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1. INTRODUCTION

The Human Connectome Project (HCP) Lifespan studies 
extend the original HCP (collected in young adults) to 
characterise brain organisation and connectivity during 
the development (HCD, 5– 21  years) ( Somerville  et  al., 
 2018) and ageing (HCA, 36– 100+ years) ( Bookheimer 
 et  al.,  2019) phases of life. Taken together, the studies 
acquired comprehensive neuroimaging datasets for more 

than 3,200 individuals to facilitate characterisation of the 

organisation and connectivity of the brain at various life 

stages, including childhood, puberty, middle age, meno-

pause, later life and the “oldest old”. The Lifespan stud-

ies included multiple delay arterial spin labelling (ASL) 

MRI as an imaging modality, which permits, for the first 

time, perfusion measurements to be included in the HCP 

data releases.
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ABSTRACT

The Human Connectome Project Lifespan studies cover the development (5– 21) and ageing (36– 100+) phases of life. 
Arterial spin labelling (ASL) was included in the imaging protocol, resulting in one of the largest datasets collected to 
date of high spatial resolution multiple delay ASL covering 3,000 subjects. The human connectome project (HCP)- ASL 
minimal processing pipeline was developed specifically for this dataset to pre- process the image data and produce 
perfusion estimates in both volumetric and surface template space, though quality control is not performed. Applied 
to the whole dataset, the outputs of the pipeline revealed significant and expected differences in perfusion between 
the development and ageing cohorts. Visual inspection of the group average surface maps showed that cortical per-
fusion often followed cortical areal boundaries, suggesting differential regulation of cerebral perfusion within brain 
areas at rest. Group average maps of arterial transit time also showed differential transit times in core and watershed 
areas of the cerebral cortex, which are useful for interpreting haemodynamics of functional MRI images. The pre- 
processed dataset will provide a valuable resource for understanding haemodynamics across the human lifespan.
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ASL is a non- invasive imaging technique that uses 
magnetically labelled blood as an endogenous tracer; 
when acquired at multiple delays (as was the case here), 
it permits measurement of both cerebral perfusion (CBF) 
and arterial transit time (ATT). Cerebral perfusion is known 
to vary substantially during early life ( Avants  et al.,  2015; 
 Satterthwaite  et al.,  2014), to decline with age ( Kiely  et al., 
 2022;  Leidhin  et al.,  2021), and to be affected by many of 
the diseases common in older age ( Alosco  et al.,  2013; 
 Binnewijzend  et al.,  2016;  Hu  et al.,  2010;  Melzer  et al., 
 2011;  Ortapamuk  &  Naldoken,  2006;  Patel  &  Markus, 
 2011;  Prohovnik  et  al.,  2007;  Shi  et  al.,  2016). Though 
ASL has been acquired in previous population studies 
such as the UK Biobank ( Miller  et  al.,  2016), TILDA 
( Donoghue  et al.,  2018), GENFI ( Mutsaerts  et al.,  2019), 
PREVENT ( Mak  et  al.,  2021), and Whitehall II Imaging 
Sub- study ( Suri  et al.,  2019), the HCP Lifespan ASL data-
set is unique in its size and quality, in particular due to the 
use of an unusually high spatial resolution multiple delay 
acquisition.

When the HCP was launched in 2010, the approach 
adopted was novel: to acquire a large and high- quality 
dataset, to maintain that quality during minimal pre- 
processing, and then release the outputs for others to 
analyse further. Many aspects of this “HCP- Style” to 
acquisition and analysis have been adopted by other 
studies ( Glasser,  Smith,  et al.,  2016); importantly, it has 
led to improvements in the reproducibility and transpar-
ency of research because all parties can access the 
underlying data ( Elam  et al.,  2021). The objective of the 
HCP- ASL pipeline is to provide similarly high- quality pre- 
processed perfusion measures that others may use for 
downstream analysis, and many of the design decisions 
have been made with equivalence to existing HCP pipe-
lines in mind in the hope of exploiting the data quality to 
its full extent, particularly with regard to cross- subject 
alignment of cortical areas.

A notable feature of existing HCP pipelines is the use 
of surface- based analysis to improve the alignment of 
cortical areas across individuals and reduce partial vol-
ume effects in group analyses ( Coalson  et  al.,  2018; 
 Glasser  et al.,  2013; Glasser, Smith, et al., 2016), though 
exploiting the advantages of this paradigm requires 
accurate segmentations of the cerebral cortex. For the 
HCP studies, this was achieved via the use of high- 
resolution T1-  and T2- weighted anatomical scans at 
0.8 mm isotropic resolution or better, which may not be 
feasible for all studies ( Glasser,  Smith,  et al.,  2016). Con-
versely, the volumetric approach to group analysis relies 
on volumetric registration which is known to be inaccu-
rate at aligning cortical areas across most of the cortical 
sheet and substantially worsens partial volume effects 
across tissues in group analyses ( Coalson  et al.,  2018). In 

keeping with the existing HCP pipelines, the HCP- ASL 
pipeline produces perfusion estimates in a surface- based 
representation so that surface techniques may be used in 
downstream analysis. As few studies have yet explored 
surface representation of ASL- derived measures (exam-
ples include ( Taso  et al.,  2021;  Verclytte  et al.,  2015)), the 
HCP- ASL pipeline will enable the community to examine 
the utility of such an approach, in combination with other 
functional data also on the surface. The pipeline also pro-
duces volumetric outputs for compatibility with conven-
tional analysis workflows.

