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In Minkowski spacetime quantum field theory, each stationary motion is associated with an effective,
energy-dependent notion of temperature, which generalizes the familiar Unruh temperature of uniform
linear acceleration. Motivated by current experimental interest in circular motion, we analyze the effective
temperature for drifted Rindler motion, generated by a boost and a spacelike translation (drift), and the way
in which drifted Rindler motion can be smoothly (and in fact real analytically) deformed to circular motion
through a third type of motion known as parator. For an Unruh-DeWitt detector coupled linearly to a
massless scalar field in 2þ 1 and 3þ 1 spacetime dimensions, we establish analytic results in the limits of
large gap, small gap and large drift speed. For fixed proper acceleration, the drifted Rindler temperature
remains bounded in the large gap limit, in contrast to the circular motion temperature, which can be
arbitrarily large in this limit. Finally, in 2þ 1 dimensions, we trace the vanishing of the circular motion
temperature in the small gap limit to the weak decay of the Wightman function, and we show that, among
all types of stationary motion in all dimensions, this phenomenon is unique to 2þ 1 dimensions and therein
to circular and parator motion.

DOI: 10.1103/PhysRevD.111.025012

I. INTRODUCTION

The Unruh effect [1–4] predicts that a uniformly linearly
accelerated observer with proper acceleration a reacts to the
Minkowski vacuum of a relativistic quantum field as if the
vacuum were a thermal state with the Unruh temperature

TU ¼ ℏa
2πckB

: ð1:1Þ

This effect is a consequence of the observer-dependence of
the notion of a “particle” in relativistic quantum field
theory, in flat and curved spacetimes [5,6]. Related pre-
dictions include the Hawking effect [7] and the cosmo-
logical particle creation [8] from which the present-day
structure of the Universe may originate [9].
In the standard setting of a relativistic quantum field,

the Unruh effect is very small. The acceleration neces-
sary to register a temperature of 1K is approximately
2.4 × 1020 m=s2, and the effect has not been experimen-
tally verified. The prospects to observe the effect are
however better in analogue spacetime systems [10–12]

where condensed matter excitations simulate a relativistic
quantum field but with the speed of light replaced by the
speed of sound thereby raising the Unruh temperature (1.1)
by several orders of magnitude. In this setting, the classical
mode conversion underlying the Hawking and Unruh
effects has been observed [13,14]. The experimental
prospects in a tabletop system are further enhanced by
considering circular rather than linear acceleration, where
the accelerating trajectory can be kept in a finite spatial
volume for an arbitrarily long time [15–18] and where the
lack of a condensed matter relativistic time dilation can be
accounted for at the data analysis stage [15,16,19]. An
earlier context where the circular motion Unruh effect has
been considered is the depolarization of electron beams in
accelerator storage rings [20–25]. Other work on the theory
of the circular motion Unruh effect includes [26–37].
A subtlety with circular acceleration is that the linear

acceleration Unruh temperature formula (1.1) is no longer
exact, and the circular acceleration effect in fact cannot
be described in terms of a density matrix with a single
“temperature” parameter [26,27,30]. This is in contrast to
the linear acceleration effect, which has a well-known
description in terms of a Bogoliubov transformation
between the Minkowski and Rindler vacua [3].
Nevertheless, an effective temperature for circular acceler-
ation can be introduced in terms of the excitations and
de-excitations of a local quantum system following the
accelerated worldline, and although this effective temper-
ature depends on the internal energy spacing of the system, it
is in broad agreement with the Unruh temperature
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formula (1.1) over most of the parameter space [19,25,33].
The effective temperature therefore provides a useful quan-
tifier of the acceleration effects.
That being said, a puzzle with the circular acceleration

effective temperature is that it is much smaller than
the linear acceleration Unruh temperature (1.1) when the
effective spacetime dimension is 2þ 1 (as it is in the Bose-
Einstein condensate and superfluid helium analog space-
time proposals in [16,18]) and the internal energy spacing
of the accelerating system is small [19]. The purpose of this
paper is to investigate the deviation from the linear
acceleration effective temperature for small internal energy
spacings from the broader perspective of observers in
arbitrary types of stationary motion [28,29,31,33]. In
particular, as the circular acceleration Killing vector is a
linear combination of a spatial rotation and a time trans-
lation, circular acceleration can be viewed as dual to the
drifted Rindler motion [28,29], whose Killing vector is a
linear combination of a boost and a spatial translation. We
show how these two types of motions can be smoothly
deformed to each other through a type of motion known as
parator motion, which is generated by a null rotation and a
timelike translation [28,33], and we observe that the
deformation can be viewed as the unique (real) analytic
continuation in the parameters of the motion. We further
show how the effective temperature undergoes qualitative
changes in this deformation, particularly in the regime
where the detector’s internal energy spacing is small. We
trace the smallness of the circular motion effective temper-
ature for small internal energy spacings to the weak decay
of the Wightman function along the detector’s trajectory,
and we show that, among all types of stationary motion
in all dimensions, this phenomenon is unique to 2þ 1
dimensions and therein to circular and parator motion.
We work in a technical setting where the quantum field is

a real massless scalar field in Minkowski spacetime of
dimension 2þ 1 or higher, prepared in its Minkowski
vacuum state. We probe the field with an Unruh-DeWitt
(UDW) detector, a pointlike two-level system coupled
linearly to the scalar field [3,38], and we treat the coupled
system to leading order in perturbation theory. This model
captures the essentials of the interaction between atomic
orbitals and the electromagnetic field [39,40]. As the
detector’s worldline is by assumption stationary, and the
Minkowski vacuum is Poincaré invariant, the coupled
system is invariant under time translations along the
detector’s worldline, and we can consider the detector’s
transition probability per unit time [41–44]. We can then
characterize the detector’s response by an effective temper-
ature, defined by fitting the ratio of the excitation and de-
excitation rates to the exponential formula that this ratio
obeys in a genuine thermal ensemble [20,25,29]. The
resulting temperature, which we call the detailed balance
temperature, depends on the detector’s energy gap, and the
puzzle for circular acceleration in 2þ 1 dimensions is that

the detailed balance temperature goes to zero linearly as the
gap goes to zero [19]. It is in terms of the detailed balance
temperature that we shall analyze the status of (2þ 1)-
dimensional circular motion among stationary motions in
all dimensions, 2þ 1 and higher.
The keymathematical observation in this technical setting

is that the detector’s response function is the Fourier trans-
form of the pullback of the field’s Wightman distribution to
the detector’s worldline, and one therefore expects that the
small gap behavior of the response is determined by the large
timedecay of theWightmandistribution. The decay depends
both on the spacetime dimension and the detector’s trajec-
tory. We show that in almost all cases the decay is indeed so
strong that the detailed balance temperature remains finite in
the small gap limit. The only exceptions occur in 2þ 1
dimensions, and therein only for two types of accelerated
motion. For circular motion, the decay of the Wightman
function is proportional to the inverse of the proper time, and
the detailed balance temperature falls off linearly in the gap
when the gap is small. For parator motion, the decay of the
Wightman function is proportional to the inverse square of
the proper time, and the detailed balance temperature falls
off as the inverse of the logarithm of the gap when the gap
is small.
As an intermediate step in the analysis, we express the

stationary response function in an arbitrary dimension as a
formula in which the contribution from the distributional
part of the Wightman function has been recast as a
polynomial in the gap, while the remaining contribution
is the Fourier transform of a smooth function. The
stationarity of the detector’s trajectory allows the split to
be performed via a simple Laurent expansion around the
distributional singularities in any dimension. For motion
that is not necessarily stationary, corresponding expressions
for the instantaneous transition rate in dimensions up to
5þ 1 have been given in [45,46].
For the connection between circular motion and drifted

Rindler motion, the key mathematical observation is that the
deformation of these two types of motion to each other
through parator motion is entirely smooth, and in fact real
analytic in theparameters of themotion. This relationship has
been described previously in terms of limits in 3þ 1
dimensions in [29,33], howeverwe describe this deformation
in terms of the underlying two-parameter family of Killing
vectors, with the parator Killing vectors as a one-parameter
subfamily separating circular motion from drifted Rindler
motion. In particular, in any dimension, 2þ 1 and higher,
parator motion can be understood as the ultrarelativistic limit
of circular motion as described in the Lorentz frame adapted
to the circularmotion [19,25], and the sameholds for the high
drift speed limit of drifted Rindler motion.
For drifted Rindler motion, we also show that in both

2þ 1 and 3þ 1 dimensions the drift speed has a modest
heating effect relative to Rindler motion in the large gap
regime, and we expect the same to hold in all dimensions.
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In the small gap regime, the drift speed has a modest
cooling effect in 3þ 1 dimensions but a stronger cool-
ing effect in 2þ 1 dimensions, where the detailed bal-
ance temperature approaches zero as the drift speed
approaches unity.
This paper is structured as follows. In Sec. II, we review

stationary worldlines in Minkowski spacetime and present
the smooth deformation of circular motion to drifted
Rindler motion through parator motion. In Sec. III, we
introduce the UDW detector model and its response in
stationary motion, expressing the response as an integral
formula without distributional singularities. Section IV
gives a detailed analysis of drifted Rindler motion in
2þ 1 and 3þ 1 dimensions in several asymptotic regimes,
with comparison to the corresponding results in circular
motion [19], and Sec. V establishes the small gap excep-
tionality that occurs in circular motion and parator motion
in 2þ 1 dimensions. Section VI presents a summary and
concluding remarks. Technical results are deferred to five
appendices.
We use units in which ℏ ¼ kB ¼ c ¼ 1. We work in

d-dimensional Minkowski spacetime with d≥3, with stan-
dard Minkowski coordinates ðt; x1; x2;…; xd−1Þ ¼ ðt;xÞ,
in which the Minkowski metric η reads ds2 ¼
−dt2 þ ðdx1Þ2 þ � � � þ ðdxd−1Þ2. Spacetime points are
denoted by sans serif letters. In asymptotic formulae,
fðxÞ ¼ OðxÞ denotes that fðxÞ=x is bounded in the limit
of interest, and fðxÞ ¼ oðxÞ denotes that fðxÞ=x tends to
zero in the limit of interest. The Heaviside theta function
ΘðxÞ is defined as

ΘðxÞ ¼
�
1 for x ≥ 0

0 for x < 0;
ð1:2Þ

and the signum function sgnðxÞ is defined as

sgnðxÞ ¼
8<
:

1 for x > 0

−1 for x < 0

0 for x ¼ 0:

ð1:3Þ

II. DRIFTED RINDLER AND CIRCULAR
WORLDLINES

We begin this section by reviewing the description of an
arbitrary timelike worldline xμðτÞ parametrized by proper
time τ in four-dimensional Minkowski spacetime in the
context of the tetrad formalism [28]. The tetrad formalism
replaces the usual coordinate basis f∂μg of the tangent
bundle with a more general local basis of each open set of
an open cover of the spacetime manifold. Such a local basis
is a set of four linearly independent vector fields fVag that
has the following expansion with respect to the coordinate
basis f∂μg

Va ¼ Vμ
a∂μ: ð2:1Þ

We further impose the local orthonormality condition on
this set

VaμV
μ
b ¼ ηab; ð2:2Þ

which is satisfied in each relevant open set. This basis is
referred to as an orthonormal tetrad. For more details on the
tetrad approach to general relativity, see for example [47].
In order to describe a timelike worldline xμðτÞ para-

metrized by proper time τ, we construct an orthonormal
tetrad fVμ

aðτÞg that is a basis for the tangent space at each τ
along the worldline. The first element of the tetrad Vμ

0ðτÞ is
the four-velocity ẋμðτÞ of the worldline and the remaining
elements are found by applying the Gram-Schmidt process
to the set fẋμ; ẍμ; x:::μ; x::::μg, consisting of the proper time
derivatives of xμ up to fourth order. The derivatives of
Vμ
aðτÞ with respect to proper time can be expressed as a

linear combination of the elements of the tetrad, as

V̇μ
aðτÞ ¼ Ka

bðτÞVμ
bðτÞ; ð2:3Þ

where KabðτÞ is an antisymmetric matrix given by

Kab ¼

0
BBB@

0 aðτÞ 0 0

−aðτÞ 0 bðτÞ 0

0 −bðτÞ 0 νðτÞ
0 0 −νðτÞ 0

1
CCCA: ð2:4Þ

Hence, we can describe timelike worldlines as the solutions
to the generalized Frenet-Serret equations, (2.3) and (2.4),
in terms of three curvature invariants; curvature aðτÞ,
torsion bðτÞ and hypertorsion νðτÞ. In this setting, the
curvature is the proper acceleration of the worldline while
the torsion and hypertorsion are the components of the
proper angular velocity of the spatial frame fVμ

1; V
μ
2; V

μ
3g in

the planes spanned by fVμ
1; V

μ
2g and fVμ

2; V
μ
3g, respectively.

