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Connecting the circular and drifted Rindler Unruh effects
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In Minkowski spacetime quantum field theory, each stationary motion is associated with an effective,
energy-dependent notion of temperature, which generalizes the familiar Unruh temperature of uniform
linear acceleration. Motivated by current experimental interest in circular motion, we analyze the effective
temperature for drifted Rindler motion, generated by a boost and a spacelike translation (drift), and the way
in which drifted Rindler motion can be smoothly (and in fact real analytically) deformed to circular motion
through a third type of motion known as parator. For an Unruh-DeWitt detector coupled linearly to a
massless scalar field in 2 4+ 1 and 3 + 1 spacetime dimensions, we establish analytic results in the limits of
large gap, small gap and large drift speed. For fixed proper acceleration, the drifted Rindler temperature
remains bounded in the large gap limit, in contrast to the circular motion temperature, which can be
arbitrarily large in this limit. Finally, in 2 + 1 dimensions, we trace the vanishing of the circular motion
temperature in the small gap limit to the weak decay of the Wightman function, and we show that, among
all types of stationary motion in all dimensions, this phenomenon is unique to 2 4+ 1 dimensions and therein

to circular and parator motion.

DOI: 10.1103/PhysRevD.111.025012

I. INTRODUCTION

The Unruh effect [1-4] predicts that a uniformly linearly
accelerated observer with proper acceleration a reacts to the
Minkowski vacuum of a relativistic quantum field as if the
vacuum were a thermal state with the Unruh temperature

T — ha
v ZﬂCkB‘

(1.1)

This effect is a consequence of the observer-dependence of
the notion of a “particle” in relativistic quantum field
theory, in flat and curved spacetimes [5,6]. Related pre-
dictions include the Hawking effect [7] and the cosmo-
logical particle creation [8] from which the present-day
structure of the Universe may originate [9].

In the standard setting of a relativistic quantum field,
the Unruh effect is very small. The acceleration neces-
sary to register a temperature of 1K is approximately
2.4 x 10° m/s?, and the effect has not been experimen-
tally verified. The prospects to observe the effect are
however better in analogue spacetime systems [10-12]
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where condensed matter excitations simulate a relativistic
quantum field but with the speed of light replaced by the
speed of sound thereby raising the Unruh temperature (1.1)
by several orders of magnitude. In this setting, the classical
mode conversion underlying the Hawking and Unruh
effects has been observed [13,14]. The experimental
prospects in a tabletop system are further enhanced by
considering circular rather than linear acceleration, where
the accelerating trajectory can be kept in a finite spatial
volume for an arbitrarily long time [15-18] and where the
lack of a condensed matter relativistic time dilation can be
accounted for at the data analysis stage [15,16,19]. An
earlier context where the circular motion Unruh effect has
been considered is the depolarization of electron beams in
accelerator storage rings [20-25]. Other work on the theory
of the circular motion Unruh effect includes [26-37].

A subtlety with circular acceleration is that the linear
acceleration Unruh temperature formula (1.1) is no longer
exact, and the circular acceleration effect in fact cannot
be described in terms of a density matrix with a single
“temperature” parameter [26,27,30]. This is in contrast to
the linear acceleration effect, which has a well-known
description in terms of a Bogoliubov transformation
between the Minkowski and Rindler vacua [3].
Nevertheless, an effective temperature for circular acceler-
ation can be introduced in terms of the excitations and
de-excitations of a local quantum system following the
accelerated worldline, and although this effective temper-
ature depends on the internal energy spacing of the system, it
is in broad agreement with the Unruh temperature
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formula (1.1) over most of the parameter space [19,25,33].
The effective temperature therefore provides a useful quan-
tifier of the acceleration effects.

That being said, a puzzle with the circular acceleration
effective temperature is that it is much smaller than
the linear acceleration Unruh temperature (1.1) when the
effective spacetime dimension is 2 4 1 (as it is in the Bose-
Einstein condensate and superfluid helium analog space-
time proposals in [16,18]) and the internal energy spacing
of the accelerating system is small [19]. The purpose of this
paper is to investigate the deviation from the linear
acceleration effective temperature for small internal energy
spacings from the broader perspective of observers in
arbitrary types of stationary motion [28,29,31,33]. In
particular, as the circular acceleration Killing vector is a
linear combination of a spatial rotation and a time trans-
lation, circular acceleration can be viewed as dual to the
drifted Rindler motion [28,29], whose Killing vector is a
linear combination of a boost and a spatial translation. We
show how these two types of motions can be smoothly
deformed to each other through a type of motion known as
parator motion, which is generated by a null rotation and a
timelike translation [28,33], and we observe that the
deformation can be viewed as the unique (real) analytic
continuation in the parameters of the motion. We further
show how the effective temperature undergoes qualitative
changes in this deformation, particularly in the regime
where the detector’s internal energy spacing is small. We
trace the smallness of the circular motion effective temper-
ature for small internal energy spacings to the weak decay
of the Wightman function along the detector’s trajectory,
and we show that, among all types of stationary motion
in all dimensions, this phenomenon is unique to 2 4 1
dimensions and therein to circular and parator motion.

We work in a technical setting where the quantum field is
a real massless scalar field in Minkowski spacetime of
dimension 241 or higher, prepared in its Minkowski
vacuum state. We probe the field with an Unruh-DeWitt
(UDW) detector, a pointlike two-level system coupled
linearly to the scalar field [3,38], and we treat the coupled
system to leading order in perturbation theory. This model
captures the essentials of the interaction between atomic
orbitals and the electromagnetic field [39,40]. As the
detector’s worldline is by assumption stationary, and the
Minkowski vacuum is Poincaré invariant, the coupled
system is invariant under time translations along the
detector’s worldline, and we can consider the detector’s
transition probability per unit time [41-44]. We can then
characterize the detector’s response by an effective temper-
ature, defined by fitting the ratio of the excitation and de-
excitation rates to the exponential formula that this ratio
obeys in a genuine thermal ensemble [20,25,29]. The
resulting temperature, which we call the detailed balance
temperature, depends on the detector’s energy gap, and the
puzzle for circular acceleration in 2 + 1 dimensions is that

the detailed balance temperature goes to zero linearly as the
gap goes to zero [19]. It is in terms of the detailed balance
temperature that we shall analyze the status of (2 + 1)-
dimensional circular motion among stationary motions in
all dimensions, 2 + 1 and higher.

The key mathematical observation in this technical setting
is that the detector’s response function is the Fourier trans-
form of the pullback of the field’s Wightman distribution to
the detector’s worldline, and one therefore expects that the
small gap behavior of the response is determined by the large
time decay of the Wightman distribution. The decay depends
both on the spacetime dimension and the detector’s trajec-
tory. We show that in almost all cases the decay is indeed so
strong that the detailed balance temperature remains finite in
the small gap limit. The only exceptions occur in 2 + 1
dimensions, and therein only for two types of accelerated
motion. For circular motion, the decay of the Wightman
function is proportional to the inverse of the proper time, and
the detailed balance temperature falls off linearly in the gap
when the gap is small. For parator motion, the decay of the
Wightman function is proportional to the inverse square of
the proper time, and the detailed balance temperature falls
off as the inverse of the logarithm of the gap when the gap
is small.

As an intermediate step in the analysis, we express the
stationary response function in an arbitrary dimension as a
formula in which the contribution from the distributional
part of the Wightman function has been recast as a
polynomial in the gap, while the remaining contribution
is the Fourier transform of a smooth function. The
stationarity of the detector’s trajectory allows the split to
be performed via a simple Laurent expansion around the
distributional singularities in any dimension. For motion
that is not necessarily stationary, corresponding expressions
for the instantaneous transition rate in dimensions up to
5 4 1 have been given in [45,46].

For the connection between circular motion and drifted
Rindler motion, the key mathematical observation is that the
deformation of these two types of motion to each other
through parator motion is entirely smooth, and in fact real
analytic in the parameters of the motion. This relationship has
been described previously in terms of limits in 3+ 1
dimensions in [29,33], however we describe this deformation
in terms of the underlying two-parameter family of Killing
vectors, with the parator Killing vectors as a one-parameter
subfamily separating circular motion from drifted Rindler
motion. In particular, in any dimension, 2 + 1 and higher,
parator motion can be understood as the ultrarelativistic limit
of circular motion as described in the Lorentz frame adapted
to the circular motion [19,25], and the same holds for the high
drift speed limit of drifted Rindler motion.

For drifted Rindler motion, we also show that in both
241 and 3 + 1 dimensions the drift speed has a modest
heating effect relative to Rindler motion in the large gap
regime, and we expect the same to hold in all dimensions.
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In the small gap regime, the drift speed has a modest
cooling effect in 3 + 1 dimensions but a stronger cool-
ing effect in 2 + 1 dimensions, where the detailed bal-
ance temperature approaches zero as the drift speed
approaches unity.

This paper is structured as follows. In Sec. II, we review
stationary worldlines in Minkowski spacetime and present
the smooth deformation of circular motion to drifted
Rindler motion through parator motion. In Sec. III, we
introduce the UDW detector model and its response in
stationary motion, expressing the response as an integral
formula without distributional singularities. Section IV
gives a detailed analysis of drifted Rindler motion in
2 4 1 and 3 + 1 dimensions in several asymptotic regimes,
with comparison to the corresponding results in circular
motion [19], and Sec. V establishes the small gap excep-
tionality that occurs in circular motion and parator motion
in 2 4+ 1 dimensions. Section VI presents a summary and
concluding remarks. Technical results are deferred to five
appendices.

