
Date-stamping Multiple Bubble Regimes
∗

David I. Harveya, Stephen J. Leybournea and Emily J. Whitehouseb

aSchool of Economics, University of Nottingham

bNewcastle University Business School

January 10, 2020

Abstract

Identifying the start and end dates of explosive bubble regimes has become a prominent issue

in the econometric literature. Recent research has demonstrated the advantage of a model-

based minimum sum of squared residuals estimator, combined with Bayesian Information

Criterion model selection, over recursive unit root testing methods in providing accurate

date estimates for a single explosive regime. However, in the context of multiple bubbles, a

large number of models are possible, making such a model-based method unappealing. In

this paper, we propose a two-step procedure for dating multiple explosive regimes. First,

recursive unit root tests are used to identify a ‘date window’ in which an explosive episode

starts and ends. Second, a model-based BIC approach is used to precisely estimate the

regime change points within each date window. In addition, our method allows us to dis-

tinguish between different types of explosive episode, such as whether or not each explosive

regime crashes before reverting back to a unit root process, and date any crash regimes.

Monte Carlo simulations highlight the effectiveness of our procedure when compared to ex-

isting methods of dating. The value of the new methodology is also demonstrated through

an empirical application to housing markets.
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1 Introduction

The role that asset price bubbles play in financial instability has become increasingly apparent

in recent years as a result of events such as the US housing price bubble of the mid-2000s

which triggered the financial crisis that followed. Indeed, as Bernanke (2013) notes, whilst

it is unavoidable that there will periodically be bubbles in the financial system, now that

the damage these bubbles can cause has been realised, it is crucial that central banks and

other regulators take their emergence seriously. This increasing interest in asset price bubbles

has corresponded with a renewed focus within the econometric literature, and there is now a

substantial body of work regarding econometric detection and dating of asset price bubbles.

Much of this literature concerns rational bubbles, where investing in an asset can be a rational

choice even when the price is not justified by the underlying fundamental value of the asset,

due to a belief that its price will continue to increase beyond the price paid. In such models,

a rational bubble is present if explosive characteristics are manifest in the time path of prices,

but not for the corresponding fundamentals. Explosive dynamics in prices can be modelled by

an autoregression with parameter greater than one, therefore much attention has recently been

paid to detecting explosive autoregressive behaviour in price series.

In a now seminal paper, Phillips et al. (2011) [PWY] propose a test for explosive autore-

gressive behaviour through taking the supremum of forward recursive right-tailed unit root

tests applied to prices. The PWY test is designed for circumstances in which a maximum of

one explosive regime is present in a series. Of course, in practice, it is possible that over a

given period of time a series may contain more than one explosive regime, and Phillips et al.

(2015a) [PSY] propose an extension of the PWY methodology capable of detecting multiple

explosive regimes based on forward and backward recursions of right-tailed unit root tests.1

The PSY approach offers valuable improvements over the original PWY methodology and has

now become the standard tool for detecting explosive autoregressive regimes in applied work.

An equally important issue to the detection of explosive behaviour is determining the timing

of such regimes. Accurate identification of the start and end points of historical explosive

regimes is vital for a number of reasons. First, by understanding the timing of explosive

dynamics in a given price series, we can reconcile this with other macroeconomic events. Next,

by analysing the start and end dates of explosive regimes, we are able to construct timelines

of explosive behaviour across countries or across different classes of assets. These timelines can

provide useful information about the evolution of explosive behaviour throughout the economy.

Finally, if we know the dates over which a price series is and is not explosive, we can create an

indicator for that asset which can then be used as a variable in regression models, to analyse

the determinants of explosive behaviour, or the effect that explosiveness in a particular asset

has on other variables of interest. Clearly the validity of any of the above analyses requires

precise date estimation of the explosive regimes.

1Limit theory for the PSY procedure is developed in the companion paper Phillips et al. (2015b).
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PWY first proposed a method for dating the start and end point of a single explosive regime,

based on sequences of recursive unit root test statistics compared to threshold critical values.

Using this approach, PWY find evidence of a stock market bubble in the NASDAQ index from

February 1973 - June 2005. In line with their extension to the PWY detection procedure, PSY

also extend the PWY dating methodology to allow dating the start and end points of multiple

explosive regimes. PSY apply their dating procedure to the S&P 500 stock market index and

identify multiple periods of bubble behaviour corresponding to macroeconomic events such as

Black Monday, the dot-com bubble, and the sub-prime mortgage crisis. The dating procedure

of PSY has now superseded that of PWY, and has been widely used to estimate the timing

of bubbles in a variety of asset markets, for example housing (Anundsen et al., 2016; Pavlidis

et al., 2016), commodities (Etienne et al., 2014, 2015; Figuerola-Ferretti and McCrorie, 2016), oil

and energy markets (Tsvetanov et al., 2016; Pavlidis et al., 2018; Sharma and Escobari, 2018;

Figuerola-Ferretti et al., 2019), exchange rates (Hu and Oxley, 2017), and cryptocurrencies

(Corbet et al., 2018).

In the context of a single explosive regime, in a paper in this journal, Harvey et al. (2017)

[HLS] propose an alternative method of date-stamping to that proposed in PWY and PSY,

where the regime change points are estimated using minimum sum of squared residual estimators

and a Bayesian Information Criterion (BIC) model selection procedure. Specifically, the HLS

procedure allows for selection between a number of different types of explosive episodes, where

the explosive regime may be followed by a stationary collapse regime, may revert back to pre-

explosive conditions without a stationary collapse, or may still be ongoing at the end of the

sample. The estimated dates of regime change are found to be consistent, and it is demonstrated

that this BIC-based procedure delivers much improved dating accuracy in comparison to the

recursive unit root based method of PSY. When a collapse regime is present, it also provides

a consistent estimate of the end of collapse regime date (an issue not considered by PWY and

PSY).

Whilst the BIC procedure of HLS offers superior dating accuracy, a limitation of the pro-

cedure is that it is designed to date only a single explosive regime in a time series. In this

paper we consider extension of the HLS-type approach to the multiple explosive regime con-

text. When the possibility of multiple explosive regimes is entertained, where each regime may

or may not terminate in a collapse, the model-based nature of the BIC procedure becomes

challenging, with the number of potential models to be considered growing exponentially in the

number of explosive regimes. Selecting between such a large number of models is unappealing

in practice and would not be expected to work well in finite samples without the imposition

of some restrictions. Instead, we propose a dating methodology based on minimum sum of

squared residual estimators and BIC model selection, but using prior information gleaned from

the PSY dating procedure as a means of reducing the dimensionality of the model selection

and date estimation problem. Specifically, we propose a two-step procedure, where, assuming

that pre-testing for the presence of explosive behaviour has occurred, in the first stage we apply
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the PSY dating procedure, and use these preliminary date estimates to split our sample into a

number of sub-sample ‘date windows’, each of which is assumed to contain a single explosive

regime. In the second stage, we apply the HLS procedure to each date window, in order to

obtain improved estimates of the regime change points. Monte Carlo simulations demonstrate

the superior accuracy delivered by our two-step procedure in comparison to the dating method-

ology of PSY. In particular, we observe that whereas PSY has a tendency to date the regime

change points later than they occur, our methodology is often able to identify the exact start

and end points of each explosive regime, especially when considering end dates.

To demonstrate the effectiveness of our proposed date-stamping procedure, we undertake

an analysis of explosive behaviour in the house prices of 22 countries from 1975:Q1-2018:Q2.