This construction is easily generalized to d-dimensional
Minkowski spacetime for d ≥ 2, by applying the Gram-
Schmidt orthogonalization process to dth order. The
resulting d-dimensional local orthonormal basis is referred
to as a vielbein and it satisfies the generalized Frenet-Serret
equations (2.3) where Kab is now a d × d antisymmetric
matrix given in terms of d − 1 curvature invariants. See
Ref. [48] for more details. In particular, for d ¼ 3, there is
curvature aðτÞ and torsion bðτÞ but no hypertorsion νðτÞ,
and Kab is a 3 × 3 matrix obtained by deleting the last row
and the last column in (2.4).
A worldline that is a solution to (2.3) with constant

curvature invariants is called stationary. Equivalently, a
stationary worldline can be defined as an orbit of a Killing
vector field that is timelike and future-pointing in a
neighbourhood of the worldline. Stationary worldlines
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have the property that the geodesic distance between any
two points depends only on the difference in proper time
between them. In four-dimensional Minkowski spacetime,
stationary worldlines can be categorized into six basic
families depending on the relative magnitudes of the
curvature invariants [28,33,49]. In the rest of this section,
we describe in detail three of these families: circular
motion, drifted Rindler motion, and the interpolating case
of parator motion. We write the formulae in four spacetime
dimensions, but as all three families have vanishing hyper-
torsion, the description also applies in three spacetime
dimensions by dropping the last spatial coordinate in (2.5),
(2.8) and (2.11).
First, circular motion can be parametrized by the radius

R and the orbital speed vwhere R > 0 and 0 < v < 1. In an
adapted Lorentz frame, the worldline can be written as

xCMðτÞ ¼
�
γτ; R cos

�
γv
R
τ

�
; R sin

�
γv
R
τ

�
; 0

�
; ð2:5Þ

where τ is the proper time and γ ¼ ð1 − v2Þ−1=2. Note that
since v is the speed of the worldline, γ is the usual Lorentz
factor and it is constant in τ. Circular motion has zero
hypertorsion ν, but it has nonzero proper acceleration a and
nonzero torsion b, such that jbj > jaj. The proper accel-
eration and torsion are given in terms of R and v as

a ¼ γ2v2

R
; b ¼ γ2v

R
; ð2:6Þ

which implies that v ¼ a
b. The corresponding Killing

vector is

ξCM ¼ γ∂t þ
γv
R
ðx∂y − y∂xÞ; ð2:7Þ

where we have chosen the normalization such that the flow
parameter is the proper time.
Second, drifted Rindler motion is the combination of

linear acceleration and a spacelike translation at constant
speed in a transverse direction. We refer to this spacelike
translation as a drift. In an adapted Lorentz frame, the
drifted Rindler worldline can be written as

xDRðτÞ ¼
�
R sinh

�
γ

R
τ

�
; R cosh

�
γ

R
τ

�
; γvτ; 0

�
; ð2:8Þ

where τ is the proper time, R > 0 is the distance of closest
approach to the origin in the adapted frame, v is the drift
speed satisfying 0 < v < 1 and γ ¼ ð1 − v2Þ−1=2. Note that
the speed of the worldline in this frame equalsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ ð1 − v2Þ tanh2ðγτ=RÞ

p
, which depends on τ and

equals the drift speed only at the moment of closest
approach to the origin, τ ¼ 0. Hence, γ is the Lorentz
factor only at τ ¼ 0.

Like circular motion, drifted Rindler motion also has
zero hypertorsion ν, nonzero proper acceleration a and
nonzero torsion b but now such that jaj > jbj. a and b are
now given in terms of R and v as

a ¼ γ2

R
; b ¼ γ2v

R
; ð2:9Þ

which implies that v ¼ b
a. The corresponding Killing

vector is

ξDR ¼ γ

R
ðx∂t þ t∂xÞ þ γv∂y; ð2:10Þ

where we have again chosen the normalization such that the
flow parameter is the proper time.
It was shown in [33] that in the v → 1 limit, both the

circular and the drifted Rindler worldlines reduce to a third
type of stationary worldline, referred to variously as parator
motion, cusped motion or semicubical parabolic motion. In
this paper, we refer to this motion as parator motion. It has
zero hypertorsion ν but nonzero proper acceleration a and
nonzero torsion b with equal magnitudes, jaj ¼ jbj. In an
adapted Lorentz frame, the parator worldline is

xPAðτÞ ¼
�
τ þ 1

6
a2τ3;

1

2
aτ2;

1

6
a2τ3; 0

�
; ð2:11Þ

where τ is the proper time and a > 0. The corresponding
Killing vector is

ξPA ¼ ∂t þ aðx∂t þ t∂x − y∂x þ x∂yÞ; ð2:12Þ

which is a combination of a timelike translation and a null
rotation with relative weights determined by the proper
acceleration a.
We wish to observe here that parator motion is not just a

limiting case of circular motion and drifted Rindler motion:
the parator one-parameter family smoothly connects the
circular motion two-parameter family to the drifted Rindler
two-parameter family as a one-dimensional surface in a
two-dimensional parameter space that contains all three
types of motion. This is conveniently seen in terms of the
Killing vectors (2.7), (2.10) and (2.12) as follows.
Consider the circular motion Killing vector ξCM (2.5).

Under the coordinate transformation

t0 ¼ γðt − vyÞ; ð2:13aÞ

x0 ¼ x − R; ð2:13bÞ

y0 ¼ γðy − vtÞ; ð2:13cÞ

which is a boost in ðt; yÞ and a translation in x, ξCM
becomes
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ξCM ¼ ∂t0 − aðx0∂t0 þ t0∂x0 Þ −
a
v
ðy0∂x0 − x0∂y0 Þ; ð2:14Þ

where we have used (2.6) to adopt a and v as the two
independent parameters. Letting ðx0; y0Þ → ð−x0;−y0Þ—
which is a rotation by π in ðx0; y0Þ—and writing a=v¼b,
where b is the circular motion torsion, ξCM becomes

ξCM ¼ ∂t0 þ aðx0∂t0 þ t0∂x0 Þ − bðy0∂x0 − x0∂y0 Þ; ð2:15Þ

where 0 < a < b by construction.
Consider then the drifted Rindler Killing vector (2.10).

Applying the coordinate transformation (2.13), with the
relevant symbols now defined in (2.9), brings ξDR to the
form

ξDR ¼ ∂t0 þ aðx0∂t0 þ t0∂x0 Þ þ avðy0∂x0 − x0∂y0 Þ: ð2:16Þ

Letting y0 → −y0 (which is a reflection in y0) and writing
av ¼ b, where b is the drifted Rindler torsion, ξDR becomes

ξDR ¼ ∂t0 þ aðx0∂t0 þ t0∂x0 Þ − bðy0∂x0 − x0∂y0 Þ; ð2:17Þ

where now 0 < b < a by construction.
Comparing (2.12), (2.15) and (2.17), it is plain that the

circular motion Killing vectors, the drifted Rindler Killing
vectors and the parator Killing vectors form a smooth two-
parameter family, given by (2.17) with a > 0 and b > 0,
such that circular motion occurs for a < b, drifted Rindler
motion occurs for b < a, and the two are joined by the
parator one-parameter subfamily in which a ¼ b. In
particular, parator motion can be obtained, through the
boosts described above, both as the ultrarelativistic v → 1
limit of circular motion in (2.5) and as the corresponding
v → 1 limit of drifted Rindler motion in (2.8) [33].
We observe further that the Killing vector family (2.17)

is not just smooth in a and b but (real) analytic in each. The
same holds for the trajectory xðτÞ when written out in the
Lorentz frame of (2.17) [33]. The connection of circular
motion and drifted Rindler motion can therefore be viewed
as a (real) analytic continuation in a and b, and, by
uniqueness of analytic continuation, it is the unique real
analytic continuation. This observation extends to the
spacetime interval Δx2ðsÞ ≔ ðxðsÞ − xð0ÞÞ2 on the trajec-
tory: adapting the formulas of [33] to our notation, we have

−
Δx2ðsÞ
s2

¼

8>>><
>>>:
1þa2

sinc2
�
1
2

ffiffiffiffiffiffiffiffiffi
b2−a2

p
s
�
−1

a2−b2 for a<b;

1þ 1
12
a2s2 for a¼ b;

1þa2
sinch2

�
1
2

ffiffiffiffiffiffiffiffiffi
a2−b2

p
s
�
−1

a2−b2 for a>b;

ð2:18Þ

where

sincðzÞ ¼
� sin z

z for z ≠ 0;

1 for z ¼ 0;
ð2:19aÞ

sinchðzÞ ¼
� sinh z

z for z ≠ 0;

1 for z ¼ 0;
ð2:19bÞ

from which the analyticity in a and b is clear.
Whether this sense of analytic continuation in a and b

extends to the detector response function (3.4) that we
study in the rest of this paper would require a more detailed
analysis of the integral in (3.4), especially across the parator
subfamily a ¼ b, where the integrand’s falloff properties
undergo a qualitative change. We shall not address this
question in this paper.

III. FIELD-DETECTOR MODEL

In this section, we first review the linear interaction of a
UDWdetectorwith a realmassless scalar field inMinkowski
spacetime of dimension d ≥ 3. We then focus on stationary
trajectories and present the detector’s response as an integral
formula without distributional singularities for any d ≥ 3,
deferring details to Appendix A for d ≥ 5. These integral
formulae provide the starting point of the asymptotic
analyses in the later sections.