We use units in which 2=k =c =1. We work in
d-dimensional Minkowski spacetime with d> 3, with stan-
dard Minkowski coordinates (¢, x',x?,...,x% ) = (£,x),
in which the Minkowski metric # reads ds*>=
—dt* + (dx")? + - -+ + (dx?")?. Spacetime points are
denoted by sans serif letters. In asymptotic formulae,
f(x) = O(x) denotes that f(x)/x is bounded in the limit
of interest, and f(x) = o(x) denotes that f(x)/x tends to
zero in the limit of interest. The Heaviside theta function
O(x) is defined as

o(x) I forx>0 (12)
Y70 forx <o, '
and the signum function sgn(x) is defined as
1 forx>0
sgn(x) =¢ -1 forx<0 (1.3)
0 forx=0.

II. DRIFTED RINDLER AND CIRCULAR
WORLDLINES

We begin this section by reviewing the description of an
arbitrary timelike worldline X#(z) parametrized by proper
time 7 in four-dimensional Minkowski spacetime in the
context of the tetrad formalism [28]. The tetrad formalism
replaces the usual coordinate basis {9,} of the tangent
bundle with a more general local basis of each open set of
an open cover of the spacetime manifold. Such a local basis
is a set of four linearly independent vector fields {V,} that
has the following expansion with respect to the coordinate
basis {d, }

V=V, (2.1)
We further impose the local orthonormality condition on
this set
Va;tvl[; = Nab- (22)
which is satisfied in each relevant open set. This basis is
referred to as an orthonormal tetrad. For more details on the
tetrad approach to general relativity, see for example [47].
In order to describe a timelike worldline X*(z) para-
metrized by proper time 7, we construct an orthonormal
tetrad {V%(7)} that is a basis for the tangent space at each 7
along the worldline. The first element of the tetrad Vi (z) is
the four-velocity X#(z) of the worldline and the remaining
elements are found by applying the Gram-Schmidt process
to the set {x*,¥*, x*, X*}, consisting of the proper time
derivatives of x* up to fourth order. The derivatives of
Vi(z) with respect to proper time can be expressed as a
linear combination of the elements of the tetrad, as

Vi(z) = K, () Vi (2), (2.3)
where K, (7) is an antisymmetric matrix given by
0 a(r) 0 0
- 0 b 0
K, — | @ ) (2.4)
0 —b(7) 0 u(r)
0 0 —v(r) 0

Hence, we can describe timelike worldlines as the solutions
to the generalized Frenet-Serret equations, (2.3) and (2.4),
in terms of three curvature invariants; curvature a(z),
torsion b(r) and hypertorsion (7). In this setting, the
curvature is the proper acceleration of the worldline while
the torsion and hypertorsion are the components of the
proper angular velocity of the spatial frame {V/, V4, V4} in
the planes spanned by {V/, V5} and { V4, V4 }, respectively.

This construction is easily generalized to d-dimensional
Minkowski spacetime for d > 2, by applying the Gram-
Schmidt orthogonalization process to dth order. The
resulting d-dimensional local orthonormal basis is referred
to as a vielbein and it satisfies the generalized Frenet-Serret
equations (2.3) where K,;, is now a d x d antisymmetric
matrix given in terms of d — 1 curvature invariants. See
Ref. [48] for more details. In particular, for d = 3, there is
curvature a(z) and torsion b(z) but no hypertorsion v(z),
and K, is a 3 x 3 matrix obtained by deleting the last row
and the last column in (2.4).

A worldline that is a solution to (2.3) with constant
curvature invariants is called stationary. Equivalently, a
stationary worldline can be defined as an orbit of a Killing
vector field that is timelike and future-pointing in a
neighbourhood of the worldline. Stationary worldlines
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have the property that the geodesic distance between any
two points depends only on the difference in proper time
between them. In four-dimensional Minkowski spacetime,
stationary worldlines can be categorized into six basic
families depending on the relative magnitudes of the
curvature invariants [28,33,49]. In the rest of this section,
we describe in detail three of these families: circular
motion, drifted Rindler motion, and the interpolating case
of parator motion. We write the formulae in four spacetime
dimensions, but as all three families have vanishing hyper-
torsion, the description also applies in three spacetime
dimensions by dropping the last spatial coordinate in (2.5),
(2.8) and (2.11).

First, circular motion can be parametrized by the radius
R and the orbital speed v where R > 0and 0 < v < 1.In an
adapted Lorentz frame, the worldline can be written as

X () = <y1, Rcos (%T> .Rsin (% f) , 0), (2.5)

where 7 is the proper time and y = (1 — 2?)7!/2. Note that
since v is the speed of the worldline, y is the usual Lorentz
factor and it is constant in 7z. Circular motion has zero
hypertorsion v, but it has nonzero proper acceleration a and
nonzero torsion b, such that |b| > |a|. The proper accel-
eration and torsion are given in terms of R and v as

a

b= ,
R

(2.6)

7202

a=—,
R

which implies that » =4

- The corresponding Killing
vector is

yv
Sem =70, + R (xdy — y0y), (2.7)

where we have chosen the normalization such that the flow
parameter is the proper time.

Second, drifted Rindler motion is the combination of
linear acceleration and a spacelike translation at constant
speed in a transverse direction. We refer to this spacelike
translation as a drift. In an adapted Lorentz frame, the
drifted Rindler worldline can be written as

Xpg (7) = (R sinh (% r> ,Rcosh (% T) yor, 0) . (28)

where 7 is the proper time, R > 0 is the distance of closest
approach to the origin in the adapted frame, v is the drift
speed satisfying 0 < » < 1 and y = (1 — v?)~'/2, Note that
the speed of the worldline in this frame equals
V/1? + (1 = v?) tanh?(yz/R), which depends on 7 and
equals the drift speed only at the moment of closest
approach to the origin, 7 = 0. Hence, y is the Lorentz
factor only at 7 = 0.

Like circular motion, drifted Rindler motion also has
zero hypertorsion v, nonzero proper acceleration a and
nonzero torsion b but now such that |a| > |b|. a and b are
now given in terms of R and v as

2 2
a="C, p="" (2.9)
R R

which implies that v =2,

vector is

The corresponding Killing

EpR = %(xa, + 10,) + yva,, (2.10)
where we have again chosen the normalization such that the
flow parameter is the proper time.

It was shown in [33] that in the » — 1 limit, both the
circular and the drifted Rindler worldlines reduce to a third
type of stationary worldline, referred to variously as parator
motion, cusped motion or semicubical parabolic motion. In
this paper, we refer to this motion as parator motion. It has
zero hypertorsion v but nonzero proper acceleration a and
nonzero torsion b with equal magnitudes, |a| = |b|. In an
adapted Lorentz frame, the parator worldline is

1 1 1
Xpa (1) = (T + 66121'3, Earz, gazr3, O> ,

(2.11)
where 7 is the proper time and a > 0. The corresponding
Killing vector is

Epa = 0, + a(xd, + 10, — yo, + x0,),  (2.12)
which is a combination of a timelike translation and a null
rotation with relative weights determined by the proper
acceleration a.

We wish to observe here that parator motion is not just a
limiting case of circular motion and drifted Rindler motion:
the parator one-parameter family smoothly connects the
circular motion two-parameter family to the drifted Rindler
two-parameter family as a one-dimensional surface in a
two-dimensional parameter space that contains all three
types of motion. This is conveniently seen in terms of the
Killing vectors (2.7), (2.10) and (2.12) as follows.

Consider the circular motion Killing vector &qyp (2.5).
Under the coordinate transformation

! =y(t—wy), (2.13a)
X' =x-R, (2.13b)
Y =ry—o1). (2.13¢)

which is a boost in (z,y) and a translation in x, oy
becomes
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Eom = 0 — a(¥'dy +10,) = (9, — Xdy).
v

(2.14)

where we have used (2.6) to adopt a and v as the two
independent parameters. Letting (x',y") - (—=x',—y')—
which is a rotation by z in (x,y")—and writing a/v=>b,
where b is the circular motion torsion, £y becomes

Eom = 0y +a(x'dy + 19,) = b(y'dy —Xoy).  (2.15)
where 0 < a < b by construction.

Consider then the drifted Rindler Killing vector (2.10).
Applying the coordinate transformation (2.13), with the
relevant symbols now defined in (2.9), brings &pr to the
form

épr = 0y +a(x'0y +10y) +av(y'dy —x'dy). (2.16)
Letting y — —y’ (which is a reflection in y’) and writing
av = b, where b is the drifted Rindler torsion, £pr becomes

épr = 0y +a(x'oy +10y) —b(y'oy —x'oy), (2.17)
where now 0 < b < a by construction.

Comparing (2.12), (2.15) and (2.17), it is plain that the
circular motion Killing vectors, the drifted Rindler Killing
vectors and the parator Killing vectors form a smooth two-
parameter family, given by (2.17) with a > 0 and b > 0,
such that circular motion occurs for a < b, drifted Rindler
motion occurs for b < a, and the two are joined by the
parator one-parameter subfamily in which a =b. In
particular, parator motion can be obtained, through the
boosts described above, both as the ultrarelativistic v — 1
limit of circular motion in (2.5) and as the corresponding
v — 1 limit of drifted Rindler motion in (2.8) [33].