This work details the processing steps performed by 
the HCP- ASL minimal processing pipeline and presents 
summary perfusion statistics calculated across the HCP 
Lifespan cohorts. There are numerous strategies that 
may be used for processing ASL data, particularly multi- 
delay data, and there remains debate as to which 
approach is best ( Alsop  et  al.,  2015;  Fan  et  al.,  2024; 
 Lindner  et  al.,  2023;  Woods  et  al.,  2024). We have not 
tried to systematically resolve these differences in this 
work, and instead present the pipeline as a best effort for 
the unique nature of the dataset. For an example analysis 
of perfusion measurements derived from the data, the 
reader is referred to  Juttukonda  et al.  (2021).

2. MATERIALS AND METHODS

The HCP Lifespan ASL data were processed with the 
HCP- ASL pipeline version 0.1.2, available at https://
github . com / physimals / hcp - asl / releases / tag / v0 . 1 . 2. The 
following sections detail the data acquisition and the pro-
cessing steps performed by the pipeline.

2.1. Data acquisition

ASL data for the HCP Lifespan studies was acquired in 
5.5 min of scanning on five 3T Siemens Prisma scanners 
at four sites ( Harms  et al.,  2018). Data were collected for 
1,306 subjects for HCD (655 female, ages 5– 21  years) 
and 1,199 for HCA (681 female, ages 36– 102 years); the 
distribution across sites is given in the supplementary 
material. Ethics approvals for the data collection were 
granted by the Washington University in St. Louis Institu-
tional Review Board (HCA IRB ID #: 201603117, HCD IRB 
ID#: 201603135) and informed consent was obtained 
from all participants for being included in the study.

Pseudo- continuous ASL (PCASL) was used, with a 
1.5  s label duration and multiple post- labelling delays 
(PLDs) of 0.2, 0.7, 1.2, 1.7, and 2.2 s, repeated 6, 6, 6, 10, 
and 15 times, respectively. A simultaneous multi- slice 
(SMS) 2D EPI acquisition with a multi- band factor of 6 
was used without background suppression to achieve 
2.5 mm isotropic resolution (2.27 mm slice thickness plus 

https://github.com/physimals/hcp-asl/releases/tag/v0.1.2
https://github.com/physimals/hcp-asl/releases/tag/v0.1.2
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10% gap), with 60 slices total, 59 ms readout time per 
slice, and 19 ms echo time (further details are given in  Li 
 et al.  (2015)). Although 2D readouts have inherently lower 
signal- to- noise ratio than 3D readouts, they do not intro-
duce substantial spatial blurring due to T2 decay during 
the readout ( Alsop  et al.,  2015;  Woods  et al.,  2024). Such 
blurring would reduce the accuracy of registration 
between the ASL data and T1w anatomical image, nega-
tively affecting the surface parameter maps that are the 
desired endpoint of the pipeline. Blurring can be reduced 
via the use of segmented 3D acquisitions, but such 
acquisitions are highly sensitive to motion. For this rea-
son, after comparing 3D and 2D (with SMS) PCASL, HCP 
Lifespan adopted the latter ( Harms  et al.,  2018).

To calibrate perfusion measurements into units of 
ml/100  g/min, two 2.5  mm isotropic PD- weighted M0 
calibration images (TR > 8 s) were acquired at the end 
of the PCASL scan. In addition, a strong pre- saturation 
covering the imaging region was played out just before 
the PCASL module using three selective RF pulses with 
the spoiling gradients for each applied along two differ-
ent directions (i.e., the first pre- saturation pulse was fol-
lowed with spoiling gradients along the readout and 
slice directions; the second along the phase and slice 
directions; and the third along the readout and phase 
directions). For susceptibility distortion correction, two 
phase- encoding- reversed spin- echo images were 
acquired that were geometrically and distortion matched 
to the ASL data. T1-  and T2- weighted anatomical and 
functional MRI images were acquired and pre- processed 
via the existing HCP minimal processing pipelines 
( Glasser  et  al.,  2013,  2018,  2019;  Harms  et  al.,  2018; 
 Robinson  et al.,  2018).

2.2. Data pre- processing and corrections

The ASL images contained several geometric and inten-
sity artefacts that required correction before perfusion 
estimation could be performed. The use of a pre- saturation 
pulse in a multi- slice acquisition scheme contributed to 
slice- wise intensity variations in the inferior- superior direc-
tion in the ASL timeseries and calibration images, most 
notably between the last and first slices of adjacent bands, 
illustrated in Figure 1.

The perfusion signal in ASL is obtained by subtracting 
successive pairs of label and control images in the ASL 
timeseries. This means that ASL is sensitive to within- 
timeseries motion which can lead to spurious signal when 
mis- aligned images are subtracted, and it is, therefore, 
necessary to motion correct the data. Conventional meth-
ods for rigid- body motion correction such as FSL 
MCFLIRT ( Jenkinson  et  al.,  2002) may not be accurate 
when applied to banded data because the registration 
cost function may reward alignment of the intensity band-
ing rather than anatomy, leading to anatomical misalign-
ment, which will produce spurious signal after label– control 
subtraction. Furthermore, within a single label– control 
pair that have relative motion, even if it were possible to 
perfectly re- align anatomy there would remain artefactual 
intensity variations due to the bands occurring at different 
anatomical locations across the pair, resulting in imper-
fect elimination of the banding effects after subtraction. It 
was, therefore, decided to “de- band” the data before per-
forming motion correction.