A. Unruh-DeWitt detector

We begin by describing the UDW detector model [3,38].
We take the detector to be a two-level quantum system
described by a Hamiltonian HD with two orthonormal
energy eigenstates j0iD and j1iD with energy eigenvalues 0
and E, respectively. The energy difference between the two
levels is referred to as the energy gap. If E > 0, then j0iD is
the ground state and j1iD is the excited state. If E < 0, then
the roles are reversed.
We use this system to probe a real massless scalar field

ϕðxÞ prepared initially in the state jΨi. We assume that the
Wightman function Gðx; x0Þ ¼ hΨjϕðxÞϕðx0ÞjΨi is a dis-
tribution of Hadamard type in the coincidence limit
x → x0 [50,51].
We couple the detector linearly to the field via the

monopole moment operator μðτÞ and allow the detector
to move along a given worldline xðτÞ parametrized by
proper time τ. We can therefore write the interaction
Hamiltonian as

HintðτÞ ¼ λχðτÞμðτÞϕðxðτÞÞ; ð3:1Þ

where λ is a coupling constant and ϕðxðτÞÞ is the value of
the field pulled back to the worldline of the detector. The
switching function χðτÞ∈C∞

0 ðRÞ specifies how the inter-
action is turned on and off. This is not the most general
field-detector coupling since it is smeared only in time but
not in space. It is for this reason that this particular theory
describes the interaction between the field and a pointlike
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detector. For more general treatments using spatially
smeared detectors, see e.g. [52,53].
Before the interaction is switched on, if the detector is in

the state j0iD and the field is in the state jΨi, then after the
interaction has taken place, there is a finite probability of
finding the detector in the state j1iD. To first order in
perturbation theory, this probability is proportional to the
response function F χðEÞ with a proportionality factor that
depends only on the coupling constant and the internal
structure of the detector. The response function F χðEÞ is
given by

F χðEÞ ¼
Z

∞

−∞
dτ0

Z
∞

−∞
dτ00e−iEðτ0−τ00Þχðτ0Þχðτ00ÞWðτ0; τ00Þ;

ð3:2Þ

where Wðτ; τ0Þ ≔ GðxðτÞ; xðτ0ÞÞ is the Wightman function
in the state jΨi pulled back to the worldline of the detector.
For a real massless scalar field in the Minkowski vacuum

j0i in d-dimensional Minkowski spacetime with d ≥ 3, the
Wightman function Wðτ; τ0Þ is usually represented with an
iϵ-regulator in the following way

Wðτ; τ0Þ ¼ Γðd=2 − 1Þ
4πd=2½ðx − x0Þ2 − ðt − t0 − iϵÞ2�ðd−2Þ=2 ; ð3:3Þ

where x ¼ xðτÞ, x0 ¼ xðτ0Þ, t ¼ tðτÞ and t0 ¼ tðτ0Þ and
where the distributional limit ϵ → 0þ is understood. For
odd d, the branch of the fractional power for timelike
separations is specified by analytic continuation from
spacelike separations, with the outcome that the denomi-
nator has the phases id−2 or ð−iÞd−2 when t − t0 > 0 or
t − t0 < 0, respectively.

B. Stationary response function

We now specialize to a detector in stationary motion and
assume that the field has been prepared in the Minkowski
vacuum. In this case, the stationarity of the detector’s
worldline implies that the Wightman function depends only
on the difference in proper time between any two points i.e.
Wðτ; τ0Þ ¼ Wðτ − τ0; 0Þ. In the limit of long interaction
duration, while keeping the coupling constant λ so small
that first-order perturbation theory is still valid, the detec-
tor’s transition probability per unit time is then proportional
to the stationary response function, given by [3,5,38,44]

F ðEÞ ¼
Z

∞

−∞
dse−iEsWðsÞ; ð3:4Þ

where WðsÞ ≔ Wðs; 0Þ is given by

WðsÞ ¼ Γðd=2 − 1Þ
4πd=2½Δx2ðs − iϵÞ�ðd−2Þ=2 ; ð3:5Þ

where Δx2ðsÞ ≔ ðxðsÞ − xð0ÞÞ2, which we refer to as the
spacetime interval. Note that while the iϵ is subtracted from
the inertial time difference in Eq. (3.3), the (real and
complex) analyticity of the stationary worldlines allows
us to subtract the iϵ from the proper time in (3.5). In odd
dimensions, the branch of the fractional power is as
discussed below (3.3); the denominator has the phases
id−2 when s > 0 and ð−iÞd−2 when s < 0.
In order to extract information about the state of the field

from the stationary response function, it is useful to express
(3.4) in a form where the ϵ → 0þ limit has been taken under
the integral. Special cases where this has been addressed in
specific spacetime dimensions and/or for specific types of
stationary motion are given in [29,33,38,45,46]. Here, we
present a simple method of finding an iϵ-independent
expression for the stationary response function in any
spacetime dimension d ≥ 3.
As an example, consider d ¼ 4, in which case the

vacuum Wightman function is

WðsÞ ¼ 1

4π2Δx2ðs − iϵÞ : ð3:6Þ

To identify the exact form of the small s distributional
behavior of the Wightman function, we expand the
reciprocal of the spacetime interval ðΔx2ðs − iϵÞÞ−1 as a
Laurent series in ðs − iϵÞ, keeping only the singular terms
as s → 0

1

Δx2ðs − iϵÞ ¼ −
1

ðs − iϵÞ2 þOð1Þ: ð3:7Þ

Adding and subtracting this expansion from the Wightman
function within the integral in (3.4), we obtain

F ðEÞ ¼ 1

4π2

Z
∞

−∞
dse−iEs

�
1

Δx2ðs − iϵÞ

þ 1

ðs − iϵÞ2 −
1

ðs − iϵÞ2
�
: ð3:8Þ

By (3.7), the singularities of the first two terms cancel as
s → 0. In addition, these two terms also individually vanish
as s → ∞ since 1

jΔx2ðsÞj is bounded by
1
s2. Therefore, the sum

of the first two terms is integrable independently of the iϵ
regulator and we can take the ϵ → 0þ limit before integrat-
ing. The last term in the brackets can be evaluated by
contour integration, after which the ϵ → 0þ limit can be
taken. The final expression for the stationary response
function is therefore
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F ðEÞ ¼ 1

4π2

Z
∞

−∞
dse−iEs

�
1

Δx2ðsÞ þ
1

s2

�

−
1

4π2

Z
∞

−∞
ds

e−iEs

ðs − iϵÞ2

¼ 1

2π2

Z
∞

0

ds cosðEsÞ
�

1

Δx2ðsÞ þ
1

s2

�

−
E
2π

Θð−EÞ; ð3:9Þ

where in the last equality, we have used the fact that Δx2ðsÞ
is even in s to halve the domain of integration and replace
the exponential with a cosine. The second term is the
response of an inertial detector and the remaining part is the
correction due to the nonzero acceleration and torsion. This
expression agrees with those found in [19,45,46].
This method is applicable in Minkowski spacetime of

any dimension d. In even dimensions d, the reciprocal of
the spacetime interval contains ðd − 2Þ=2 divergent terms
as s → 0, while in odd dimensions, it contains ðd − 1Þ=2
divergent terms as s → 0. All of these terms need to be
subtracted from the Wightman function and the method
proceeds in the same way as in d ¼ 4 dimensions. For
general d, we give the expressions in Appendix A.
In the main text, we focus on d ¼ 4, as given above, and

d ¼ 3. Using the expressions obtained in Appendix A, we
find the stationary response function in d ¼ 3 dimensions
to be

F ðEÞ ¼ 1

2π

Z
∞

0

ds sinðEsÞ
�
1

s
−

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Δx2ðsÞ

p �

þ 1

2
Θð−EÞ; ð3:10Þ

which agrees with that found in [19,45,46].

IV. TEMPERATURE ASYMPTOTICS

A. Preamble: Effective detailed balance temperature

Given the stationary response function F ðEÞ (3.4), we
define the frequency-dependent temperature TðEÞ by

TðEÞ ¼ E

log
�
F ð−EÞ
F ðEÞ

	 : ð4:1Þ

We refer to TðEÞ as the detailed balance temperature. We
review here briefly the motivation for this definition.
For uniform linear acceleration of proper acceleration a,

we have TðEÞ ¼ TU ≔ a=ð2πÞ, which is independent of E.
This is the Unruh effect [3,29,54]: the detector’s response
satisfies F ð−EÞ ¼ eE=TUF ðEÞ, which is the detailed bal-
ance condition between the detector’s excitation and de-
excitation rates in a Gibbs ensemble of temperature
TU [55–59]. What is behind this outcome is that the

Minkowski vacuum can be expressed as a genuine thermal
ensemble of excitations over the vacuum defined by the
boost Killing vector that generates the accelerated motion.
An essential part of this description is that the Killing
horizon of the boost Killing vector divides the spacetime
into four quadrants, and the thermality in one Rindler
quadrant where the Killing vector is timelike arises from
tracing out the field degrees of freedom in the opposite,
causally disconnected Rindler quadrant [3,29,54].
By contrast, for other types of noninertial stationary

motion, TðEÞ depends on E and there appears to be no
known way to associate TðEÞ with an underlying Gibbs
ensemble. For example, in the case of uniform circular
motion, the Killing vector generating the motion changes
from timelike to spacelike at the speed-of-light surface, and
one might therefore expect the speed-of-light surface to
play a role analogous to that of the Rindler horizon.
However, while the detector’s response in circular motion
is nontrivial, the spacelike character of the Killing vector
everywhere outside the speed-of-light surface creates tech-
nical obstacles to attempts to define a “rotating vacuum” on
which the Minkowski vacuum could be interpreted as
excitations [26,27,30,34].
We emphasize that as we only address the transitions in

the detector without observing the transitions in the field,
the absence of a “vacuuum” adapted to the detector’s
motion plays no role in the analysis, and neither does the
fact that the Killing vector generating the trajectory
becomes spacelike far from the trajectory and does there-
fore not provide a global notion of time evolution in
Minkowski. These issues will however play a role if one
wishes to observe the “particles” that the interaction with
the detector emits into the field [60].
All of the above being said, the utility of the detailed

balance temperature TðEÞ (4.1), even when E-dependent, is
that it provides a useful quantifier of the detector’s response
to acceleration at a given energy scale. One example of this
is that in the Born-Markov approximation, the late-time
asymptotic state of the detector is [61]

ρðEÞ ¼ 1

1þ e−E=TðEÞ

�
1 0

0 e−E=TðEÞ

�
: ð4:2Þ

In the rest of Sec. IV, we investigate the large gap, small
gap and ultrarelativistic limits of TðEÞ (4.1) for drifted
Rindler motion in 3þ 1 and 2þ 1 dimensions, comparing
the outcomes with those of circular motion [19].

B. Drifted Rindler motion in 3 + 1 dimensions

Consider drifted Rindler motion in 3þ 1 dimensions.
From (2.8) and (3.9), the response function can be split into
the inertial contribution F inðEÞ and the noninertial correc-
tion F corrðEÞ as
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F ðEÞ ¼ F inðEÞ þ F corrðEÞ; ð4:3aÞ

F inðEÞ ¼ −
E
2π

Θð−EÞ; ð4:3bÞ

F corrðEÞ ¼ 1

4π2γR

Z
∞

0

dz cos

�
2ER
γ

z

�

×

�
γ2

z2
−

1

sinh2 z − v2z2

�
; ð4:3cÞ

where in (4.3c) we have changed variables to z ¼ γ
2R s. In

order to evaluate the large gap and ultrarelativistic limits, it
is useful to re-express (4.3c) as an integral along a contour
in the complex z plane. Following Appendix C of [62],
we first extend the integral in (4.3c) to the full real axis,
using the evenness of the integrand. We then replace
cos

�
2ER
γ z

�
by exp

�
i 2jEjRγ z

�
. Next, we deform the contour

to a new contour C that bypasses z ¼ 0 in the upper half-
plane, say, along a small half-circle. The contribution
from the first term in the parentheses then vanishes, as
seen by closing C in the upper half-plane, and what
remains is

F corrðEÞ ¼ −
1

8π2γR

Z
C
dz

exp
�
i 2jEjRγ z

	
sinh2z − v2z2

: ð4:4Þ

Closing C in (4.4) in the upper half-plane shows that (4.4)
equals the sum of residues at the poles in the upper
half-plane.
An analysis of the zeroes of the function gðzÞ ¼

sinh2 z − v2z2 in the upper half-plane is given in
Appendix B. We summarize the outcomes here. For a
given speed v, there are finitely many purely imaginary
zeroes, which we write as zk ¼ iαk with k ¼ 0; 1;…; N and
0 < α0 < α1 < � � � < αN ; these zeroes are simple, except
that αN is a double zero when v2 is a local maximum value
of sin2 α

