
Computer Methods in Applied Mechanics and Engineering 435 (2025) 117628

A
0
(

Contents lists available at ScienceDirect

Comput. Methods Appl. Mech. Engrg.

journal homepage: www.elsevier.com/locate/cma

Inverse Physics-Informed Neural Networks for transport models in
porous materials
Marco Berardi a, Fabio V. Difonzo b,c, Matteo Icardi d,∗

a Consiglio Nazionale delle Ricerche, Istituto di Ricerca Sulle Acque, Bari, Italy
b Department of Engineering, LUM University Giuseppe Degennaro, S.S. 100 km 18, 70010 Casamassima (BA), Italy
c Consiglio Nazionale delle Ricerche, Istituto per le Applicazioni del Calcolo ‘‘Mauro Picone’’, Bari, Italy
d School of Mathematical Sciences, University of Nottingham, Nottingham, UK

A R T I C L E I N F O

Keywords:
Physics-informed neural networks
Porous material
Mobile–immobile model
Inverse problems
Transport in porous media

A B S T R A C T

Physics-Informed Neural Networks (PINN) are a machine learning tool that can be used to
solve direct and inverse problems related to models described by Partial Differential Equations
by including in the cost function to minimise during training the residual of the differential
operator. This paper proposes an adaptive inverse PINN applied to different transport models,
from diffusion to advection–diffusion–reaction, and mobile–immobile transport models for
porous materials. Once a suitable PINN is established to solve the forward problem, the transport
parameters are added as trainable parameters and the reference data is added to the cost
function. We find that, for the inverse problem to converge to the correct solution, the different
components of the loss function (data misfit, initial conditions, boundary conditions and residual
of the transport equation) need to be weighted adaptively as a function of the training iteration
(epoch). Similarly, gradients of trainable parameters are scaled at each epoch accordingly.
Several examples are presented for different test cases to support our PINN architecture and
its scalability and robustness.

1. Introduction

In recent years, Physics-Informed Neural Networks (PINNs) (see [1] for a recent review) have attracted significant attention in
mathematical modelling due to their ability to address direct and inverse problems governed by differential equations. This tool
elegantly integrates the principles of physics-based differential models with the adaptability of neural network architectures.

On the one hand, PINNs offer a powerful framework for solving direct problems: those concerned with computing the solution
of complex partial differential equations (PDEs) with defined initial and boundary conditions. Classical numerical techniques,
such as finite difference methods, finite elements, virtual element schemes, and spectral methods, are well established. However,
these methods may encounter difficulties when addressing problems characterised by high non-linearities, high dimensionality, or
uncertainties in parameters or boundary conditions. To overcome these limitations, data-driven approaches have been explored. For
example, Zhou et al. [2] explored using deep neural networks with specialised activation functions for solving high-dimensional
nonlinear wave equations. Sukumar and Srivastava [3] proposed a geometry-aware PINN method specifically designed to enforce
boundary conditions in complex domains. Extensions to integral equations also show promise, as demonstrated by Vitullo et al. [4],
where orthogonal decomposition is combined with neural networks.

∗ Corresponding author at: School of Mathematical Sciences, University of Nottingham, Nottingham, UK.
E-mail addresses: marco.berardi@cnr.it (M. Berardi), difonzo@lum.it, fabiovito.difonzo@cnr.it (F.V. Difonzo), matteo.icardi@nottingham.ac.uk (M. Icardi).
https://doi.org/10.1016/j.cma.2024.117628

vailable online 10 December 2024
045-7825/© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
 http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://www.elsevier.com/locate/cma
https://www.elsevier.com/locate/cma
mailto:marco.berardi@cnr.it
mailto:difonzo@lum.it
mailto:fabiovito.difonzo@cnr.it
mailto:matteo.icardi@nottingham.ac.uk
https://doi.org/10.1016/j.cma.2024.117628
https://doi.org/10.1016/j.cma.2024.117628
http://creativecommons.org/licenses/by-nc-nd/4.0/

M. Berardi et al.

e

t

s

[
o

t
m
(
p
a
p

a
b

l
p

w

o
d
t
t
g
a
a

c

Computer Methods in Applied Mechanics and Engineering 435 (2025) 117628
On the other hand, PINNs can play a crucial role in solving inverse problems as surrogate models coupled with standard parameter
stimation techniques (Bayesian or deterministic), or as stand-alone tools. In the first case, the independent variables and the physical

parameters are treated as input to the neural network, which is trained for a wide range of physical parameters. In the second
case, the physical parameters are treated as trainable neural network parameters. Although not directly appearing in the neural
network, they are present in the loss function through the equation residual. In this work we will consider only this second approach
which has been successfully applied to a wide range of problems, from groundwater flow and contaminant transport [5,6], to heat
ransfer in porous media [7], to the identification of unknown PDE structures [8]. We will refer to this approach as inverse PINN.

Inverse problems are inherently more complex than their direct counterparts due to their potential ill-posed nature, where multiple
olutions might exist or none at all. Additional challenges arise from data-scarce regimes, irregular geometries (e.g., [8]), missing

data, or uncertainties inherent to the model. Advanced PINN techniques have been developed to address these issues. Yang et al.
7] introduced a Bayesian PINN framework for both inverse and forward models. Gusmão and Medford [9] framed PINNs in terms
f maximum-likelihood estimators, enabling error propagation and removing a hyperparameter. Finally, Difonzo et al. [5] employs

a serialised PINN approach to determine kernel functions in peridynamic models, arising from non-local formulation of continuum
mechanics (e.g. [10,11]).

Data-driven and machine-learning approaches have found promising applications particularly in material modelling [12–14] and
ransport processes in porous media [15–17]. We refer to [18] and references therein for a recent review. More specifically, porous
edia are present in almost all aspects of engineering, manufacturing, and physical sciences. Porous media effective parameters

i.e. parameters controlling the emerging macroscopic dynamic of multi-scale materials) often have to be found by solving inverse
roblems. These include, for example, permeability, dispersivity and effective reactivity, which are crucial for agronomy, soil science
nd hydrological applications (e.g. [19–22]). In fact, direct measures of these parameters, such as hydraulic conductivity and
orosity, can be time-consuming, expensive and difficult to spatialise: for this reason, inferring these parameters from more easily

measurable quantities, for instance representing the state variables in a process governed by differential systems, can be helpful to
a more significant assessment (see for instance [23–25]). A proper estimation of parameters is mandatory for correctly forecasting
the dynamics of significant processes in porous media; for instance, the saturated hydraulic conductivity plays a crucial role in the
dynamics of soil moisture content, and this parameter can vary up to many orders of magnitude, as in [26]. Similar problems arise
lso in biology and medicine (tissues, bones, circulation network) and engineering (porous electrodes in batteries, concrete and
uilding materials and materials design, e.g [27,28]). Due to their multi-scale structure and heterogeneity and the availability of

sparse heterogeneous data, data-driven models like PINNs quickly gained popularity in these areas. Recent works also investigated
the use of PINNs for the identification of the effective parameters [29–32].

