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1 Introduction

Many of the outstanding questions on values of L-functions associated to cusp forms and values
of their derivatives are subsumed under major conjectures of number theory such as those
of Birch—Swinnerton-Dyer, Deligne, Beilinson, Bloch—Kato etc. For example, an important
part of Beilinson’s conjecture reveals the algebraic nature of values of L-functions and their
derivatives in terms of periods.

In the interpretation of Kontsevich-Zagier ([15]), periods form a class P of numbers which
are arithmetically significant without necessarily being algebraic. Specifically, a complex num-
ber is called a period if its real and imaginary parts are absolutely convergent integrals of
rational functions over Q with a domain of integration defined by polynomial inequalities over

Q, e.g. -
T = // dxdy and log(n) :/ —dz (for n € N).
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With this terminology, we can state a part of Beilinson’s conjecture in a version given in [15].

Conjecture. ([15]) Let f be a weight k Hecke eigencuspform for SLy(Z), L (s) its L-function,
and m an integer. Then, if v is the order of vanishing of L;(s) at s =m, we have

LY (m) € P[1/x].

Although this conjecture is open in general, some cases have been settled, e.g. the case
r = 0, corresponding to values of L-functions (see [10, 5, 1] etc. or [15]).

However, even for » = 0, it turns out that other characterisations of the values of L-
functions are possible and important (besides their property of being periods). For instance,

i) Given that Ls(n) (n € Z) are periods (up to a power of ), it is interesting to find
explicit expressions for values of L-functions and values of their derivatives as integrals,
in accordance with the above definition of periods. Methods to address this question for
specific L-functions have been developed in [3, 13] etc.

ii) In [2], non-critical values of L-functions (i.e. the case r = 0 and m > k) have been
expressed in terms of multiple modular values. This connection emerged in a vastly
general algebro-geometric context which was driven by fundamental questions in the
theory of motives.



iii) A characterisation of the field containing an arbitrary value of L;(s) has been established
in [7]. It involves certain double Eisenstein series and applies even to s that are not
integers.

In this note we characterise ratios of non-critical values of L-functions based on a combination
of the methods of ii) and iii) together with a new element, namely shifted divisor sum Dirichlet
series. This Dirichlet series is given, in its domain of initial convergence, by

a(n)og(n —h)

Dh<aa 6; S) = Z

neN
n>h

, a,B,s € C,h e N.

nS

It has recently been studied, in a slightly different form, by M. Kiral who showed [8] that it
has meromorphic continuation to the entire C.
Our main result then is as follows.

Theorem 1.1. Let f be a normalized weight k cuspidal eigenform for T' :=SLy(Z) and let
L3 (s) be its completed L-function.
Denote by D,, the field generated over Q(mi) by

Di(k+m—2,—m—2;n), (n=k—2,....,k—2+m;l €N), ifm is odd, and by

Di(k+m—-1,—m—1;n), (n=k—1,....k—1+m;l €N), ifm is even.
Also, let Q(f) be the field generated by the Fourier coefficients of f.

Then, for each integer r > 1 we have

Li(k + ) S Li(k +r)
ACESY € D,D,Q(f) if r is odd and Lk +2)

It should be stressed that the fields in the statement of the theorem are independent of the
cusp form f. It is not clear if a much more precise description of that field would be possible.
For example, in [9] it is actually proved that non-critical values cannot all belong to a finitely
generated Z-module. Other descriptions, e.g. in terms of finite transcedence degree, while not
disproved, do not seem to be anticipated by the main conjectures. It should also be noted
that we do not know yet how the fields D, are exactly related to Zagier’s periods.

We were led to Theorem 1.1 by an approach based on comparing the kernels behind
characterisations ii) and iii) above. The former was a real-analytic kernel of L} (s)L}(w) given
by F. Brown for certain pairs of integers s,w ([2]). The latter was a kernel function, also
for L(s)L}(w) but for all s,w € C, which was holomorphic and had the form of a double
Eisenstein series E* ([7]).