α2
. α0 is in the interval 0 < α0 < π, and we may

parametrize v in terms of α0 as

v ¼ sin α0
α0

: ð4:5Þ

In addition, there is a countable infinity of simple zeroes
that have both nonzero real and imaginary parts. We write
these zeroes as zk¼iðαk�iβkÞ, where k¼Nþ1;Nþ2;…,
αN < αNþ1 < � � �, and βk > 0. For each αk with k > N,
there are hence two zeroes, with real parts of equal
magnitude but opposite sign.
Now, applying the residue theorem, we find that

when v2 is not a local maximum value of sin2 α
α2

, (4.4) is
equal to

F corrðEÞ ¼ F corr
im ðEÞ þ F corr

compðEÞ; ð4:6aÞ

F corr
im ðEÞ ¼ 1

8πR

XN
k¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2k − sin2 αk

q
sin αkðsin αk − αk cos αkÞ

e−
2jEjR
γ αk ; ð4:6bÞ

F corr
compðEÞ ¼

1

8πγvR

X∞
k¼Nþ1

exp
�
− 2jEjR

γ ðαk þ iβkÞ
	

ðαk þ iβkÞð1 − αk cot αk þ iβk tan αkÞ
þ ðβk → −βkÞ; ð4:6cÞ

where F corr
im ðEÞ and F corr

compðEÞ are the respective contribu-
tions from the N þ 1 purely imaginary poles and from the
countably many poles with nonvanishing real and imagi-
nary parts. When v2 is a local maximum value of sin2 α

α2
, the

k ¼ N term in (4.6b) is replaced by

−
1

πR

�jEjR
2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2N

p
3α2N

�
e−

2jEjR
γ αN : ð4:7Þ

1. Large gap limit

Consider the large gap limit jEj → ∞ while keeping v
and R fixed. To calculate the temperature in this limit, we
follow the method outlined in Sec. 3B of [19]. Due to the
exponential term appearing in (4.6b) and (4.6c), the pole

with the smallest magnitude z ¼ iα0 dominates in the large
gap limit. The detailed balance temperature (4.1) in this
limit is the reciprocal of the coefficient in the exponent,

TðEÞ ¼ γ

2α0R
: ð4:8Þ

Recall that the linear acceleration Unruh effect prediction
for the temperature is T lin ¼ a

2π, where the proper accel-
eration a for drifted Rindler motion is given in (4.8), and it
depends on both v and R. For the ratio of TðEÞ and T lin,
we find

TðEÞ
T lin

¼ π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α20 − sin2 α0

p
α20

∈
�
1;

πffiffiffi
3

p
�
: ð4:9Þ
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This ratio depends only on v, approaching the lower
bound 1 as v → 0 (α0 → π) and the upper bound πffiffi

3
p as

v → 1 (α0 → 0) and being monotonic in v in between. In
particular, the ratio is always greater than 1. The drift speed
v thus has a heating effect relative to the linear acceleration
Unruh temperature but by a factor never exceeding
πffiffi
3

p ≈ 1.81.

It is instructive to compare the large gap ratio (4.9) to the
similar large gap ratio for circular motion (2.5). This ratio
was found in [19], and it satisfies

TCMðEÞ
T lin

∈
�

πffiffiffi
3

p ;∞
�
; ð4:10Þ

where the lower and upper bounds correspond respectively
to v → 1 and v → 0, and v is the circular motion orbital
speed in (2.5). We see that the critical value πffiffi

3
p emerges as

the demarcation point between the ratios obtained in the
two families of motions: in the drifted Rindler motion, the
critical value is approached from below as v → 1, and in
circular motion it is approached from above as v → 1. This
result is consistent with the geometric connection between
drifted Rindler motion and circular motion discussed
in Sec. II.

2. Small gap limit

Consider next the small gap limit E → 0 while keeping v
and R fixed. We show in Appendix C that the small E
expansion of the stationary response function to first order
in E is

F ðEÞ ¼ 1

4π2γR

Z
∞

0

dz

�
γ2

z2
−

1

sinh2 z − v2z2

�

−
E
4π

þOðE2Þ: ð4:11Þ

It follows that the detailed balance temperature (4.1) has the
small E expansion

TðEÞ ¼ JðvÞT lin þOðEÞ; ð4:12Þ

where T lin ¼ a
2π is the linear acceleration prediction and

JðvÞ ¼
Z

∞

0

dz

�
1

γz2
−

1

γ3ðsinh2 z − v2z2Þ
�
: ð4:13Þ

We show in Appendix D that JðvÞ decreases monotonically
from 1 when v ¼ 0 to π

2
ffiffi
3

p ≈ 0.91 when v → 1. The drift

speed v thus has a mild cooling effect, by less than 10%,
relative to the linear acceleration Unruh temperature.

3. Ultrarelativistic limit

Consider finally the ultrarelativistic limit v → 1 with R
fixed. In terms of α0, this is the limit α0 → 0, and v, γ and a
have the expansions

v ¼
�
1 −

α20
6

�
ð1þOðα20ÞÞ; ð4:14aÞ

γ ¼
ffiffiffi
3

p

α0
ð1þOðα20ÞÞ; ð4:14bÞ

a ¼ γ2

R
¼ 3

α20R
ð1þOðα20ÞÞ: ð4:14cÞ

It hence suffices to consider α0 so small that (4.6b) and
(4.6c) hold with N ¼ 0. In F corr

im ðEÞ (4.6b), the only term is
k ¼ 0, giving

F corr
im ðEÞ ¼ 1

8πR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α20 − sin2 α0

p
sin α0ðsin α0 − α0 cos α0Þ

e−
2jEjR
γ α0

¼
ffiffiffi
3

p
exp

�
− 2α0jEjR

γ

	
8πRα20

ð1þOðα20ÞÞ: ð4:15Þ

In F corr
compðEÞ (4.6c), the analysis in Appendix B shows that

πk ≤ αk and c2k ≤ βk tan αk for all k ¼ 1; 2;…, where c2 is
a purely numerical positive constant. In each summand in
(4.6c), the absolute value of the denominator is hence
bounded below by πc2k2. It then follows by a dominated
convergence argument that

F corr
compðEÞ ¼ O

�
α0 exp

�
−
2πjEjR

γ

��
; ð4:16Þ

uniformly in E. Combining (4.3a), (4.6), (4.15) and (4.16),
we find

F ðEÞ ¼ −
E
2π

Θð−EÞ þ
ffiffiffi
3

p
exp

�
− 2α0jEjR

γ

�
8πRα20

ð1þOðα20ÞÞ

þO

�
α0 exp

�
−
2πjEjR

γ

��

¼ −
E
2π

Θð−EÞ þ
ffiffiffi
3

p
exp

�
−2

ffiffiffi
3

p jEj
a ð1þOðα20ÞÞ

	
8πRα20

× ð1þOðα20ÞÞ þO

�
α0 exp

�
−
2

ffiffiffi
3

p
π

α0

jEj
a

��
;

ð4:17Þ

where in the last equality we have used (4.14). Note that the
error terms in the last expression in (4.17) are uniform
in jEj=a.
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For the detailed balance temperature, (4.17) gives the
v → 1 limit

TðEÞ ¼ jEj
log

�
1þ 4

ffiffiffi
3

p jEj
a exp

�
2

ffiffiffi
3

p jEj
a

	� : ð4:18Þ

Formula (4.18) is the detailed balance temperature in the
ultrarelativistic limit of circular motion [19,25], and it is
also the detailed balance temperature in parator motion [33].
This is another consequence of the geometric connection
between the circular and drifted Rindler motions through
the parator motion.

C. Drifted Rindler motion in 2 + 1 dimensions

We now turn to drifted Rindler motion in 2þ 1 dimen-
sions. Using (2.5) and (3.10), the response function can be
split into the inertial contribution F inðEÞ and the non-
inertial correction F corrðEÞ as

F ðEÞ ¼ F inðEÞ þ F corrðEÞ; ð4:19aÞ

F inðEÞ ¼ 1

2
Θð−EÞ; ð4:19bÞ

F corrðEÞ¼ 1

2πγ

Z
∞

0

dzsin

�
2ER
γ

z

��
γ

z
−

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2 z−v2z2

p
�
:

ð4:19cÞ

It will also be useful to split the response function into an
even and an odd part as

F ðEÞ ¼ F evenðEÞ þ F oddðEÞ; ð4:20aÞ

F evenðEÞ ¼ 1

4
; ð4:20bÞ

F oddðEÞ ¼ −
1

2πγ

Z
∞

0

dz
sin

�
2ER
γ z

	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2z − v2z2

p : ð4:20cÞ

We note that F corrðEÞ (4.19c) can be written as a sum over
contour integrals in the complex plane, encircling the
branch points at the zeroes of the square root in the
denominator, as done for circular motion in Section 4.1
of [19]. The convergence of the sums is however weaker
than in the corresponding sums over residues in (4.6c), and
we shall not be using this sum here.

1. Large gap limit

Consider the large gap limit jEj → ∞ while keeping v
and R fixed. Starting from F corrðEÞ (4.19c) and deforming
the integration contour in the complex plane as in
Sections IV. 1 and 4.2 of [19], we find that the dominant
contribution to F corrðEÞ comes from the vicinity of the

branch point z ¼ iα0, and this contribution has the expo-
nential factor exp

�
− 2α0jEjR

γ

�
. It follows as in 3þ 1 dimen-

sions that the detailed balance temperature is given by (4.8).

2. Small gap limit

Consider next the small gap limit E → 0 with v and R
fixed. We begin by writing F oddðEÞ (4.20c) as

F oddðEÞ¼−
ER
πγ2

Z
∞

0

dz
sinð2ERγ zÞ

2ER
γ z

zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2z−v2z2

p : ð4:21Þ

As zðsinh2 z − v2z2Þ−1
2 is an integrable function with an

exponential falloff at z → ∞, a dominated convergence
argument shows that the small E asymptotic expansion of
F oddðEÞ is obtained by expanding sin x

x in the integrand in
(4.21) in the Maclaurin series. From (4.20), we then have

F ðEÞ¼ 1

4
−
ER
πγ2

Z
∞

0

dz
zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sinh2z−v2z2
p þOðE3Þ: ð4:22Þ

From (4.22), the detailed balance temperature is

TðEÞ ¼ T lin

KðvÞ þOðE2Þ; ð4:23Þ

where

KðvÞ ¼ 4

π2

Z
∞

0

dz
zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sinh2 z − v2z2
p : ð4:24Þ

In Appendix D, we show that KðvÞ increases monotoni-
cally from 1 to ∞ as v increases from 0 to 1. Therefore,
from (4.23), we see that the drift speed v cools the small
gap temperature relative to the linear Unruh temperature,
by a factor that increases without bound as v approaches 1.
In comparison, the circular motion detailed balance

temperature in 2þ 1 dimensions vanishes linearly in E
in the small gap limit [19], as

TCMðEÞ ¼
jEj

log
�
γCMþ1
γCM−1

	þOðE2Þ: ð4:25Þ

We shall return to this comparison in Sec. V.

3. Ultrarelativistic limit with fixed jEj=a
Consider the ultrarelativistic v → 1 limit with fixed

jEj=a. We show in Appendix E that in the v → 1 limit
with fixed jEj=a, F oddðEÞ has the limiting behavior

F oddðEÞ → −
1

2π
Gð2

ffiffiffi
3

p
E=aÞ; ð4:26Þ

where
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GðqÞ ≔
Z

∞

0

dx
sinðqxÞ
x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p : ð4:27Þ

As a result, the detailed balance temperature in this limit is

TðEÞ ¼ jEj
log

�
1þ2

πGð2
ffiffi
3

p jEj=aÞ
1−2

πGð2
ffiffi
3

p jEj=aÞ

	 : ð4:28Þ

The detailed balance temperature (4.28) agrees with the
2þ 1 circular motion detailed balance temperature in the
ultrarelativistic limit with fixed jEj=a [19]. This temper-
ature is precisely the detailed balance temperature in
parator motion in 2þ 1 dimensions: from (2.11), parator
motion has Δx2ðsÞ ¼ −s2 − a2

12
s4, and substituting this into

(4.20a) gives

F PAðEÞ ¼
1

4
−

1

2π

Z
∞

0

ds
sinðEsÞ

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

12
s2

q
¼ 1

4
−

1

2π
Gð2

ffiffiffi
3

p
E=aÞ: ð4:29Þ

The geometric connection between the circular and drifted
Rindler motions through parator motion hence also extends
to the detailed balance temperature in 2þ 1 dimensions,
despite the differing small gap behavior. We shall address
the small gap behavior in the different motions in more
detail in Sec. V.