Different methods for handling inverse problems have been proposed and used in last decades. For instance, Kalman filters have
been widely used for parameter estimation, as in [33,34], due to their ease of implementation. Bayesian methods for estimating
parameters have also been introduced in [35], significantly reviewed in [36], and exploited in a porous media context, for instance,
in [37]. Unlike Kalman filters and Bayesian methods, which require numerous forward model evaluations and a-priori assumptions
about the distribution of the parameters (see, for a thorough review, [38]), PINNs are based on the minimisation of a deterministic
oss function, and are differentiable with respect to the parameters to be estimated. This makes them particularly suitable for inverse
roblems.

Nevertheless, comparing the efficiency of such different methods for parameters estimation is beyond the scopes of this paper,
hich aims at proposing a novel approach for inverse PINN.

This work proposes an adaptive inverse PINN architecture for solving advection–diffusion–reaction models. We consider a number
f transport models, from simple diffusion to more complex advection–diffusion–reaction equations with the key parameters being
ispersivity, effective velocity (a measure of permeability), and reaction constants. The main novelty of the proposed approach is
he adaptive scaling of the loss function components and gradients of the trainable parameters. This adaptive scaling is crucial for
he convergence of the inverse problem, as it ensures that the different components of the loss function are balanced and that the
radients of the trainable parameters are scaled appropriately. We demonstrate the effectiveness of the proposed approach through
 series of numerical experiments, showing that the adaptive inverse PINN architecture is scalable, robust, and efficient for solving
 wide range of transport models. In Section 2, we introduce the mathematical models we consider, and in Section 3, we present

the PINN architecture we use. In Section 4, we present the results of our numerical experiments, and in Section 5, we draw our
onclusions. All codes and data used in this work are published and freely available [39].

2. Mathematical models

Heat equation

The simplest model we consider is a pure diffusion (heat) equation:

𝑢𝑡 −𝐷 𝛥𝑢 = 0 , 𝑥 ∈ 𝛺 , 𝑡 ∈ [0, 𝑇] , (1)

and its non-linear extension:

𝑢𝑡 − ∇ ⋅ ((𝑢)∇𝑢) = 0 , 𝑥 ∈ 𝛺 , 𝑡 ∈ [0, 𝑇] , (2)

where 𝐷 is a constant diffusion coefficient, and (𝑢) is a non-linear diffusion coefficient.
2

M. Berardi et al. Computer Methods in Applied Mechanics and Engineering 435 (2025) 117628
Fig. 1. A graphical representation of the mobile–immobile model for the transport of solutes in porous media: as in [40], the mobile region is the primary zone
of water and solute transport; the other region is termed the immobile zone, because the soil water in this zone is stagnant relative to the water in the mobile
zone.

Advection–diffusion–reaction equation

We consider the following advection–diffusion–reaction equation with non-linear reaction term:

𝛽 𝑢𝑡 + ∇ ⋅ (𝑉 𝑢 −𝐷∇𝑢) = 𝜎(𝑢) , 𝑥 ∈ 𝛺 , 𝑡 ∈ [0, 𝑇] , (3)

with appropriate initial and boundary conditions. The spatial operator is a linear advection diffusion operator, with velocity 𝑉 and
dispersion/diffusion coefficient 𝐷. The time-derivative involves a porosity term 𝛽. The reaction term 𝜎(𝑢) is a non-linear function
of the concentration 𝑢, which can be used to model a wide range of physical and chemical processes.

Mobile-immobile model

The Mobile-Immobile model [41] describes the transport of solutes in porous media and is based on the assumption that the
solute is partitioned between a mobile and an immobile phase (see Fig. 1). The mobile phase is assumed to be in equilibrium with
the immobile phase, and the transfer of solute between the two phases is described by a first-order rate equation. Historically, this
model has been developed after observing an anomalous behaviour of solute breakthrough curves measured at field and laboratory
scale (see, for instance [42]). The model has been applied to a wide range of problems, including the transport of contaminants in
groundwater, the transport of nutrients in soil, and the transport of solutes in fractured rock. For a recent review, derivation and
extensions of the model we refer to [43,44]. The model can be written as follows:

𝛽0𝑢𝑡 + ∇ ⋅ (𝑉 𝑢 −𝐷∇𝑢) = 𝜆(𝑣 − 𝑢) , 𝑥 ∈ 𝛺 , 𝑡 ∈ [0, 𝑇] , (4)
𝛽1𝑣𝑡 = −𝜆(𝑣 − 𝑢) , 𝑥 ∈ 𝛺 , 𝑡 ∈ [0, 𝑇] ,

where 𝑢 and 𝑣 are the concentrations of the solute in the mobile and immobile water phases, respectively, 𝛽0 and 𝛽1 are the mobile
and immobile porosities (volume fractions), and 𝜆 is the transfer coefficient describing the rate of transfer of solute between the
mobile and immobile phases. The transfer coefficient is assumed to be constant in time and space.

3. Physics-Informed Neural Network

In this paper, we will consider a Feed-Forward fully connected Neural Network (FF-DNN), also called Multi-Layer Perceptron
(MLP) (see [45,46] and references therein).
3

M. Berardi et al.

o
a
f
t
h
s

p
D

Computer Methods in Applied Mechanics and Engineering 435 (2025) 117628
Fig. 2. PINN structure used in this work, with 𝐿 layers, 𝑚𝑙 neurons per layer, and hyperbolic tangent activation function in the hidden layers. The set
𝜃0 ⊆ {𝑉 , 𝐷 , 𝜆} contains the trainable parameters relative to the considered physical law.

In a PINN, the solution space is approximated through a combination of activation functions, acting on all the hidden layers,
with the independent variable used as the network input. Letting (𝑥, 𝑡) ∈ R𝑑+1 be the input of the NN, in a Feed-Forward network,
each layer feeds the next one through a nested transformation so that it can be expressed, letting 𝐿 be the number of layers, as

𝑧0 = (𝑥, 𝑡),
𝑧𝑙 = 𝜌𝑙

(

𝛬𝑙(𝑧𝑙−1)
)

, 𝑙 = 1,… , 𝐿,
𝛬𝑙(𝑧𝑙−1) ∶= 𝑊𝑙𝑧𝑙−1 + 𝑏𝑙

(5)

where, for each layer 𝑙 = 1,… , 𝐿, 𝜌𝑙 ∶ R𝑚𝑙 → R𝑚𝑙 is the activation function, which operates componentwise, 𝑊𝑙 ∈ R𝑚𝑙×𝑚𝑙−1 is the
weight matrix and 𝑏𝑙 ∈ R𝑚𝑙 is the bias vector. Thus, the output 𝑧𝐿 ∈ R𝑚 of a FF-NN can be expressed as a single function of the
input vector 𝑥, defined as the composition of all the layers above in the following way:

𝑢𝑁 𝑁 (𝑥, 𝑡; 𝜃) = 𝑧𝐿 ∶= (𝜌𝐿◦𝛬𝐿◦… ◦𝜌1◦𝛬1)(𝑥, 𝑡).
We denote the training parameters set as 𝜃 = {𝑊𝑙 , 𝑏𝑙}𝐿𝑙=1.

