−1(l − n)e−2π(l−n)y

)
yt+k+r−2dy

=
∑

k
2
−a≤j≤s−1+ k

2
+r−a

α−j (4π)−j
∑
n<0

σ2s+k+2r−2a−1(|n|)σ2a−1(l − n)

|n|s+r−a+ k
2

+j

∫ ∞
0

e−4π(l−n)yy
k
2

+a−j−1+tdy

y

=
∑

k
2
−a≤j≤s−1+ k

2
+r−a

α−j (4π)1− k
2
−a−tΓ(

k

2
+ a− j − 1 + t)

∑
n>0

σ2s+k+2r−2a−1(n)σ2a−1(l + n)

ns+r−a+ k
2

+j(n+ l)
k
2

+a−j−1+t

(16)

Since j ≤ s− 1 + k
2

+ r− a we can expand binomially the term ((n+ l)− l)s+ k
2

+r−a−1−j. This,
together with the trivial identity σw(n) = nwσ−w(n), imply that the last sum of (16) becomes

∑
n>0

σ−2s−k−2r+2a+1(n)ns+
k
2

+r−a−1−jσ2a−1(l + n)

(n+ l)
k
2

+a−j−1+t
=

s+ k
2

+r−a−1−j∑
µ=0

(
s+ k

2
+ r − a− 1− j

µ

)
×

(−l)s+
k
2

+r−a−1−j−µDl(2a− 1,−2s− k − 2r + 2a+ 1;
k

2
+ a− j − 1 + t− µ) (17)
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where

Dl(α, β;w) :=
∑
n>l

σα(n)σβ(n− l)
nw

.

In view of (11), we aim to investigate the series in (17) at t = 0. We are mainly interested
in the case that least one of s + k + r − 1 and s + k + r − 2a is outside the critical strip.
In this case, the series Dl appearing in (17) are not in the initial region of convergence when
t = 0. However, this convolution series has been studied by M. Kıral in [8] and has given the
analytic continuation. Here we do not need the full analytic continuation established in [8]
but rather a partial extension. Since [8] has not appeared in print yet, we give here a proof
of the part of the analytic continuation we need for our purposes.

For r odd, set

s = 1, a =
k + r − 1

2
.

These values of s and a satisfy the conditions s+r−a+k/2 > 0 and a, b = (k−2a+2r+2)/2 ≥ 2
that are required for our construction. Further, with these values of s, a, the parameter j in
(16) ranges between (1 − r)/2 and (1 + r)/2. For each of these values of j, the parameter µ
in (17) ranges between 0 and 1+r

2
− j and thus j + µ ranges between (1− r)/2 and (1 + r)/2.

Therefore, we need to show all shifted convolutions

Dl(k + r − 2,−r − 2; ν + t); (ν = k − 2, . . . , k − 2 + r)

appearing in (17) have an analytic continuation in a neighbourhood of t = 0.
To achieve that, we first prove the following lemma, which is a slight generalisation of

Prop. 6 of [8].

Lemma 4.1. Let l ∈ N0, α ∈ Z and β < −1. Then for each w with Re(w)� 0, we have

Dl(α, β;w) = ζ(1− β)
∞∑
m=1

mβ−1
∑

xmodm
(x,m)=1

e
−2πixl
m El(w, α;

x

m
) (18)

where El(s, α; x
m

) the (truncated) Estermann zeta function, defined, for Re(s)� 0, by

El(s, α;
x

m
) :=

∑
n>l

σα(n)e2πixn
m

ns
s, α ∈ C, x/m ∈ Q.

Proof. The series Dl(α, β;w) is absolutely convergent for Re(w)� 0. We apply the Ramanu-
jan identity

σβ(n) = ζ(1− β)
∞∑
m=1

mβ−1
∑

xmodm
(x,m)=1

e
2πixn
m

with n− l instead of n to obtain:

Dl(α, β;w) =
∑
n>l

σα(n)

nw
ζ(1− β)

∞∑
m=1

mβ−1
∑

xmodm
(x,m)=1

e
2πix(n−l)

m

= ζ(1− β)
∞∑
m=1

mβ−1
∑

xmodm
(x,m)=1

e
−2πixl
m

∑
n>l

σα(n)e
2πixn
m

nw
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as asserted.

This lemma gives the meromorphic continuation of Dl(k + r − 2,−r − 2; ν + t) through
the meromorphic continuation of the (full) Estermann zeta function E(s, α; x

m
) := E0(s, α; x

m
).