V. EXCEPTIONALITY OF 2+ 1 CIRCULAR
AND PARATOR MOTION IN THE SMALL

GAP LIMIT

In 2þ 1 dimensions, it was shown in [19] that the
circular motion temperature vanishes in the small gap limit,
whereas we showed in Sec. IV C 2 that the drifted Rindler
motion temperature does not vanish in this limit. By
contrast, in 3þ 1 dimensions, neither the circular motion
temperature nor the drifted Rindler temperature vanishes in
the small gap limit. A natural question to ask is then: for
which types of stationary motion in which dimensions does
the temperature vanish in the small gap limit?
The central observation is that the detailed balance

temperature (4.1) has a finite positive limit T0 as E → 0 if
and only if the response function satisfies F ð−EÞ=F ðEÞ ¼
1þ 1

T0
Eþ oðEÞ as E → 0. If F ð−EÞ=F ðEÞ has different

positive limits as E → 0þ and E → 0−, the small gap
temperature vanishes. If F ð−EÞ=F ðEÞ → 1 as E → 0 but
the next-to-leading order term decays less rapidly thanOðEÞ,
then the small gap temperature vanishes, whereas if the next-
to-leading term decays more rapidly than OðEÞ, then the
small gap temperature diverges.
In this section, we calculate the small gap expansion of

the stationary response function for all types of stationary
motion in all dimensions, 2þ 1 and higher. We shall

see that in all except two cases this expansion is of
the form

F ðEÞ ¼ α − ðβ þ ηsgnEÞEþ oðEÞ; ð5:1Þ

where α and β are positive constants and η is a real-valued
constant. From (5.1) it follows that F ð−EÞ=F ðEÞ ¼
1þ 2β

α Eþ oðEÞ as E → 0 and hence the resulting small
gap temperature is

TðEÞ ¼ α

2β
ð1þ oð1ÞÞ: ð5:2Þ

Note that (5.2) does not involve the constant η.
The two exceptions where (5.1) does not hold are

circular and parator motion in 2þ 1 dimensions. This
phenomenon can be traced back to the weak decay of the
Wightman function for these types of motion in 2þ 1
dimensions. The weak decay gives the response function a
small gap behavior that makes the small gap temperature
OðEÞ for circular motion and Oð1= log jEjÞ for parator
motion. This shows that the small gap temperature vanishes
only in 2þ 1 dimensions and therein only for circular and
parator motion.

A. 2 + 1 dimensions

In 2þ 1 dimensions, there are five types of stationary
motion, and we have compiled them in Table I. We exclude
inertial motion as the temperature is identically zero. The
stationary response function (3.10) can be written as

F ðEÞ ¼ 1

4
−

E
2π

Z
∞

0

ds
sinðEsÞ
Es

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Δx2ðsÞ

p : ð5:3Þ

We consider the small E expansion of (5.3).
If the expression

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Δx2ðsÞ

p ð5:4Þ

TABLE I. List of all types of stationary motion in 2þ 1 and
3þ 1 dimensions and the s → ∞ asymptotic behavior of their
spacetime intervals Δx2ðsÞ. Loxodromic motion only occurs in
3þ 1 dimensions.

Type of motion Δx2ðsÞ s → ∞

Inertial −s2 Oðs2Þ
Rindler − 4

a2
sinh2ðas

2
Þ OðeasÞ

Parator −s2 − a2
12
s4 Oðs4Þ

Circular γ2s2 þ 4R2 sin2ðγvs
2RÞ Oðs2Þ

Drifted Rindler γ2v2s2 − 4R2 sinh2ð γs
2RÞ Oðeγs=RÞ

Loxodromic 4R2 sin2ðγvs
2RÞ − 4

a2 sinh
2ðγas

2
Þ OðeγasÞ
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is integrable, then we may use dominated convergence in
(5.3) to write

F ðEÞ ¼ 1

4
−

E
2π

Z
∞

0

ds
sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−Δx2ðsÞ
p þ oðEÞ: ð5:5Þ

This is of the form of (5.1) and so the corresponding small
gap temperature is a nonzero constant given by (5.2).
Whether (5.4) is integrable depends on the asymptotic

behavior of the type of motion under consideration. For
small s, (5.4) isOð1Þ, sinceΔx2ðsÞ¼−s2þOðs4Þ as s → 0
for all types of stationary motion, the acceleration affecting
only orderOðs4Þ. However, for large s, if the decay of (5.4)
is not sufficiently strong, then (5.4) may not be integrable.
The large s asymptotic behavior of Δx2ðsÞ for each type

of stationary motion is compiled in Table I. The types of
motion for which (5.4) is integrable are uniform linear
acceleration (Rindler motion) and drifted Rindler motion.
In these cases, (5.4) is exponentially decaying and there-
fore, by dominated convergence, we arrive at (5.5). Hence
for these types of motion, the small gap temperature is finite
and nonzero.
The types of motion (aside from inertial motion) for

which (5.4) is not integrable are circular motion and parator
motion. For circular motion, (5.4) isOð1Þ as s → ∞, and for
parator motion, (5.4) decays only as Oð1=sÞ as s → ∞.
Therefore, we cannot simply use dominated convergence in
(5.3).Wemust instead consider these two cases individually.
First, consider circular motion, for which the large s

asymptotic behavior of the spacetime interval is Δx2ðsÞ ¼
−γ2s2 þOð1Þ. Following the method in Appendix B
of [19], we add and subtract the large s behavior of the
integrand as follows

F ðEÞ ¼ γ − sgnE
4γ

−
E
2π

Z
∞

0

ds
sinðEsÞ
Es

�
sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−Δx2ðsÞ
p −

1

γ

�
;

ð5:6Þ

where we have used

Z
∞

0

ds
sinðEsÞ

s
¼ π

2
sgnE: ð5:7Þ

The expression in parentheses in (5.6) is of orderOðs−2Þ as
s → ∞ and hence, by dominated convergence,

F ðEÞ ¼ γ − sgnE
4γ

þOðEÞ: ð5:8Þ

Since the zeroth order term in (5.8) depends on the sign of
E, the temperature vanishes in the small gap limit. The
temperature to leading order in E is given by (4.25),

TðEÞ ¼ jEj
log

�
γCMþ1
γCM−1

	þOðE2Þ: ð5:9Þ

Second, consider parator motion. The spacetime interval
is Δx2ðsÞ ¼ −s2 − a2

12
s4 and thus (5.3) becomes

F ðEÞ ¼ 1

4
−

1

2π
G

�
2

ffiffiffi
3

p E
a

�
; ð5:10Þ

where GðqÞ is given by (4.27). The leading small argument
behavior of GðqÞ was calculated in Appendix D of [19] to
be GðqÞ ¼ −q log jqj þOðqÞ. With this result, (5.10)
becomes

F ðEÞ ¼ 1

4
þ

ffiffiffi
3

p

π

E
a
log

�jEj
a

�
þOðEÞ ð5:11Þ

as E → 0. The next-to-leading order term goes to zero less
rapidly than OðEÞ, and the temperature vanishes in the
small gap limit. The temperature to leading order in E is
given by

TðEÞ ¼ πa

8
ffiffiffi
3

p
logða=jEjÞ ð1þ oð1ÞÞ: ð5:12Þ

The 1= logða=jEjÞ suppression in (5.12) is reminiscent of
the 1= log γ suppression in the drifted Rindler small gap
temperature (4.23) in the ultrarelativistic limit v → 1, as
seen from (D20).
The vanishing of the small gap temperatures for circular

and parator motion is therefore a result of the weak decay of
their respective Wightman functions in 2þ 1 dimensions.

B. 3 + 1 dimensions

In 3þ 1 dimensions, there is one more type of stationary
motion: loxodromic motion. It is the orbit of a boost with
proper acceleration a and a rotation with orbital speed v.
The worldline can be found in [33]. In Table I, we present
just the spacetime interval and its large proper time
asymptotic behavior.
In 3þ 1 dimensions, the response function is given

by (3.9)

F ðEÞ ¼ 1

2π2

Z
∞

0

ds cosðEsÞ
�

1

Δx2ðsÞ þ
1

s2

�
−

E
2π

Θð−EÞ:

ð5:13Þ

We consider the small E expansion of (5.13). For small s,
the expression in parentheses is Oð1Þ since Δx2ðsÞ ¼
−s2 þOðs4Þ as s → 0 for all types of stationary motion.
Furthermore,



 1
Δx2ðsÞ



 ≤ 1
s2 and thus the decay of the

expression in parentheses at s → ∞ is at least Oð1=s2Þ.
Therefore, this expression is integrable and we can split
(5.13) as
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F ðEÞ ¼ F ð0Þ þ E2

2π2

Z
∞

0

ds
ðcosðEsÞ − 1Þ

ðEsÞ2
�

s2

Δx2ðsÞ þ 1

�

−
E
2π

Θð−EÞ; ð5:14aÞ

F ð0Þ ¼ 1

2π2

Z
∞

0

ds

�
1

Δx2ðsÞ þ
1

s2

�
; ð5:14bÞ

where we have multiplied and divided by ðEsÞ2 in the
second integral in (5.14a). We can further simplify (5.14a)
as follows

F ðEÞ ¼ F ð0Þ þ E2

2π2

Z
∞

0

ds
ðcosðEsÞ − 1Þ

ðEsÞ2
�

s2

Δx2ðsÞ
�

−
jEj
4π

−
E
2π

Θð−EÞ

¼ F ð0Þ þ E2

2π2

Z
∞

0

ds
ðcosðEsÞ − 1Þ

ðEsÞ2
�

s2

Δx2ðsÞ
�

−
E
4π

; ð5:15Þ

where in the first equality we have used the standard
integral given in (C6), and in the second equality we have
used jEj þ 2EΘð−EÞ ¼ E.
Consider the integral term in (5.15). The function

ðcosðEsÞ − 1Þ=ðEsÞ2 is bounded in absolute value by an
E-independent constant and it has the pointwise limit − 1

2
as

E → 0. If the function

s2

Δx2ðsÞ ð5:16Þ

is integrable, then by dominated convergence, the second
term in (5.15) is OðE2Þ as E → 0. In this case, the small E
expansion (5.15) is of the form (5.1) with η ¼ 0. Hence the
small gap temperature is finite and nonzero.
As can be seen from Table I, (5.16) is integrable for all

types of stationary motion apart from circular motion (and
inertial motion). Although (5.16) is not integrable for
circular motion, we show in Appendix C that the small
gap expansion of the response function is of the form (5.1)
but now with η ≠ 0. As noted below (5.2), η does not
contribute to the temperature. Therefore, the small gap
temperature is finite and nonzero for all types of stationary
motion in 3þ 1 dimensions.

C. Higher dimensions

In the previous two subsections, we saw that the small E
behavior of the response function is sensitive to the large
proper time asymptotics of the Wightman function. In this
subsection, we show that the bound 1

jΔx2ðsÞj ≥
1
s2 means the

Wightman function has sufficiently strong decay at s → ∞
to yield a finite, nonzero temperature for all types of
stationary motion in all dimensions, 4þ 1 and greater.