In Fig. 2 we show a schematic representation of the structure of a PINN, where the input layer is composed of two neurons,
ne for the spatial variable and one for the time variable, and the output layer is composed of a single neuron, resulting in the
pproximation 𝑢𝑁 𝑁 (𝑥, 𝑡). The hidden layers are composed of the same number of neurons 𝑚𝑙, 𝑙 = 1,… , 𝐿 − 1, and the activation
unction used in the hidden layers is the hyperbolic tangent function, while the output layer uses the identity function. We have,
herefore, 𝑚0 = 𝑑 + 1, 𝑚𝐿 = 1, and 𝑚𝑙 = 𝑚 for 𝑙 = 1,… , 𝐿 − 1. The activation function 𝜌𝑙 is the hyperbolic tangent function for each
idden layer 𝑙 = 1,… , 𝐿 − 1, and the identity function for 𝑙 = 𝐿. We will limit to one-dimensional spatial domain, i.e., 𝑑 = 1. The
pecific values for 𝑚 and 𝐿 will differ for each case in Section 4 and will be therefore given thereafter.

The aim of a PINN is to minimise a suitable objective function called loss function that includes not only the data but also the
hysics of the problem. The minimisation is performed with respect to all the trainable parameters 𝜃, through a Stochastic Gradient
escent method. Given a general spatio-temporal differential operator (𝑢; 𝜃0) = 0, where represents the differential operator

acting on the unknown function 𝑢 ∈ 𝑉 (R𝑑), with physical parameters 𝜃0 ∈ R𝑠, the loss function used by a PINN is given by

(𝑢; 𝜃0) ∶=
𝑀
∑

𝑖=1

(

‖𝑢(𝑥∗𝑖 , 𝑡∗𝑖) − 𝑢∗𝑖 ‖
2 + ‖(𝑢(𝑥∗𝑖 , 𝑡∗𝑖); 𝜃0)‖2

)

, (6)

where 𝑢∗ is the unknown function measured at point (𝑥∗, 𝑡∗) inside the domain or on the boundary.
𝑖 𝑖 𝑖

4

M. Berardi et al.

p
r

p

p

m

p

s

e

c

Computer Methods in Applied Mechanics and Engineering 435 (2025) 117628
The set 𝑋∗ = {(𝑥∗𝑖 , 𝑡∗𝑖)}𝑀𝑖=1 is the set of training points, and 𝑀 is the number of training points. We highlight here that, since we
are going to compare the PINN solution to synthetic data, we select collocation points coincident with training points. We recall
that training points are used to teach the network to fit the known solution in the data-driven regions of the problem space, whereas
collocation points are used to ensure that the solution, provided by the neural network, respects the physical law modelled by the
differential equation considered (for further details we refer to [47]). Therefore, in general training points and collocation points
could be different collocation points are a subset of training points but, here, they will be given by the same set of points.

The chosen norm ‖ ⋅ ‖ (it may be different for each term in the loss function) depends on the functional space and the specific
roblem. Selecting a correct norm (to avoid overfitting) for the loss function evaluation is an important problem in PINN, and
ecently, in [48], the authors have proposed spectral techniques based on Fourier residual method to overcome computational and

accuracy issues. The first term in the right-hand side of Eq. (6) is referred to as data fitting loss and could possibly handle both initial
and boundary conditions, while the second term is referred to as residual loss, which is responsible for making the NN informed
by the physics of the problem. The derivatives inside in space, time and in the parameter space are usually performed using
autodiff (Automatic Differentiation algorithm, see [49,50]). Using the NN to approximate 𝑢 in the loss function Eq. (6) allows us
to solve the PDE by minimising the loss function with respect to the parameters 𝜃 of the NN. If 𝑢 ≈ 𝑢𝑁 𝑁 (𝜃), then the minimisation
roblem can be written as

𝜃† = ar g min
𝜃

(𝑢𝑁 𝑁 (𝜃); 𝜃0). (7)

For a more detailed discussion on the PINN structure and the loss function, we refer to [51], [7] and to the review in [52].

3.1. Inverse PINN

Inverse PINNs are a type of Neural Network specifically designed to determine constitutive parameters or problem-related
functions that appear in the PDE one must solve. However, due to the limited amount of data relative to exact solutions, or of
available measurements of the physical problem described by the PDE underlying the PINN, the inverse problem (7) could likely
be ill-posed, and thus particular care has to be put into the training strategy during the optimisation process (see, e.g., [53]). In
particular, different contributions in the loss functions Eq. (6) could conflict with each other, providing an unbalanced gradient back-
ropagation during the training, which would result in a troublesome convergence process [54]. Thus, several strategies have been

recently developed to cope with these issues: among the others, one could resort to GradNorm [55] to dynamically tune gradient
agnitudes to balance learning tasks; to PCGrad [56] to project each gradient on the tangent plane to all the other conflicting

gradients to mitigate such destructive interference; to Multi-Objective Optimisation [57]; to Self-Adaptive PINNs [58], where each
training point is weighed individually, so to penalise more points in difficult regions of the domain.

Using the notation introduced in the previous section, the inverse PINN minimisation now takes into account also the physical
arameters and can be written as

(𝜃†, 𝜃†0) =
[

ar g min
𝜃 ,𝜃0 (𝑢𝑁 𝑁 (𝜃); 𝜃0) + 𝜄‖𝜃0 − 𝜃∗0‖

2
]

, (8)

where 𝜄 is a regularisation parameter. The second term in the right-hand side of the equation is the regularisation term, which is
used to prevent overfitting and to ensure that the physical parameters 𝜃0 are close to the some reference parameters 𝜃∗0 . If otherwise
tated, in the following we will consider 𝜄 = 0.

With reference to the mathematical models introduced in Section 2, we will consider the following physical parameters to be
stimated: the diffusion coefficient 𝐷 in the heat equation (1), the velocity 𝑉 and the dispersion coefficient 𝐷 in the advection–

diffusion–reaction equation (3), and the transfer coefficient 𝜆 in the mobile–immobile model (4). The physical parameters will be
onsidered as trainable parameters in the NN, and the reference data will be added to the loss function Eq. (6).

3.2. Adaptive inverse PINN

To ensure the convergence of the inverse PINN, we redefine a weighted loss function as

(𝑢𝑁 𝑁 (𝜃); 𝜃0) =
𝑀
∑

𝑖=1

(

𝜔𝑘
𝑖 ‖𝑢(𝑥

∗
𝑖 , 𝑡∗𝑖) − 𝑢∗𝑖 ‖

2 + 𝜔𝑘
‖(𝑢(𝑥∗𝑖 , 𝑡∗𝑖); 𝜃0)‖2

)

, (9)

where 𝜔𝑘
𝑖 are weight factors that depends on the training iteration 𝑖. The weights are updated at each iteration to ensure that the

different components of the loss function are balanced. The weights are updated using the following formula:

𝜔𝑘
𝑖 =

�̂�𝑘
𝑖

∑𝑀
𝑗=1 �̂�

𝑘
𝑗 + �̂�𝑘

, 𝑖 = 1,… , 𝑀 , (10)

𝜔𝑘
 =

�̂�𝑘

∑𝑀
𝑗=1 �̂�

𝑘
𝑗 + �̂�𝑘

, (11)

�̂�𝑘
𝑖 =

⎧

⎪

⎪

⎨

⎪

⎪

𝜂𝐵 𝐶 if 𝑥∗𝑖 ∈ 𝜕 𝛺
𝜂𝐼 𝐶 if 𝑡∗𝑖 = 0
𝜈(𝑘)𝜂𝑢 if (𝑥∗𝑖 , 𝑡∗𝑖) is a collocation point

, 𝑖 = 1,… , 𝑀 , (12)
⎩

0 otherwise

5

M. Berardi et al.

A

o

Computer Methods in Applied Mechanics and Engineering 435 (2025) 117628
Fig. 3. Qualitative behaviour of 𝜈𝑘 in (14) for 𝐾 = 5000 and 𝐾0 = 1000.