The first banding correction applied to the data 
accounted for the different relaxation times of each slice 
in the 2D readout, which gives rise to a saturation  recovery 

Fig. 1. Banding artefact visible on the calibration image (top row) and last volume of the ASL timeseries (bottom row). 
The bottom of each band (six in total) is shown with an arrowhead.
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effect in the signal. While this effect exists in a conven-
tional non- SMS 2D ASL acquisition ( Golay  et al.,  2004), 
with SMS acquisitions there are adjacent slices within 
brain tissue acquired in the first versus last SMS exci-
tation, making the discontinuity more evident, and impor-
tantly, contributing to the prominent banding artefact that 
was observed. To remove the saturation recovery effect, a 

simplified model of the form S t( ) = 1− e
− t
T1 was fitted to 

the control images of the ASL timeseries using FSL FAB-
BER, where T1 is the longitudinal relaxation time of tissue 
and t the slice- specific interval from the pre- saturation 
module (which is the sum of the duration of the labelling 
module, the PLD, and the slice- specific delay in the read-
out module, accounting properly for the SMS nature of 
the acquisition). An example T1 map generated by FAB-
BER is given in the supplementary material. The satura-
tion recovery differences were then corrected (in both the 
control and label images) by normalising the intensities to 
the estimated value that they would have had if all the 
slices had been acquired simultaneously at the PLD.

During pipeline development, it was found that satu-
ration recovery correction alone was unable to fully 
remove banding in both the calibration image and later 
PLDs of the ASL timeseries (illustrated in the Results sec-
tion). Given the long TR of the calibration image (8 s), or 
long recovery times of the later PLDs (up to 3.7 s), theory 
predicts that longitudinal magnetisation will have largely 
recovered following those intervals and, therefore, the 
saturation recovery effect will be minimal. The presence 
of banding in the calibration images and later PLDs 
implied that there was a second banding mechanism 
(possibly a magnetisation transfer effect, addressed in 
the Discussion section), for which a correction was 
empirically derived using the calibration images of 80 
subjects drawn equally from the HCA and HCD cohorts. 
After performing saturation recovery correction and 
masking the images to include grey and white matter 
only, a linear model for slice- wise mean intensity was fit-
ted to each band and the coefficients averaged across 
subjects (see Supplementary Material for details).

Correction for gradient non- linearity distortion was 
performed using gradunwarp operating on the calibration 
image with the gradient coefficients file for the Prisma 
system (as used in the HCP PreFreeSurfer pipeline 
( Glasser  et al.,  2013)). Susceptibility distortion correction 
was performed using FSL TOPUP operating on a pair of 
phase- encode reversed spin- echo images that had 
undergone gradient distortion correction. Bias field (B1) 
estimation was performed using the spin echo- based 
approach (“SEBASED”,  Glasser  et al.,  2016) operating on 
the calibration image that had undergone gradient distor-
tion, susceptibility distortion, and banding correction.

Figure 2 shows how the aforementioned preprocess-
ing corrections were derived and combined in the HCP- 
ASL pipeline to produce the fully corrected ASL and the 
calibration images on which perfusion estimation can be 
performed. Though two calibration images were acquired, 
only the first was used in the pipeline, though both were 
fully corrected. Some corrections were refined iteratively: 
for example, given that banding is expected to have a 
strong influence on the accuracy of motion estimation, 
each was performed twice on the assumption that an 
improvement in one should lead to an improvement in the 
other. Motion estimation was performed using MCFLIRT 
with the calibration image as the reference to yield a 
 registration between the calibration image and ASL 
timeseries. In total, four subject- specific inputs and two 
generic inputs to the pipeline are required: for the individ-
ual, the phase encode reversed field maps, the calibration 
image, the T1w structural image, and the ASL timeseries, 
and generically, the Siemens Prisma gradient coefficients 
and the empirical banding correction coefficients.

2.3. Data alignment within individuals

In keeping with HCP fMRI pipelines, the HCP- ASL pipe-
line transforms ASL timeseries data into alignment with 
the structural images before analysis ( Glasser  et  al., 
 2013), though retains the original 2.5  mm resolution 
(hereafter referred to as “ASL- gridded T1 space”). Multi-
ple steps were used to obtain an accurate ASL to T1w 
registration. An initial registration was made using Free-
Surfer’s boundary- based registration (BBR, bbregister) 
between the calibration image and the T1w image ( Greve 
 &  Fischl,  2009;  Jenkinson  et  al.,  2002); this was com-
bined with the motion correction matrices to obtain a 
registration between ASL and T1w. The calibration image 
has better grey– white tissue contrast than the un- 
subtracted ASL timeseries which facilitates accurate 
BBR. Then, perfusion estimation on the native ASL data 
with all banding and distortion corrections was per-
formed to obtain a CBF map with increased grey– white 
tissue contrast, on which a second BBR was performed 
to the T1w image. The CBF map from this step was then 
discarded.

The transform between the ASL and calibration images 
and T1w alignment was merged with the motion correc-
tion, susceptibility distortion, and gradient distortion 
transforms and applied in a single step to the raw ASL 
and calibration images using the regtricks library to pro-
duce the fully transformed ASL and calibration images in 
ASL- gridded T1 space ( Kirk,  2022). Jacobian intensity 
correction for distortion- induced signal pile- up was per-
formed and cubic splines with pre- filtering were used to 
perform the interpolation ( Unser  et al.,  1993). Minimising 
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Fig. 2. Schematic diagram showing how the fully corrected calibration and ASL images in ASL- gridded T1 space are 
derived (green box). Note that some intermediate registrations and transformations are not shown for clarity (particularly 
in the orange shaded box); all operations applied to the fully corrected outputs are shown. SEBASED: spin- echo based, 
SDC: susceptibility distortion correction, GDC: gradient distortion correction, MC: motion correction, FABBER: FSL  
model- fitting tool, MCFLIRT: FSL motion correction tool.
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the number of interpolation operations aimed to reduce 
the introduction of additional partial volume effects that 
cannot be entirely removed with subsequent correction. 
SEABASED bias field estimation was re- run on the fully 
transformed calibration image to obtain bias field correc-
tion coefficients in ASL- gridded T1 space.