1. Odd dimensions d ≥ 5

First, consider odd dimensions d ≥ 5. The response
function is given by (A8),

F dðEÞ ¼ AdðEÞ þ BdðEÞ; ð5:17aÞ

AdðEÞ ¼ 2ð−1Þðd−1Þ=2kd
Z

∞

0

ds sinðEsÞ
�

1

ð−Δx2ðsÞÞðd−2Þ=2 −
Xðd−1Þ=2
n¼1

b2n
sd−2n

�
; ð5:17bÞ

BdðEÞ ¼ 2πkdΘð−EÞ
Xðd−1Þ=2
n¼1

ð−1Þd−n
ðd − 2n − 1Þ! b2nE

d−2n−1; ð5:17cÞ

where kd ¼ Γðd=2−1Þ
4πd=2

and b2n ∈R are defined in (A2b).
The expression (5.17c) is a sum of even powers of E and therefore, as E → 0,

BdðEÞ ¼ −2ð−1Þðd−1Þ=2πkdbd−1Θð−EÞ þOðE2Þ: ð5:18Þ

We can rewrite (5.17c) as

AdðEÞ ¼ 2ð−1Þðd−1Þ=2kdE
Z

∞

0

ds
sinðEsÞ
Es

�
s

ð−Δx2ðsÞÞðd−2Þ=2 −
Xðd−3Þ=2
n¼1

b2n
sd−2n−1

− bd−1

�

¼ 2ð−1Þðd−1Þ=2kdE
Z

∞

0

ds
sinðEsÞ
Es

�
s

ð−Δx2ðsÞÞðd−2Þ=2 −
Xðd−3Þ=2
n¼1

b2n
sd−2n−1

�
− ð−1Þðd−1Þ=2πkdbd−1sgnE; ð5:19Þ
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where we have used the standard integral Z
∞

0

sinðEsÞ
Es

¼ π

2jEj : ð5:20Þ

By (A2b), the expression in parentheses on the second line of (5.19) is bd−1 þOðs2Þ as s → 0. The sum is Oð1=s2Þ as
s → ∞. Since 1

jΔx2ðsÞj ≤
1
s2 for all types of stationary motion, the slowest s=ð−Δx2ðsÞÞðd−2Þ=2 can decay as s → ∞ is as

Oð1=sd−3Þ. Therefore, for d ≥ 5, the function s=ð−Δx2ðsÞÞðd−2Þ=2 decays at least as fast as Oð1=s2Þ as s → ∞ and thus the
expression in parentheses on the second line of (5.19) is integrable. Hence, by dominated convergence, (5.19) becomes

AdðEÞ ¼ 2ð−1Þðd−1Þ=2kdE
Z

∞

0

ds

�
s

ð−Δx2ðsÞÞðd−2Þ=2 −
Xðd−3Þ=2
n¼1

b2n
sd−2n−1

�
− ð−1Þðd−1Þ=2πkdbd−1sgnEþ oðEÞ: ð5:21Þ

Combining (5.17a), (5.18) and (5.21), we obtain

F dðEÞ ¼ 2ð−1Þðd−1Þ=2kdE
Z

∞

0

ds
�

s

ð−Δx2ðsÞÞðd−2Þ=2 −
Xðd−3Þ=2
n¼1

b2n
sd−2n−1

�
þ ð−1Þðdþ1Þ=2πkdbd−1 þ oðEÞ; ð5:22Þ

where we have used jEj þ 2EΘð−EÞ ¼ E. The small gap expansion of the response function is of the form (5.1) and
therefore the temperature is finite and nonzero in the small gap limit.

2. Even dimensions d ≥ 6

Second, consider even dimensions d ≥ 6. The response function is now given by (A6),

F dðEÞ ¼ CdðEÞ þDdðEÞ; ð5:23aÞ

CdðEÞ ¼ 2kd

Z
∞

0

ds cosðEsÞ
�

1

ðΔx2ðsÞÞðd−2Þ=2 −
Xðd−2Þ=2
n¼1

a2n
sd−2n

�
; ð5:23bÞ

DdðEÞ ¼ −2πkdΘð−EÞ
Xðd−2Þ=2
n¼1

ð−1Þd=2þn

ðd − 2n − 1Þ! a2nE
d−2n−1; ð5:23cÞ

where again kd ¼ Γðd=2−1Þ
4πd=2

and a2n are defined in (A2a).

The expression (5.23c) is a sum of odd powers of E and
therefore, as E → 0,

DdðEÞ ¼ 2πkdad−2Θð−EÞEþOðE3Þ: ð5:24Þ

Consider CdðEÞ given in (5.23b). By (A2a), the expres-
sion in parentheses is Oðs2Þ as s → 0. The sum is Oð1=s2Þ
as s → ∞. Following a similar argument as given
in Sec. V C 1, since d ≥ 6, then as s → ∞, the function
1=ðΔx2ðsÞÞðd−2Þ=2 decays at least as fast as Oð1=s4Þ.

Therefore, the expression in parentheses in (5.23b) is
integrable and hence by dominated convergence,

CdðEÞ ¼ Cdð0Þ þ oð1Þ; ð5:25aÞ

Cdð0Þ ¼ 2kd

Z
∞

0

ds

�
1

ðΔx2ðsÞÞðd−2Þ=2 −
Xðd−2Þ=2
n¼1

a2n
sd−2n

�
:

ð5:25bÞ
To find the next-to-leading order contribution to (5.23b),
consider

CdðEÞ − Cdð0Þ ¼ 2kdE2

Z
∞

0

ds

�
cosðEsÞ − 1

E2s2

��
s2

ðΔx2ðsÞÞðd−2Þ=2 −
Xðd−4Þ=2
n¼1

a2n
sd−2n−2

− ad−2

�

¼ 2kdE2

Z
∞

0

ds

�
cosðEsÞ − 1

E2s2

��
s2

ðΔx2ðsÞÞðd−2Þ=2 −
Xðd−4Þ=2
n¼1

a2n
sd−2n−2

�
þ πkdad−2jEj; ð5:26Þ
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where on the first line we have multiplied and divided by
ðEsÞ2 in the integrand, and on the second line we have used
the standard integral

Z
∞

0

cosðazÞ − 1

a2z2
¼ −

π

2jaj : ð5:27Þ

The function in the first pair of parentheses on the second
line of (5.26) has the pointwise limit − 1

2
and is bounded in

absolute value by an E-independent constant. From the
discussion above (5.25a), it follows that s2=ðΔx2ðsÞÞðd−2Þ=2
decays at least as fast asOð1=s2Þ as s → ∞. The sum in the
second pair of parentheses is also Oð1=s2Þ as s → ∞.
Therefore, the function in the second pair of parentheses is
integrable and thus, by dominated convergence, we obtain

CdðEÞ ¼ Cdð0Þ þ πkdad−2jEj þOðE2Þ: ð5:28Þ

Combining (5.23a), (5.24), (5.25b) and (5.28), we find

F dðEÞ ¼ 2kd

Z
∞

0

ds

�
1

ðΔx2ðsÞÞðd−2Þ=2 −
Xðd−2Þ=2
n¼1

a2n
sd−2n

�

þ πkdad−2EþOðE2Þ; ð5:29Þ

where we have used jEj þ 2EΘð−EÞ ¼ E. The small gap
expansion is of the form (5.1) and therefore the temperature
is finite and nonzero in the small gap limit.

VI. CONCLUSIONS

In this paper, we addressed the response of a UDW
detector in theMinkowski vacuum of a massless scalar field
in two complementary two-parameter families of stationary
motion: circular motion, generated by a spatial rotation and
a time translation, and drifted Rindler motion, generated by
a boost and a spatial translation. We showed that these two-
parameter families of motion can be smoothly deformed to
each other through a one-parameter family known as
parator motion, generated by a null rotation and a timelike
translation, and we observed that the deformation has a
sense of uniqueness as the unique real analytic continuation
in the parameters of the motion. We then proceeded to show
that this deformation underlies several observations made
in the literature about the detector’s response in limiting
regimes of circular motion and drifted Rindler motion,
including the ultrarelativistic limit of circular motion. We
also established analytic results regarding the detector’s
response in drifted Rindler motion in 2þ 1 and 3þ 1
spacetime dimensions in several asymptotic regimes, com-
paring the results to the corresponding regimes of circular
motion. In terms of an effective temperature seen by the
detector, defined by the detailed balance relation between
excitations and de-excitations, we found that the drifted

Rindler temperature remains bounded when the detector’s
energy gap is large but the proper acceleration is fixed. This
is in contrast to the circular motion temperature, which can
be arbitrarily large in this limit.
A puzzle that motivated our work is that for circular

motion in 2þ 1 dimensions the effective temperature is
much smaller than the linear acceleration Unruh temper-
ature when the detector’s energy gap is small [19] and the
potential relevance of this phenomenon for analogue
spacetime proposals to observe the circular motion
Unruh effect [16,18]. We showed that among all types
of stationary motion in spacetime dimensions 2þ 1 and
higher, this phenomenon is unique to 2þ 1 dimensions and
therein to circular motion and to parator motion. We found
that the mathematical reason for this phenomenon is the
weak decay of the Wightman function along the detector’s
trajectory. As an intermediate step in the analysis, we
presented the detector’s response in arbitrary stationary
motion in spacetime dimensions 2þ 1 and higher as an
integral formula without distributional singularities, gen-
eralizing the formulas obtained in dimensions up to 5þ 1
from the instantaneous transition rate analysis in [45,46].
Throughout this paper, we considered the detector in the

limit of long interaction and weak coupling within first-
order perturbation theory. In this limit, the detector’s
response is stationary, and the detector’s response function
is the Fourier transform of the field’s Wightman function
over the detector’s full worldline. The small gap behavior
of the response, determined by the decay of the Wightman
function at early and late proper times, is thus sensitive to
the assumption that the detector operates at arbitrarily early
and late times. In experimental settings, where interaction
duration is limited by technological and budgetary con-
straints, the small gap behavior might hence be different,
and this difference could be significant in proposals to
observe the circular motion Unruh effect in a (2þ 1)-
dimensional analog spacetime system [15–18]. We intend
to address this question in a forthcoming paper [63].
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APPENDIX A: STATIONARY RESPONSE FUNCTION IN d DIMENSIONS

In this appendix, we calculate the stationary response function associated with a detector in stationary motion in an
arbitrary dimension d ≥ 3. We work in the long-time interaction limit as defined in Sec. 3B.
The stationary response function is defined as

F dðEÞ ¼ kd

Z
∞

−∞
ds

e−iEs

ðΔx2ðs − iϵÞÞðd−2Þ=2; ðA1Þ

where kd ¼ Γðd=2−1Þ
4πd=2

, and the distributional ϵ → 0þ limit is understood. In odd dimensions, the denominator has the phases
id−2 and ð−iÞd−2 when s > 0 and s < 0, respectively. The reciprocal of the spacetime interval in (A1) has the expansion

1

ðΔx2ðs − iϵÞÞðd−2Þ=2 ¼
Xðd−2Þ=2
n¼1

a2n
ðs − iϵÞd−2n þOð1Þ as s − iϵ → 0; for d even ðA2aÞ

1

ðΔx2ðs − iϵÞÞðd−2Þ=2 ¼ i2−d
Xðd−1Þ=2
n¼1

b2n
ðs − iϵÞd−2n þOðs − iϵÞ as s − iϵ → 0; for d odd; ðA2bÞ

where a2n and b2n are real-valued coefficients that depend on the spacetime dimension d. Note that a2 ¼ ð−1Þd=2þ1

and b2 ¼ 1.
First, let d be even. Adding and subtracting the small s expansion (A2a) from the Wightman function within the integral

in (A1), we find

F dðEÞ ¼ kd

Z
∞

−∞
dse−iEs

�
1

ðΔx2ðs − iϵÞÞðd−2Þ=2 −
Xðd−2Þ=2
n¼1

a2n
ðs − iϵÞd−2n

�
þ kd

Xðd−2Þ=2
n¼1

a2n

Z
∞

−∞
ds

e−iEs

ðs − iϵÞd−2n ; ðA3Þ

where we have swapped the order of summation and integration in the last term.
The second integral in (A3) can be evaluated using contour integration and the residue theorem to give