Specifically, Lemma 18, in our setting, gives

Dl(k + r − 2,−r − 2; ν + t) = ζ(3 + r)
∞∑
m=1

m−3−r
∑

xmodm
(x,m)=1

e
−2πixl
m El(ν + t, k + r − 2;

x

m
). (19)

Now, each E(ν + t, k + r − 2; x
m

) can be expressed in terms of Hurwitz zeta functions ζ(s, x)
as follows, for Re(w)� 0:

E(ν + t, k + r − 2;
x

m
) =

∑
n>0

(
∑

d|n d
k+r−2)e2πixn

m

nν+t
=
∑
d,n>0

e2πixdn
m

dν+t−k−r+2nν+t

=
∑

d1,n1>0

m∑
u,v=1

e2πi
x(md1+u)(mn1+v)

m

(md1 + u)ν+t−k−r+2(mn1 + v)ν+t

= mk+r−2ν−2t−2

m∑
u,v=1

e2πixuv
m ζ(−k − r + 2 + ν + t,

u

m
)ζ(ν + t,

v

m
).

(20)

It is well-known that ζ(s, x) has a meromorphic continuation to C, with only a simple pole at
s = 1. Therefore the RHS is analytic in a neighbourhood of t = 0, since ν ∈ {k − 2, . . . , k −
2 + r}, thus giving the analytic continuation the LHS in this neighbourhood. Further, when
x ∈ (0, 1), ζ(ν + t, x) is bounded by a constant independent of x, since ν + Re(t) > 1. By the
functional equation of ζ(s, x) (or, in the case ν = k+ r−2, the Taylor expansion of ζ(s, x+ 1)
at x = 0), we deduce that, for t in a small neighbourhood of 0

ζ(−k − r + 2 + ν + t,
u

m
)�k,r m

t + 1

Therefore, with (20),

E(ν + t, k + r − 2;
x

m
)�k,r m

k+r−2ν−t +mk+r−2ν−2t.

Applying this bound to the series of the RHS of (19), we see that each term is holomorphic
in a neighbourhood of t = 0 and bounded by mk−2ν−t−1 +mk−2ν−2t−1. Therefore, the function
Dl(k + r − 2,−r − 2; ν + t) is holomorphic at t = 0 for all ν ∈ {k − 2, . . . , k − 2 + r}.

For r even, set

s = 1, a =
k + r

2
.

In this case, we need to show that the meromorphic continuation of Dl(k+r−1,−r−1; ν+ t)
is holomorphic at t = 0 for all ν ∈ {k − 1, . . . , k − 1 + r}. We do that by working in exactly
the same way as above, employing Lemma 18 and the following analogue of (20):

E(ν + t, k + r − 1;
x

m
) = mk+r−2ν−2t−1

m∑
u,v=1

e2πixuv
m ζ(−k − r + 1 + ν + t,

u

m
)ζ(ν + t,

v

m
).
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Proof of Theorem 1.1: As mentioned above, the terms corresponding to non-negative n in
the sum in (15) lead to elements of Q(π, i).

Let r be odd. What we just proved, together with (9) then imply that the l-th Fourier
coefficient of E∗k+r(z, 2) belongs to the field

Dr = Q(π, i,Dl(k + r − 2,−r − 2; k − 2), . . . , Dl(k + r − 2,−r − 2; k − 2 + r))

obtained by adjoining to Q(π, i) the values of the shifted convolution Dl(k+ r− 2,−r− 2;n)
at n = k − 2, . . . k − 2 + r.

On the other hand, (3) implies that

E∗k+r(z, 2) = E∗2(z, k + r).

Therefore, with Proposition 2.2 for s0 = 2 and odd r′ ≥ 1

L∗f (k + r)

L∗f (k + r′)
∈ DrDr′Q(f)

Setting r′ = 1, we deduce the first case of Theorem 1.1.
Let r be even. In the same way as above we find that the l-th Fourier coefficient of

E∗k+r(z, 1) = E∗1(z, k + r) belongs to the field

Q(π, i,Dl(k+ r− 1,−r− 1; k− 1), Dl(k+ r− 1,−r− 1; k), . . . , Dl(k+ r− 1,−r− 1; k− 1 + r))

Applying Proposition 2.2 with s0 = 1, we deduce, for even r′ > 1,

L∗f (k + r)

L∗f (k + r′)
∈ DrDr′Q(f)

whereDr denotes the field obtained by adjoining to Q(π, i) the values of the shifted convolution
Dl(k + r − 1,−r − 1;n) at n = k − 1, . . . k − 1 + r. Setting r′ = 2, we deduce the second case
of Theorem 1.1.
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