To intensity correct (banding and bias) the fully trans-
formed ASL and calibration images, the calibration to 
T1w registration was applied to the empirical banding 
coefficients, and the ASL to T1w registration to the satu-
ration recovery correction coefficients, to transform both 
banding corrections into ASL- gridded T1 space. Given 
the ASL and calibration image data were distortion cor-
rected, no distortion correction was applied to the band-
ing correction coefficients (it is only necessary to correct 
one or the other). The empirical banding coefficients were 
combined with the newly derived bias field estimates to 
intensity correct the calibration image, and both sets of 
coefficients were combined with the bias field estimates 
to intensity correct the ASL image.

2.4. Perfusion analysis

In the presence of head motion, voxels travelling between 
neighbouring slices during the acquisition will receive dif-
fering intensity scaling during the banding corrections, 
which could lead to spurious signal after label– control 
subtraction. The general linear model (GLM) framework 
for motion- aware subtraction of banded and background- 
suppressed ASL data developed by  Suzuki  et al.  (2019) 

was used in this work, with the small modification that it 
was not necessary to account for background suppres-
sion because it was not used during the image acquisi-
tion. The subtracted timeseries data were then used for 
perfusion estimation.

CBF and ATT estimation were performed using a 
 variational Bayesian method via the oxford_asl script 
( Chappell  et al.,  2009,  2023). The aslrest Buxton model 
with CBF, ATT, and macrovascular components was used 
( Buxton  et al.,  1998;  Chappell  et al.,  2011). A normal dis-
tribution prior with mean 1.3 s was used on ATT and an 
automatic relevancy determination (ARD) prior was used 
on macrovascular blood volume to remove this compo-
nent from non- arterial voxels. Slice- timing correction was 
performed by adjusting the PLDs in each voxel by their 
slice- timing offset, and perfusion was converted from 
arbitrary units into ml/100 g/min using the mean signal 
value of CSF in the lateral ventricles from the calibration 
image ( Pinto  et  al.,  2020). Reference region calibration 
was used instead of a voxel- wise strategy due to the 
availability of a high- resolution calibration image, which 
allowed for accurate ventricular segmentation with mini-
mal PVE, as well as mitigating the possibility of intro-
ducing (potentially uncorrected) banding artefacts from 
the calibration image if voxel- wise division were used. 
The tissue T1 values previously estimated for saturation 
recovery correction were passed to oxford_asl.

ASL is typically acquired with ~4 mm voxel sizes which 
gives rise to partial volume effects (PVE) caused by the 
coarse spatial resolution of the data in relation to the 

Fig. 3. Perfusion analysis applied to ASL difference data after alignment with the individual’s T1w image. Bayesian 
inference is used to produce both partial volume- corrected and non- corrected estimates of perfusion and arterial arrival 
times, as well as arterial cerebral blood volume estimates. During inference, the slice- timing image on the right is used to 
produce slice- specific PLDs. Calibration of perfusion measures was performed using CSF reference region calibration.
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cerebral cortex, which has a mean thickness of around 
2.5 mm. There is ongoing debate as to whether PVE cor-
rection (PVEc) should be routinely used in ASL studies. 
Though it is theoretically justified, particularly for studies 
covering a wide range of participant ages, there remain 
questions around the robustness and efficacy of currently 
available methods ( Chappell  et al.,  2021). The ASL data 
acquired by the Lifespan HCP had a relatively high spatial 
resolution (2.5 mm isotropic), which not only reduced the 
PVE but also enabled more accurate PVEc to be per-
formed. PVEc is performed in the voxel space using a 
spatial variational Bayes method implemented in oxford_
asl ( Chappell  et  al.,  2011); the required partial volume 
estimates are obtained using Toblerone operating on the 
FreeSurfer- derived cortical surfaces and subcortical seg-
mentations ( Fischl,  2012;  Kirk  et al.,  2020). For PVEc, a 
normal distribution prior with mean of 1.3 s was used for 
GM ATT and 1.6 s for WM ATT.

Both PVEc and non- PVEc perfusion estimates are 
generated so that the end user may decide which is most 
appropriate for their application. For non- PVEc, spatial 
regularisation is not used (deviating from the recom-
mended settings for oxford_asl, which were otherwise 
used) to minimise the mixing of signal across the grey/
white cortical boundary, at the cost of somewhat greater 
image noise. By contrast, for PVEc, spatial regularisation 
is an intrinsic feature of the spatial variational Bayes 
method used by oxford_asl.

2.5. Output in standard space; calculation  
of image- derived phenotypes

Volumetric CBF and ATT maps from oxford_asl are pro-
duced in both ASL- gridded T1w space and MNI152 
2 mm template space, via the existing FNIRT registration 
produced by the HCP PreFreeSurfer structural process-
ing pipeline. To produce output parameter maps in grey-
ordinates space (a combined surface and volumetric 

space represented in CIFTI format), the volumetric out-
puts of oxford_asl are projected onto the individual’s 
native cortical surface using the HCP ribbon- constrained 
method, registered with MSMAll multi- modal areal- 
feature- based registration and resampled to a common 
surface mesh, and finally smoothed with a 2  mm full- 
width half- maximum kernel using a surface- constrained 
method ( Glasser  et al.,  2013,  2016;  Robinson  et al.,  2014, 
 2018). The surface and MNI outputs (masked to consider 
subcortical structures only) were combined to produce 
the final CIFTI greyordinates files. Image- derived pheno-
types (IDPs) were produced for each participant by com-
puting the mean and standard deviation within each 
parcel of the HCP multi- modal parcellation (version 1.0) 
for both PVEc and non- PVEc variants of CBF and ATT.