We observe further that the Killing vector family (2.17)
is not just smooth in @ and b but (real) analytic in each. The
same holds for the trajectory X(z) when written out in the
Lorentz frame of (2.17) [33]. The connection of circular
motion and drifted Rindler motion can therefore be viewed
as a (real) analytic continuation in a and b, and, by
uniqueness of analytic continuation, it is the unique real
analytic continuation. This observation extends to the
spacetime interval AX?(s) := (X(s) —x(0))? on the trajec-
tory: adapting the formulas of [33] to our notation, we have

b sinc? (%v bz—azs) -1

, 1+a e fora < b,
AXx
A )i fora=b,  (2.18)
N
1 @@ )l (izi;bzs)_l fora> b,
where

sz for 0,
sinc(z) = { : o7 (2.192)
1 for z =0,
sinhz  for 0,
sinch(z) = { : A (2.19b)
1 for z =0,

from which the analyticity in a and b is clear.

Whether this sense of analytic continuation in a and b
extends to the detector response function (3.4) that we
study in the rest of this paper would require a more detailed
analysis of the integral in (3.4), especially across the parator
subfamily a = b, where the integrand’s falloff properties
undergo a qualitative change. We shall not address this
question in this paper.

III. FIELD-DETECTOR MODEL

In this section, we first review the linear interaction of a
UDW detector with areal massless scalar field in Minkowski
spacetime of dimension d > 3. We then focus on stationary
trajectories and present the detector’s response as an integral
formula without distributional singularities for any d > 3,
deferring details to Appendix A for d > 5. These integral
formulae provide the starting point of the asymptotic
analyses in the later sections.

A. Unruh-DeWitt detector

We begin by describing the UDW detector model [3,38].
We take the detector to be a two-level quantum system
described by a Hamiltonian Hj with two orthonormal
energy eigenstates |0),, and |1), with energy eigenvalues O
and E, respectively. The energy difference between the two
levels is referred to as the energy gap. If E > 0, then |0), is
the ground state and |1), is the excited state. If E < 0, then
the roles are reversed.

We use this system to probe a real massless scalar field
¢(X) prepared initially in the state |¥). We assume that the
Wightman function G(X,X') = (P|p(X)p(X')|¥) is a dis-
tribution of Hadamard type in the coincidence limit
x — X' [50,51].

We couple the detector linearly to the field via the
monopole moment operator p(7) and allow the detector
to move along a given worldline X(z) parametrized by
proper time z. We can therefore write the interaction
Hamiltonian as

Hiw(7) = A (2)pu(2)p(X(7)), (3.1)
where 1 is a coupling constant and ¢(X(7)) is the value of
the field pulled back to the worldline of the detector. The
switching function y(z) € CF(R) specifies how the inter-
action is turned on and off. This is not the most general
field-detector coupling since it is smeared only in time but
not in space. It is for this reason that this particular theory
describes the interaction between the field and a pointlike
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detector. For more general treatments using spatially
smeared detectors, see e.g. [52,53].

Before the interaction is switched on, if the detector is in
the state |0), and the field is in the state |¥), then after the
interaction has taken place, there is a finite probability of
finding the detector in the state |1),. To first order in
perturbation theory, this probability is proportional to the
response function F,(E) with a proportionality factor that
depends only on the coupling constant and the internal
structure of the detector. The response function F,(E) is
given by

‘F){(E) — /oo dT//oo d‘L’"e_iE(T/_T”))((T/))((T”)W(T',‘L'"),

(3.2)

where W(r, ') == G(X(7), X(7')) is the Wightman function
in the state |¥) pulled back to the worldline of the detector.

For a real massless scalar field in the Minkowski vacuum
|0) in d-dimensional Minkowski spacetime with d > 3, the
Wightman function WW(z, ') is usually represented with an
ie-regulator in the following way

r(d/2-1)

/N
W E) = R X0 — (1= ¢ = e

(3.3)

where x = x(7), X' =x(7'), t =1#(z) and 7 = #(7') and
where the distributional limit € — 0" is understood. For
odd d, the branch of the fractional power for timelike
separations is specified by analytic continuation from
spacelike separations, with the outcome that the denomi-
nator has the phases i~ or (—i)*2 when t—¢ >0 or
t —t < 0, respectively.

B. Stationary response function

We now specialize to a detector in stationary motion and
assume that the field has been prepared in the Minkowski
vacuum. In this case, the stationarity of the detector’s
worldline implies that the Wightman function depends only
on the difference in proper time between any two points i.e.
W(zr,7') = W(r —7,0). In the limit of long interaction
duration, while keeping the coupling constant 4 so small
that first-order perturbation theory is still valid, the detec-
tor’s transition probability per unit time is then proportional
to the stationary response function, given by [3,5,38,44]

F(E) = /_ : dse=EW(s), (3.4)
where W(s) := W(s,0) is given by
T(d/2-1) 55)

() = a2 [AX2 (s — i) @72

where AX?(s) := (X(s) — x(0))?, which we refer to as the
spacetime interval. Note that while the ie is subtracted from
the inertial time difference in Eq. (3.3), the (real and
complex) analyticity of the stationary worldlines allows
us to subtract the ie from the proper time in (3.5). In odd
dimensions, the branch of the fractional power is as
discussed below (3.3); the denominator has the phases
i~ when s > 0 and (—i)?"? when s < 0.

In order to extract information about the state of the field
from the stationary response function, it is useful to express
(3.4) in a form where the ¢ — 0T limit has been taken under
the integral. Special cases where this has been addressed in
specific spacetime dimensions and/or for specific types of
stationary motion are given in [29,33,38,45,46]. Here, we
present a simple method of finding an ie-independent
expression for the stationary response function in any
spacetime dimension d > 3.

As an example, consider d =4, in which case the
vacuum Wightman function is

1

Wis) = 4 AX3 (s — ie)

(3.6)

To identify the exact form of the small s distributional
behavior of the Wightman function, we expand the
reciprocal of the spacetime interval (Ax*(s —ie))™! as a
Laurent series in (s — i€), keeping only the singular terms
as s —> 0

1 1
AX?(s — i€) - (s — ie)? +o(1).

(3.7)

Adding and subtracting this expansion from the Wightman
function within the integral in (3.4), we obtain

1 oo X 1
FE) = — | dse (g
(E) 4r? /_oo . <AX2(S — ie)

s —1ie>2 G —1ie>2>‘

(3.8)

By (3.7), the singularities of the first two terms cancel as
s — 0. In addition, these two terms also individually vanish
1

as § — oo since B0 is bounded by é Therefore, the sum

of the first two terms is integrable independently of the ie
regulator and we can take the ¢ — 0" limit before integrat-
ing. The last term in the brackets can be evaluated by
contour integration, after which the ¢ — 0" limit can be
taken. The final expression for the stationary response
function is therefore
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1 00 . 1 1
F(E) = — d —iEs _
B =4 [ (g )

1 o0 e—iEs

C4n? ) (s —ie)?

1 0 1 1
=— d E —
22, s cos(Es) (sz(s) + 52)

ds

- O(-E),

= (3.9)

where in the last equality, we have used the fact that AX?(s)
is even in s to halve the domain of integration and replace
the exponential with a cosine. The second term is the
response of an inertial detector and the remaining part is the
correction due to the nonzero acceleration and torsion. This
expression agrees with those found in [19,45,46].

This method is applicable in Minkowski spacetime of
any dimension d. In even dimensions d, the reciprocal of
the spacetime interval contains (d —2)/2 divergent terms
as s — 0, while in odd dimensions, it contains (d —1)/2
divergent terms as s — 0. All of these terms need to be
subtracted from the Wightman function and the method
proceeds in the same way as in d =4 dimensions. For
general d, we give the expressions in Appendix A.

In the main text, we focus on d = 4, as given above, and
d = 3. Using the expressions obtained in Appendix A, we
find the stationary response function in d = 3 dimensions
to be

F(E) = % A * dssin(Es) (i - _Alxz(s)>

(3.10)
which agrees with that found in [19,45,46].

IV. TEMPERATURE ASYMPTOTICS

A. Preamble: Effective detailed balance temperature
Given the stationary response function F(E) (3.4), we
define the frequency-dependent temperature 7(E) by

E

T(E) = 710;; ( ].;-E(_Eb;)) .

(4.1)

We refer to T(E) as the detailed balance temperature. We
review here briefly the motivation for this definition.

For uniform linear acceleration of proper acceleration a,
we have T(E) = Ty = a/(2x), which is independent of E.
This is the Unruh effect [3,29,54]: the detector’s response
satisfies F(—E) = e/Tv F(E), which is the detailed bal-
ance condition between the detector’s excitation and de-
excitation rates in a Gibbs ensemble of temperature
Ty [55-59]. What is behind this outcome is that the

Minkowski vacuum can be expressed as a genuine thermal
ensemble of excitations over the vacuum defined by the
boost Killing vector that generates the accelerated motion.
An essential part of this description is that the Killing
horizon of the boost Killing vector divides the spacetime
into four quadrants, and the thermality in one Rindler
quadrant where the Killing vector is timelike arises from
tracing out the field degrees of freedom in the opposite,
causally disconnected Rindler quadrant [3,29,54].

By contrast, for other types of noninertial stationary
motion, T(E) depends on E and there appears to be no
known way to associate T(E) with an underlying Gibbs
ensemble. For example, in the case of uniform circular
motion, the Killing vector generating the motion changes
from timelike to spacelike at the speed-of-light surface, and
one might therefore expect the speed-of-light surface to
play a role analogous to that of the Rindler horizon.
However, while the detector’s response in circular motion
is nontrivial, the spacelike character of the Killing vector
everywhere outside the speed-of-light surface creates tech-
nical obstacles to attempts to define a “rotating vacuum” on
which the Minkowski vacuum could be interpreted as
excitations [26,27,30,34].