�̂�𝑘
 = 1, (13)

where 𝜂𝐵 𝐶 , 𝜂𝐼 𝐶 , and 𝜂𝑢 are the weights for the boundary conditions, initial conditions, and collocation points, respectively. The
function 𝜈𝑘 is an increasing function of the epoch 𝑘, such that 𝜈𝑘 = 0 and 𝜈𝑘 → 1 as 𝑘 → ∞. This allows the PINN to be trained
initially solely by the PDE residual. In the following, we will consider

𝜈(𝑘) =
t anh

(

10
(

𝑘−𝐾∕2−𝐾0
𝐾

))

+ 1
2

, 𝑘 = 1,… , 𝐾 , (14)

where 𝐾 is the total number of epochs, and 𝐾0 is a threshold epoch before the weights are updated more significantly; see Fig. 3
for a typical graph of a function of this kind.

The gradients ∇𝜃 and ∇𝜃0 are computed with the autodiff algorithm, and the latter (the gradients with respect to the
physical parameters) are scaled by 𝛾 𝜈(𝑘) at each iteration. The scaling of the gradients is crucial for the convergence of the inverse
PINN, as it ensures that the physical parameters are updated only when data is included in the loss function. The parameters are
then updated with the Adam optimiser, with a sequence of learning rates that decrease at each iteration according to the epoch 𝑘.
Namely starting from a learning rate 𝛼0 at the first epoch, the learning rate is updated as:

𝛼𝑘 = 𝛼0𝛽
⌊

𝑘
100

⌋

, (15)

where 0.9 < 𝛽 < 0.99 is a constant factor. An algorithmic description of the above process is given in Algorithm 1.

Algorithm 1 Training Algorithm with Adaptive Weights and Gradient Updates.
1: epoch = 0
2: repeat
3: epoch = epoch + 1
4: if do_par amet er_t r ain and epoch > 𝐾0 then
5: compute 𝜈(epoch) as in Eq. (14)
6: end if
7: update data weights as in Eq. (10)
8: compute gradients of loss function
9: rescale gradients relative to 𝜃0 by 𝜈(epoch)

10: apply gradients to all trainable parameters
11: until convergence or epoch > epochs

4. Numerical results

In this section, we apply our PINN to different models arising from Eq. (3) and Eq. (4), under several assumptions and conditions.
ll codes and data used in this work are published and freely available [39]. We report here a series of numerical experiments starting

from a random initial guess for the parameters, and we show the convergence of the PINN to the correct values. The robustness
f the approach with respect to the initial value of the parameters is shown in Appendix through two additional random initial
6

M. Berardi et al. Computer Methods in Applied Mechanics and Engineering 435 (2025) 117628
Fig. 4. Solution of the pure diffusion problem for the final parameter values. PINN approximation (continuous line) and reference data (dashed line). Concentration
as a function of space for different times (left) and concentration as a function of time for different space locations (right).

values. Although it is outside the scope of this work to provide a quantitative sensitivity analysis, we show that the PINN is able to
converge to the correct values for different initial guesses.

4.1. Reference data

We use the chebfun package to generate reference data for the PINN training. The package is based on the Chebyshev
polynomial approximation, and it is particularly suited for the solution of differential equations. We use the package to generate
reference data for the PINN training, and we compare the results obtained with the PINN with the reference data generated by
chebfun.

The numerical solution are computed at 𝑁 = 100 points in the spatial domain and 𝑀 = 100 points in the time domain, both
uniformly sampled. These are used both as training and collocation points. Before performing the inverse PINN training, we have
tested the PINN architecture for the direct problems, and we have verified that the PINN is able to accurately solve the direct
problems for given parameter values. These have not been reported here for brevity.

4.2. Pure diffusion

The first testcase we consider is the pure diffusion problem, described by Eq. (1). We consider a one-dimensional spatial domain
𝛺 = [0, 1] and a time domain [0, 1]. The initial condition is 𝑢(𝑥, 0) = 0, and the boundary conditions are 𝑢(0, 𝑡) = 1 and 𝜕 𝑢

𝜕 𝑥 (1, 𝑡) = 0.
This corresponds to a continuous source at the left boundary and a no-flux boundary condition at the right boundary. The diffusion
coefficient and its initial estimate are chosen randomly between 0.1 and 10. We use the PINN to solve the direct problem, and we
consider the diffusion coefficient 𝐷 as a trainable parameter. We use the reference data generated by chebfun to train the PINN.

We choose the following weights for the loss function: 𝜂𝐵 𝐶 = 10, 𝜂𝐼 𝐶 = 10, 𝜂𝑢 = 1. We use a total number of 𝐿 = 9 layers, i.e. eight
hidden layers, and 𝑚 = 20 neurons for each hidden layer; moreover, we fix a total of 𝐾 = 5000 epochs, and we start updating the
parameters and threshold epoch 𝐾0 = 1000. The initial learning rate is set to 𝛼0 = 0.01, the gradient scaling factor is set to 𝛾 = 0.2
and learning rate reduction factor is set to 𝛽 = 0.95.

The computational time for the training of the PINN is approximately 800 s on an Apple Silicon M1 Pro processor with 10 cores
and 16 GB of RAM.

In Fig. 4, we show the solution of the pure diffusion problem obtained with the PINN. The solution is compared with the reference
data generated by chebfun. The solution is shown as a function of space for different times (left) and as a function of time for
different space locations (right). The solution obtained with the PINN is in good agreement with the reference data, showing that
the PINN is able to accurately solve the direct problem.

In Fig. 5, we show the evolution of the diffusion coefficient during the training of the PINN. The diffusion coefficient is shown
as a function of the training iteration (epoch). The diffusion coefficient is updated during the training of the PINN, and it converges
to the correct value. The gradients of the diffusion coefficient are also shown as a function of the training iteration (epoch).

In Fig. 6, we show the evolution of the weighted and unweighted loss functions during the training of the PINN. The weighted
loss function is shown as a function of the training iteration (epoch), and it is updated at each epoch to ensure that the different
components of the loss function are balanced. The unweighted loss function is also shown as a function of the training iteration
(epoch), to better highlight the effect of the weighting factors.
7

M. Berardi et al. Computer Methods in Applied Mechanics and Engineering 435 (2025) 117628
Fig. 5. Relative error for the diffusion coefficient and the solution 𝑢 during the training (left) and gradients of the diffusion coefficient (right).

Fig. 6. Evolution of the weighted (left) and unweighted (right) loss functions during training of PINN.