This approach has several applications and here we present two of them: First, Prop. 2.3
gives a characterisation of the ratio of the “transcendental factors” in Manin’s Theorem [10],
whose nature has not been well understood. The second application is Theorem 1.1 which
answers a question left unanswered in [7], namely to interpret the Fourier coefficients of E*
(and, through them, the ratios of L-values) by recognisable quantities. Here we prove that
these quantities belong to the class of shifted divisor sum convolutions series. Elements of
this class are the focus of intense investigation by various methods because of their natural

€ D, DQ(f) if r is even.

2



appearance in moment and other analytic problems. Shifted divisor sum convolutions, in
particular, are important for the binary additive divisor problem, for example.

It should be noted that, for the computation leading to Th. 1.1, the use of E} could be
avoided but we maintain it in the arrangement of the proof presented here because it allows
a more unified treatment of ratios of L-functions that works even in the cases not covered by
the construction of [2], e.g. in the setting of Prop. 2.3.

Acknowledgement. The author thanks the referee for a very careful reading of the
manuscript and for many useful comments and suggestions.

2 The field of L-values

Let f be a weight k£ cuspidal eigenform

1) = 3 alnye:

n=1

for SLy(Z) normalised so that a(l) = 1. Let Ls(s) denote its L-function and consider its
completed version

Li(s) = (2m)~"T(s) Ls(s)-

We will now define the double Eisenstein series introduced in [7]. Set B = {({%);n € Z}.
Also set,
cy:=c and j(v,2) =cz+d  for (;}) € SLy(Z).

With the convention —7 < arg(z) < 7 define

Bew) = 3 (oo (222 e )

v,0€ B\T"
C,y(;—l >0

As shown in [7], this series can be thought of as a Rankin-Cohen bracket of not necessar-
ily integer index, applied to pair of Eisenstein series. We also define the completed double
Eisenstein series

L(s)I'(k—s)I'(k—w)((1—w+s)((1 —w+k—s)
e—sim/223—wrhtl—w(k — 1)

E:(z,w) := E;(z,w). (2)

In [7] it is proved:

Theorem 2.1. The series EX(z,w) converges absolutely and uniformly on compact sets for
which 2 < Re(s) < k — 2 and Re(w) < min(Re(s) — 1,k — 1 — Re(s)). It has an analytic
continuation to all s,w € C and, as a function of z, it is a weight k cusp form for I'. We
have

(ES(,w), f) = Li(s) L (w) (3)

for any normalised cuspidal eigenform f of weight k.



With this theorem, we characterise the field of values of L}(s) using a method motivated by
Zagier’s technique ([17]). His technique is based on standard (positive integer index) Rankin-
Cohen brackets. We will state and prove a slightly more general version of the characterisation
given in [7].

For cusp forms fi, fa,... we will be denoting by Q(fi, fo,...) the field obtained by ad-
joining to Q the Fourier coefficients of fi, fo. ...

Proposition 2.2. Let f be a normalised cuspidal eigenform f of weight k and let sq € C such
that L} (so) # 0. Then, for all s,w € C, with L}(s) # 0,

Lj(w)
L3(s)
Proof. With Th. 2.1 we have
Ly(w) _ Li(so)Lj(w) _ (Bf (o), ) _ (B (,8), N/ {F f)
Li(s)  Li(so)L3(s)  (Eg,(w), [y (EL(w), )], f)

By a general result (see, e.g. [14], Lemma 4), the numerator of the last fraction belongs to
Q(E;, (-,s), f). Likewise for the denominator. This implies the result. ]

€ Q(EZO(',M),EZO(', 8)7 f)

We state a result which can be deduced from this proposition.
According to Manin’s Periods Theorem [10] there are w™(f),w™(f) € R such that

Li(s)/w™(f) €Q(f)  and Li(w)/w™(f) € Q(f)

for all s,w with 1 < s,w < k—1 and s even, w odd. Although we know that w*(f) are periods
(cf. Sect. 3.4 of [15]) and that (when appropriately normalised) their product is (f, f), little
is known about their quotient. However, Prop. 2.2 implies the following characterisation of
the field to which their quotient belongs.