We emphasize that as we only address the transitions in
the detector without observing the transitions in the field,
the absence of a “vacuuum” adapted to the detector’s
motion plays no role in the analysis, and neither does the
fact that the Killing vector generating the trajectory
becomes spacelike far from the trajectory and does there-
fore not provide a global notion of time evolution in
Minkowski. These issues will however play a role if one
wishes to observe the “particles” that the interaction with
the detector emits into the field [60].

All of the above being said, the utility of the detailed
balance temperature 7'(E) (4.1), even when E-dependent, is
that it provides a useful quantifier of the detector’s response
to acceleration at a given energy scale. One example of this
is that in the Born-Markov approximation, the late-time
asymptotic state of the detector is [61]

1 10
p(E)ziHe_E/T(E)(O e_E/T(m). (4.2)

In the rest of Sec. IV, we investigate the large gap, small
gap and ultrarelativistic limits of T(E) (4.1) for drifted
Rindler motion in 3 + 1 and 2 + 1 dimensions, comparing
the outcomes with those of circular motion [19].

B. Drifted Rindler motion in 3 +1 dimensions

Consider drifted Rindler motion in 3 + 1 dimensions.
From (2.8) and (3.9), the response function can be split into
the inertial contribution 7™ (E) and the noninertial correc-
tion F"(E) as
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F(E) = F™E) + F°(E), (4.3a)
FN(E) = L 0(-E), (4.3b)
2
1 &) 2ER
Feort (B — d
(E) 4712}'RA zcos( , z>
2
y 1
-7, 4.3

x <zz sinh? z — 11212> (4.3¢)
where in (4.3c) we have changed variables to z = F 5. In

order to evaluate the large gap and ultrarelativistic hrmts it
is useful to re-express (4.3c) as an integral along a contour
in the complex z plane. Following Appendix C of [62],
we first extend the integral in (4.3c) to the full real axis,

using the evenness of the integrand. We then replace

cos (2E—R z) by exp( Z‘ElR ) Next, we deform the contour

to a new contour C that bypasses z = 0 in the upper half-
plane, say, along a small half-circle. The contribution
from the first term in the parentheses then vanishes, as
seen by closing C in the upper half-plane, and what

Closing C in (4.4) in the upper half-plane shows that (4.4)
equals the sum of residues at the poles in the upper
half-plane.

An analysis of the zeroes of the function g(z) =
sinh? z — v?z> in the upper half-plane is given in
Appendix B. We summarize the outcomes here. For a
given speed v, there are finitely many purely imaginary
zeroes, which we write as z; = ia; withk =0, 1, ..., N and
0<ay<a <---<ay; these zeroes are simple, except
that ay is a double zero when v? is a local maximum value
of 5‘(‘;# ap is in the interval 0 < oy < 7, and we may
parametrize v in terms of @ as

sin o

(4.5)

(20}

In addition, there is a countable infinity of simple zeroes
that have both nonzero real and imaginary parts. We write
these zeroes as z; =i(ay£if;), where k=N+1,N+2,...,
ay < ayy, <---, and B, > 0. For each o with k> N,

remains is there are hence two zeroes, with real parts of equal
magnitude but opposite sign.
exp( i 2EIR Now, applying the residue theorem, we find that
1 p 14 2 2 sm a
Feor(E) = — dz . (44) when »” is not a local maximum value of , (4.4) is
87°YR Jc ~sinh’*z — v?7? equal to
|
Fo(E) = Fior(E) + Fisi(E), (4.62)
1 & \/ a2 — sin® ay, JEIR
]:corr - A 4.6b
87R kz: sin oy (sin ay, — a; cos ay.) ¢ (4.6)
Do ew(-2 4 ip)
Feomp(E) = + (B = =Po) (4.6c)

where F{0"(E) and F¢n,(E) are the respective contribu-
tions from the N + 1 purely imaginary poles and from the
countably many poles with nonvanishing real and imagi-

nary parts. When 2 is a local maximum value of Si;‘; ¢ the
k = N term in (4.6b) is replaced by

‘E|R \% 1 + aN —Z‘EJ(IN
R\ 2 3a%

(4.7)

1. Large gap limit
Consider the large gap limit |E| — oo while keeping v
and R fixed. To calculate the temperature in this limit, we
follow the method outlined in Sec. 3B of [19]. Due to the
exponential term appearing in (4.6b) and (4.6¢c), the pole

8myvR S, (ag + ifi) (1 — oy cotay + ifyy tan ay)

|
with the smallest magnitude z = iey dominates in the large
gap limit. The detailed balance temperature (4.1) in this
limit is the reciprocal of the coefficient in the exponent,

14
T(E)= .
( ) 2a0R

(4.8)

Recall that the linear acceleration Unruh effect prediction
for the temperature is Ty, = 5, where the proper accel-
eration a for drifted Rindler motion is given in (4.8), and it
depends on both v and R. For the ratio of T(E) and T};,,
we find
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This ratio depends only on w», approaching the lower
bound 1 as v = 0 (@y = #) and the upper bound % as

v = 1 (ap — 0) and being monotonic in v in between. In
particular, the ratio is always greater than 1. The drift speed
v thus has a heating effect relative to the linear acceleration
Unruh temperature but by a factor never exceeding
\/i? ~ 1.81.

It is instructive to compare the large gap ratio (4.9) to the
similar large gap ratio for circular motion (2.5). This ratio
was found in [19], and it satisfies

Tew(E) < z (4.10)

—F=,0 |,
Ty V3 >

where the lower and upper bounds correspond respectively
to v — 1 and v — 0, and » is the circular motion orbital
speed in (2.5). We see that the critical value % emerges as

the demarcation point between the ratios obtained in the
two families of motions: in the drifted Rindler motion, the
critical value is approached from below as v — 1, and in
circular motion it is approached from above as v — 1. This
result is consistent with the geometric connection between
drifted Rindler motion and circular motion discussed
in Sec. IL.

2. Small gap limit

Consider next the small gap limit £ — 0 while keeping v
and R fixed. We show in Appendix C that the small £
expansion of the stationary response function to first order
in E is

E
—— + O0(E?).
47r+ (E)

(4.11)
It follows that the detailed balance temperature (4.1) has the
small E expansion

T(E) =J(v)Ty, + O(E), (4.12)

where Ty, = 5= is the linear acceleration prediction and

J(v):Amdz<y—12—y3(sinhzi_vzzz)). (4.13)

We show in Appendix D that J(v) decreases monotonically

from 1 when v =0 to ﬁz 0.91 when v — 1. The drift

speed v thus has a mild cooling effect, by less than 10%,
relative to the linear acceleration Unruh temperature.

3. Ultrarelativistic limit

Consider finally the ultrarelativistic limit v — 1 with R
fixed. In terms of «), this is the limit ¢y — 0, and v, y and a
have the expansions

az
v = (1 —é)) (14 0(a3)), (4.14a)
y:é(l +0(a)), (4.14b)
ap
2
a —%—a%iR(l +0(a)). (4.14c¢)

It hence suffices to consider a, so small that (4.6b) and
(4.6¢) hold with N = 0. In F$2™(E) (4.6b), the only term is
k =0, giving

1 Vaz —sin? AEIR
corr _ 0 0 ———aq
Fim (E) e 7

87R sin g (sin ay — ay cos a)

_ 2a|E|R
e ()

= SERa (14 0(a3)).

(4.15)

In &, (E) (4.60), the analysis in Appendix B shows that
wk < o and ¢,k < frtanay forallk = 1,2, ..., where ¢, is
a purely numerical positive constant. In each summand in
(4.6¢), the absolute value of the denominator is hence
bounded below by 7zc,k?. It then follows by a dominated
convergence argument that

Feor (E) = 0<a0 exp <— 2”|f|R>>, (4.16)

uniformly in £. Combining (4.3a), (4.6), (4.15) and (4.16),
we find

_ 2a|EIR
O(-E ﬂexp< v )
27 OB 87Ra}

27|E|R
+ O(aoexp<— 7|E| >>
14

E ﬂeXp(—zﬂ@(l + O(ag)))

— L oCE
2z (=E)+ 8nRa}

(14 0(a) + 0o exp<—2ﬁ”@)),

Qo

(1+ O(aq))

(4.17)

where in the last equality we have used (4.14). Note that the
error terms in the last expression in (4.17) are uniform
in |E|/a.
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For the detailed balance temperature, (4.17) gives the
v — 1 limit

|E|

log(l +4\/§|%exp(2\/§%>> .

T(E) = (4.18)

Formula (4.18) is the detailed balance temperature in the
ultrarelativistic limit of circular motion [19,25], and it is
also the detailed balance temperature in parator motion [33].
This is another consequence of the geometric connection
between the circular and drifted Rindler motions through
the parator motion.

C. Drifted Rindler motion in 2+ 1 dimensions

We now turn to drifted Rindler motion in 2 + 1 dimen-
sions. Using (2.5) and (3.10), the response function can be
split into the inertial contribution F"(E) and the non-
inertial correction F°"(E) as

F(E) = F"(E) + F<"(E), (4.192)
fin(E) — %@(_E)’ (419b)

corr 1 ® 1 2ER Y —1
FO(E) = 27:7// dzsin (TZ> (E B sinh?z — UZZZ> .
(4.19¢)

It will also be useful to split the response function into an
even and an odd part as

F(E) = Fo(E) + F4(E), (4.20a)
Feer(E) :%, (4.20D)
Fou(g) =L [ (<) (4.20¢)

— dz—————~—.
2my Jo V/sinh?z — %72

We note that F°"(E) (4.19¢) can be written as a sum over
contour integrals in the complex plane, encircling the
branch points at the zeroes of the square root in the
denominator, as done for circular motion in Section 4.1
of [19]. The convergence of the sums is however weaker
than in the corresponding sums over residues in (4.6c), and
we shall not be using this sum here.