4.3. Advection diffusion

This testcase considers the advection–diffusion problem described by Eq. (3). We consider a one-dimensional spatial domain
𝛺 = [0, 1] and a time domain [0, 1]. The initial condition is 𝑢(𝑥, 0) = 0, and the boundary conditions are 𝑢(0, 𝑡) = 𝐻(0.01 − 𝑡) and
𝜕 𝑢
𝜕 𝑥 (1, 𝑡) = 0. This corresponds to a finite impulse at the left boundary and a no-flux boundary condition at the right boundary. The
advection velocity and the dispersion coefficient are chosen randomly between 0.1 and 10, and the reaction term is here set to 0.
We use the PINN to solve the direct problem, and we consider the advection velocity 𝑉 and the dispersion coefficient 𝐷 as trainable
parameters. We use the reference data generated by chebfun to train the PINN.

We choose the following weights for the loss function: 𝜂𝐵 𝐶 = 10, 𝜂𝐼 𝐶 = 10, 𝜂𝑢 = 2. We use a total number of 𝐿 = 9 layers,
i.e. eight hidden layers, and 𝑚 = 20 neurons for each hidden layer; moreover, we fix a total of 𝐾 = 10000 epochs, and we start
updating the parameters and threshold epoch 𝐾0 = 1000. The initial learning rate is set to 𝛼0 = 0.01, the gradient scaling factor is
set to 𝛾 = 0.2 and learning rate reduction factor is set to 𝛽 = 0.95.

The computational time for the training of the PINN is approximately 1000 s on an Apple Silicon M1 Pro processor with 10
cores and 16 GB of RAM.

In Fig. 7, we show the solution of the advection–diffusion problem obtained with the PINN. The solution is compared with the
reference data generated by chebfun. The solution is shown as a function of space for different times (left) and as a function of
time for different space locations (right). The solution obtained with the PINN is in good agreement with the reference data, showing
that the PINN is able to accurately solve the direct problem.

In Fig. 8, we show the evolution of the advection velocity and dispersion coefficient during the training of the PINN. The
advection velocity and dispersion coefficient are shown as a function of the training iteration (epoch). The advection velocity and
dispersion coefficient are updated during the training of the PINN, and they converge to the correct values. The gradients of the
advection velocity and dispersion coefficient are also shown as a function of the training iteration (epoch).

In Fig. 9, we show the evolution of the weighted and unweighted loss functions during the training of the PINN. The weighted
loss function is shown as a function of the training iteration (epoch), and it is updated at each epoch to ensure that the different
8

M. Berardi et al. Computer Methods in Applied Mechanics and Engineering 435 (2025) 117628
Fig. 7. Solution of the advection–diffusion problem for the final parameter values. PINN approximation (continuous line) and reference data (dashed line).
Concentration as a function of space for different times (left) and concentration as a function of time for different space locations (right).

Fig. 8. Relative error for the advection velocity 𝜃00, dispersion coefficient 𝜃01 and the solution 𝑢 during the training (left) and gradients of the advection velocity
and dispersion coefficient (right).

Fig. 9. Evolution of the weighted (left) and unweighted (right) loss functions during training of PINN.

components of the loss function are balanced. The unweighted loss function is also shown as a function of the training iteration
(epoch), to better highlight the effect of the weighting factors.
9

M. Berardi et al. Computer Methods in Applied Mechanics and Engineering 435 (2025) 117628
Fig. 10. Solution of the advection–diffusion with mobile–immobile model for the final parameter values. Mobile concentration. PINN approximation (continuous
line) and reference data (dashed line). Concentration as a function of space for different times (left) and concentration as a function of time for different space
locations (right).

Fig. 11. Solution of the advection–diffusion with mobile–immobile model for the final parameter values. Immobile concentration. PINN approximation (continuous
line) and reference data (dashed line). Concentration as a function of space for different times (left) and concentration as a function of time for different space
locations (right).

4.4. Advection–diffusion with mobile–immobile

This testcase considers the advection–diffusion problem with mobile–immobile model described by Eq. (4). We consider a
one-dimensional spatial domain 𝛺 = [0, 1] and a time domain [0, 1]. The initial condition is 𝑢(𝑥, 0) = 𝑣(𝑥, 0) = 0, and the
boundary conditions are 𝑢(0, 𝑡) = 1 and 𝜕 𝑢

𝜕 𝑥 (1, 𝑡) = 0. This corresponds to a continuous injection at the left boundary and a no-flux
boundary condition at the right boundary. The effect of the immobile phase is to delay the transport of the solute, and the transfer
coefficient 𝜆 controls the transfer of solute between the mobile and immobile phases, resulting in long tails and non-Fickian transport
behaviour [59]. The mobile and immobile porosities are fixed to 𝛽0 = 0.3 and 𝛽1 = 0.1, respectively, while dispersivity, effective
velocity and transfer coefficient are the parameters to be estimated. The true values used for the training set are 𝐷 = 0.1, 𝑉 = 1,
and 𝜆 = 10. We use the PINN to solve the direct and inverse problem, and we consider the dispersion coefficient 𝐷, the effective
velocity 𝑉 , and the transfer coefficient 𝜆 as trainable parameters. We use the reference data generated by chebfun to train the
PINN. The initial values for the parameters are chosen randomly between 0.1 and 10.

We choose the following weights for the loss function: 𝜂𝐵 𝐶 = 10, 𝜂𝐼 𝐶 = 10, 𝜂𝑢 = 1. We use a total number of 𝐿 = 11 layers, i.e. ten
hidden layers, and 𝑚 = 25 neurons for each hidden layer; moreover, we fix a total of 𝐾 = 10000 epochs, and we start updating the
parameters and threshold epoch 𝐾0 = 2000. The initial learning rate is set to 𝛼0 = 0.01, the gradient scaling factor is set to 𝛾 = 0.1
and learning rate reduction factor is set to 𝛽 = 0.98.

The computational time for the training of the PINN is approximately 2000 s on an Apple Silicon M1 Pro processor with 10
cores and 16 GB of RAM.

In Figs. 10 and 11 we show the solution of the advection–diffusion with mobile–immobile model obtained with the PINN, for the
mobile and immobile phase, respectively. The solution is compared with the reference data generated by chebfun. The solution
10

M. Berardi et al. Computer Methods in Applied Mechanics and Engineering 435 (2025) 117628
Fig. 12. Relative error for the dispersion coefficient 𝜃00, advection velocity 𝜃01, and transfer coefficient 𝜃02 and the solution 𝑢 during the training (left) and
gradients of the dispersion coefficient, effective velocity, and transfer coefficient (right).

Fig. 13. Evolution of the weighted (left) and unweighted (right) loss functions during training of PINN.

is shown as a function of space for different times (left) and as a function of time for different space locations (right). The solution
obtained with the PINN is in good agreement with the reference data, showing that the PINN is able to accurately solve the direct
problem.

In Fig. 12, we show the evolution of the dispersion coefficient, effective velocity, and transfer coefficient during the training of
the PINN. The relative error in the dispersion coefficient, effective velocity, and transfer coefficient is shown as a function of the
training iteration (epoch). The parameters are updated during the training of the PINN, and they converge to the correct values.
The gradients of the dispersion coefficient, effective velocity, and transfer coefficient are also shown as a function of the training
iteration (epoch).