Proposition 2.3. Let f be a normalised cuspidal eigenform of weight k for SLy(Z) such that
L3(k/2) # 0. (In particular, k = 0mod 4. ) Then
w*(f)
w=(f)

Proof. Set w =4, s =3 and sg = k/2 in Prop. 2.2. Since L}(4)/w™(f), L}(3)/w™(f) € Q(f),
we deduce

S Q(ﬂ-w i, EZ/Q('? 4)7 f)

o € QUEL () Bl ) )
With Prop. 2.4 of [7],
It/2<'7 3) = E?§,2)+2('7 2+ 1)

equals (up to an factor in Q(7,7)) the Rankin-Cohen bracket

2 K k
r{ 9 +1 5+ 1 T 2—r
[Evj2s Brpolo = (—1) (; _ 7,) (2 >El(g/)2Eli/2 )

r
r=0
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where
BQm

4dm

Eyn(2) = ) j(7,2)7" =~

+ Z O_Qm_l(n)e%rinz‘
YEL\T n=1
From the general theory of Rankin-Cohen brackets, [Ej /2, E)/2)2 is a cusp from, and it is clear
that it has rational Fourier coefficients (see, e.g. Section 5 of [17])

O

Remark. In [16] (5.13), it is shown that, in a different setting (odd weight k& and higher
level of the group), this quotient does have a simple explicit expression.

3 Brown’s kernel

We maintain the notation of the previous section. In Section 9 of [2], F. Brown gives a kernel
for a certain product of values of L¢(s). We summarise the part of the construction we will
need.

Let 7,5 > 0 be integers and let s be such that i + j + 2Re(s) > 2. For z = x + iy set

S

1 Y
S(z) == E , -
[2¥} 1+s +s
2 a0 2)tei(y, 2y

This series converges absolutely in the indicated region and satisfies
Ei(vz) = J(7,2)' (7, 2) E5(2) for all v € I" and z € §. (4)

It further has a meromorphic continuation to the entire complex plane since

En(e)() = 3 ey (M)

j(7,2)

Here I' is the stabiliser of oco.

For m € Z, let (-,-),, be the pairing on real-analytic functions whose product vanishes
exponentially at oo which is given by the formula of the Petersson scalar product in weight
m:

B NI m drdy
(9, By = /S oS

where § is a fundamental domain of SLy(Z). Notice that strictly speaking this is not the
standard Petersson scalar product because we do not require g, h to be ['-invariant.
Corollary 9.14 of [2] implies:




Theorem 3.1. [2] Let r > 1 be an integer and let a,b > 2 be integers such that
k=2a+2b—2r—2. (6)
Then for each normalised cuspidal eigenform f of weight k and for each s € C , we have

7T2a—s—l<:—r

WF(S + k41 —2a)C(25 + k +2r —2a)(E2& 90 [ktr

=Li(s+k+r—1)Li(s+k+r—2a). (7)
Using this construction from [2], we can now combine it with the kernel E* of [7] to derive

a key relation between Petersson scalar products.
Specifically, Theorem 3.1 combined with Theorem 2.1 implies

Proposition 3.2. For each s € C and for all cusp forms of weight k = 2a 4+ 2b — 2r — 2
(a,b,r € N and a,b > 2) we have
7T2a—s—k—r

WF(S +k+r—2a)C(2s +k+2r —2a) (B2 oqr [rir

= (B (z s+ k+r—2a), fli. (8)
This means that EY,, ,._,(z,5 +k +r — 2a) is a holomorphic projection of

7T2a—s—k—r

WF(S +k+r—2a)C(2s + k +2r — 2a)E2&p o4,

in the precise sense of equation (8).

4 Fourier coefficients

In this section we will exploit the fact that both Th. 2.1 and Th. 3.1 give a kernel of
L3(s)L;(w) in order to compute the Fourier coefficients of EY, ;.. (2,5 +k +r —2a). This
will then allow us to apply Prop. 2.2 to deduce Theorem 1.1.