We find that 20 of these countries contain at least one explosive episode within the time pe-

riod, with a maximum of four explosive regimes detected in some countries. We show that our

BIC date-stamping procedure typically finds earlier start dates and end dates for the explosive

regimes than the PSY procedure. Our procedure also finds that many of the detected explosive

regimes subsequently collapse, and is able to estimate the end point of the collapse. We next

consider the extent to which episodes of explosive behaviour in the house price series can be

interpreted as speculative bubbles. Following PWY, our interpretation of a bubble is the de-

parture of prices away from an asset’s fundamental value, and therefore the finding of explosive

behaviour in house prices is not sufficient evidence of the presence of a bubble, without an

analysis of house prices relative to fundamentals. Consequently, we repeat our analysis using

price-to-fundamental ratios, with real personal disposable income employed as a proxy of the

fundamental of housing. We note several key phases in the behaviour of house prices across

countries. The first phase corresponds to the house price bubble seen in many countries in the

late 1980s, the second phase describes the house price bubble in the mid-2000s whose collapse

preceded the global financial crisis. Finally, when considering the price series, we observe the

emergence of explosive behaviour in a number of countries in the later part of the sample, with

this phase still ongoing at the end of the sample in some cases. However, when considering the

price-to-fundamental ratios instead, there is less evidence of end-of-sample explosiveness.

The next section outlines the multiple explosive regime framework that we consider. Section

3 presents our proposed date-stamping procedure. In Section 4 we present a finite sample Monte

Carlo simulation comparison of the accuracy of our proposed methodology with the recursive

unit root based method of PSY. An empirical application of our date-stamping procedure to

housing markets is considered in Section 5. Section 6 concludes.

The following notation is used throughout the paper: ⌊.⌋ denotes the integer part and I(.)

denotes the indicator function.
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2 Multiple Explosive Regime Model

To fix ideas, we first consider the following model for a time series {yt}, t = 1, ..., T , that permits

a single explosive autoregressive regime in an otherwise unit root process:

yt = µ+ ut

ut = (1 + ρt)ut−1 + vt

ρt = ρ∗I(⌊τ∗1T ⌋ < t 6 ⌊τ∗2T ⌋) (1)

with u0 = 0 and {vt} a zero mean weakly dependent process satisfying Assumption 1 of HLS,

ρ∗ > 0 and 0 < τ∗1 < τ∗2 < 1. Such a specification implies that yt follows an underlying unit

root process up to time t = ⌊τ∗1T ⌋, after which it follows an explosive autoregression up to

time t = ⌊τ∗2T ⌋, before reverting back to unit root behaviour for the remainder of the sample.

This form of temporary explosive autoregression was first considered by PWY as a foundation

for testing and dating a single period of explosivity. PWY augment the specification above to

permit an instantaneous level adjustment, or collapse, at time t = ⌊τ∗2T ⌋+ 1, while HLS allow

for a more general dynamic model for the collapse adjustment by incorporating a post-explosive

stationary autoregressive regime after time t = ⌊τ∗2T ⌋, i.e. (1) is replaced with

ρt = ρ∗1I(⌊τ∗1T ⌋ < t 6 ⌊τ∗2T ⌋) + ρ∗2I(⌊τ∗2T ⌋ < t 6 ⌊τ∗3T ⌋)

where ρ∗1 > 0, ρ∗2 < 0 and 0 < τ∗1 < τ∗2 < τ∗3 < 1. The mean reversion implicit in the stationary

regime generates a model of a post-explosive collapse period, as the underlying autoregressive

process for yt creates an exponential decay from the final explosive observation towards its

mean µ, thereby offsetting the explosive period to an extent dependent on the magnitude

of ρ∗2 and the collapse duration ⌊τ∗3T ⌋ − ⌊τ∗2T ⌋. Such a model allows for a wide spectrum of

collapse regimes, including short-lived sharp collapses (large in magnitude negative ρ∗2 and small

⌊τ∗3T ⌋− ⌊τ∗2T ⌋) and long, slower downward readjustments (small in magnitude negative ρ∗2 and

large ⌊τ∗3T ⌋ − ⌊τ∗2T ⌋). Modelling the collapse in this manner (as opposed to an instantaneous

level adjustment) is appealing empirically, as it allows flexibility in the speeds at which different

financial agents react at the end of an explosive regime. When the collapse regime finishes, the

yt series no longer reverts towards µ, and unit root behaviour resumes from whatever level was

reached at the end of the collapse adjustment period; that is, typical market conditions resume

thereafter.

While PSY consider a multiple explosive regime variant of the PWY model (including

instantaneous collapses), in this paper we build on the HLS foundation due to its more flexible

collapse specification. We therefore consider the following model with multiple explosive and
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collapse regimes:

yt = µ+ xt + ut (2)

ut = (1 + ρt)ut−1 + vt (3)

ρt =
N∑

j=1

{ρ∗j1I(
⌊
τ∗j1T

⌋
< t 6

⌊
τ∗j2T

⌋
) + ρ∗j2I(

⌊
τ∗j2T

⌋
< t 6

⌊
τ∗j3T

⌋
)− I(t =

⌊
τ∗j3T

⌋
+ 1)} (4)

xt =

N∑

j=1

u⌊τ∗j3T⌋I(t >
⌊
τ∗j3T

⌋
) (5)

where the inclusion of xt in (2) and the additional indicator function in (4) are introduced

to prevent the magnitude of one explosive regime from entering the dynamics of subsequent

explosive regimes (see discussion below). Our specification (2)-(5) implies that yt follows an

underlying unit root process but is subject to N explosive regimes, each of which can terminate

with a collapse regime. We assume that, for a given j, ρ∗j1 ≥ 0 and ρ∗j2 ≤ 0 allowing for

an explosive regime immediately followed by a stationary (collapse) regime, cf. Harvey et al.

(2016) and Phillips and Shi (2018). We also impose τ∗11 > 0, τ∗N3 ≤ 1, τ∗(j+1)1 > τ∗j3 to ensure

an initial unit root regime prior to the onset of explosive behaviour, together with an ordering

of explosive regimes within the sample period. Note that we implicitly assume that stationary

regimes do not exist without an immediately prior explosive regime; also, if the jth explosive

regime does not end in collapse (i.e. ρ∗j2 = 0 such that unit root conditions resume directly

after the explosive regime), we set τ∗j3 = τ∗j2. The model also permits the Nth explosive (or

collapse) regime to run to the end of the sample period, by letting τ∗N2 = 1 (or τ∗N3 = 1). We

do not assume knowledge of N or any of the corresponding τ∗j1, τ
∗
j2, τ

∗
j3, hence we allow for an

unknown number of explosive regimes at unknown times, with or without collapse.

For illustration, the model for xt and ut in the example case of N = 2 (with µ set to zero

for simplicity) expands to the following:

xt = 0 ut = vt t = 1

xt = 0 ut = ut−1 + vt t = 2, ..., ⌊τ∗11T ⌋
xt = 0 ut = (1 + ρ∗11)ut−1 + vt t = ⌊τ∗11T ⌋+ 1, ..., ⌊τ∗12T ⌋
xt = 0 ut = (1 + ρ∗12)ut−1 + vt t = ⌊τ∗12T ⌋+ 1, ..., ⌊τ∗13T ⌋
xt = u⌊τ∗13T⌋ ut = vt t = ⌊τ∗13T ⌋+ 1

xt = u⌊τ∗13T⌋ ut = ut−1 + vt t = ⌊τ∗13T ⌋+ 2, ..., ⌊τ∗21T ⌋
xt = u⌊τ∗13T⌋ ut = (1 + ρ∗21)ut−1 + vt t = ⌊τ∗21T ⌋+ 1, ..., ⌊τ∗22T ⌋
xt = u⌊τ∗13T⌋ ut = (1 + ρ∗22)ut−1 + vt t = ⌊τ∗22T ⌋+ 1, ..., ⌊τ∗23T ⌋
xt = u⌊τ∗13T⌋ + u⌊τ∗23T⌋ ut = vt t = ⌊τ∗23T ⌋+ 1

xt = u⌊τ∗13T⌋ + u⌊τ∗23T⌋ ut = ut−1 + vt t = ⌊τ∗23T ⌋+ 2, ..., T

Specifically, yt starts as a unit root process, then if ρ∗11 > 0, an explosive regime exists over