In Fig. 13, we show the evolution of the weighted and unweighted loss functions during the training of the PINN. The weighted
loss function is shown as a function of the training iteration (epoch), and it is updated at each epoch to ensure that the different
components of the loss function are balanced. The unweighted loss function is also shown as a function of the training iteration
(epoch), to better highlight the effect of the weighting factors.

5. Conclusions

In this paper, we have proposed an adaptive inverse PINN architecture for solving transport problems in porous materials. These
include a diffusion, advection–diffusion and mobile–immobile formulations. We propose a robust PINN architecture and training
algorithm that can reproduce well the forward problem and the inverse problem for up to three parameters. Ongoing work include
the extension to two-dimensional problems, larger number of parameters and non-parametric functional form of the parameters
to include heterogeneities and non-linear dependencies: moreover, a comparison with other methods – data assimilation, Bayesian
techniques – for handling inverse models will be carried out in future works; in a real world application framework, it could be of
interest estimating some hydraulic parameters from real data, for instance in a highly nonlinear model such as Richards’ equation,
starting from soil water content measures over time (e.g., [60]). The main novelty of the proposed approach is the adaptive scaling
11

M. Berardi et al. Computer Methods in Applied Mechanics and Engineering 435 (2025) 117628
Fig. 14. Pure diffusion testcase. Relative error for the diffusion coefficient and the solution 𝑢 during the training for two additional random initial value of the
parameters.

of the loss function components and gradients of the trainable parameters. This adaptive scaling is crucial for the convergence of
the inverse problem, as it ensures that the different components of the loss function are balanced and that the gradients of the
trainable parameters are scaled appropriately. We have demonstrated the effectiveness of the proposed approach through a series
of numerical experiments, showing that the adaptive inverse PINN architecture is scalable, robust, and efficient for solving a wide
range of transport models.

CRediT authorship contribution statement

Marco Berardi: Writing – review & editing, Writing – original draft, Funding acquisition, Conceptualization. Fabio V. Difonzo:
Writing – review & editing, Writing – original draft, Software, Methodology, Formal analysis, Conceptualization. Matteo Icardi:
Writing – review & editing, Writing – original draft, Visualization, Software, Methodology, Investigation, Funding acquisition, Formal
analysis, Data curation, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgements

MB and FVD are part of INdAM research group GNCS.
MI gratefully acknowledges the support of Short Term Mobility program at CNR funded by the Italian Ministry of Universities

and Research (MIUR) and of the Universitá degli Studi di Bari Aldo Moro, Dipartimento di Matematica through the 2022 Visting
Researcher program.

MB and FVD acknowledge the support of PRIN2022PNRR n. P2022M7JZW SAFER MESH — Sustainable mAnagement oF watEr
Resources ModEls and numerical MetHods research grant, funded by the Italian Ministry of Universities and Research (MUR) and by
the European Union through Next Generation EU, M4C2, CUP H53D23008930001.

MB thanks Mrs Domenica Livorti from CNR-IRSA for supporting the project activities.

Appendix. Sensitivity with respect to the initial parameters

Here we present two more random initial conditions for the parameters, for each testcase presented in Section 4. The results are
shown in Figs. 14, 15, 16. Different random seeds are used to initialise the random number generator and parameters are initialised
between 0.1 and 10 times the exact values. The PINN is trained with the same hyperparameters as in the main text. The results
show that the PINN is able to converge to the correct values of the parameters for different initial conditions, demonstrating the
robustness of the proposed architecture.

As it can be seen in Figs. 14, 15, 16, the PINN is able to converge to the correct values of the parameters for different initial
conditions demonstrating the robustness of the proposed architecture. The interested reader is referred to the code repository for
further details on the implementation of the PINN and the training algorithm, and for a more extensive sensitivity analysis with
respect to the initial parameters.
12

M. Berardi et al. Computer Methods in Applied Mechanics and Engineering 435 (2025) 117628
Fig. 15. Advection-diffusion testcase. Relative error for the advection velocity 𝜃00, dispersion coefficient 𝜃01 and the solution 𝑢 during the training for two
additional random initial value of the parameters.

Fig. 16. Mobile–immobile testcase. Relative error for the dispersion coefficient 𝜃00, advection velocity 𝜃01, and transfer coefficient 𝜃02 and the solution 𝑢 during
the training for two additional random initial value of the parameters.

Data availability

All data is available on GitHub.

References

[1] George Em Karniadakis, Ioannis G. Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, Liu Yang, Physics-informed machine learning, Nat. Rev. Phys. 3 (6)
(2021) 422–440.

[2] Z. Zhou, L. Wang, Z. Yan, Deep neural networks learning forward and inverse problems of two-dimensional nonlinear wave equations with rational solitons,
Comput. Math. Appl. 151 (2023) 164–171.

[3] N. Sukumar, Ankit Srivastava, Exact imposition of boundary conditions with distance functions in physics-informed deep neural networks, Comput. Methods
Appl. Mech. Engrg. 389 (2022) 114333.

[4] P. Vitullo, A. Colombo, N.R. Franco, A. Manzoni, P. Zunino, Nonlinear model order reduction for problems with microstructure using mesh informed
neural networks, Finite Elem. Anal. Des. 229 (2024) 104068.

[5] Fabio V. Difonzo, Luciano Lopez, Sabrina F. Pellegrino, Physics informed neural networks for an inverse problem in peridynamic models, Eng. Comput.
(2024).

[6] Salvatore Cuomo, Mariapia De Rosa, Fabio Giampaolo, Stefano Izzo, Vincenzo Schiano Di Cola, Solving groundwater flow equation using physics-informed
neural networks, Comput. Math. Appl. 145 (2023) 106–123.

[7] Liu Yang, Xuhui Meng, George Em Karniadakis, B-PINNs: Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy
data, J. Comput. Phys. 425 (2021) 109913.

[8] Han Gao, Matthew J. Zahr, Jian-Xun Wang, Physics-informed graph neural Galerkin networks: A unified framework for solving PDE-governed forward and
inverse problems, Comput. Methods Appl. Mech. Engrg. 390 (2022) 114502.
13

http://refhub.elsevier.com/S0045-7825(24)00882-X/sb1
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb1
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb1
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb2
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb2
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb2
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb3
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb3
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb3
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb4
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb4
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb4
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb5
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb5
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb5
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb6
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb6
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb6
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb7
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb7
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb7
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb8
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb8
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb8

M. Berardi et al. Computer Methods in Applied Mechanics and Engineering 435 (2025) 117628
[9] G.S. Gusmão, A.J. Medford, Maximum-likelihood estimators in physics-informed neural networks for high-dimensional inverse problems, Comput. Chem.
Eng. 181 (2024) 108547.

[10] L. Lopez, S.F. Pellegrino, A non-periodic Chebyshev spectral method avoiding penalization techniques for a class of nonlinear peridynamic models, Internat.
J. Numer. Methods Engrg. 123 (20) (2022) 4859–4876.

[11] M. Berardi, F.V. Difonzo, S.F. Pellegrino, A numerical method for a nonlocal form of Richards’ equation based on peridynamic theory, Comput. Math.
Appl. 143 (2023) 23–32.