Z
∞

−∞
ds

e−iEs

ðs − iϵÞd−2n ¼ 2πiΘð−EÞ ð−iEÞd−2n−1
ðd − 2n − 1Þ! : ðA4Þ

In the first term in (A3), we can take the ϵ → 0þ limit under the integral, justified by the expansion (A2a) and by the large s
falloff of each term in the integrand. Hence, the response function becomes

F dðEÞ ¼ 2kd

Z
∞

0

ds cosðEsÞ
�

1

ðΔx2ðsÞÞðd−2Þ=2 −
Xðd−2Þ=2
n¼1

a2n
sd−2n

�
− 2πkdΘð−EÞ

Xðd−2Þ=2
n¼1

ð−1Þd=2þn

ðd − 2n − 1Þ! a2nE
d−2n−1; ðA5Þ

where we have used the fact that ðΔx2ðsÞÞðd−2Þ=2 is even in s when d is even. The first term in the sum is the response of an
inertial detector and the rest is the noninertial correction.
Now let d be odd. After adding and subtracting the small s expansion (A2b) from the Wightman function within the

integral, (A1) becomes

F dðEÞ ¼ kd

Z
∞

−∞
dse−iEs

�
1

ðΔx2ðs − iϵÞÞðd−2Þ=2 − i2−d
Xðd−1Þ=2
n¼1

b2n
ðs − iϵÞd−2n

�
ðA6Þ

þ i2−dkd
Xðd−1Þ=2
n¼1

b2n

Z
∞

−∞
ds

e−iEs

ðs − iϵÞd−2n : ðA7Þ

Proceeding as above, the response function is
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F dðEÞ ¼ 2ð−1Þðd−1Þ=2kd
Z

∞

0

ds sinðEsÞ
�

1

ð−Δx2ðsÞÞðd−2Þ=2 −
Xðd−1Þ=2
n¼1

b2n
sd−2n

�

þ 2πkdΘð−EÞ
Xðd−1Þ=2
n¼1

ð−1Þd−n
ðd − 2n − 1Þ! b2nE

d−2n−1; ðA8Þ

where we have used the oddness of ðΔx2ðsÞÞðd−2Þ=2 to write
the integral in terms of ð−Δx2ðsÞÞðd−2Þ=2 > 0 over s > ∞.
As in even dimensions, the first term in the sum is the
response of an inertial detector and the rest is the non-
inertial correction.

APPENDIX B: COMPLEX SINGULARITIES
OF THE DRIFTED RIDLER
WIGHTMAN FUNCTION

In this appendix we locate and analyze the zeroes of the
function

gðzÞ ¼ sinh2 z − v2z2; ðB1Þ

where z is a complex variable and 0 < v < 1. These zeroes
are used in the main text for evaluating the drifted Rindler
response function.

1. Location of the zeroes

It suffices to consider the zeroes with Im z ≥ 0.
First, the only real zero of g is z ¼ 0, since sinh2 z > z2

for real nonzero z.
Second, consider the purely imaginary zeroes of g.

Writing z ¼ iα, where α > 0, we find that these zeroes
come from the positive solutions to

sin2 α
α2

¼ v2: ðB2Þ

In the interval ð0; πÞ there is exactly one solution, which we
denote by α0, and we parametrize v in terms of α0 as
v ¼ sin α0

α0
. This is the only solution for v sufficiently close to

unity. As v decreases, new solutions appear when v2 equals
a local maximum value of the function sin2 α

α2
. There are

finitely many solutions for each v. We enumerate the
solutions as fαkgNk¼0, where

0 < α0 < π < α1 < α2 < � � � < nπ < α2n−1 < α2n

< ðnþ 1Þπ for N ¼ 2n; ðB3aÞ

0 < α0 < π < α1 < α2 < � � � < nπ < α2n−1

< ðnþ 1Þπ for N ¼ 2nþ 1; ðB3bÞ

n ¼ 0; 1; 2;…, and all the solutions are simple zeroes of g,
except that α2n−1 is a double zero of g when N ¼ 2nþ 1

with n ≥ 1. The double zero occurs when v2 equals a local
maximum value of sin2 α

α2
.

Third, consider the zeroes of g with a positive imaginary
part but also a possibly nonvanishing real part. We factorize
g as

gðzÞ ¼ gþðzÞg−ðzÞ; ðB4aÞ

gηðzÞ ¼ sinh zþ ηvz; ðB4bÞ

where η ¼ �1. Writing z ¼ iðαþ iβÞ, where α > 0 and
β∈R and decomposing gηðiα − βÞ into its real and
imaginary parts, we find that the zeroes of gη have
imaginary part at the positive zeroes of the functions

fηðαÞ¼cosα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

α2

sin2α
−1

s
þηvarccosh

�
v





 α

sinα






�
; ðB5Þ

where fþ is defined for −v ≤ sin α
α < 0 and f− is defined for

0 < sin α
α ≤ v. fþ has come from gþ and f− has come from

g−. For each zero of fη, the corresponding zero or zeroes of
gη are given by z ¼ iðαþ iβÞ where

β ¼ �arccosh

�
v





 α

sin α






�
: ðB6Þ

The zeroes of g can now be found by an elementary
analysis of (B5) and (B6). Each strip nπ< Imz<ðnþ1Þπ
that contains purely imaginary zeroes, enumerated in (B4),
contains no other zeroes. Each strip nπ < Im z < ðnþ 1Þπ
that does not contain purely imaginary zeroes contains
exactly one pair of zeroes, which are simple and have
nonvanishing and opposite real parts.

2. Complex zeroes at v → 1

We provide here estimates for the complex zeroes
as v → 1, used in the ultrarelativistic limit analysis in
Sec. IV B 3.
For v sufficiently close to 1, the only purely imaginary

zero is iα0. We choose a constant v0 for which this holds,
and we now assume throughout that v0 ≤ v < 1. As noted
above, the other complex zeroes then occur in pairs, one
pair in each strip nπ < Im z < ðnþ 1Þπ with n ¼ 1; 2;….
Writing the zeroes in the strip nπ < Im z < ðnþ 1Þπ as
iðαn � iβnÞ, n ¼ 1; 2;…, where βn > 0, an elementary
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analysis of (B5) shows that nπ < αn < ðnþ 1
2
Þπ and each

αn is a decreasing function of v. Consideration of the
v → 1 limit of (B5) then shows that there exists a positive
numerical constant c1, independent of n, such that
nπ þ c1 < αn < ðnþ 1

2
Þπ, and further that ðnþ 1

2
Þπ −

lnðnþ1Þ
2πn ð1þ oð1ÞÞ < αn < ðnþ 1

2
Þπ as n → ∞, where the

oð1Þ error term is uniform in v. From (B6) it then follows
that there exists a positive numerical constant c2 such that
c2n < βn tan αn, for all v0 ≤ v < 1 and n ¼ 1; 2;…. This
will be used to bound F corr

compðEÞ (4.6c) in Sec. IV B 3.

APPENDIX C: 3 + 1 SMALL GAP RESPONSE
FUNCTION FOR CIRCULAR AND DRIFTED

RINDLER MOTION

In this Appendix, we calculate the E → 0 expansion of
the stationary response function for circular and drifted
Rindler motion in 3þ 1 dimensions to linear order in E.

1. Circular motion

Consider circular motion in 3þ 1 dimensions. Using
(2.5) and (3.9), the noninertial correction to the response
function is

F corrðEÞ ¼ 1

4π2γvR

Z
∞

0

dz cos

�
2ER
γv

z

�

×

�
γ2v2

z2
−

1
z2

v2 − sin2 z

�
; ðC1Þ

where we have changed variables to z ¼ γv
2R s. We start by

writing (C1) as

F corrðaÞ ¼ v
4π2γR

PðaÞ; ðC2Þ

where a ¼ 2R
γv E and

PðaÞ ¼
Z

∞

0

dz cosðazÞ

0
B@γ2

z2
−

1

z2
�
1 − v2 sin2z

z2

	
1
CA: ðC3Þ

The expression in parentheses is γ4v2

3
þOðz2Þ as z → 0, and

it is γ2v2

z2 þOð1=z4Þ as z → ∞. Therefore, by dominated
convergence, PðaÞ is

PðaÞ ¼ Pð0Þ þ oð1Þ; ðC4aÞ

Pð0Þ ¼
Z

∞

0

dz

0
B@γ2

z2
−

1

z2
�
1 − v2 sin2z

z2

	
1
CA ðC4bÞ

as a → 0.
To find the next-to-leading order term, we first subtract

Pð0Þ from both sides of (C3). This gives

PðaÞ − Pð0Þ ¼ a2
Z

∞

0

dz

�
cosðazÞ − 1

a2z2

��
γ2 −

1

1 − v2 sin2 z
z2

�

¼ a2
Z

∞

0

dz

�
cosðazÞ − 1

a2z2

��
γ2 −

1

1 − v2 sin2 z
z2

þ ðγ2 − 1Þ − ðγ2 − 1Þ
�

¼ ðγ2 − 1Þa2
Z

∞

0

dz
cosðazÞ − 1

a2z2
þ a2

Z
∞

0

dz

�
cosðazÞ − 1

a2z2

��
1 −

1

1 − v2 sin2 z
z2

�

¼ −
π

2
γ2v2jaj þ a2

Z
∞

0

dz

�
cosðazÞ − 1

a2z2

��
1 −

1

1 − v2 sin2 z
z2

�
; ðC5Þ

where in the second equality we have added and subtracted
γ2 − 1 in the second pair of parentheses, in the third equality
we have split the integral into two, justified by the integra-
bility of each expression, and in the fourth equality we have
used γ2 − 1 ¼ γ2v2 and the standard integral

Z
∞

0

cosðazÞ − 1

a2z2
¼ −

π

2jaj : ðC6Þ

The expression in the second pair of parentheses in (C5)
is integrable and the expression in the first pair of

parentheses is bounded in absolutevalue by ana-independent
constant and has the pointwise limit− 1

2
as a → 0. Therefore,

by dominated convergence,

PðaÞ ¼ Pð0Þ − π

2
γ2v2jaj þOða2Þ; ðC7Þ

as a → 0.
Combining (C7) with (C2) and using a ¼ 2R

γv E, the small
E expansion of F corrðEÞ is
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F corrðEÞ ¼ v
4π2γR

Pð0Þ − v2

4π
jEj þOðE2Þ: ðC8Þ

Therefore, the small E expansion of the response
function F ðEÞ is

F ðEÞ¼ v
4π2γR

Pð0Þ−v2

4π
jEj− E

2π
Θð−EÞþOðE2Þ

¼ v
4π2γR

Pð0Þ− 1

4π

�
1−

1

γ2
sgnE

�
EþOðE2Þ; ðC9Þ

wherewehave usedv2 ¼ 1 − 1
γ2
and sgnðEÞ þ 2Θð−EÞ ¼ 1.

This expansion completes the argument leading to the
3þ 1 circular motion small gap temperature quoted in
Eq. (3.9) in [19].