⌊τ∗11T ⌋ + 1 6 t 6 ⌊τ∗12T ⌋, with AR(1) parameter 1 + ρ∗11. If ρ∗12 < 0, this is then followed
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by a stationary collapse over ⌊τ∗12T ⌋ + 1 6 t 6 ⌊τ∗13T ⌋, with AR(1) parameter 1 + ρ∗12; after

the collapse regime, yt returns to a unit root process. If, instead, ρ∗12 = 0, then no collapse

regime occurs and yt returns to a unit root process after ⌊τ∗12T ⌋ (= ⌊τ∗13T ⌋). Then if ρ∗21 > 0, a

second explosive regime exists over ⌊τ∗21T ⌋+1 6 t 6 ⌊τ∗22T ⌋, followed by potential collapse over

⌊τ∗22T ⌋+ 1 6 t 6 ⌊τ∗23T ⌋, before unit root dynamics return until the end of sample. Note that

at the two points t = ⌊τ∗13T ⌋+ 1 and t = ⌊τ∗23T ⌋+ 1, the level of the process is recalibrated to

account for the process level at the end of each explosive/collapse regime, while the ut recursion

is recalibrated to vt. This has the effect of preventing the magnitude of the first explosive regime

from entering the dynamics of the second explosive regime (and so on in a model with more

than two explosive periods), thereby ensuring that the stochastic orders of magnitude (in T ) of

multiple explosive regimes remain the same. Without such recalibrations, equal magnitudes of

ρ∗11 and ρ∗21 will result in much more pronounced explosivity for the second regime compared

to the first.

Our setup assumes that each explosive regime is preceded by a unit root regime, ensuring

that, following one explosive period (with possible collapse), unit root behaviour is restored

before the emergence of the next. Given this, we can define the jth “explosive episode” as

the sub-sample containing the following behaviour: unit root followed by explosive followed by

possible stationary collapse followed by unit root. Adapting the notation of HLS, we can then

specify two possible DGPs for such explosive episodes for j = 1, ..., N − 1, where we denote by

τjs and τje the start and end points of the jth episode (with τ1s = 0):

DGP 2: τjs < τ∗j1 < τ∗j2 < τje, τ
∗
j3 = τ∗j2, ρ

∗
j1 > 0

(unit root, then explosive, then unit root)

DGP 4: τjs < τ∗j1 < τ∗j2 < τ∗j3 < τje, ρ
∗
j1 > 0, ρ∗j2 < 0

(unit root, then explosive, then stationary collapse, then unit root)

where the numbering of the DGPs mirrors that of HLS. For the final explosive episode, j = N

with τje = 1, it is possible that the explosive or collapse regimes run to the end of the sample,

hence in this case the possibilities are:

DGP 1: τjs < τ∗j1 < 1, τ∗j2 = 1, ρ∗j1 > 0

(unit root, then explosive until sample end)

DGP 2: τjs < τ∗j1 < τ∗j2 < 1, τ∗j3 = τ∗j2, ρ
∗
j1 > 0

(unit root, then explosive, then unit root)

DGP 3: τjs < τ∗j1 < τ∗j2 < 1, τ∗j3 = 1, ρ∗j1 > 0, ρ∗j2 < 0

(unit root, then explosive, then stationary collapse until sample end)

DGP 4: τjs < τ∗j1 < τ∗j2 < τ∗j3 < 1, ρ∗j1 > 0, ρ∗j2 < 0

(unit root, then explosive, then stationary collapse, then unit root)
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We emphasise that DGP 1 and DGP 3 do not imply that the explosive or collapse regime

continues in perpetuity, but that any subsequent regime change occurs outside our observed

sample period.

3 Date-Stamping Procedure

Before we begin to estimate the regime change points of the multiple explosive regime process

yt, we must first confirm that yt does contain explosive behaviour. PSY propose a method for

detecting temporary explosiveness based on forward and backward recursions of right-tailed

Dickey-Fuller unit root tests. Let r1 and r2 denote fractions of the sample, such that r2 > r1,

then ADF r2
r1 denotes the OLS augmented DF test statistic, computed over t = ⌊r1T ⌋, ..., ⌊r2T ⌋.

The GSADF test of PSY considers the supremum of a series of ADF r2
r1 statistics where the end

point over which the sub-sample statistics are computed varies over r2 ∈ [r0, 1] where r0 is the

minimum window width, and the start point varies over r1 ∈ [0, r2 − r0]. The GSADF statistic

is given by

GSADF (r0) = sup
r2∈[r0,1],r1∈[0,r2−r0]

ADF r2
r1

If the GSADF test statistic exceeds the relevant critical value then we infer that yt exhibits at

least one explosive regime.

Once the presence of explosive behaviour has been confirmed, our concern is the precise

estimation of τ∗j1, τ∗j2 and τ∗j3 for each explosive regime j. We propose a two-step dating

procedure, which capitalises on the accuracy advantages offered by HLS in date-stamping a

single explosive regime, and the capabilities of PSY to detect multiple explosive episodes.

The first step of our procedure is to apply the BSADF dating procedure of PSY, to obtain

a preliminary estimate of explosive regime start and end dates. The BSADF statistic is given

by:

BSADFr2(r0) = sup
r1∈[0,r2−r0]

ADF r2
r1

The date fraction estimates are then given by:

τ̂PSY
j1 = inf

r2∈[r0,1]
{r2 : BSADFr2(r0) > scvr2}

τ̂PSY
j2 = inf

r2∈[τ̂PSY
j1

+ln(T )/T,1]
{r2 : BSADFr2(r0) < scvr2}

where scvr2 is the critical value of the sup ADF statistic based on ⌊r2T ⌋ observations, and where

τ̂PSY
j1 and τ̂PSY

j2 are estimates of τ∗j1 and τ∗j2 with the necessary restriction that τ̂PSY
(j+1)1 > τ̂PSY

j2 .

That is, the start date fraction for the first (j = 1) explosive episode is the first value of r2

where BSADFr2(r0) exceeds its critical value. The end date fraction for the explosive regime is

then given by the first value of r2 (after a minimum regime length) where BSADFr2(r0) drops

below the threshold critical value. The start date fraction for the second (j = 2) explosive

regime is then given by the first value of r2, after τ
∗
12, where BSADFr2(r0) exceeds the critical
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value, and so on. In practice, the date estimation is obtained using integer dates, with
⌊
τ̂PSY
j1 T

⌋

and
⌊
τ̂PSY
j2 T

⌋
corresponding to estimates of the first observations of the explosive and post-

explosive regimes respectively, i.e. estimates of
⌊
τ∗j1T

⌋
+ 1 and

⌊
τ∗j2T

⌋
+ 1 in the context of

(2)-(5). For a valid explosive regime to be identified, we also require that BSADFr2(r0) exceed

scvr2 for a minimum of ln(T ) consecutive dates. When implementing the GSADF detection

and BSADF dating procedures, we adopt PSY’s recommended minimum window width of

r0 = 0.01 + 1.8/
√
T . One feature we observed when implementing the dating procedure was

that a long series of rejections may be interrupted by a very small number of non-rejections,

giving the appearance of multiple explosive regimes, when in fact, the true DGP contained

a single explosive episode. In empirical work, this phenomenon may be obvious from visual

inspection of a price series, but it is difficult to apply such judgmental criteria in Monte Carlo

simulations. In this paper we mitigate this issue by assuming that if up to 3 non-rejections are

surrounded on either side by an explosive regime of length ln(T ), then they can be treated as

a single explosive episode, in essence joining these two runs of rejections together.