[12] Iksu Jeong, Maenghyo Cho, Hayoung Chung, Do-Nyun Kim, Data-driven nonparametric identification of material behavior based on physics-informed
neural network with full-field data, Comput. Methods Appl. Mech. Engrg. 418 (2024) 116569.

[13] Shenghan Guo, Mohit Agarwal, Clayton Cooper, Qi Tian, Robert X. Gao, Weihong Guo Grace, Y.B. Guo, Machine learning for metal additive manufacturing:
Towards a physics-informed data-driven paradigm, J. Manuf. Syst. 62 (2022) 145–163.

[14] Kshitiz Upadhyay, Jan N. Fuhg, Nikolaos Bouklas, K.T. Ramesh, Physics-informed data-driven discovery of constitutive models with application to
strain-rate-sensitive soft materials, Comput. Mech. (2024) 1–30.

[15] Danial Amini, Ehsan Haghighat, Ruben Juanes, Physics-informed neural network solution of thermo–hydro–mechanical processes in porous media, J. Eng.
Mech. 148 (11) (2022) 04022070.

[16] Agnese Marcato, Daniele Marchisio, Gianluca Boccardo, Reconciling deep learning and first-principle modelling for the investigation of transport phenomena
in chemical engineering, Can. J. Chem. Eng. 101 (6) (2023) 3013–3018.

[17] Javier E. Santos, Duo Xu, Honggeun Jo, Christopher J. Landry, Maša Prodanović, Michael J. Pyrcz, PoreFlow-net: A 3D convolutional neural network to
predict fluid flow through porous media, Adv. Water Resour. 138 (2020) 103539.

[18] Marta D’Elia, Hang Deng, Cedric Fraces, Krishna Garikipati, Lori Graham-Brady, Amanda Howard, George Karniadakis, Vahid Keshavarzzadeh, Robert M.
Kirby, Nathan Kutz, et al., Machine learning in heterogeneous porous materials, 2022, arXiv preprint arXiv:2202.04137.

[19] Marco Berardi, Fabio V. Difonzo, Roberto Guglielmi, A preliminary model for optimal control of moisture content in unsaturated soils, Comput. Geosci.
27 (6) (2023) 1133–1144.

[20] Michael A. Celia, Efthimios T. Bouloutas, Rebecca L. Zarba, A general mass-conservative numerical solution for the unsaturated flow equation, Water
Resour. Res. 26 (7) (1990) 1483–1496.

[21] K. Kumar, I.S. Pop, F.A. Radu, Convergence analysis for a conformal discretization of a model for precipitation and dissolution in porous media, Numer.
Math. 127 (4) (2014) http://dx.doi.org/10.1007/s00211-013-0601-1.

[22] Gabriela Marinoschi, Functional Approach to Nonlinear Models of Water Flow in Soils, Springer, Dordrecht, The Netherlands, ISBN: 1-4020-4879-3, 2006.
[23] F. Di Lena, M. Berardi, R. Masciale, I. Portoghese, Network dynamics for modelling artificial groundwaterrecharge by a cluster of infiltration basins,

Hydrol. Process. 37 (5) (2023) e14876.
[24] Paul DuChateau, An inverse problem for the hydraulic properties of porous media, SIAM J. Math. Anal. 28 (3) (1997) 611–632.
[25] Matteo Rossi, Gabriele Manoli, Damiano Pasetto, Rita Deiana, Stefano Ferraris, Claudio Strobbia, Mario Putti, Giorgio Cassiani, Coupled inverse modeling

of a controlled irrigation experiment using multiple hydro-geophysical data, Adv. Water Resour. 82 (2015) 150–165.
[26] M. Berardi, F. Difonzo, M. Vurro, L. Lopez, The 1D Richards’ equation in two layered soils: a Filippov approach to treat discontinuities, Adv. Water Resour.

115 (2018) 264–272, http://dx.doi.org/10.1016/j.advwatres.2017.09.027.
[27] Fabian Wein, Nan Chen, Naveed Iqbal, Michael Stingl, Marc Avila, Topology optimization of unsaturated flows in multi-material porous media: Application

to a simple diaper model, Commun. Nonlinear Sci. Numer. Simul. 78 (2019) 104871.
[28] Massimo Frittelli, Anotida Madzvamuse, Ivonne Sgura, Virtual element method for elliptic bulk-surface PDEs in three space dimensions, Numer. Methods

Partial Differential Equations 39 (6) (2023) 4221–4247.
[29] QiZhi He, David Barajas-Solano, Guzel Tartakovsky, Alexandre M. Tartakovsky, Physics-informed neural networks for multiphysics data assimilation with

application to subsurface transport, Adv. Water Resour. 141 (2020) 103610.
[30] Shupeng Wang, Hui Zhang, Xiaoyun Jiang, Physics-informed neural network algorithm for solving forward and inverse problems of variable-order

space-fractional advection–diffusion equations, Neurocomputing 535 (2023) 64–82.
[31] QiZhi He, Alexandre M. Tartakovsky, Physics-informed neural network method for forward and backward advection-dispersion equations, Water Resour.

Res. 57 (7) (2021) e2020WR029479.
[32] T. Bandai, T.A. Ghezzehei, Forward and inverse modeling of water flow in unsaturated soils with discontinuous hydraulic conductivities using

physics-informed neural networks with domain decomposition, Hydrol. Earth Syst. Sci. 26 (16) (2022) 4469–4495.
[33] E. Crestani, M. Camporese, D. Baú, P. Salandin, Ensemble Kalman filter versus ensemble smoother for assessing hydraulic conductivity via tracer test data

assimilation, Hydrol. Earth Syst. Sci. 17 (4) (2013) 1517–1531, http://dx.doi.org/10.5194/hess-17-1517-2013.
[34] H. Medina, N. Romano, G.B. Chirico, Kalman filters for assimilating near-surface observations into the richards equation - Part 2: A dual filter approach

for simultaneous retrieval of states and parameters, Hydrol. Earth Syst. Sci. 18 (7) (2014) 2521–2541, http://dx.doi.org/10.5194/hess-18-2521-2014.
[35] Marc C. Kennedy, Anthony O’Hagan, Bayesian Calibration of Computer Models, J. R. Stat. Soc. Ser. B Stat. Methodol. 63 (3) (2002) 425–464,

http://dx.doi.org/10.1111/1467-9868.00294.
[36] F.A.C. Viana, A.K. Subramaniyan, A survey of Bayesian calibration and physics-informed neural networks in scientific modeling, Arch. Comput. Methods

Eng. 28 (2021) 3801–3830, http://dx.doi.org/10.1007/s11831-021-09539-0.
[37] Tianfang Xu, Albert J. Valocchi, Ming Ye, Feng Liang, Yu-Feng Lin, Bayesian calibration of groundwater models with input data uncertainty, Water Resour.