Firstly, by the formula for Fourier coefficients of a cusp form in terms of inner products
against Poincaré series, (8) implies that

the [-th Fourier coefficient of E}_ ;.. (2,5 +k+7 —2a) =
71_2(17371677"(471_”1671
2172a(k — 1)

D(s+k+1—2a)C(25 +k +2r — 2a)(E2&; o0 P)kr (9)

where
2milyz

P(z)= Y -

J(y, 2)*

is the [-th Poincaré series of weight k.



Therefore, the determination of the field of L-values appearing in Theorem 2.2 reduces to
the computation of the inner products

<E2agl§+r—2a,r7 ‘Pl>k+1"' (10)

We will compute this integral using the Rankin-Selberg method. However, we have to modify
slightly the method because otherwise, along the way we obtain a series which cannot be

interchaged with integration. To overcome this difficulty we, essentially, use the “Hecke trick”.
Let

elewz

Fi(z)= 3 Im(y2)-

et gy, 2)F

is the [-th non-holomorphic Poincaré series of weight k. It is clear that

<E2agz+r—2a,r7 Pl>k’+1” = <E2aglj+7‘—2a,r7 13lt>k’+7”’t=0' (11)
Let Re(t) > 0. With (4) we now have

E2a 72 gli—i—r 2a,r (’YZ) ; e2milyz
<E2a€ r—2a, 7‘7 k T / - Im(yz) y d,u
k+r—2 + ’yegz\r fy Z)kJrT 2aj (fy’ Z)T ](7, )k

/ > En(12)E 00, (72) Im(y2) T dpy 2. (12)

’yEFoo\F

Since F3,&f . o,, has polynomial growth at the cusps, we have uniform convergence when
Ret is large enough and we can complete the unfolding as usual. Then the last integral
becomes

o 1
/ / EQQ(Z)S,;QJFT,%,T(z)yt+k+T_26_27rlye_%ilxdxdy. (13)
0 0

To complete the computation we need the Fourier expansion of the completed version of
E..(s)(z) as given in Prop. 11.2.16 of [4] (or Th. 3.1 of [6]), for integer s with s+r—a+k/2 > 0
which will be the case that interests us. It gives

E)(Z) —

gliJrera,r(z) - ya_r_gEk—Qll(S Tr—a+ 2

k—2a

k
7TS+§+T_GP(S Ty tr—at Y25 +k—2a—1+ 27‘)_1{y“_T_§ao(y)+
028+k+2r—2a—1<n) + —j —2mny, a—r—L 2minx
Z ns—i—r—a—&-g Z aj (47Tny) € y ’ €
n>1 a—ggjgs—l—‘rg—i—r—a
025+k+2r72a71(‘n‘) — —j 2rny, a—r—E 2minx
+3 ot > o (4mlnly) ™ | Ty T | TG (14)
n<—1 b a<j<s—1+E+r—a
Here
k s—l—r—a+§—1+|§—a| tr—atk
ag(y) = 5—@'( @—a‘ A2s+2r —2a+ k)y*" 24
2




—a _5—7”—1—(1—5
( | | )A(Q — 25 —2r +2a — k’)yl_s—r+a_§>’
—a
2

where A(s) := 77%/?T'(s/2)((s) and

|k:—2a|)'(s—|—r—a_|_§_1+ |k—22a|)<ik—22a_s_r+a_§)
2 g+ g |
Here (Z) with a < 0 are defined in accordance with the convention that, if a < 0 and j > 0,
then (“*7) = (a+j)(a+j—1)...(a+ 1)/l

Therefore the coefficient of €™ (I > 0) in the Fourier expansion of Eyq(2)Ef,, _o,,(2) is
Z b O'Qa 1 l — n)6727r(l7n)y

n<l

oz?c = (—1)7(j +

where, if n # 0,

N 025+k+27’_2‘1_1(|n|) sgn(n) —J —2n|nly, a—r—&
bu(y) := |n|s+r—a+§ Z S (Arinly) e Yy > and
sgn(n)(a—f)<g<s 1—|— +r—a

bo(y) =y~ 2ao(y).
Also, for convenience, we set g9,_1(0) := —Ba,/(4a).
Therefore, with (13) we have that for Ret > 0,

(E2a€ir—20, P )it = / e (Zb )o2a-1(l —n)e _QW(l_n)y> y T2y, (15)

n<l

Since the finitely many terms corresponding to b,(y) with n > 0 can be directly evaluated at
t = 0 to give rational linear combinations of powers of 7 and i, we will focus on the infinitely
many terms indexed by n < 0.