Once the estimates τ̂PSY
j1 and τ̂PSY

j2 have been obtained for j = 1, ..., N̂ , where N̂ is the

number of explosive regimes detected by PSY, we can use these estimates to split our full sample

into N̂ sub-sample date windows, so that each date window contains one explosive episode. The

start and end points of these date windows (sj and ej) are given by

sj =

{
1 j = 1

ej−1 + 1 j > 1

and

ej =

{
⌊τ̂PSY

j2 T ⌋+ (⌊τ̂PSY
(j+1)1T ⌋ − ⌊τ̂PSY

j2 T ⌋)/2 j < N̂

T j = N̂

such that we use the mid-point between the end of one explosive regime and the start of the

next as the sample splitting point. In fact, once we have more information about the change

points for regime j, we can adjust sj+1 in order to provide more accurate estimation of the

change points of regime j + 1, as we will discuss later.

By splitting yt into sub-samples on the basis of PSY date estimation, we can now assume

that each date window contains a single explosive regime only, and therefore, in the second step

of our date-stamping procedure, HLS-type date estimation can be applied to each date window

in turn. As the model specifications that we consider (DGP 1 to DGP 4) all contain a period of

explosiveness, this two-step procedure will always find the same number of explosive regimes,

N̂ , as implementation of the PSY procedure alone. As a result, our procedure does not concern

itself with detection of explosive processes, but focuses solely on improving the accuracy of date

estimation and allowing for different model specifications for each explosive episode.

Following HLS, we first suppose that it is known which of DGP 1 to DGP 4 is the true DGP

for each of the j = 1, ..., N̂ explosive episodes in the full sample, and consider estimating the

relevant change-points for each explosive episode by minimising the sum of squared residuals
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across all candidate dates. We do this using the fitted OLS regression models below for the

relevant DGP, recalling that Models 1 and 3 are only relevant for the final explosive regime

j = N̂ :

Model 1: ∆yt = µ̂1Dt(τj1, 1) + ρ̂j1Dt(τj1, 1)yt−1 + v̂1t

Model 2: ∆yt = µ̂1Dt(τj1, τj2) + ρ̂j1Dt(τj1, τj2)yt−1 + v̂2t

Model 3: ∆yt = µ̂1Dt(τj1, τj2) + µ̂2Dt(τj2, 1) + ρ̂j1Dt(τj1, τj2)yt−1

+ρ̂j2Dt(τj2, 1)yt−1 + v̂3t

Model 4: ∆yt = µ̂1Dt(τj1, τj2) + µ̂2Dt(τj2, τj3) + ρ̂j1Dt(τj1, τj2)yt−1

+ρ̂j2Dt(τj2, τj3)yt−1 + v̂4t

where t = sj, ..., ej . The dummy variables are defined as Dt(a, b) = 1(⌊aT ⌋ < t ≤ ⌊bT ⌋), with
the constant dummy variables associated with µ1 and µ2 ensuring invariance of the residuals

of each model to the series mean µ. The regime change-point estimators obtained from these

four models are then given by:

Model 1: τ̂j1 = argminτj1 SSRj1(τj1)

subject to (sj/T ) < τj1 < 1, yT > y⌊τj1T ⌋

Model 2: (τ̂j1, τ̂j2) = argminτj1,τj2 SSRj2(τj1, τj2)

subject to (sj/T ) < τj1 < τj2 < (ej/T ), y⌊τj2T ⌋ > y⌊τj1T ⌋

Model 3: (τ̂j1, τ̂j2) = argminτj1,τj2 SSRj3(τj1, τj2)

subject to (sj/T ) < τj1 < τj2 < 1, y⌊τj2T ⌋ > y⌊τj1T ⌋, y⌊τj2T ⌋ > yT

Model 4: (τ̂j1, τ̂j2, τ̂j3) = argminτj1,τj2,τj3 SSRj4(τj1, τj2, τj3)

subject to (sj/T ) < τj1 < τj2 < τj3 < (ej/T ), y⌊τj2T ⌋ > y⌊τj1T ⌋, y⌊τj2T ⌋ > y⌊τj3T ⌋

where SSRji(.) = Σ
ej
t=sj+1v̂

2
it for i = 1, ..., 4 for Models 1-4 respectively. The constraint that

yT > y⌊τj1T ⌋ for Model 1, and corresponding constraints on yt for Models 2-4, ensure that we

detect upwards, positive explosive regimes (followed by downwards collapse regimes in Models 3

and 4), given our interest in bubble detection and dating. We note, however, that these restric-

tions could be modified in an obvious way if negative episodes of explosivity were of interest

to a practitioner (e.g. yT < y⌊τj1T ⌋ in Model 1). In a single explosive regime environment,

HLS show that for correct pairings of the true DGP and the estimated model, the estimated

regime start dates, end dates, and end of collapse dates are consistently estimated, and, under

equivalent conditions to those in HLS, this same result applies in the current multiple explosive

regime context.

Of course, accurate date estimation requires the selection of the correct model for each

explosive regime j. Adapting HLS, we propose using a BIC-based model selection procedure in
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which the chosen model is given by

mopt
j =

{
argminm∈{2,4} BICjm j = 1, ..., N̂ − 1

argminm∈{1,2,3,4} BICjm j = N̂

where

BICj1 = Tj ln{T−1
j SSRj1(τ̂j1, 1)} + 3 ln(Tj)

BICj2 = Tj ln{T−1
j SSRj2(τ̂j1, τ̂j2)}+ 4 ln(Tj)

BICj3 = Tj ln{T−1
j SSRj3(τ̂j1, τ̂j2, 1)} + 6 ln(Tj)

BICj4 = Tj ln{T−1
j SSRj4(τ̂j1, τ̂j2, τ̂j3)}+ 7 ln(Tj)

with Tj denoting the number of observations in the jth date window. As in HLS, the scalar

multiplying the penalty ln(Tj) represents the number of coefficients being estimated plus the

number of estimated regime change points in that model. Asymptotic results in HLS establish

that model selection based on BIC will lead to the selection of the true model in the limit.

In a multiple explosive episode dating context, one challenge that presents itself is ensuring

that our method of partitioning the sample separates the explosive episodes into different date

windows. Due to the recursive nature of the PSY dating method, HLS demonstrate that the

PSY date estimates tend to occur later than the true regime change points. When two explosive

episodes (j and j +1) occur in quick succession, taking the mid-point of τ̂PSY
j2 and τ̂PSY

(j+1)1 may

be problematic. This is because, if τ̂PSY
j2 > τ∗j2 and/or τ̂PSY

(j+1)1 > τ∗(j+1)1, then it is possible

that sj+1 > ⌊τ∗(j+1)1T ⌋, in which case the (j + 1)th date window begins with an explosive

regime, making accurate dating of the start of the (j + 1)th explosive regime impossible. To

limit this potential problem, we require each date window to start with at least one observation

of a unit root regime. Now for j = 1, ..., N̂ − 1, we only fit Models 2 and 4, hence the jth

date window always ends with a fitted post-explosive/collapse unit root regime. Consequently,

working sequentially, we can then adjust the starting point of the (j + 1)th date window, i.e.

sj+1, to be equal to the first observation of the post-explosive/collapse unit root regime of the

previous (jth) date window. Hence, we set sj+1 = ⌊τ̂j2T ⌋ + 1 or sj+1 = ⌊τ̂j3T ⌋ + 1 when the

fitted model for the jth date window is Model 2 or Model 4, respectively.