1. Large gap limit
Consider the large gap limit |E| - oo while keeping »
and R fixed. Starting from F<°"(E) (4.19¢) and deforming
the integration contour in the complex plane as in
Sections IV. 1 and 4.2 of [19], we find that the dominant
contribution to F"(E) comes from the vicinity of the

branch point z = i, and this contribution has the expo-

2a9|E[R
(==7)

nential factor exp . It follows as in 3 + 1 dimen-

sions that the detailed balance temperature is given by (4.8).

2. Small gap limit

Consider next the small gap limit £ — 0 with » and R
fixed. We begin by writing F°4(E) (4.20c) as

ER [« sin(¥%Ez) z
Fod(E ———/ dz—7 . (421
(E) zr* Jo 2ERZ V/sinh?z — 272 ( )

1

As z(sinh? z — v?z%)77 is an integrable function with an
exponential falloff at 7 - o0, a dominated convergence
argument shows that the small E asymptotic expansion of
F°U(E) is obtained by expanding % in the integrand in
(4.21) in the Maclaurin series. From (4 20), we then have

F(E) +O0(E?). (4.22)

T4 ff}’/ \/smhzz V272

From (4.22), the detailed balance temperature is

T;;
T(E) = —" + O(E?), 4.23
(8) = 2+ (8 (4.23
where
4 ©
——2/ A (4.24)
7~ Jo Vsinh? 7 — 0?72

In Appendix D, we show that K(v) increases monotoni-
cally from 1 to oo as v increases from O to 1. Therefore,
from (4.23), we see that the drift speed v cools the small
gap temperature relative to the linear Unruh temperature,
by a factor that increases without bound as » approaches 1.

In comparison, the circular motion detailed balance
temperature in 2 4+ 1 dimensions vanishes linearly in E
in the small gap limit [19], as

|E|
Yem+1
log (1c4})

We shall return to this comparison in Sec. V.

Tem(E) = + O(E?). (4.25)

3. Ultrarelativistic limit with fixed |E|/a

Consider the ultrarelativistic v — 1 limit with fixed
|E|/a. We show in Appendix E that in the v — 1 limit
with fixed |E|/a, F°%(E) has the limiting behavior

Fou(E) _%G(Z\/gE/a), (4.26)

where
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©  sin(gx)
Glg) = [ ax24Y)
@) o xV1+x?

As aresult, the detailed balance temperature in this limit is

(4.27)

E|

1+2G(2V3|E|/a)\ *
log (1—%G(zﬂ\E|/a>>

T(E) = (4.28)

The detailed balance temperature (4.28) agrees with the
2 4 1 circular motion detailed balance temperature in the
ultrarelativistic limit with fixed |E|/a [19]. This temper-
ature is precisely the detailed balance temperature in
parator motion in 2 + 1 dimensions: from (2.11), parator
motion has AX2(s) = —s? — & s*, and substituting this into

(4.20a) gives

Fon(E) = %_ % i s1n(Es2)
0 sy/1+%5s?
L G(2V3E/a). (4.29)
4 2rx

The geometric connection between the circular and drifted
Rindler motions through parator motion hence also extends
to the detailed balance temperature in 2 + 1 dimensions,
despite the differing small gap behavior. We shall address
the small gap behavior in the different motions in more
detail in Sec. V.

V. EXCEPTIONALITY OF 2+1 CIRCULAR
AND PARATOR MOTION IN THE SMALL
GAP LIMIT

In 2+ 1 dimensions, it was shown in [19] that the
circular motion temperature vanishes in the small gap limit,
whereas we showed in Sec. IV C 2 that the drifted Rindler
motion temperature does not vanish in this limit. By
contrast, in 3 + 1 dimensions, neither the circular motion
temperature nor the drifted Rindler temperature vanishes in
the small gap limit. A natural question to ask is then: for
which types of stationary motion in which dimensions does
the temperature vanish in the small gap limit?

The central observation is that the detailed balance
temperature (4.1) has a finite positive limit 7y as £ — 0 if
and only if the response function satisfies F(—E)/F (E) =
I +4-E+o(E) as E — 0. If F(~E)/F(E) has different
positive limits as £ — 0" and E — 0™, the small gap
temperature vanishes. If 7(—E)/F(E) - 1 as E — 0 but
the next-to-leading order term decays less rapidly than O(E),
then the small gap temperature vanishes, whereas if the next-
to-leading term decays more rapidly than O(E), then the
small gap temperature diverges.

In this section, we calculate the small gap expansion of
the stationary response function for all types of stationary
motion in all dimensions, 2+ 1 and higher. We shall

see that in all except two cases this expansion is of
the form

F(E) =a— (f+nsgnE)E + o(E), (5.1)
where a and f are positive constants and # is a real-valued
constant. From (5.1) it follows that F(—E)/F(E) =
1+ 2{—fE + o(E) as E — 0 and hence the resulting small
gap temperature is

T(E) :%(1 +o(1)). (5.2)

Note that (5.2) does not involve the constant 7.

The two exceptions where (5.1) does not hold are
circular and parator motion in 24 1 dimensions. This
phenomenon can be traced back to the weak decay of the
Wightman function for these types of motion in 2+ 1
dimensions. The weak decay gives the response function a
small gap behavior that makes the small gap temperature
O(E) for circular motion and O(1/log|E|) for parator
motion. This shows that the small gap temperature vanishes
only in 2 4+ 1 dimensions and therein only for circular and
parator motion.

A. 2+1 dimensions
In 2 4 1 dimensions, there are five types of stationary
motion, and we have compiled them in Table I. We exclude
inertial motion as the temperature is identically zero. The
stationary response function (3.10) can be written as

1 E [«  sin(Es) s

F(E)=--— . 53
B =175 ) “ & “AX(s) (53)
We consider the small E expansion of (5.3).
If the expression
s
_ 5.4
—AX%(s) (34)

TABLE I. List of all types of stationary motion in 2 + 1 and
3 + 1 dimensions and the s — oo asymptotic behavior of their
spacetime intervals AX?(s). Loxodromic motion only occurs in
3 4 1 dimensions.

Type of motion AX2(s) 5 — 00
Inertial —s? 0(s?)
Rindler _ % sinh? (%) 0(e®)
Parator —s2 — % §4 O(s%)
Circular y?s* + 4R sin? (4y) O(s?)
Drifted Rindler y*v?s* — 4R* sinh?(43) O(er*/R)
Loxodromic 4R? sin® (5z) — % sinh* (1) O(er)
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is integrable, then we may use dominated convergence in
(5.3) to write

F (5.5)

1 E [« s
(E):Z_ZA ds\/Tz(S)-FO(E).

This is of the form of (5.1) and so the corresponding small
gap temperature is a nonzero constant given by (5.2).

Whether (5.4) is integrable depends on the asymptotic
behavior of the type of motion under consideration. For
small s, (5.4)is O(1), since AX*(s) =—s>+O(s*) as s — 0
for all types of stationary motion, the acceleration affecting
only order O(s*). However, for large s, if the decay of (5.4)
is not sufficiently strong, then (5.4) may not be integrable.

The large s asymptotic behavior of AX?(s) for each type
of stationary motion is compiled in Table I. The types of
motion for which (5.4) is integrable are uniform linear
acceleration (Rindler motion) and drifted Rindler motion.
In these cases, (5.4) is exponentially decaying and there-
fore, by dominated convergence, we arrive at (5.5). Hence
for these types of motion, the small gap temperature is finite
and nonzero.

The types of motion (aside from inertial motion) for
which (5.4) is not integrable are circular motion and parator
motion. For circular motion, (5.4)is O(1) as s — oo, and for
parator motion, (5.4) decays only as O(1/s) as s — oo.
Therefore, we cannot simply use dominated convergence in
(5.3). We must instead consider these two cases individually.

First, consider circular motion, for which the large s
asymptotic behavior of the spacetime interval is AX?(s) =
—y%s> + O(1). Following the method in Appendix B
of [19], we add and subtract the large s behavior of the
integrand as follows

F(E) = y—sgnE E [« s sin(Es) ( s B 1)7
4 2 Es \J—A(s) 7
(5.6)
where we have used
) in(E
/ ds sin(£s) = zsgnE. (5.7)
0 N 2

The expression in parentheses in (5.6) is of order O(s™?) as
s — oo and hence, by dominated convergence,

y —sgnkE

FE) =",

+ O(E). (5.8)

Since the zeroth order term in (5.8) depends on the sign of
E, the temperature vanishes in the small gap limit. The
temperature to leading order in E is given by (4.25),

E
T(E) = % + O(E?). (5.9)
CM
log (YCM—l)
Second, consider ;z)arator motion. The spacetime interval
is AX*(s) = —s? — % s* and thus (5.3) becomes
1 1 E
E)y=--—G|2V3— ], 5.10
F(E) = 4 -3,6(2V37) (5.10)

where G(q) is given by (4.27). The leading small argument
behavior of G(g) was calculated in Appendix D of [19] to
be G(q) = —qloglq| + O(q). With this result, (5.10)
becomes

1 V3E |E|
F(E)=—-+——log| — O(E 5.11
® =3+ e () o) )
as E — 0. The next-to-leading order term goes to zero less
rapidly than O(E), and the temperature vanishes in the
small gap limit. The temperature to leading order in E is
given by

ra

~ 8v/3log(a/|E])

The 1/log(a/|E|) suppression in (5.12) is reminiscent of
the 1/logy suppression in the drifted Rindler small gap
temperature (4.23) in the ultrarelativistic limit v — 1, as
seen from (D20).