2. Drifted Rindler motion

Consider drifted Rindler motion in 3þ 1 dimensions.
The noninertial correction to the response function is given
by (4.3c),

F corrðEÞ ¼ 1

4π2γR

Z
∞

0

dz cos

�
2ER
γ

z

�

×

�
γ2

z2
−

1

sinh2 z − v2z2

�
: ðC10Þ

We start by writing (C10) as

F corrðbÞ ¼ 1

4π2γR
QðbÞ; ðC11Þ

where b ¼ 2ER
γ and

QðbÞ ¼
Z

∞

0

dz cosðbzÞ

0
B@γ2

z2
−

1

z2
�
sinh2z
z2 − v2

	
1
CA: ðC12Þ

The expression in parentheses is − γ4

3
þOðz2Þ as z → 0,

and it is γ2

v2z2 þOð1=z4Þ as z → ∞. Therefore, by dominated
convergence, QðbÞ is

QðbÞ ¼ Qð0Þ þ oð1Þ; ðC13aÞ

Qð0Þ ¼
Z

∞

0

dz

0
B@γ2

z2
−

1

z2
�
sinh2 z
z2 − v2

	
1
CA ðC13bÞ

as b → 0.
To find the next-to-leading order term, we subtract Qð0Þ

from both sides of (C12). This gives

QðbÞ −Qð0Þ ¼ b2
Z

∞

0

dz

�
cosðbzÞ − 1

b2z2

��
γ2 −

1
sinh2 z
z2 − v2

�

¼ γ2b2
Z

∞

0

dz
cosðbzÞ − 1

b2z2
− b2

Z
∞

0

dz

�
cosðbzÞ − 1

b2z2

��
1

sinh2 z
z2 − v2

�

¼ −
π

2
γ2jbj − b2

Z
∞

0

dz

�
cosðbzÞ − 1

b2z2

��
1

sinh2 z
z2 − v2

�
; ðC14Þ

where in the second equality we have split the integral into
two parts, justified by the integrability of each expression,
and in the third equality we have used (C6).
Due to the exponential falloff of the integrand of the

second term in (C14), we may use dominated convergence
to expand the cosine to all orders under the integral to
obtain

QðbÞ −Qð0Þ ¼ −
π

2
γ2jbj þOðb2Þ ðC15Þ

as b → 0.
Combining (C15) with (C11) and using b ¼ 2ER

γ , we find

F corrðEÞ ¼ 1

4π2γR
Qð0Þ − jEj

4π
þOðE2Þ ðC16Þ

as E → 0. Therefore, the small E expansion of the response
function is

F ðEÞ ¼ 1

4π2γR
Qð0Þ − jEj

4π
−

E
2π

Θð−EÞ þOðE2Þ ðC17Þ

¼ 1

4π2γR
Qð0Þ − E

4π
þOðE2Þ ðC18Þ

where we have used sgnðEÞ þ 2Θð−EÞ ¼ 1.

APPENDIX D: v→0 AND v→1 ASYMPTOTICS
OF JðvÞ AND KðvÞ

In this Appendix, we calculate the v → 0 and v → 1
asymptotics of the functions JðvÞ and KðvÞ defined in
(4.13) and (4.24), respectively.
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1. JðvÞ
Consider JðvÞ given by (4.13),

JðvÞ ¼
Z

∞

0

dz

�
1

γz2
−

1

γ3ðsinh2 z − v2z2Þ
�
; ðD1Þ

where 0 ≤ v < 1 and γ ¼ ð1 − v2Þ−1=2 ≥ 1.
Setting y ¼ γz in (D1) gives

JðvÞ ¼
Z

∞

0

dy

�
1

y2
−

1

γ4 sinh2ðy=γÞ − ðγ2 − 1Þy2
�
: ðD2Þ

For y > 0, an elementary analysis shows that the inte-
grand in (D2) is strictly positive and bounded above by the
v-independent integrable function 1

y2 −
1

sinh2 y. The v → 0

and v → 1 limits can hence be taken under the integral by
dominated convergence. At v → 0, we find

JðvÞ ¼ 1þ oð1Þ; ðD3Þ

where we have used

Jð0Þ ¼
Z

∞

0

dz

�
1

z2
−

1

sinh2 z

�
¼ 1: ðD4Þ

The integral in (D4) can be evaluated by extending the
lower limit of the integral to −∞ by evenness, deforming
the contour to z ¼ i π

2
þ r with r∈R, and using 3.511.8

in [64]. At v → 1, we find

JðvÞ ¼
Z

∞

0

dy

�
1

y2
−

1

y2 þ y4

3

�
þ oð1Þ

¼ π

2
ffiffiffi
3

p þ oð1Þ; ðD5Þ

where the last equality follows by evaluating the elemen-
tary integral.
We also note that JðvÞ is a monotonically decreasing

function of v. This follows because the integrand in (D2) is
a monotonically decreasing function of v for 0 ≤ v < 1 at
fixed y > 0.

2. KðvÞ
Consider KðvÞ given by (4.24),

KðvÞ ¼ 4

π2

Z
∞

0

dz
zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sinh2 z − v2z2
p ; ðD6Þ

where 0 ≤ v < 1.
For the v → 0 limit, we observe that when v ≤ 1

2
,

the integrand in (D6) is bounded above by the integrable
v-independent function z=ðsinh2 z − 1

4
z2Þ−1=2. The v → 0

limit can hence be taken by dominated convergence, with
the outcome

KðvÞ ¼ 1þ oð1Þ; ðD7Þ

where we have used 3.521.1 in [64] to evaluate the
integral in

Kð0Þ ¼ 4

π2

Z
∞

0

dz
z

sinh z
¼ 1: ðD8Þ

For the v → 1 limit, we write KðvÞ (D6) as

KðvÞ ¼ 4

π2

Z
∞

0

dz
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hðzÞ þ 1
γ2

q ; ðD9Þ

where hðzÞ ¼ sinh2 z
z2 − 1 and γ ¼ ð1 − v2Þ−1=2. Note that

hðzÞ ¼ 1
3
z2 þOðz4Þ as z → 0. Introducing a positive

constant M, we can then split the domain of integration
in (D9) as

KðvÞ ¼ K<ðvÞ þ K>ðvÞ; ðD10aÞ

K<ðvÞ ¼
4

π2

Z
M

0

dz
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hðzÞ þ 1
γ2

q ; ðD10bÞ

K>ðvÞ ¼
4

π2

Z
∞

M
dz

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðzÞ þ 1

γ2

q : ðD10cÞ

First, consider K>ðvÞ. Expanding the integrand in powers
of 1

γ2
, we find

K>ðvÞ ¼
4

π2

Z
∞

M
dz

1ffiffiffiffiffiffiffiffiffi
hðzÞp þO

�
1

γ2

�
; ðD11Þ

where interchanging the expansion and the integral is
justified by dominated convergence.
Second, consider K<ðvÞ. In the integrand in (D10b), we

add and subtract a term in which hðzÞ is replaced by its
leading small z term 1

3
z2, and we regroup the integral as

K<ðvÞ ¼
4

π2

Z
M

0

dz

0
B@ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hðzÞ þ 1
γ2

q −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
3
z2 þ 1

γ2

q
1
CA

þ 4

π2

Z
M

0

dz
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
3
z2 þ 1

γ2

q : ðD12Þ

In the first integral in (D12), the integrand can be written as
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1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðzÞ þ 1

γ2

q −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
3
z2 þ 1

γ2

q ¼
1
3
z2 − hðzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hðzÞ þ 1
γ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
3
z2 þ 1

γ2

q h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
3
z2 þ 1

γ2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðzÞ þ 1

γ2

q i ; ðD13Þ

which shows that the integrand is bounded in absolute
value by

hðzÞ − 1
3
z2ffiffiffiffiffiffiffiffiffi

hðzÞp ffiffiffiffiffiffiffi
1
3
z2

q h ffiffiffiffiffiffiffi
1
3
z2

q
þ ffiffiffiffiffiffiffiffiffi

hðzÞp i ; ðD14Þ

which is independent of γ and integrable over ½0;M�. By
dominated convergence, we hence have

4

π2

Z
M

0

dz

0
B@ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hðzÞ þ 1
γ2

q −
1ffiffiffiffiffiffiffiffiffiffiffiffi

z2
3
þ 1

γ2

q
1
CA

¼ 4

π2

Z
M

0

dz

�
1ffiffiffiffiffiffiffiffiffi
hðzÞp −

ffiffiffi
3

p

z

�
þ oð1Þ ðD15Þ

as γ → ∞.
The second integral in (D12) is elementary and its large γ

expansion is

4

π2

Z
M

0

dz
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
3
z2 þ 1

γ2

q ¼ 4
ffiffiffi
3

p

π2
log

�
2

ffiffiffi
3

p

3
γ

�
þ 4

ffiffiffi
3

p

π2
logM

þO

�
1

γ2

�
: ðD16Þ

Combining (D11), (D15) and (D16), we find

KðvÞ ¼ 4
ffiffiffi
3

p

π2
log

�
2

ffiffiffi
3

p

3
γ

�
þ 4

ffiffiffi
3

p

π2
logðMÞ

þ 4

π2

Z
∞

M
dz

1ffiffiffiffiffiffiffiffiffi
hðzÞp þ 4

π2

Z
M

0

dz

�
1ffiffiffiffiffiffiffiffiffi
hðzÞp −

ffiffiffi
3

p

z

�

þ oð1Þ ðD17Þ

as γ → ∞.
The sum of the three individually M-dependent terms in

(D17) is independent ofM, as can be seen by differentiating
the sum with respect toM. To write the sum in an explicitly
M-independent way, we write

logM ¼
Z

M

0

dz
1þ z

− log

�
1þ 1

M

�
; ðD18Þ

and we group the sum as

4

π2

Z
M

0

dz

�
1ffiffiffiffiffiffiffiffiffi
hðzÞp −

ffiffiffi
3

p

zð1þ zÞ
�
þ 4

π2

Z
∞

M
dz

1ffiffiffiffiffiffiffiffiffi
hðzÞp

−
4

ffiffiffi
3

p

π2
log

�
1þ 1

M

�

¼ 4

π2

Z
∞

0

dz

�
1ffiffiffiffiffiffiffiffiffi
hðzÞp −

ffiffiffi
3

p

zð1þ zÞ
�
; ðD19Þ

where in the last equality we have used theM-independence
of the sum to take the limit M → ∞ termwise. Hence, as
v → 1 (γ → ∞),

KðvÞ ¼ 4
ffiffiffi
3

p

π2
log

�
2

ffiffiffi
3

p

3
γ

�

þ 4

π2

Z
∞

0

dz

�
zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sinh2 z − z2
p −

ffiffiffi
3

p

zð1þ zÞ
�

þ oð1Þ: ðD20Þ

APPENDIX E: 2 + 1 DRIFTED RINDLER
ULTRARELATIVISTIC LIMIT

In this Appendix, we verify the v → 1 (γ → ∞) limit
(4.26) with fixed E=a for drifted Rindler motion in 2þ 1
dimensions.
Starting with the expression for the odd part of the

response function in 2þ 1 dimensions as given in (4.20c),
we make the change of variables y ¼ γz to obtain

F oddðEÞ ¼ −
1

2π

Z
∞

0

dy
sinð2 E

a yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ4sinh2

�
y
γ

	
− ðγ2 − 1Þy2

r ; ðE1Þ

where we have used (2.9).
An elementary analysis shows that the integrand in (E1) is

bounded in absolute value by j sinð2 E
a yÞjy−1ð1þ 1

3
y2Þ−1=2,

which is independent of γ and integrable in y. We can hence
take the γ → ∞ limit in (E1) under the integral,with the result

F oddðEÞ ¼ −
1

2π

Z
∞

0

dy
sinð2 E

a yÞ
y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

3
y2

q þ oð1Þ: ðE2Þ

Finally, by the change of variables x ¼ yffiffi
3

p , we have

F oddðEÞ ¼ −
1

2π

Z
∞

0

dx
sinð2 ffiffiffi

3
p

E
a xÞ

x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p þ oð1Þ

¼ −
1

2π
Gð2

ffiffiffi
3

p
E=aÞ þ oð1Þ ðE3Þ

as γ → ∞, where the function G is as defined in (4.27).
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