Following HLS, we require that τ̂j1 ≥ π, that τ̂j2 − τ̂j1 ≥ π and that τ̂j3 − τ̂j2 ≥ π/2

imposing minimum length requirements on the initial unit root regime, explosive regime length,

and length of collapse respectively; in this paper we set π = 0.1. However, as we split our

sample into N̂ date-windows, it is possible that the number of observations in a given date

window, Tj, is small enough that ⌊πTj⌋ < 2 and/or ⌊πTj/2⌋ < 2. In this multiple explosive

episode context, we therefore further impose a lower bound of 2 for these minimum length

requirements. Additionally, in line with HLS, we allow the final regime of any fitted model to

be a minimum of 1 observation in length. Although we are primarily concerned with historical

detection of explosivity, allowing the final regime to be only 1 observation, and fitting Model

1 or Model 3 (where either an explosive process or stationary collapse is ongoing at the end of

10



the sample), means that the procedure could be implemented in a real-time context to detect

emerging explosive (or stationary collapse) behaviour. HLS illustrate this potential use of BIC

date estimation through a pseudo-real-time monitoring application to the NASDAQ composite

index.

4 Finite Sample Simulations

To assess the performance of our two-step BIC procedure in accurately date-stamping multiple

explosive regimes, we conduct a finite sample Monte Carlo simulation exercise. For a single

explosive episode, N = 1, our two-step procedure becomes identical to the BIC procedure of

HLS, so we do not examine this case, instead focusing on N = {2, 3}. For the case of N = 2,

we set the sample size to T = 200, and for N = 3 we use T = 300. We consider six DGPs which

together demonstrate the performance of our two-step procedure over all model specifications,

across different lengths of explosive and stationary regimes, across different locations of the

regimes within the sample, and for different magnitudes of explosive behaviour and stationary

collapse. Specifically, we generate simulated data from (2)-(5) with vt ∼ iidN(0, 1), µ = 0, and

the following settings for each of the six DGPs considered:

A : N = 2 : First explosive regime with collapse, Second explosive regime with collapse

j = 1 : (τ∗11, τ
∗
12, τ

∗
13) = (0.2, 0.3, 0.4), (ρ∗11, ρ

∗
12) = (0.1,−0.05)

j = 2 : (τ∗21, τ
∗
22, τ

∗
23) = (0.6, 0.7, 0.8), (ρ∗21, ρ

∗
22) = (0.1,−0.05)

B : N = 2 : First explosive regime with collapse,

Second explosive regime with collapse running to sample end

j = 1 : (τ∗11, τ
∗
12, τ

∗
13) = (0.3, 0.5, 0.55), (ρ∗11, ρ

∗
12) = (0.05,−0.05)

j = 2 : (τ∗21, τ
∗
22, τ

∗
23) = (0.75, 0.85, 1), (ρ∗21, ρ

∗
22) = (0.075,−0.05)

C : N = 2 : First explosive regime without collapse, Second explosive regime with collapse

j = 1 : (τ∗11, τ
∗
12) = (0.2, 0.3), ρ∗11 = 0.075

j = 2 : (τ∗21, τ
∗
22, τ

∗
23) = (0.6, 0.7, 0.75), (ρ∗21, ρ

∗
22) = (0.075,−0.075)

D : N = 2 : First explosive regime without collapse, Second explosive regime running to sample end

j = 1 : (τ∗11, τ
∗
12) = (0.4, 0.5), ρ∗11 = 0.05

j = 2 : (τ∗21, τ
∗
22) = (0.95, 1), ρ∗21 = 0.05
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E : N = 3 : First explosive regime with collapse, Second explosive regime with collapse,

Third explosive regime running to sample end

j = 1 : (τ∗11, τ
∗
12, τ

∗
13) = (0.2, 0.35, 0.4), (ρ∗11, ρ

∗
12) = (0.075,−0.075)

j = 2 : (τ∗21, τ
∗
22, τ

∗
23) = (0.6, 0.7, 0.75), (ρ∗21, ρ

∗
22) = (0.075,−0.075)

j = 3 : (τ∗31, τ
∗
32) = (0.9, 1), ρ∗31 = 0.075

F : N = 3 : First explosive regime with collapse, Second explosive regime with collapse,

Third explosive regime with collapse running to sample end

j = 1 : (τ∗11, τ
∗
12, τ

∗
13) = (0.3, 0.4, 0.5), (ρ∗11, ρ

∗
12) = (0.075,−0.05)

j = 2 : (τ∗21, τ
∗
22, τ

∗
23) = (0.6, 0.7, 0.75), (ρ∗21, ρ

∗
22) = (0.075,−0.05)

j = 3 : (τ∗31, τ
∗
32, τ

∗
33) = (0.85, 0.95, 1), (ρ∗31, ρ

∗
32) = (0.075,−0.05)

Figures 1-6 display histograms of the estimates of the start and end dates ⌊τ∗j1T ⌋ and ⌊τ∗j2T ⌋
from the PSY dating procedure and our two-step BIC procedure. We report results only for

the replications where at least one explosive regime was detected according to the GSADF test

performed at the 5% significance level. Here and throughout the paper, in the ADF statistics

underlying the GSADF and BSADF statistics we use a fixed lag length of one (cf. HLS, PSY).

When the test procedures found more explosive regimes than the true number of regimes, N ,

we report results for the estimated dates that are closest to the true DGP dates. To ensure that

the generated explosive regimes are upward in direction, we only retain simulated processes for

which y⌊τ∗j2T⌋ > y⌊τ∗j1T⌋ ∀j. Monte Carlo simulations were carried out in Gauss 18 using 10,000

retained replications.

Consider first DGP A in Figure 1. Here, both explosive regimes are followed by a stationary

collapse period, before unit root behaviour is restored. For both explosive regimes, the explosive

and collapse phases last for 0.1 of the sample, although the magnitude of the collapse is smaller

in absolute value than the magnitude of the explosive process. Examining the estimated start

dates of the first explosive regime, it is clear that our BIC procedure correctly identifies the true

start date more often than it estimates any other date, with a symmetric distribution around

this date. In contrast, PSY estimates of the start date typically fall somewhat later than the

true date. Turning our attention to the estimated end date of the first explosive regime, the

BIC procedure shows excellent accuracy, with the estimated end date equalling the true end

date in almost every replication. The variance of PSY end date estimates is also shown to

be lower compared to its start date estimates, but as with the start dates, the estimated end

point is late in most replications. Considering now the second explosive regime in the DGP,

we note that the performance of the two procedures is near identical to that exhibited for the

first explosive regime, with BIC offering superior date estimation of both start and end dates,

thereby demonstrating the procedure’s ability to accurately date multiple explosive episodes.

DGP B considers two explosive regimes, the first of which collapses before unit root be-
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haviour resumes, whilst the second is followed by a collapse which continues until the end of

the sample. The first explosive phase lasts for 0.2 of the sample, but is half the magnitude of

the explosive phases considered in DGP A. This smaller magnitude results in a more dispersed

distribution of estimated start dates for both the BIC and PSY procedures, although BIC still

produces estimates equal to the true end date more frequently than any other date, whilst

PSY start date estimates are generally later than the true start date. The explosive phases

are followed by relatively short collapses of length 0.05. As in DGP A, the BIC estimated end

dates equal the true end date in almost every replication, whilst PSY end date estimates are

less accurate. The second explosive regime, although shorter in length, lasting for 0.1 of the

sample, is of a higher magnitude than the first explosive regime; correspondingly the start date

estimates of BIC are more tightly distributed around the true start date.