The vanishing of the small gap temperatures for circular
and parator motion is therefore a result of the weak decay of
their respective Wightman functions in 2 + 1 dimensions.

T(E) (1+0(1). (5.12)

B. 3+1 dimensions

In 3 4 1 dimensions, there is one more type of stationary
motion: loxodromic motion. It is the orbit of a boost with
proper acceleration a and a rotation with orbital speed v.
The worldline can be found in [33]. In Table I, we present
just the spacetime interval and its large proper time
asymptotic behavior.

In 3+ 1 dimensions, the response function is given
by (3.9)

F(E) = ziﬂz/)oo ds cos(Es) <ﬁ(s) + siz) - %9(—@'

(5.13)

We consider the small E expansion of (5.13). For small s,
the expression in parentheses is O(1) since AX*(s) =
—s2 4+ O(s*) as s — 0 for all types of stationary motion.

Furthermore, AX;(S)} < Slz and thus the decay of the

expression in parentheses at s — oo is at least O(1/s?).
Therefore, this expression is integrable and we can split
(5.13) as
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E? [~  (cos(Es)—1) [ s°
E)=F0)+— d 1
FE) =FO0) 45 A S (Es) <AX2(S)+ )

E
-~ O(-E 14
F(0) = = /md L (5.14b)
“22), AXP(s)  s?)° ’
where we have multiplied and divided by (Es)? in the

second integral in (5.14a). We can further simplify (5.14a)
as follows

2 cos -1 s>
F(E) = F(0) + %/ ! EES;Z | <AX2(S)>
|E| E
i 2—ﬂ®(—E)
T B e (eosE 1) [
= 7(0) +g/ (Es)> (sz(s)>
. % | (5.15)

where in the first equality we have used the standard
integral given in (C6), and in the second equality we have
used |E| +2EO(—E) = E.

Consider the integral term in (5.15). The function
(cos(Es) —1)/(Es)?* is bounded in absolute value by an
E-independent constant and it has the pointwise limit — % as
E — 0. If the function

|

S2

AX?(s)

(5.16)

is integrable, then by dominated convergence, the second
term in (5.15) is O(E?) as E — 0. In this case, the small E
expansion (5.15) is of the form (5.1) with n = 0. Hence the
small gap temperature is finite and nonzero.

As can be seen from Table I, (5.16) is integrable for all
types of stationary motion apart from circular motion (and
inertial motion). Although (5.16) is not integrable for
circular motion, we show in Appendix C that the small
gap expansion of the response function is of the form (5.1)
but now with # # 0. As noted below (5.2), n does not
contribute to the temperature. Therefore, the small gap
temperature is finite and nonzero for all types of stationary
motion in 3 + 1 dimensions.

C. Higher dimensions

In the previous two subsections, we saw that the small £
behavior of the response function is sensitive to the large
proper time asymptotics of the Wightman function. In this
subsection, we show that the bound | sz ] > ‘lz means the
Wightman function has sufficiently strong decay at s — oo
to yield a finite, nonzero temperature for all types of
stationary motion in all dimensions, 4 4+ 1 and greater.

1. Odd dimensions d > 5

First, consider odd dimensions d > 5. The response
function is given by (AS),

© -1)/2
Ay(E) = 2(=1)-D/2, /) ds sin(Es)(( x2(s Z ) (5.17b)
-1)/2 d n
By(E) = 21k ,0(— Z d 2n — by, B (5.17¢)
where k; = <j/ e D and b,, € R are defined in (A2b).
The expression (5.17c) is a sum of even powers of E and therefore, as E — 0,
By(E) = =2(=1)4"D2zk b, O(-E) + O(E?). (5.18)
We can rewrite (5.17¢) as
. (d=3)/2
_ a(_1\(d=1)/2 © sin(Es) by,
Ad(E) —2( 1)( ) kdEA ds Es ( sz s) d 2)/ ; gd=2n—1 — by
. (d=3)/2
o  sin(Es b, _
= 2(—1>(d_1)/2kdEA ds E(?S ) <(_AX2 sd ;n 1) - 1)(d >/2”kdbd lsgnE (519)
n=lI

025012-13



LEO J. A. PARRY and JORMA LOUKO

PHYS. REV. D 111, 025012 (2025)

where we have used the standard integral

/°° sin(Es)
0 Es n

T

5 (5.20)

By (A2b), the expression in parentheses on the second line of (5.19) is by_; + O(s?) as s — 0. The sum is O(1/s?) as

s — 00. Since
\AXZ( )I -

O(1/5%3). Therefore, for d > 5, the function s/(—Ax?(s))(@=2)/2 decays at least as fast as

L for all types of stationary motion, the slowest s/(—Ax?(s))“=2/2 can decay as s — oo is as

O(1/s%) as s — oo and thus the

expression in parentheses on the second line of (5.19) is integrable. Hence, by dominated convergence, (5.19) becomes

Ad) =200 [ s -

Combining (5.17a), (5.18) and (5.21), we obtain

FqE) = 2(_1)(d—1)/2kdE/oo ds( a
0

where we have used |E| + 2E@(—E)

(d-3)/2

b
> —sd—§Z—1) — (=) 2akybyysgnE + o(E).  (5.21)
n=1
(d=3)/2 b,
Z 7sd—22—1> + (=)D 27k b, +o(E), (5.22)
n=1

= E. The small gap expansion of the response function is of the form (5.1) and

therefore the temperature is finite and nonzero in the small gap limit.

2. Even dimensions d > 6

Second, consider even dimensions d > 6. The response function is now given by (A6),

Fa(E) = Cq(E) + Dy(E).

Ca(E) = 2k, /O ” ds cos(Es) (

Dy(E) = 27k ,0(—

I'(d/2-1)

where again k; = =7~ and a,, are defined in (A2a).

The expression (5.23c) is a sum of odd powers of E and
therefore, as E — 0O,
Dy(E) = 2rkya, ,®(—=E)E + O(E?).  (5.24)
Consider C,(E) given in (5.23b). By (A2a), the expres-
sion in parentheses is O(s?) as s — 0. The sum is O(1/s?)
as s — oo. Following a similar argument as given
in Sec. VC 1, since d > 6, then as s — oo, the function
1/(AX?(5))(4=2)/2 decays at least as fast as O(1/s*).
|

cos(Es) —

(5.23a)
(d-2)/2
1 ar,
(sz(s))(d—Z)/z_ ; sd—2n>’ (5.23b)
-2)/2 1)d/2+n
Z d 2 @ (5.23¢)
p— n_

Therefore, the expression in parentheses in (5.23b) is
integrable and hence by dominated convergence,

C4(E) = C4(0) + o(1),

- ! @22
. _ 2n
Cd(o) - 2de ds <(AX2(S>)(d_2)/2 Z Sd—2r1) :

n=1

(5.25a)

(5.25b)

To find the next-to-leading order contribution to (5.23b),
consider

C4(E) = C4(0) = 2k E? /O " ds<

E%s?

1 52 ary
> ((sz(s))(d—2)/2 - ; §d-2n=2 "~

o cos(Es) —
= 2k,E? d
d /0 S ( 252

1 52 (d-4)/2 a
2n
)<(sz(s))(d—2)/2_ ; sd—2n—2> +

(5.26)
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where on the first line we have multiplied and divided by
(Es)? in the integrand, and on the second line we have used
the standard integral

/00 cos(az) -1 =@
0 a212 N 2|a\ ’

The function in the first pair of parentheses on the second
line of (5.26) has the pointwise limit —% and is bounded in
absolute value by an E-independent constant. From the
discussion above (5.25a), it follows that s>/ (AX2(s))(@-2)/2
decays at least as fast as O(1/s%) as s — 0. The sum in the
second pair of parentheses is also O(1/s%) as s — co.
Therefore, the function in the second pair of parentheses is
integrable and thus, by dominated convergence, we obtain

(5.27)

Cd(E) = Cd<0) + ﬂkdad_2|E| + O(Ez) (528)

Combining (5.23a), (5.24), (5.25b) and (5.28), we find

. | @22
o _ 2n
F4(E) = deA ds ((sz(s))(d—Z)/Z Z sd—2n>

n=1

+ mkgay_oE + O(E?), (5.29)
where we have used |E| + 2E®(—E) = E. The small gap
expansion is of the form (5.1) and therefore the temperature
is finite and nonzero in the small gap limit.

VI. CONCLUSIONS

In this paper, we addressed the response of a UDW
detector in the Minkowski vacuum of a massless scalar field
in two complementary two-parameter families of stationary
motion: circular motion, generated by a spatial rotation and
a time translation, and drifted Rindler motion, generated by
a boost and a spatial translation. We showed that these two-
parameter families of motion can be smoothly deformed to
each other through a one-parameter family known as
parator motion, generated by a null rotation and a timelike
translation, and we observed that the deformation has a
sense of uniqueness as the unique real analytic continuation
in the parameters of the motion. We then proceeded to show
that this deformation underlies several observations made
in the literature about the detector’s response in limiting
regimes of circular motion and drifted Rindler motion,
including the ultrarelativistic limit of circular motion. We
also established analytic results regarding the detector’s
response in drifted Rindler motion in 2+ 1 and 3+ 1
spacetime dimensions in several asymptotic regimes, com-
paring the results to the corresponding regimes of circular
motion. In terms of an effective temperature seen by the
detector, defined by the detailed balance relation between
excitations and de-excitations, we found that the drifted

Rindler temperature remains bounded when the detector’s
energy gap is large but the proper acceleration is fixed. This
is in contrast to the circular motion temperature, which can
be arbitrarily large in this limit.