Res. 53 (4) (2017) 3224–3245, http://dx.doi.org/10.1002/2016WR019512.
[38] Jeffrey Humpherys, Preston Redd, Jeremy West, A fresh look at the Kalman filter, SIAM Rev. 54 (4) (2012) 801–823, http://dx.doi.org/10.1137/100799666.
[39] Matteo Icardi, Fabio Difonzo, Marco Berardi, NonFickianPINN, Zenodo, 2024.
[40] F. De Smedt, P.J. Wierenga, Mass transfer in porous media with immobile water, J. Hydrol. 41 (1) (1979) 59–67.
[41] Leon Lapidus, Neal R. Amundson, Mathematics of adsorption in beds. VI. The effect of longitudinal diffusion in ion exchange and chromatographic columns,

J. Phys. Chem. 56 (8) (1952) 984–988.
[42] Costantino Masciopinto, Giuseppe Passarella, Mass-transfer impact on solute mobility in porous media: A new mobile-immobile model, J. Contam. Hydrol.

215 (2018) 21–28.
[43] Federico Municchi, Matteo Icardi, Generalized multirate models for conjugate transfer in heterogeneous materials, Phys. Rev. Res. 2 (1) (2020) 013041.
[44] Marco Dentz, Matteo Icardi, Juan J. Hidalgo, Mechanisms of dispersion in a porous medium, J. Fluid Mech. 841 (2018) 851–882.
[45] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, Christian Janvin, A neural probabilistic language model, J. Mach. Learn. Res. 3 (2003) 1137–1155.
[46] G. Cybenko, Approximation by superpositions of a sigmoidal function, Math. Control Signals Systems 2 (4) (1989) 303–314.
[47] Gregory Kang Ruey Lau, Apivich Hemachandra, See-Kiong Ng, Bryan Kian Hsiang Low, PINNACLE: PINN Adaptive ColLocation and Experimental points

selection, in: The Twelfth International Conference on Learning Representations, 2024, URL https://openreview.net/forum?id=GzNaCp6Vcg.
[48] Jamie M. Taylor, David Pardo, Ignacio Muga, A Deep Fourier Residual method for solving PDEs using Neural Networks, Comput. Methods Appl. Mech.

Engrg. 405 (2023) 115850.
[49] Atılım Günes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, Jeffrey Mark Siskind, Automatic Differentiation in Machine Learning: A Survey, J.

Mach. Learn. Res. 18 (1) (2017) 5595–5637.
14

http://refhub.elsevier.com/S0045-7825(24)00882-X/sb9
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb9
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb9
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb10
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb10
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb10
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb11
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb11
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb11
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb12
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb12
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb12
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb13
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb13
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb13
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb14
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb14
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb14
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb15
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb15
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb15
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb16
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb16
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb16
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb17
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb17
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb17
http://arxiv.org/abs/2202.04137
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb19
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb19
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb19
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb20
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb20
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb20
http://dx.doi.org/10.1007/s00211-013-0601-1
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb22
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb23
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb23
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb23
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb24
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb25
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb25
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb25
http://dx.doi.org/10.1016/j.advwatres.2017.09.027
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb27
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb27
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb27
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb28
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb28
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb28
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb29
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb29
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb29
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb30
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb30
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb30
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb31
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb31
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb31
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb32
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb32
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb32
http://dx.doi.org/10.5194/hess-17-1517-2013
http://dx.doi.org/10.5194/hess-18-2521-2014
http://dx.doi.org/10.1111/1467-9868.00294
http://dx.doi.org/10.1007/s11831-021-09539-0
http://dx.doi.org/10.1002/2016WR019512
http://dx.doi.org/10.1137/100799666
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb39
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb40
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb41
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb41
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb41
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb42
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb42
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb42
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb43
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb44
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb45
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb46
https://openreview.net/forum?id=GzNaCp6Vcg
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb48
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb48
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb48
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb49
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb49
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb49

M. Berardi et al. Computer Methods in Applied Mechanics and Engineering 435 (2025) 117628
[50] Jérôme Bolte, Edouard Pauwels, A mathematical model for automatic differentiation in machine learning, in: H. Larochelle, M. Ranzato, R. Hadsell, M.F.
Balcan, H. Lin (Eds.), in: Advances in Neural Information Processing Systems, vol. 33, Curran Associates, Inc., 2020, pp. 10809–10819.

[51] M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving
nonlinear partial differential equations, J. Comput. Phys. 378 (2019) 686–707.

[52] Salvatore Cuomo, Vincenzo Schiano Di Cola, Fabio Giampaolo, Gianluigi Rozza, Maziar Raissi, Francesco Piccialli, Scientific machine learning through
physics–Informed neural networks: Where we are and what’s next, J. Sci. Comput. 92 (3) (2022) 88.

[53] Simon Arridge, Peter Maass, Ozan Öktem, Carola-Bibiane Schönlieb, Solving inverse problems using data-driven models, Acta Numer. 28 (2019) 1–174,
http://dx.doi.org/10.1017/S0962492919000059.

[54] Chen Xu, Ba Trung Cao, Yong Yuan, Günther Meschke, Transfer learning based physics-informed neural networks for solving inverse problems in engineering
structures under different loading scenarios, Comput. Methods Appl. Mech. Engrg. 405 (2023) 115852.

[55] Ehsan Haghighat, Ali Can Bekar, Erdogan Madenci, Ruben Juanes, A nonlocal physics-informed deep learning framework using the peridynamic differential
operator, Comput. Methods Appl. Mech. Engrg. 385 (2021) 114012.

[56] Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, Chelsea Finn, Gradient surgery for multi-task learning, 2020, arXiv:2001.06782.
[57] Ozan Sener, Vladlen Koltun, Multi-task learning as multi-objective optimization, Adv. Neural Inf. Process. Syst. 31 (2018).
[58] Levi McClenny, Ulisses Braga-Neto, Self-adaptive physics-informed neural networks using a soft attention mechanism, 2022, arXiv:2009.04544.
[59] Federico Municchi, Nicodemo Di Pasquale, Marco Dentz, Matteo Icardi, Heterogeneous multi-rate mass transfer models in OpenFOAM®, Comput. Phys.

Comm. 261 (2021) 107763.
[60] L. De Carlo, M. Berardi, M. Vurro, M.C. Caputo, Geophysical and hydrological data assimilation to monitor water content dynamics in the rocky unsaturated

zone, Environ. Monit. Assess. 190 (5) (2018) 310, http://dx.doi.org/10.1007/s10661-018-6671-x.
15

http://refhub.elsevier.com/S0045-7825(24)00882-X/sb50
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb50
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb50
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb51
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb51
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb51
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb52
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb52
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb52
http://dx.doi.org/10.1017/S0962492919000059
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb54
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb54
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb54
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb55
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb55
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb55
http://arxiv.org/abs/2001.06782
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb57
http://arxiv.org/abs/2009.04544
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb59
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb59
http://refhub.elsevier.com/S0045-7825(24)00882-X/sb59
http://dx.doi.org/10.1007/s10661-018-6671-x

	Inverse Physics-Informed Neural Networks for transport models in porous materials
	Introduction
	Mathematical models
	Heat equation
	Advection–Diffusion–Reaction equation
	Mobile-Immobile model

	Physics-Informed Neural Network
	Inverse PINN
	Adaptive inverse PINN

	Numerical results
	Reference data
	Pure diffusion
	Advection Diffusion
	Advection–diffusion with mobile–immobile

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Sensitivity with respect to the initial parameters
	Appendix. Sensitivity with respect to the initial parameters
	Data availability
	Appendix . Data availability
	References