2.6. Quality control

Though the HCP- ASL pipeline does not perform any auto-
mated QC, it does produce intermediate outputs that 
enable researchers to perform visual checks. These are 
produced as a single Workbench scene file (a pre- specified 
visualisation) containing seven scenes, each of which is 
saved as a standalone image to facilitate quick inspection 
(although full exploration requires opening the scene in 
Workbench). The scenes illustrate (a) the bounding box of 
the ASL timeseries after motion correction within the 
acquisition field of view (voxels missing data due to their 
movement outside of the acquisition field- of- view for a 
single timepoint are excluded from perfusion estimation) 
and the quality of registration to the T1w scan, illustrated 
in Figure 4; (b) the raw ASL timeseries before and after all 
corrections are applied; (c) non- PVEc CBF displayed on 
the inflated cortical surface and in subcortical structures; 
(d) non- PVEc ATT displayed in the same manner; (e) PV 
estimates for GM and WM, and the ventricular CSF mask 
used for calibration; (f) a volumetric montage of non- PVEc 
CBF; and (g) a volumetric montage of non- PVEc ATT.

Fig. 4. Workbench scene produced by the pipeline to assess registration and masking accuracy. The FreeSurfer white 
and pial surfaces are shown via thin green and blue lines, respectively. The ASL volumetric brain mask outline is shown in 
magenta. The white box denotes the field of view of the ASL acquisition, transformed into the ASL- gridded T1 w space. 
The cyan line (seen at bottom of cerebellum in the sagittal view) denotes a section of the ASL brain mask that lies outside 
the field of view. The base image in greyscale is the first volume of the fully corrected ASL timeseries image.
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Fig. 6. Banding artefacts visible in the first (0.2 s), third (1.2 s), and final (2.2 s) PLDs of the ASL timeseries. First column: 
before correction, visible banding varies according to PLD, because the saturation recovery mechanism affects each PLD 
differently. Second column: saturation recovery correction in isolation is unable to remove all banding at any PLD. Third 
column: the empirical banding correction in isolation does not remove banding in the early PLDs but does so in later PLDs. 
Fourth column: at all PLDs, the combination of the two banding corrections better removes banding than in isolation. The 
images in all columns are single volumes from the corresponding PLD group, and were previously corrected for gradient 
non- linearity distortion, susceptibility distortion, and the receive- coil bias field.

3. RESULTS

3.1. Data pre- processing

Figure 5 shows the effect of the two individual banding 
corrections (empirically derived and saturation recovery) 
individually and combined together on a slice- wise basis. 
The two banding mechanisms worked in opposing direc-
tions: at early PLDs, the saturation recovery effect was 
almost equal and opposite to the empirical banding 
effect, leading to a subtle overall correction, whereas for 
late PLDs where the saturation recovery effect was 
weaker, the empirical banding effect dominated.

Figure 6 shows the effect of the two banding correc-
tions applied in isolation and together to the ASL 
timeseries from participant HCD0378150. The saturation 
recovery correction in isolation had minimal effect on the 
volumes of the ASL series with the longest (2.2 s) PLDs. 
This was consistent with theoretical prediction: at longer 
PLDs, the relative differences in slice- timing decrease, 
which will reduce the prominence of the saturation recov-
ery effect, as was observed. Conversely, the empirical 
correction in isolation was unable to fully remove banding 
on the shortest (0.2  s) PLDs, for which the saturation 
recovery effect is substantial. For all PLDs, the  combination 

Fig. 5. Magnitude of the two multiplicative banding corrections according to slice number and PLD/volume number 
within the ASL timeseries. First panel: the empirical banding correction applies equally to all PLDs/volumes within the ASL 
timeseries. Second panel: the saturation recovery correction is stronger for early PLDs than later ones (0.2 s vs. 1.2 s vs. 
2.2 s, respectively) and operates in the opposite direction to the empirical banding correction. Final panel: when the two 
corrections are combined, they almost cancel each other in early PLDs and have a stronger effect in later PLDs (due to the 
reduced magnitude of the saturation recovery correction).
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of the two separate corrections was better able to remove 
banding than in isolation.

3.2. Group average CBF and ATT maps

Figure 7 shows the group average CBF maps for the HCA 
cohort, both with and without PVEc. In these and the fol-
lowing figures, the HCP multi- modal cortical parcellation 

(version 1.0) has been overlaid in black on the surface 
( Glasser,  Coalson,  et al.,  2016). Areas of differential CBF 
(colour transitions) were observed to follow areal bound-
aries on the cortical surface. PVEc notably increased 
CBF, particularly in cortical tissue.

Figure 8 shows the group average ATT maps for the 
HCA cohort, both with and without PVEc. Along with the 
volumetric representation given in Figure 11, ATT showed 

Fig. 7. Group average CBF maps (in ml/100 g/min) for the HCA cohort in the cortex and subcortical structures. PVEc led 
to substantial increases in CBF in the cortical ribbon; the increase was less pronounced in the subcortex.

Fig. 8. Group average ATT maps (in seconds) for the HCA cohort in the cortex and subcortical structures. PVEc did not 
lead to notable changes in ATT.
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Fig. 10. Group average ATT maps for the HCD cohort in the cortex and subcortical structures. PVEc did not lead to 
notable changes in ATT.