A puzzle that motivated our work is that for circular
motion in 2 4 1 dimensions the effective temperature is
much smaller than the linear acceleration Unruh temper-
ature when the detector’s energy gap is small [19] and the
potential relevance of this phenomenon for analogue
spacetime proposals to observe the circular motion
Unruh effect [16,18]. We showed that among all types
of stationary motion in spacetime dimensions 2 + 1 and
higher, this phenomenon is unique to 2 + 1 dimensions and
therein to circular motion and to parator motion. We found
that the mathematical reason for this phenomenon is the
weak decay of the Wightman function along the detector’s
trajectory. As an intermediate step in the analysis, we
presented the detector’s response in arbitrary stationary
motion in spacetime dimensions 2 + 1 and higher as an
integral formula without distributional singularities, gen-
eralizing the formulas obtained in dimensions up to 5 + 1
from the instantaneous transition rate analysis in [45,46].

Throughout this paper, we considered the detector in the
limit of long interaction and weak coupling within first-
order perturbation theory. In this limit, the detector’s
response is stationary, and the detector’s response function
is the Fourier transform of the field’s Wightman function
over the detector’s full worldline. The small gap behavior
of the response, determined by the decay of the Wightman
function at early and late proper times, is thus sensitive to
the assumption that the detector operates at arbitrarily early
and late times. In experimental settings, where interaction
duration is limited by technological and budgetary con-
straints, the small gap behavior might hence be different,
and this difference could be significant in proposals to
observe the circular motion Unruh effect in a (2 + 1)-
dimensional analog spacetime system [15-18]. We intend
to address this question in a forthcoming paper [63].
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APPENDIX A: STATIONARY RESPONSE FUNCTION IN d DIMENSIONS

In this appendix, we calculate the stationary response function associated with a detector in stationary motion in an
arbitrary dimension d > 3. We work in the long-time interaction limit as defined in Sec. 3B.
The stationary response function is defined as

e—iEs

Fu) =k [t (AD)

where k; = %ﬁ;l), and the distributional € — 07 limit is understood. In odd dimensions, the denominator has the phases

472 and (—i)?*? when s > 0 and s < 0, respectively. The reciprocal of the spacetime interval in (A1) has the expansion

1 (d-2)/2 a
= —=——+0(l) ass—iec—0, fordeven A2a
(Ax (S - ie))(d 2)/2 g (S _ ie)d—zn ( ) ( )
1 (d-1)/2 b,
— 2-d _ "2 . .
(Ax*(s — i€))\d=2)/2 = ! 2o (s i€) T2 +O(s —ie) ass—ie—0, fordodd, (A2b)

where a,, and b,, are real-valued coefficients that depend on the spacetime dimension d. Note that a, = (—1)%/?+!
and b, = 1.

First, let d be even. Adding and subtracting the small s expansion (A2a) from the Wightman function within the integral
in (A1), we find

(d-2)/2 —tEs

-2)/2
oo . 1 dyy,
F4(E) =ky /_m dseiEs <(AX2( 5 5o 2 ST 2n> + ky g a2n/ ds—— Goi (A3)

s — i€)) =

where we have swapped the order of summation and integration in the last term.
The second integral in (A3) can be evaluated using contour integration and the residue theorem to give

P e—iEs (—IE) d-2n—1
———— =27i0(-E) ———. A4
/_oo ds (s —ie)d=2n 0 )(d—2n— 1)! (A4)

In the first term in (A3), we can take the ¢ — 0" limit under the integral, justified by the expansion (A2a) and by the large s
falloff of each term in the integrand. Hence, the response function becomes

1 (d=2)/2 /2 (_pyden

co ay,
E) =2k d Es)| —————5— 27k ,O(— Ed=2n=1 (A5
FA) =2k [ dveonten) (arm Y i) 20k Z o (a3)

n=1

where we have used the fact that (Ax?(s))(4=2)/2 is even in s when d is even. The first term in the sum is the response of an
inertial detector and the rest is the noninertial correction.

Now let d be odd. After adding and subtracting the small s expansion (A2b) from the Wightman function within the
integral, (A1) becomes

- 1 @z
_ —iEs _92d by
F4(E) =k, /_oo dse ((sz(s - ie))<d‘2>/2 i ; G- ie)d_2"> (A6)
(d=1)/2 e—iEs
2k b d 7. A7
d Z 2,1/ § —ie)T2n (A7)

Proceeding as above, the response function is
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F4E) = 2(_1)(d—1)/2kd /oo dssin(Es) <W‘ Z $d=2n

0

-1)/2
+ 277.'kd®

where we have used the oddness of (AX?(s))(4=2)/2 to write
the integral in terms of (—Ax?(s))4=2/2 > 0 over s > oo.
As in even dimensions, the first term in the sum is the
response of an inertial detector and the rest is the non-
inertial correction.

APPENDIX B: COMPLEX SINGULARITIES
OF THE DRIFTED RIDLER
WIGHTMAN FUNCTION

In this appendix we locate and analyze the zeroes of the
function

g(z) = sinh? z — %72, (B1)

where z is a complex variable and 0 < v < 1. These zeroes

are used in the main text for evaluating the drifted Rindler
response function.

1. Location of the zeroes

It suffices to consider the zeroes with Imz > 0.

First, the only real zero of g is z = 0, since sinh? 7 > 7°
for real nonzero z.

Second, consider the purely imaginary zeroes of g.
Writing z = ia, where @ > 0, we find that these zeroes
come from the positive solutions to

sin? a
o 2 (B2)

In the interval (0, z) there is exactly one solution, which we
denote by «p, and we parametrize v in terms of ay as

v= S‘g—:’o This is the only solution for » sufficiently close to

unity. As v decreases, new solutions appear when »? equals
. . in2

a local maximum value of the function % There are

finitely many solutions for each ». We enumerate the
solutions as {a}y_,, where

O<ogy<zm<a <ay<--<nr<ay,_| <,

<(n+ 1)z for N =2n, (B3a)
O<aqy<zm<o <ay<--+<nx< oy,
<(n+1)xr for N=2n+1, (B3b)

n=20,1,2,..., and all the solutions are simple zeroes of g,
except that a,,_; is a double zero of g when N =2n + 1

Ed—Zn—l
Z d 2n—1 A==t ’

1 (d-1)/2 b2n )

n=1

(A8)

[
with n > 1. The double zero occurs when »? equals a local
maximum value of %

Third, consider the zeroes of g with a positive imaginary
part but also a possibly nonvanishing real part. We factorize
g as

9(z) = 9:(2)9-(2), (B4a)

g,(2) = sinh z + noz, (B4b)

where n = £1. Writing z = i(a + i), where @ > 0 and
pER and decomposing g,(ia—p) into its real and
imaginary parts, we find that the zeroes of g, have
imaginary part at the positive zeroes of the functions

/ 2
f,?(a):cosa v? .(12 —1+nvarccosh<v ) (BS)
sin“a

where f is defined for —v < % < 0 and f_ is defined for
0< %’ <. f, has come from g, and f_ has come from
g-. For each zero of f,, the corresponding zero or zeroes of
g, are given by z = i(a + i) where

Sima

p = tarccosh <v
sina

) . (B6)

The zeroes of g can now be found by an elementary
analysis of (B5) and (B6). Each strip nz <Imz < (n+ 1)z
that contains purely imaginary zeroes, enumerated in (B4),
contains no other zeroes. Each strip nz < Imz < (n + 1)z
that does not contain purely imaginary zeroes contains
exactly one pair of zeroes, which are simple and have
nonvanishing and opposite real parts.

2. Complex zeroes at v — 1

We provide here estimates for the complex zeroes
as v — 1, used in the ultrarelativistic limit analysis in
Sec. IVB 3.

For v sufficiently close to 1, the only purely imaginary
zero is iag. We choose a constant v, for which this holds,
and we now assume throughout that vy < v < 1. As noted
above, the other complex zeroes then occur in pairs, one
pair in each strip nx < Imz < (n+ 1)z withn = 1,2, ...
Writing the zeroes in the strip nz <Imz < (n+ 1)7 as
i(a, £ if,), n=1,2,..., where f, >0, an elementary
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analysis of (B5) shows that nz < a, < (n+ %)n' and each
a, is a decreasing function of v. Consideration of the
v — 1 limit of (B5) then shows that there exists a positive
numerical constant c¢;, independent of n, such that

nr+c; <a, < (n+1)r, and further that (n+ )7 —

%(1 +o(1)) <a, < (n+%)m as n — oo, where the
o(1) error term is uniform in ». From (B6) it then follows
that there exists a positive numerical constant ¢, such that
con < By tana,, for all vg <v <1 and n=1,2,.... This
will be used to bound F&in, (E) (4.6¢) in Sec. IV B 3.

APPENDIX C: 3+1 SMALL GAP RESPONSE
FUNCTION FOR CIRCULAR AND DRIFTED
RINDLER MOTION

In this Appendix, we calculate the £ — 0 expansion of
the stationary response function for circular and drifted
Rindler motion in 3 4+ 1 dimensions to linear order in E.