/ —27rly (Z b 0-211 1 l _ n)e—ZTr(l—n)y) yt+k+7‘—2dy

n<0
S r—2a— a— [ — > — _ ki d
_ Z (47T) 202 +h+2r—2a-1(|1]) 0201 n)/ o—dm(l n)yy§+a -1+t 4Y
b gcicoiik [nftr=eta s 0 y
5—a<j<s—l+g+r—a n<0
. _ 1—k _q—t E R 023+k+2r72a71(n>02a71<l + n)
= Z Q; (4m) 2 F(2 ta—j—1+t) Z s+r—a+§+j(n + l)§+a—j—1+t

gfa§j§371+§+rfa n>0 "

(16)

Since j < s—1+ £+ 7 —a we can expand binomially the term ((n+1) — [)s+3+r—a=1=j Thjs,

together with the trivial identity o, (n) = n"o_,(n), imply that the last sum of (16) becomes
. s+E4r—a—1—j .

Z J_QS—k;—2r+2a+1(n)n”%*’”*a*l’%za—l(l +n) 7 Z ! (s +Eyr—a—-1- j) y

et (n+ l)§+a—j—1+t L

pu=0

. k
(=l)statr—ol=i=np (2q — 1, —2s — k — 2r + 2a + 1; S ta—ij- L+t—p) (17)



where

a(n)og(n —1)
Do, B;w) := 7 .
(0. 0) = 3 P
In view of (11), we aim to investigate the series in (17) at ¢ = 0. We are mainly interested
in the case that least one of s + k +r — 1 and s + k + r — 2a is outside the critical strip.
In this case, the series D; appearing in (17) are not in the initial region of convergence when
t = 0. However, this convolution series has been studied by M. Kiral in [8] and has given the
analytic continuation. Here we do not need the full analytic continuation established in [§]
but rather a partial extension. Since [8] has not appeared in print yet, we give here a proof
of the part of the analytic continuation we need for our purposes.
For r odd, set
_k+r—1
= 5 .
These values of s and a satisfy the conditions s+r—a+k/2 > 0 and a,b = (k—2a+2r+2)/2 > 2
that are required for our construction. Further, with these values of s, a, the parameter j in
(16) ranges between (1 —r)/2 and (14 r)/2. For each of these values of j, the parameter
in (17) ranges between 0 and £~ — j and thus j + p ranges between (1 —r)/2 and (1 +1)/2.
Therefore, we need to show all shifted convolutions

Di(k+r—2,—r—2;v+1); v=k—-2,...,k—2+r)

appearing in (17) have an analytic continuation in a neighbourhood of ¢ = 0.
To achieve that, we first prove the following lemma, which is a slight generalisation of
Prop. 6 of [8].

Lemma 4.1. Let l € Ny, « € Z and < —1. Then for each w with Re(w) > 0, we have

s=1, a

- — —2mizl Xz
Difa, rw) =C(1=B) 3 m™™ 3 e o Bylw, o —) (18)
m=1 z modm
(z,m)=1

where Ey(s,a; %) the (truncated) Estermann zeta function, defined, for Re(s) >0, by

2m Z
m

El(s,a;%) ;:%% s,a € Cox/m € Q.