Fig. 9. Group average CBF maps for the HCD cohort in the cortex and subcortical structures. PVEc led to substantial 
increases in CBF in the cortical ribbon; the increase was less pronounced in the subcortex.

correspondence with known vascular anatomy, namely 
that the cores of the vascular territories (middle, anterior, 
and posterior cerebral arteries; MCA, ACA, PCA) were 
perfused before watershed regions that lie along the mar-
gins of these vascular territories; and anterior circulation 
(supplied by the MCA and ACA) was perfused before 

posterior circulation (supplied by the PCA). PVEc had a 
negligible effect on ATT.

Figures 9 and 10 show group average CBF and ATT 
maps for the HCD cohort, both with and without PVEc. 
The ATT maps showed longer transit times for posterior 
and watershed regions.
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Figures 11 and 12 show group average maps for non- 
PVEc CBF and ATT in each cohort, shown in a volumetric 
representation. This is a conventional representation of 
the same data shown in the preceding figures.

3.3. Summary statistics of perfusion  
and the effect of partial volume correction

Figure 13 shows distributions of each subject’s mean GM 
CBF and ATT before and after PVEc, grouped by cohort 
(the corresponding distributions for WM are given in the 
Supplementary Material).

Numerical values for each distribution mean are given 
in Table 1. Between cohorts, statistically significant differ-
ences were observed (all comparisons with p < 0.05). On 
the non- PVEc data, the HCA cohort had lower CBF than 
HCD (45 vs. 68 ml/100 g/min) and longer ATT (1.46 vs. 
1.28 s).

Table 2 shows that PVEc significantly increased GM 
CBF in both cohorts: from 45 to 61 ml/100 g/min in HCA 
and from 68 to 85 ml/100 g/min in HCD. For both cohorts, 
PVEc led to a small but statistically significant decrease 
in GM ATT on the order of 0.01 s.

Figure 14 shows the effect of PVEc on GM CBF and 
GM ATT measurements, separated into subcortical and 
cortical greyordinates, for a single subject. For cortical 
greyordinates, the average increase in CBF following 
PVEc was around 15 ml/100 g/min, whereas for subcorti-
cal greyordinates, it was around 5 ml/100 g/min. For ATT, 
both cortical and subcortical greyordinates showed neg-
ligible average increases.

3.4. Individual subject CBF and ATT maps

Figure 15 shows CBF and ATT maps for a single partici-
pant of the HCD cohort. Although the individual subject 

Fig. 11. Group average CBF and ATT maps without PVEc for the HCA cohort in volumetric representation.

Fig. 12. Group average CBF and ATT maps without PVEc for the HCD cohort in volumetric representation.
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Fig. 14. The effect of PVEc on CBF (left) and ATT (right), shown as a histogram of differences in cortical and subcortical 
greyordinates for a single HCD subject. In the cortex, the mean increase in CBF was around 15 ml/100 g/min, whereas in 
the subcortex, the increase was around 5 ml/100 g/min. For ATT, the mean difference was close to 0 s and there was no 
substantial difference in the distribution between cortical and subcortical greyordinates.

Table 1. Mean GM parameter values within cohorts.

Parameter HCA HCD Δ (HCD -  HCA) t- statistic p- value Cohen’s d

PVEc CBF 51.93 84.35 32.42 51.17 <1e- 10 1.81
CBF 47.69 79.01 31.32 49.30 <1e- 10 1.75
PVEc ATT 1.49 1.28 − 0.21 −52.36 <1e- 10 − 1.84
ATT 1.46 1.27 − 0.19 − 51.83 <1e- 10 − 1.82

The differences between cohorts for both PVEc and non- PVEc values were statistically significant (independent t- test not assuming equal 
variance) in all cases. Cohen’s d was calculated for independent samples using pooled variance.

Table 2. Within cohorts, PVEc lead to large changes in CBF and small changes in ATT.

Cohort Parameter Non- PVEc PVEc Δ (PVEc –  non- PVEc) t- statistic p- value Cohen’s d

HCD CBF 79.01 84.35 5.34 38.61 <1e- 10 0.97
HCD ATT 1.27 1.28 0.02 29.35 <1e- 10 0.74
HCA CBF 47.69 51.93 4.24 57.12 <1e- 10 1.40
HCA ATT 1.46 1.49 0.03 46.26 <1e- 10 1.13

In all cases, the difference between PVEc and non- PVEc was statistically significant (paired t- test). Cohen’s d was calculated for paired 
samples as the mean of differences divided by the standard deviation of differences.

Fig. 13. Mean GM CBF and ATT across individuals without and with PVEc for the two cohorts.
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maps were noisier than the group average, it was possi-
ble to observe similarities with the group average maps; 
for example, elongated ATT in posterior and superior 
regions of cortex.

Figure 16 shows the same HCD individual as Figure 15, 
where CBF and ATT have been averaged within the par-
cels of the MCP multi- modal parcellation. This reduced 
the dimensionality of the data dramatically, enabling the 
data in Figure  12 to be represented in 379 parcels 
(whereas there are 91,282 greyordinates in Fig. 11).

Figure 17 shows volumetric CBF and ATT maps for a 
single subject of the HCD cohort. Though these appear 

to be noisy compared with typical ASL- derived maps, it 
should be noted they are at unusually high resolution and 
have not had any form of smoothing applied. Partial vol-
ume corrected variants of these maps are given in the 
supplementary material.

4. DISCUSSION

4.1. Haemodynamic measures: CBF and ATT

The HCP Lifespan ASL dataset and accompanying pipe-
line have yielded a dataset that is larger than existing ASL 

Fig. 15. CBF and ATT maps (with PVEc) in the cortex and subcortical structures for subject HCD0378150 of the HCD 
cohort.