1. Circular motion

Consider circular motion in 3 4+ 1 dimensions. Using
(2.5) and (3.9), the noninertial correction to the response
function is

1 0 2ER
corrE — d
Feor(E) 4][2va[) zcos<yv z>
2.2
fal 1
—_—— ], Cl
<z2 i—i—sinzz) D
|
oo -1
P(a) — P(0) —az/ dz(cos(azz)z )(72
0 az
0 cos -1
o [Ta(D =) (7
0 az

where in the second equality we have added and subtracted
y?> — 1 in the second pair of parentheses, in the third equality
we have split the integral into two, justified by the integra-
bility of each expression, and in the fourth equality we have
used y*> — 1 = y?v? and the standard integral

/°° cos(az) =1
0 a2

The expression in the second pair of parentheses in (C5)
is integrable and the expression in the first pair of

T

il (C6)

where we have changed variables to z = Xz s. We start by
writing (C1) as

corr — P 2
Fon(a) = 2 @) ()
where a = i—fE and
) 2 1
P(a) = / dzcos(az) | = (C3)
0

22 Z2 (1 — 2 si?;z)

The expression in parentheses is @ + 0(z%) as z = 0, and
it is Vi—§‘2+ O(1/z*) as z — co. Therefore, by dominated
convergence, P(a) is

P(a) = P(0) + o(1), (C4a)

as a — 0.
To find the next-to-leading order term, we first subtract
P(0) from both sides of (C3). This gives

: )
2 sin®
1 — p?sine

: +W—U%%40

2 sin’ z
1—-0"5

, [* , (cos(az)—1 1
e +a/) dz( a*z? 1_1—1;25“7‘#
L 5, [ . (cos(az)—1 1
z

(C5)

I
parentheses is bounded in absolute value by an a-independent
constant and has the pointwise limit — % as a — 0. Therefore,
by dominated convergence,

mwzpmygﬁﬁw+oma (C7)

asa — 0.
Combining (C7) with (C2) and using a = %E, the small
E expansion of F"(E) is
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v

1}2
fCOH(E) — mP(O) _E|E| + 0<E2) (CS)

Therefore, the small E expansion of the response
function F(E) is

FE) = p)- L |E-Leor) o)
 47%R 4n 2z
Y _p( U onE E+O(E?), (C9)
= ——sn
47’yR e £

where we have used v? = 1 — ylzand sgn(E) +20(-E) = 1.

This expansion completes the argument leading to the
3+ 1 circular motion small gap temperature quoted in
Eq. (3.9) in [19].

2. Drifted Rindler motion

Consider drifted Rindler motion in 3 + 1 dimensions.
The noninertial correction to the response function is given

by (4.3¢),
1 /Wd 2ER
= COS| —

47*yR Jo ¢ Y ‘

2 1
Py
<22 sinh? z — v212>

]:'corr(E)

(C10)

We start by writing (C10) as

1
corihy =———Q(b), Cl11
F(b) = 3 000) i
wherebzzETRand
) }/2 1
o(b :/ dzcos(bz) | e C12
R e

The expression in parentheses is —§+ 0(z%) as 7 — 0,
and it is Ug—; + O0(1/z*) as 7 —» oo. Therefore, by dominated
convergence, Q(b) is

(C13a)

(C13b)

as b — 0.
To find the next-to-leading order term, we subtract Q(0)
from both sides of (C12). This gives

o)~ 0(0) =1 [ a: (%) ( —*)

w cos(bz) —
g yzbz/; dZ b2 )

5 [ cos(bz) — 1 1
—-b \/0 dZ( b2 b} Sinz};zz _ 1}2

bz) -1 1
g o= )
7|| dz p2Z2 q]nzh _ 2

where in the second equality we have split the integral into
two parts, justified by the integrability of each expression,
and in the third equality we have used (C6).

Due to the exponential falloff of the integrand of the
second term in (C14), we may use dominated convergence
to expand the cosine to all orders under the integral to
obtain

0(b) - 0(0) = =37l +0?)  (C15)

as b — 0.
Combining (C15) with (C11) and using b = ZE—R we find

1 |E|

FOE) = 47’yR 0(0) - 4z

O(E?) (C16)

(C14)

[
as E — 0. Therefore, the small E expansion of the response
function is

—-E) + O(E?)

(C17)

L 00 —5+ 0(E)

= C18
47’yR 4z (C13)

where we have used sgn(E) 4+ 20(-E) = 1.

APPENDIX D: v—0 AND v—1 ASYMPTOTICS
OF J(v) AND K(v)

In this Appendix, we calculate the v - 0 and v — 1
asymptotics of the functions J(v) and K(v) defined in
(4.13) and (4.24), respectively.
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1L J(v)
Consider J(v) given by (4.13),

where 0 < v < landy = (1-2%)"12> 1.
Setting y = yz in (D1) gives

10 = "o~ ) O

For y > 0, an elementary analysis shows that the inte-

grand in (D2) is strictly positive and bounded above by the
v-independent integrable function - — ﬁ The v — 0
and v — 1 limits can hence be taken under the integral by

dominated convergence. At » — 0, we find

J(v) =1+ o(1), (D3)
where we have used
J(O)—/md LI R (D4)
o “\Z Tsinn2z) T

The integral in (D4) can be evaluated by extending the
lower limit of the integral to —co by evenness, deforming
the contour to z =i% + r with r €R, and using 3.511.8
in [64]. At v — 1, we find

(Ds)

where the last equality follows by evaluating the elemen-
tary integral.

We also note that J(v) is a monotonically decreasing
function of v. This follows because the integrand in (D2) is
a monotonically decreasing function of » for 0 < » < 1 at
fixed y > 0.

2. K(»v)
Consider K(v) given by (4.24),

4
K(U) :—2
7= Jo

°© Z
A7 ————= D6
Vsinh? z — v27? (D6)
where 0 < v < 1.
For the » — 0 limit, we observe that when » < %,
the integrand in (D6) is bounded above by the integrable
v-independent function z/(sinh? z —12%)71/2. The v — 0

limit can hence be taken by dominated convergence, with
the outcome
K(v) =14 o(1), (D7)

where we have used 3.521.1 in [64] to evaluate the
integral in

4 [ z
K(0) =— d =1. D
© ﬂ2/0 “sinhz (D8)

For the v — 1 limit, we write K(v) (D6) as

4 f[o 1
K(v) :;/O Sy e —

where h(z) = %— 1 and y = (1 —2?)7"/2. Note that
h(z) =%1z>+ 0(z*) as z— 0. Introducing a positive
constant M, we can then split the domain of integration
in (D9) as

(D9)

K(v) = K(v) + K. (v), (D10a)
4 (M 1

K<(’l}) = PA dZ\/ﬁ, (DlOb)

(D10c)

K. (v) :%A:odz\/ﬁ.

First, consider K. (v). Expanding the integrand in powers
of ylz, we find

4 [ 1 1
L ay N 0(—
v /A r

where interchanging the expansion and the integral is
justified by dominated convergence.

Second, consider K _(v). In the integrand in (D10b), we
add and subtract a term in which h(z) is replaced by its
leading small z term %zz, and we regroup the integral as

K. (v) ) (DI11)

K_(v) 4 /Md 1 1
V) =— Z -
< 2 Jo \/h(z)+%2 \/%12+1
4 M 1
N . — (D12)
= Jo /1.2, 1
3Z +72

In the first integral in (D12), the integrand can be written as
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1

%zz — h(z)

|
\/h(z)+yl2 \/ 2+ \/h

which shows that the integrand is bounded in absolute
value by

h(z) —%2?
N e

which is independent of y and integrable over [0, M]. By
dominated convergence, we hence have

(D14)

(D15)

as y — oo.
The second integral in (D12) is elementary and its large y
expansion is

4 (M 1 4 2 4
— dz = {glog( \3/§y> —I—glogM
T 0 /%ZZ +y1_2 T T
1
+ 0(2>. (D16)
4
Combining (D11), (D15) and (D16), we find
43 (23 4/3
K(v) = 5 log( 3 ]/> +— log(M)
T T
4 [ 1 4 (M 1 V3
| dz(—__)
fﬂA Vh(z) 7 Jo hz) =z
+o(1) (D17)
as y — oo.

The sum of the three individually M-dependent terms in
(D17) is independent of M, as can be seen by differentiating
the sum with respect to M. To write the sum in an explicitly

M ’

M
logM—/ —_——
0

and we group the sum as

\/122+ [\/%Z2+7L2+\/h(z)+ylz}’

(D13)

%AM‘”( 2(z>_z<1¢+§z>)+%/wwdzx/%
—%glogo —i—%)

:%Awdz( ;(z) _Z(l\/EZ)>’

where in the last equality we have used the M-independence
of the sum to take the limit M — oo termwise. Hence, as
v—o>1( - ),

V()

Jj/ < smhzz—z _Z(l\/‘fz)>
+o(1).

(D19)

K(v) =

(D20)

APPENDIX E: 2+1 DRIFTED RINDLER
ULTRARELATIVISTIC LIMIT

In this Appendix, we verify the v = 1 (y — oo) limit
(4.26) with fixed E/a for drifted Rindler motion in 2 + 1
dimensions.

Starting with the expression for the odd part of the
response function in 2 4 1 dimensions as given in (4.20c),
we make the change of variables y = yz to obtain

: E
odd / sin(2 @ y)
27r

42 (2) —
\/ysmh (y)

where we have used (2.9).

An elementary analysis shows that the integrand in (E1) is
bounded in absolute value by |sin(2£y)[y=!(1 4 1y*)7/2,
which is independent of y and integrable in y. We can hence
takethey — oo limitin (E1) under the integral, with the result

sin(2£y)

]:odd —
1 2

a4 o(1). (E2)

Finally, by the change of variables x = % we have
1 [o sin(2y/3Ex
L[ sin@ViEy
7 Jo xV1+ x?

_ _;_ﬂc(zﬁE/a) +o(1) (E3)

FoU(E) = o(1)

as y — oo, where the function G is as defined in (4.27).
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