Proof. The series D;(«, §;w) is absolutely convergent for Re(w) > 0. We apply the Ramanu-
jan identity

o

op(n) =¢(1=p) Yy m"t Y e

with n — [ instead of n to obtain:

n>l m=1 r modm
z,m)=1
o0 2mizn
St 3 ey el
w
m=1 xz modm n>l n
z,m)=1



as asserted. O]

This lemma gives the meromorphic continuation of D;(k + r — 2, —r — 2;v + t) through
the meromorphic continuation of the (full) Estermann zeta function E(s, o; &) := Ey(s, a; ).
Specifically, Lemma 18, in our setting, gives

—2mixl T
D(k -2, —r—2; t)=1<((3 3w m F t, k —2;—). (19
(k+r r v+ +r Zm xéme v+t k+r ’m) (19)
(z,m)=1
Now, each E(v +t,k +r —2;7) can be expressed in terms of Hurwitz zeta functions ((s, )
as follows, for Re(w) > 0:

@ (g 2™ e
Ew+tk+r—2; E) = Z ) = Z dvHt—k—r+2p v+t

n>0 d,n>0
o z(md1+u)(mn1+v)

(& m
Z Z (mdl _l_u)qut k— r+2(mn1 +U)V+t

d1,n1>0u,v=1

k+7“ 2U— 2t2262mw o —T+2+V+t,%)<(l/+t,%)

u,v=1

(20)

It is well-known that ((s, z) has a meromorphic continuation to C, with only a simple pole at
s = 1. Therefore the RHS is analytic in a neighbourhood of ¢t = 0, since v € {k —2,... k —
2 + r}, thus giving the analytic continuation the LHS in this neighbourhood. Further, when

€ (0,1), (v +t,x) is bounded by a constant independent of z, since v 4+ Re(t) > 1. By the
functional equation of ((s,x) (or, in the case v = k+r — 2, the Taylor expansion of ((s,x+ 1)
at x = 0), we deduce that, for ¢ in a small neighbourhood of 0

u
g(—k—r+2+u+t,a) Lprmt+1
Therefore, with (20),
E(v+tk+r—2 ﬁ) Koy MEFTTI | k=202t
m

Applying this bound to the series of the RHS of (19), we see that each term is holomorphic
in a neighbourhood of ¢ = 0 and bounded by m*=2"=t=1 - m*=2v=2t=1 Therefore, the function
Dy(k+r—2,—r —2;v+1t)is holomorphic at t =0 for all v € {k —2,... )k —2+7r}.
For r even, set

kE+r

7
In this case, we need to show that the meromorphic continuation of Dy(k+r—1,—r—1;v+1)
is holomorphic at t =0 forall v € {k —1,...,k — 14+ r}. We do that by working in exactly
the same way as above, employing Lemma 18 and the following analogue of (20):

s=1, a =

m
UV

X Uu v
E t k — 12 = k+r—2v—2t—1 2mi e k- 1 t— t.—).
(vthtr—1i—)=m Dk —r Lyt (vt —)

u,v=1
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Proof of Theorem 1.1: As mentioned above, the terms corresponding to non-negative n in
the sum in (15) lead to elements of Q(w, 7).

Let r be odd. What we just proved, together with (9) then imply that the [-th Fourier
coefficient of Ej, (z,2) belongs to the field

D, =Q(m,i,Dy(k+r—2,—1r—2k—2),....,Di(k+r—2,—r—2:k—2+71))

obtained by adjoining to Q(m,4) the values of the shifted convolution D;(k + 1 —2,—r — 2;n)
atn=k—2,...k—2+r.
On the other hand, (3) implies that

EZ-H‘(Z? 2) = E;(’Z? k + T)'
Therefore, with Proposition 2.2 for sg = 2 and odd ' > 1

L’}(/{: +7)

m € D,D.Q(f)

Setting " = 1, we deduce the first case of Theorem 1.1.
Let r be even. In the same way as above we find that the [-th Fourier coefficient of
E;. (z,1) = Ei(z, k4 r) belongs to the field

Q(m,i, Dy(k+r—1,—r—1;k=1),Dy(k+r—1,—r—=1;k),...,Di(k+r—1,—r—1;k—1+7))
Applying Proposition 2.2 with sy = 1, we deduce, for even ' > 1,

L}(k +7)

m € D, D.Q(f)

where D,. denotes the field obtained by adjoining to Q(, ) the values of the shifted convolution
Dik+r—1,—r—1Lin)atn=k—1,...k — 1+ Setting 7’ = 2, we deduce the second case
of Theorem 1.1. O
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