Fig. 16. shows the same individual and measures as Figure 15 represented as IDPs using the HCP multi- modal 
parcellation’s cortical areas and major subcortical structures.
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studies. The use of a high spatial resolution multiple delay 
acquisition has enabled CBF and ATT maps to be pro-
duced in both volumetric and surface representations. 
The group average surface- based ASL measures, which 
were generated using areal- feature- based surface regis-
tration with minimal smoothing, represent the most high- 
resolution maps of brain perfusion currently available, 
and will enable the wider exploration of surface- based 
analysis techniques for ASL. The utility of these surface 
maps has yet to be fully explored for ASL imaging, as it 
represents a significant departure for a modality that has 
nearly always been analysed in a volumetric manner.

CBF on the cortical surface was often observed to fol-
low cortical areal boundaries (see Figs.  7 and 9), which 
suggests that cerebral perfusion may be further regulated 
within vascular territories. Given that prior results from HCP 
fMRI data have established functional and/or connective 
relationships between cortical areas, it would be interesting 
to investigate whether perfusion is a further component of 
these relationships. Furthermore, given perfusion is a 
component of the BOLD effect, greater understanding of 
this parameter in the cortex will be of utility to fMRI studies. 
Comparing between cohorts, the HCD cohort had higher 
CBF than HCA (a difference of 24.7 ml/100 g/min), though 
the difference was slightly reduced by PVEc (23.4 ml/100 g/
min), which is consistent with age- related atrophy leading 
to increased PVE presenting a confounding factor for per-
fusion measurement with ASL on elderly cohorts.

The ATT maps, both surface and volumetric, evi-
denced longer transit times in posterior portions than the 
anterior portions, which is expected because the vascu-
lar calibre of the common and internal carotid arteries 
that feed the ACA and MCA is larger than that of the ver-
tebral arteries that feed PCA through the basilar artery, 
resulting in faster flow at a given blood pressure. Further, 
the HCA cohort showed higher GM ATT than HCD by 
~0.2  s, which is consistent with previously reported 

findings that ATT increases with age (though the differ-
ence was smaller in WM, as detailed in supplementary 
material). The group mean volumetric ATT maps showed 
some small differences in GM/WM contrast between the 
two cohorts. One explanation for this could be reduced 
contrast in core/watershed ATT in the HCD cohort, mak-
ing GM/WM contrast more prominent, whereas in the 
HCA cohort, core/watershed contrast dominates, pos-
sibly due to vascular disease.

Due to the high spatial resolution of the acquisition, 
the volumetric maps produced by the pipeline appeared 
noisier than ASL acquired at typical resolution (e.g., 
3.4 x 3.4 x 5 mm). This was particularly the case in WM 
(shown, for example, in Fig. 17). Not only does WM have 
intrinsically lower perfusion (and thus SNR) than GM, 
which poses a fundamental challenge for ASL, but also 
the acquisition itself was optimised for the cortex (high 
spatial resolution was used to facilitate accurate registra-
tion to the cortical surface, and the sensitivity profile for 
the multi- channel coil used preferentially increased SNR 
in the cortex). Under the Bayesian framework used by the 
FSL BASIL toolbox for perfusion quantification, parame-
ter values will revert to their prior mean values when the 
data are uninformative. For WM ATT voxels, this is a likely 
explanation for why values tend to be near the prior mean 
of 1.6 s, although this would be expected to only have a 
small effect on the estimated perfusion value. Ultimately 
the pipeline presented here has not been optimised for 
WM voxels and more precise results might be achieved 
by averaging over regions in WM.

Nevertheless, recent work investigating high- resolution 
ASL has found it to be practical and feasible for perfusion 
measurement in the cortex and subcortex, despite the 
appearance of noise, because the reduction of inherent 
partial volume effects improves the localisation of perfu-
sion without impacting sensitivity ( Kashyap  et al.,  2024). 
A conventional mitigation for noise would be to perform 

Fig. 17. Volumetric CBF (left) and ATT (right, both non- PVEc) maps for subject HCD0378150 of the HCD cohort.
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spatial smoothing (similar to reducing spatial resolution), 
at the loss of spatial precision. The alternative strategy 
adopted here is to average perfusion measurements 
within neuroanatomically well- defined subdivisions to 
make efficient use of available SNR. This should increase 
statistical sensitivity for effects, while reducing dimen-
sionality (thereby reducing the penalty for correction of 
multiple comparisons) without the need for indiscriminate 
spatial smoothing. These imaging- derived phenotypes 
should facilitate novel statistical analyses such as relating 
CBF and ATT to behaviour, cognition, genetics, or clinical 
conditions.

In both cohorts, PVEc was observed to lead to statis-
tically significant increases in CBF estimates. This is 
despite the relatively high spatial resolution of the ASL 
data (2.5  mm isotropic), which reduces but does not 
eliminate the presence of PVE in the data. Indeed, Fig-
ure 14 shows that PVEc led to greater increases in corti-
cal than subcortical CBF, which is consistent with there 
being more PVE present in cortical voxels. Recent work 
has noted the fundamental trade- off inherent to PVEc, 
while acknowledging that both PVEc and non- PVEc data 
have value depending on the research question ( Chappell 
 et  al.,  2021). Without PVEc, differences in GM PVE 
between individuals due to differences in anatomy are 
encoded into the perfusion values, thus becoming a 
source of between- individual variability. Though PVEc 
mitigates this, it also increases the complexity of the 
model by introducing tissue- specific parameters which 
could result in over- fitting, introducing a different source 
of between- individual variability.