Consider now DGP C, where the first explosive regime does not end in a collapse, but

instead reverts back to a unit root process once the explosive phase ends. In Figure 3, the

same general pattern of behaviour is observed for the start date estimates, but it is apparent

that when considering end dates, the absence of a collapse phase results in substantially less

accurate estimation for the PSY procedure, whilst the BIC procedure still estimates the true

end date more frequently than any other date, by some margin. DGP D features no stationary

collapses for either explosive regime, with the first reverting back to a unit root process, and the

second continuing to the end of the sample. Examining Figure 4, for the first regime, despite

there being no stationary collapse following the explosive behaviour, BIC still estimates the

true end date in many replications, whereas PSY end dates are noticeably more inaccurate, as

in DGP C. Considering the second explosive regime, setting τ∗21 = 0.95 such that the regime

does not begin until very close to the end of the sample does not seem to have unduly affected

the accuracy of the BIC procedure, with the distribution of estimated start dates still centred

around the true start date. The second explosive regime continues to the end of the sample,

and here the BIC and PSY procedures behave more similarly, as might be expected given that

the tendency for the PSY estimated end date to be placed later than the true end date is not

an issue here.

Considering now the DGPs containing three explosive episodes, Figure 5 displays the esti-

mated dates for DGP E where the first two explosive regimes terminate in stationary collapses,

whilst the third continues until the end of the sample. The first regime is placed early in the

sample, with τ∗11 = 0.2, and the third regime originates towards the end of the sample, with

τ∗31 = 0.9. A similar pattern of behaviour is observed as in the two explosive regime DGPs,

with the distribution of BIC start date estimates being centred around the true values, and with

BIC end date estimates being almost exclusively equal to the true end dates. Meanwhile, PSY

date estimates are most often later than the true start and end values. Finally, we consider

DGP F in Figure 6 where the first and second explosive regimes are followed by stationary col-

lapses before reverting back to unit root processes, and the third is followed by a collapse that

continues until the end of the sample. The three explosive regimes are placed closer together
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in the sample, with a gap of 0.1 between the end of collapse of one and the start of the next.

This placing within the sample has a small detrimental effect on the start date estimation of

the second and third explosive regimes, relative to the first, but nevertheless, the comparative

performance of the PSY and BIC estimates is found to be qualitatively similar to that of DGP

E.

In addition to examining the accuracy of the date estimates, we also consider the extent to

which the BIC procedure is able to select the correct model for each explosive regime. Of course,

as HLS note, identification of the correct model is not essential for accurate date estimation. For

example, if BIC were to mistakenly select Model 2 instead of Model 4, this would still provide

estimates of τ∗j1 and τ∗j2. Table 1 displays the frequencies with which the BIC procedure selects

each model across the Monte Carlo replications for which at least one explosive regime was

detected.2 For all of the explosive regimes considered, BIC selects the correct model more

frequently than it selects any other model. We note only two instances where the probability

of selecting the correct model is less than a half: the second regime of DGP A, where in some

replications the reversion back to a unit root after the collapse is not detected, most likely due

to this occurring towards the end of the sample; and the second regime of DGP C, where a

similar phenomenon occurs. In both cases, an incorrect selection of Model 3 over Model 4 still

yields accurate identification of the start and end dates of the explosive regimes, as exhibited

in Figures 1 and 3. Overall our results demonstrate a clear accuracy advantage of our proposed

BIC date-stamping procedure over recursive unit root based methods of date estimation.

5 Empirical Application

To demonstrate the practical value of our proposed date-stamping procedure, we examine the

historical bubble behaviour of house prices for a set of 22 countries. The sub-prime crisis

and subsequent financial distress of the late 2000s has led to increased scrutiny of the dynam-

ics of the housing market. Several recent studies have implemented the PSY detection and

dating procedures to investigate the timing of explosive episodes in house prices. Anundsen

et al. (2016) consider the effect of the interaction between credit and the housing market on

financial stability. They apply the BSADF dating procedure of PSY to quarterly house price

data for 20 OECD countries from 1975Q1-2014:Q2, and use the estimated dates to construct

‘exuberance’ indicators which are employed as explanatory variables in a logit regression of

financial instability. Their findings suggest that the probability of a financial crisis increases

substantially when bubbles in house prices coincide with similar exuberance in credit. Pavlidis

et al. (2016) also consider the role of house price bubbles on financial stability. Applying the

GSADF detection procedure and BSADF dating procedure of PSY to the International House

2If an explosive regime j + 1 is detected, then BIC will only select between Models 2 and 4 for explosive

episode j, as discussed in Section 3. In some replications, the PSY procedure detects fewer than N explosive

regimes, therefore allowing Models 1 and 3 to be selected for j < N in these replications.
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Price Database of the Federal Reserve Bank of Dallas (Mack and Martinez-Garcia, 2011) for

22 countries, they find significant evidence of house price exuberance in 20 countries in the

early 2000s, preceding the global financial crisis. The date estimates are used to construct a

‘chronology of exuberance’ tracking the evolution of house price bubbles across countries and

time. Using these date estimates to construct an exuberance indicator, they estimate a probit

model to assess the predictive ability of a number of financial and macroeconomic variables on

house price exuberance. The Dallas Federal Bank has provided house price exuberance indi-

cators from 2013:Q2 onwards based on the methodology of Pavlidis et al. (2016). In related

work, Pavlidis et al. (2019) use exuberance indicators constructed from BSADF date-stamping

to examine the role of interest rates and policy uncertainty in explaining explosive behaviour.

Shi (2017) investigates regional house price behaviour in the US by decomposing a price-to-rent

series into a fundamental and non-fundamental component and applying the BSADF test to

the non-fundamental part. Whilst these papers all provide very interesting results, the validity

of their analysis is clearly dependent on the accuracy of the estimated start and end dates of

explosive behaviour.

As in Pavlidis et al. (2016, 2019), we examine real house price indices from the International

House Price Database of the Federal Reserve Bank of Dallas (Mack and Martinez-Garcia,

2011) to detect and date house price bubbles in 22 countries.3 Our sample period runs from

1975:Q1-2018:Q2. First, considering the GSADF detection procedure of PSY, we find evidence

of explosive behaviour, at a 5% significance level, in all but two countries (Croatia and South

Korea4), and therefore proceed to apply both the PSY BSADF dating procedure and our BIC

procedure to date-stamp the detected explosive episodes. Whilst we restrict the BIC procedure

to detect only upward explosive regimes, no such restriction applies to the PSY procedure

and it is possible for PSY to detect rapid downward movements (see Phillips and Shi (2019)).

In our simulation exercise, we generated only upward explosive processes, and as such would

not expect this to be a major issue. However, we noted several occasions in our empirical

application where PSY identifies such downward price movements. As these episodes are clearly

not bubbles, we do not treat them as such, and discount these from our PSY analysis and the

corresponding BIC procedure. As in our simulation exercise, when explosive regimes of length

ln(T ) are separated by no more than 3 non-rejections of the BSADF test, we treat these as a

single explosive episode. Of the 20 countries where at least one explosive regime is detected,

PSY finds one period of explosiveness in nine countries (Denmark, France, Germany, Ireland,

Italy, Japan, Netherlands, South Africa and Spain), two explosive regimes are detected in five

countries (Australia, Belgium, Switzerland, UK and US), three explosive regimes are detected

in four countries (Canada, New Zealand, Norway and Sweden), and four explosive regimes are

3The database now contains information for an additional country, Israel, than in the analysis of Pavlidis

et al. (2016) but, in unreported results, we find no evidence of explosive behaviour in this country.
4Our analysis focuses on a 5% significance level, but we note that evidence of explosive behaviour is found in

Croatia when considering a 10% significance level.
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detected in two countries (Finland and Luxembourg).

Figure 7 displays the house price index and estimates of the first and last explosive regime

dates from the PSY and BIC dating procedures for the 20 countries where explosive behaviour

is detected, along with the collapse regime dates where they are identified by the BIC procedure.

We note the following key features from our analysis. First, when PSY and BIC are dating

the same explosive episode, BIC tends to find start date estimates earlier than PSY in line

with our simulation results. See, for example, the two explosive regimes detected in Australia,

displayed in Figure 7a, where BIC estimates start dates of 1997:Q1 and 2012:Q4 compared to

PSY start date estimates of 1998:Q4 and 2016:Q2. It is also evident that the BIC procedure

typically provides earlier end dates than PSY. Considering Ireland, in Figure 7h, for example,

BIC estimates the final date of the single explosive regime as 2007:Q1, corresponding to the

maximum value of the house price index, whereas PSY finds an estimated end date of 2007:Q4,

after the turning point of the price series. Across all countries, out of the approximately 35

occasions where BIC and PSY appear to date the same explosive regime, BIC finds an earlier

(or identical) start date to PSY in 29 of these regimes, and an earlier (or identical) end date in

30 of these regimes. Another advantage of the BIC dating procedure is its ability to date a crash

regime following an explosive episode. This is evident in our application; see, for example, the

long collapse regime after the explosive episode in Japan (Figure 7j), and the collapse following

the first explosive regime detected for Switzerland (Figure 7r).

One interesting feature of the analysis is that BIC and PSY do not always date the same

regime. We have deliberately constructed our BIC procedure to provide the same number of

detected upward explosive regimes as PSY, but within a given date window there is no guarantee

that the two procedures will date the same regime. Consider Canada in Figure 7c. PSY dates

the first explosive regime from 1988:Q3-1990:Q2 and the second explosive regime from 2002:Q4-

2008:Q3. Therefore the first sub-sample date window that the BIC procedure uses to date runs

from the start of the sample until 1996:Q3 (the mid-point of the estimated end date of the

first explosive regime and the estimated start date of the second). However, within this date

window, BIC fits an explosive regime much earlier in the sample from 1979:Q2-1981:Q3, with

a collapse then lasting until 1982:Q4. From visual inspection of the house price series, this

first explosive regime detected by BIC appears more pronounced than the later regime detected

by PSY, but is not detected by the PSY procedure. Recalling from Section 3 that we use the

recommended minimum window width of r0 = 0.01+1.8/
√
T for PSY dating, in our application

this corresponds to 0.146, preventing the PSY procedure from detecting explosivity within the

first 25 quarters. Conversely, our BIC procedure does not require such a large initial window,

thus allowing us to date an explosive regime which originates within PSY’s initial window. As

a consequence of this, and due to the adjustment made in the BIC procedure in which the start

date of the subsequent sub-sample date window is rolled back to the first unit root observation

that follows the previous explosive episode, it is possible for BIC to detect the start of two

explosive regimes before PSY has detected any, see Belgium, for example, in Figure 7b.
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The application of the BIC procedure to house price data allows us to build up a chronology

of events. We observe that many countries experienced explosive episodes in house prices during

the 1980s, with the explosiveness originating in the late 1970s for some countries. This first

phase of explosiveness typically continued until the late 1980s/early 1990s. Following this

period, prices behaved differently across countries, with some displaying collapse behaviour of

varying duration, while others returned to normal market behaviour immediately following the

explosive period. The second key phase of activity is the house price exuberance that occurred

in the majority of countries studied during the mid-2000s, typically terminating around the

time of the global financial crisis. For example, explosive behaviour in the US emerged as early

as 1997:Q3, before terminating in 2006:Q4 with a collapse that lasted until 2011:Q2. In the

UK, house price exuberance emerged only two quarters later than in the US, before collapsing

in 2007:Q4. The UK housing market suffered a shorter collapse phase than the US, ending in

2009:Q1. Finally, a third phase of explosiveness is observed in the later part of the sample for

many countries, and which is still ongoing at the end of our sample for Luxembourg, Norway,

Switzerland and the US.

As discussed in Section 1, if we define bubbles as deviations of prices away from the asset’s

fundamental value, then the detection of explosive behaviour in prices does not necessarily in-

dicate the presence of a bubble. We therefore extend our analysis by examining the behaviour

of a price-to-fundamental ratio for each country, where real personal disposable income (ob-

tained from the same database) is used as a proxy of the housing fundamental value, following

Pavlidis et al. (2016). Implementing the GSADF test of PSY, we find evidence of explosivity

in the price-to-income ratios of 15 countries: Australia, Belgium, Canada, Denmark, France,

Ireland, Italy, Japan, Luxembourg, Netherlands, South Africa, Spain, Switzerland, UK and US.

Compared to the previous analysis of the price indices alone, we find that Finland, Germany,

New Zealand, Norway and Sweden no longer reject at the 5% significance level.5 As before,

we estimate the start and end dates of detected explosive (and collapse) regimes using both

the PSY and BIC date-stamping procedures. For Japan, the explosive episodes dated by PSY

are negative, and this country is subsequently excluded from our analysis. PSY and BIC date

estimates for the remaining 14 countries are displayed in Figure 8.

Examining the date-stamping results for the price-to-income ratios, we note several inter-

esting features. First, for a number of countries (Australia, Canada, Luxembourg, Switzerland,

US), fewer explosive episodes are detected in the price-to-income ratio than in the price in-

dex. Considering Canada, for example, we detected 3 explosive episodes in prices and 2 in the

price-to-income ratio (see Figures 7c and 8c). This suggests that, in some cases, the finding of

explosivity in prices may have been driven by the behaviour of income. We note only one coun-

try, Ireland, where more explosive regimes are detected in the price-to-income ratio than the

price index. Comparing figures 7h and 8f, it is evident that the explosive period dated by BIC

5At a 10% significance level, evidence of explosive behaviour is also found in the price-to-income ratios of

Germany, New Zealand and Sweden.
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in the price index (1995:Q2-2007:Q1) has been split into two sub-periods in the price-to-income

ratio (1995:Q3-2000:Q1 and 2002:Q1-2007:Q2), with the collapse period ending in 2012:Q1 in

both series. Calculating the year-on-year Q1 growth rate of income, we find that the growth

rate declines from 6.2% to 5.3% to 1.4% in 1999, 2000 and 2001, and then increases to 2.1% and

3.7% in 2002 and 2003, and we suggest that fluctuations in the growth rate of income are likely

responsible for the division of the long explosive regime into two sub-periods when considering

the price-to-income ratio.

Now turning our attention to the date estimates themselves, we observe that in some in-

stances the explosive regimes detected in the price-to-income ratio are shorter than those in

the price index. In the United States, for example, BIC estimates a start date of 2000:Q3 in

the price-to-income ratio (compared to 2001:Q3 for PSY), which is somewhat later than the

1997:Q3 start date we find for the price index. Pavlidis et al. (2016) observe a similar phe-

nomenon, noting that income growth in the United States was strong during the 1990s, in part

due to the growth of new information technologies, and therefore the behaviour of house prices

in the late 1990s may be partly driven by this income growth. We observe similar results in

the UK and France, where the explosive behaviour exhibited during the mid-2000s originates

in 2001:Q2 and 2001:Q3 respectively according to BIC estimation (compared to 1997:Q4 and

1998:Q1 in the price index).