The brainstem was observed to have relatively high 
CBF after PVEc. This could be due to inaccuracy of PV 
estimates when segmenting this region of the brain 
(which would directly impact PVEc), the presence of a 
stronger bias field in the middle of the brain, or macro-
vascular contamination from nearby arteries. At any rate, 
it is important to note that perfusion measurement via 
ASL in WM is inherently difficult due to the low SNR asso-
ciated with this tissue.

4.2. Correction of acquisition artefacts

The novel nature of the multi- band acquisition and the 
high demands for precision in spatial localisation in the 
HCP- Style approach to data acquisition and analysis 
( Glasser,  Smith,  et  al.,  2016) necessitated careful pre- 
processing of the ASL and calibration data to bring it into 
T1w alignment space at the original voxel resolution with 
properly normalised image intensities. The pipeline that 
has been implemented represents a best attempt at pre-
processing given the unique nature of the acquisition, 
though it has not been compared against existing ASL 

pipelines. Recognising that users may wish to implement 
their own alternative kinetic modelling to the variational 
Bayesian method used in this work, the HCP- ASL pro-
cessing pipeline also provides fully corrected ASL and 
calibration volumetric data, which means that a bespoke 
perfusion estimation may be performed without needing 
to re- create the prior correction steps.

Addressing the SMS banding artefact was a particu-
lar pre- processing challenge. The banding remaining 
after correction for saturation recovery is suspected to 
be caused by magnetisation transfer effects, namely 
that the acquisition of one slice has spill- over effects on 
the adjacent slice acquired next. In the derivation of the 
empirical correction used in this work, it was found that 
the coefficients differed slightly between samples of the 
HCA and HCD cohorts (illustrated in the Supplementary 
Material). This could be due to age- related differences 
in grey matter and white matter volumes. Ultimately it was 
decided to use a single set of correction coefficients 
derived over an equal- sized sample of both cohorts for 
simplicity, but in the future, a personalised correction 
technique to remove the need for a representative pop-
ulation might be feasible and would allow the pipeline to 
translate to unseen datasets with ease. A personalised 
approach could also be beneficial for application to 
subjects where tissue T1 may be modified by pathology, 
as this mechanism at least partially explains the banding 
artefact.

Across both cohorts, lower CBF was observed in the 
most inferior cortical regions such as the inferior tempo-
ral cortex and orbito- frontal cortex. It is likely that this 
was caused by uncorrectable susceptibility- induced sig-
nal loss. Though distortion correction can relocate signal 
to the correct position within the brain, it cannot correct 
the underlying loss of signal, which could only be solved 
by the use of a spin- echo acquisition.

4.3. Further work

An important limitation of the pipeline in its current form 
is that it does not implement any form of automated QC 
(instead providing some visual outputs that can be used 
as part of manual QC). In the context of the HCP ASL 
dataset, this means researchers must make their own 
judgement on which subjects to exclude from analysis. 
As for application of the pipeline to more heterogeneous 
or possibly pathological clinical data, this cannot be 
assumed to work without modification (particularly as 
some of the corrective steps implemented are acquisition 
specific). QC of motion estimation and correction would 
be a particularly important consideration for application 
of the pipeline to very young or elderly clinical subjects 
for which substantial motion is to be expected.
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An area in which the pipeline could be improved is 
image denoising, potentially using independent  component 
analysis ( Carone  et al.,  2019). Preliminary work with this 
approach was unable to reliably identify noise compo-
nents, so it was not adopted for the final pipeline. This 
could be due to the relatively limited number of timepoints 
in ASL data relative to fMRI, which reduces the perfor-
mance of ICA (i.e., ICA’s performance is markedly improved 
in high spatial and temporal resolution fMRI relative to leg-
acy low spatial and temporal resolution fMRI).

A further area of future development would be to adopt 
a fully surface- based approach to perfusion estimation. 
Since the BASIL toolbox operates in volume space, cur-
rently the pipeline produces all perfusion estimates in 
voxel space and then projects these onto the cortical sur-
face. A more direct, and potentially more advantageous, 
approach would directly estimate perfusion on the cor-
tical surface after projecting the ASL timeseries from 
 volumetric data (Kirk, 2021). This would allow spatial reg-
ularisation (which is beneficial given the inherently low 
SNR of ASL data) to be applied in a manner that respects 
the existing HCP principle of constrained smoothing 
within neuroanatomically well- defined tissues or brain 
areas. Indeed, one could in theory directly model the ASL 
parameters within brain areas, a technique that has pre-
viously been shown to be beneficial for task- based fMRI 
GLM modelling ( Glasser,  Coalson,  et al.,  2016).

5. CONCLUSION

The HCP Lifespan ASL dataset is a large and high- quality 
resource that will enable perfusion to be studied in unprec-
edented detail during the development and ageing phases 
of life. The HCP- ASL pipeline has been developed as a best 
attempt to implement an HCP- Style data analysis while 
accounting for the specific nature of the acquisition with 
state- of- the- art correction techniques. Perfusion estimation 
has been performed on the pre- processed data using an 
established variational Bayesian method, though investiga-
tors can run their own perfusion estimation on the pre- 
processed data if they wish. Given ongoing debate on the 
utility of partial volume correction, particularly where ageing 
and pathology are concerned, both corrected and non- 
corrected perfusion estimates have been produced to pro-
vide investigators maximum flexibility. A preliminary group 
analysis revealed expected differences in haemodynamics 
between the development and ageing cohorts, specifically, 
reduced CBF and elongated ATT with increasing age.

DATA AND CODE AVAILABILITY

The pipeline code is found at https://github . com / physimals 
/ hcp - asl / releases / tag / v0 . 1 . 2 and the pre- processed data 

will be available at the NIH data archive (NDA): https://nda 
. nih . gov
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