Considering the full set of results from the price-to-income ratios across all countries, we

observe phases of explosive behaviour in housing during the 1980s and during the mid-2000s for

a number of countries, consistent with the overall results from the price indices. It is interesting

to note that, when considering price indices, BIC finds evidence of ongoing explosive behaviour

at the end of the sample in 4 countries (Luxembourg, Norway, Switzerland and the US), but

that when examining the price-to-income ratio instead, this result no longer holds for Norway,

Switzerland and the US. This suggests that the end-of-sample explosiveness in prices that we

observe in these countries is not indicative of an asset bubble, but instead driven in part by

fundamentals. We do, however, note that when considering these price-to-income ratios, end-

of-sample explosive behaviour now emerges in Belgium, in addition to Luxembourg.

Thus far we have primarily focused on the upward explosive regimes detected in the price-

to-income ratios; however, for bubbles that have terminated in-sample, it is also of interest

to examine the post-bubble behaviour observed in each case, analysis of which is afforded by

the new methodology in contrast to PSY. Of the 18 in-sample bubbles detected, we find 11

terminate with a stationary collapse regime, and the remaining 7 return directly to unit root

dynamics. It appears, therefore, that in the majority of cases, a period of readjustment occurs

before the resumption of normal market conditions. The length and magnitude of this collapse

period can vary substantially for different countries and different bubbles. For example, a very

lengthy collapse regime is observed for the 1980s bubble in Switzerland, while the corresponding

1980s bubble in the UK terminated with a much shorter collapse duration. It is also interesting

that the pre-financial crisis house price bubble of the mid-2000s observed in many countries
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terminated in differing ways across countries. For the US and Ireland, we find relatively long

crash regimes, with protracted periods of downward adjustment in house prices, while for

Denmark, France, Luxembourg and the UK, the collapse is completed more quickly. We find

that the mid-2000s bubbles in Australia, Canada and Spain do not terminate in a collapse regime

at all, with normal market conditions resuming immediately upon termination of the bubble.

For Spain, this is contrary to prevailing opinion regarding the Spanish house price bubble (see

Akin et al., 2014, for example) and visual inspection of Figure 8k suggests downward movements

did arise during the financial crisis period. We note that following the end of bubble date, the

price-to-income ratio appears to level off for approximately four quarters, before beginning to

decline; we speculate that this levelling off of prices is responsible for BIC fitting a unit root

regime rather than a stationary collapse immediately after the explosive episode. Belgium is

an interesting case in that whilst it exhibits the bubble behaviour of the mid-2000s, unlike

other countries this regime is ongoing at the end of the sample. Ball (2010) observes that in

countries such as Ireland and the UK, the house price boom of the mid-2000s corresponded to

increasing mortgage-to-GDP ratios, but that this was not the case in Belgium whose mortgage-

to-GDP ratio was comparatively low throughout the 2000s. This would have limited Belgium’s

reliance on mortgage backed securities, and therefore its exposure to the global market. As

a consequence, house prices in Belgium have not (by the sample end date) been subject to a

collapse like that identified in the majority of other countries.

6 Conclusion

In this paper we have proposed a new methodology for estimating the start and end dates

of multiple asset price bubbles in a series. Our procedure capitalises on the ability of the

multiple bubble detection procedure proposed by PSY, based on recursive right-tailed Dickey-

Fuller tests, combined with a parametric model-based procedure for bubble date estimation.

Specifically, our approach first uses the PSY approach to determine the number of explosive

regimes and preliminary date estimates, then uses these estimated dates to split the sample into

sub-periods each containing a single explosive episode, before subsequently employing a BIC-

based date estimation method applied to each sub-sample to obtain more accurate estimates of

the explosive regime start and end dates, and additionally estimating the end date of any post-

explosive collapse period. Our Monte Carlo simulations showed that the new methodology offers

substantial improvements in dating accuracy relative to PSY, which has a tendency to date the

regime change points later than they actually occur. An additional advantage of our procedure

is its ability to identify whether each explosive regime ends in collapse, or whether normal (unit

root) market behaviour is restored when the explosivity terminates. We therefore anticipate the

new procedures to be very valuable to researchers and practitioners engaged in identifying the

timeline of bubble episodes in economic and financial time series. An empirical application of

our methodology to house price data for 22 countries detected episodes of explosive behaviour
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in 20 of these, with the number of explosive regimes ranging between one and four. In line with

the simulation results, we find the start and end dates from our new methodology to be typically

placed earlier than the corresponding PSY date estimates. Summarising across countries, we

identified three key periods of house price explosivity: the 1980s, the mid-2000s, and ongoing

exuberance at the end of our sample.
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Table 1: BIC model selection frequencies for DGPs A− F

Model 1 Model 2 Model 3 Model 4

A

j = 1 0.007 0.133 0.128 0.732

j = 2 0.033 0.062 0.451 0.454

B

j = 1 0.013 0.127 0.134 0.726

j = 2 0.026 0.060 0.633 0.281

C

j = 1 0.049 0.765 0.080 0.106

j = 2 0.089 0.176 0.299 0.436

D

j = 1 0.285 0.684 0.009 0.022

j = 2 0.627 0.343 0.016 0.014

E

j = 1 0.006 0.027 0.001 0.966

j = 2 0.156 0.039 0.022 0.782

j = 3 0.642 0.015 0.002 0.342

F

j = 1 0.002 0.088 0.027 0.883

j = 2 0.018 0.095 0.252 0.635

j = 3 0.014 0.061 0.524 0.401

bold indicates the true bubble model
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Figure 1: Histogram of date estimates for DGP A
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Figure 2: Histogram of date estimates for DGP B
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Figure 3: Histogram of date estimates for DGP C
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Figure 4: Histogram of date estimates for DGP D
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Figure 5: Histogram of date estimates for DGP E
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Figure 6: Histogram of date estimates for DGP F
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Figure 7: House price index: BIC and PSY date estimates

(a) Australia (b) Belgium

(c) Canada (d) Denmark

(e) Finland (f) France

←→ BIC explosive regime, ←→ BIC stationary regime, ←→ PSY explosive regime

* indicates that the regime continues to the end of the sample
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Figure 7: (continued) House price index: BIC and PSY date estimates

(g) Germany (h) Ireland

(i) Italy (j) Japan

(k) Luxembourg (l) Netherlands

←→ BIC explosive regime, ←→ BIC stationary regime, ←→ PSY explosive regime

* indicates that the regime continues to the end of the sample
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Figure 7: (continued) House price index: BIC and PSY date estimates

(m) New Zealand (n) Norway

(o) South Africa (p) Spain

(q) Sweden (r) Switzerland

←→ BIC explosive regime, ←→ BIC stationary regime, ←→ PSY explosive regime

* indicates that the regime continues to the end of the sample
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Figure 7: (continued) House price index: BIC and PSY date estimates

(s) United Kingdom (t) United States

←→ BIC explosive regime, ←→ BIC stationary regime, ←→ PSY explosive regime

* indicates that the regime continues to the end of the sample
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Figure 8: House price-to-income ratio: BIC and PSY date estimates

(a) Australia (b) Belgium

(c) Canada (d) Denmark

(e) France (f) Ireland

←→ BIC explosive regime, ←→ BIC stationary regime, ←→ PSY explosive regime

* indicates that the regime continues to the end of the sample
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Figure 8: (continued) House price-to-income ratio: BIC and PSY date estimates

(g) Italy (h) Luxembourg

(i) Netherlands (j) South Africa

(k) Spain (l) Switzerland

←→ BIC explosive regime, ←→ BIC stationary regime, ←→ PSY explosive regime

* indicates that the regime continues to the end of the sample
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Figure 8: (continued) House price-to-income ratio: BIC and PSY date estimates

(m) United Kingdom (n) United States

←→ BIC explosive regime, ←→ BIC stationary regime, ←→ PSY explosive regime

* indicates that the regime continues to the end of the sample
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