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ABSTRACT: Magnesium hydride (MgH2) is a promising material for solid-state hydrogen storage due to its high gravimetric
hydrogen capacity as well as the abundance and low cost of magnesium. The material’s limiting factor is the high dehydrogenation
temperature (over 300 °C) and sluggish (de)hydrogenation kinetics when no catalyst is present, making it impractical for onboard
applications. Catalysts and physical restructuring (e.g., through ball milling) have both shown kinetic improvements, without full
theoretical understanding as to why. In this work, we developed a machine learning interatomic potential (MLP) for the Mg−H
system, which was used to run long time scale molecular dynamics (MD) simulations of a thick magnesium hydride surface slab for
up to 1 ns. Our MLP-based MD simulations reveal previously unreported behavior of subsurface molecular H2 formation and
subsequent trapping in the subsurface layer of MgH2. This hindered diffusion of subsurface H2 offers a partial explanation on the
slow dehydrogenation kinetics of MgH2. The kinetics will be improved if a catalyst obstructs subsurface formation and trapping of
H2 or if the diffusion of subsurface H2 is improved through defects created by physical restructuring.
KEYWORDS: Magnesium Hydride, Molecular Dynamics Simulations, Machine Learning Interatomic Potentials, Hydrogen Storage,
Density Functional Theory

1. INTRODUCTION
Hydrogen energy has long been touted as a potential candidate
for future green industries.1,2 It is the eighth most abundant
element on Earth by atomic fraction and has the highest
gravimetric energy capacity of any other chemical energy
carriers (142 MJ/kg).3 Currently, one of the biggest challenges
to a widespread hydrogen economy is efficient storage.
At ambient temperature and atmospheric pressure, 1 kg of

hydrogen gas has a volume of 11 m3 (a density of around 0.09
g/L).4 The density of hydrogen gas can be improved through
compression, with a pressure of 700 bar achieving a much
improved (yet still suboptimal) density of 39.6 g/L at room
temperature.5,6 However, containing such a high pressure gas
requires high-strength pressure vessels and poses safety
concerns for on-board storage. Liquid storage achieves a
higher density of 70.8 g/L but is significantly hindered by the

energy-intensive liquefaction process, ultimately making it a
less energy-efficient solution.7

Solid-state storage is an alternative route that bypasses these
problems by binding the gas through either a reversible
hydrogenation reaction or physical adsorption in the material.
Magnesium hydride is one of the most studied and promising
candidate materials owing to its low production costs, low
toxicity, and high gravimetric and volumetric hydrogen-storage
capacities of 7.6 wt % and 110 g/L, respectively.8 However, the
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material fails to meet all the physical requirements due to its
slow (de)hydrogenation kinetics and high dissociation temper-
atures; the latter stems from the thermal stability of the
hydride, exemplified by a high dehydrogenation enthalpy of
ΔHdec = 74.06 ± 0.42 kJ/mol H2.

9 At a working temperature of
300 °C and pressure of 30 bar, the rate of hydrogenation
ranges from 6 h to 2 weeks, with the high variability due to the
immutable kinetics which have been found to be affected by
factors such as particle size and material purity.10,11

Research has shown that the kinetics can be improved by
nanostructuring (such as through ball milling of the metal)
with a 10-fold increase in the amount of hydrogen released by
magnesium hydride clusters over the span of an hour relative
to the bulk metal.12 Catalysts have been shown to yield more
significant kinetic improvements13 with transition metal-based
catalysts; e.g., TiH2 ball milled with MgH2 resulted in the
evolution of 6 wt % of hydrogen in as little as 10 min.14 Other
catalysts reported in the literature include transition metal
oxides such as MoO2, V2O5, and Nb2O5 and transition metal
chlorides.15,16 Despite the kinetic improvements from nano-
structuing and/or catalysts, there are still challenges in a
system retaining the initial very fast kinetics. This is a result of
factors such as grain growth during cycling, catalyst migration,
oxidation, and loss of nanoscale structure.17 A lack of
understanding about the reaction pathway means that there
is no concrete explanation as to the mechanism behind which
nanostructuring or catalysts improve the kinetics of dehydro-
genation. Consequently, investigations to improve MgH2
kinetics still remain subject to time and resource costly trial-
and-error approaches rather than rational design based on
prior mechanistic knowledge.
Although the hydrogenation reaction pathway has not yet

been fully elucidated, it is presumed to entail the following
steps: physisorption of molecular hydrogen onto the metal
surface through van der Waals interactions, dissociation of
molecular hydrogen into hydrogen atoms, formation of
chemical bonds between magnesium and hydrogen atoms,
and finally, diffusion of hydrogen atoms throughout the
material.4,18 Nucleation of the hydride phase remains a point of
contention, with differing views on whether this initiates at the
surface and grows inward or in the bulk and grows outward.19

For the optimal design of a catalyzed magnesium hydride
material, an atomistic understanding of the reaction pathway is
crucial. This insight is challenging to obtain experimentally,
making in silico molecular dynamics (MD) simulations the
preferred approach. The accuracy of any MD simulation is
directly determined by the underlying interatomic potential,
which maps atomic structures to their corresponding potential
energy and forces, guiding the simulation of the dynamic
system.
Analytical force fields that describe the potential as closed-

form equations motivated by initial assumptions about the
physical domain are computationally inexpensive to evaluate
but are notoriously inaccurate for complex systems with
multiple instances of bond breaking and formation. Force field
accuracy is dependent on the accuracy of parametrization,
which is a nontrivial task and significantly labor intensive. A
ReaxFF potential for magnesium and magnesium hydride
systems was constructed by Cheung et al.20 and was applied to
examine the relationship between grain size and heat of
formation. While the force field offers valuable information,
MD simulations by Zhou et al.21 found that the potential led to
an unstable MgH2/Mg solid-state interface even at lower

temperatures of 300 K. Zhou et al. produced a bond order
potential (BOP) for Mg−H systems and five 1 ns MD
simulation runs. Although their MD simulations captured
relevant (de)hydrogenation chemical reactions, e.g., 2H (gas)
→ H2 (gas) and 2H (gas) + Mg (hcp) → MgH2 (rutile), the
BOP potential was not parametrized to generalize across the
full reaction pathway due to not being optimized for the
simulation of the full dehydrogenation reaction, which involves
events like atomic diffusion and bond breaking/formation at
realistic complex surfaces, which were not considered in their
target structures when they parametrized their BOP potential.

Ab initio methods, where the potential is calculated from first
principles, offer greater accuracy at the expense of computa-
tional time. The most frequently used ab initio method for
solid-state modeling is the mature field of density functional
theory (DFT). It offers a good trade-off between accuracy and
computational cost and is widely applied in solid-state
materials modeling. For example, Dong et al. studied the
layer-by-layer dehydrogenation of a MgH2(110) surface slab
using DFT, finding that the surface H2 desorption has the
highest energy barrier of 2.5 eV in MgH2 dehydrogenation,
because the H vacancy formed after dehydrogenation in the
surface layer has a high electron localization.22 However, even
with the improved trade-off, DFT quickly becomes too
computationally costly when simulating larger systems
containing hundreds of atoms or running simulations over
millions of time steps, as required to span the full
dehydrogenation period.
A possible solution is the use of machine learning

interatomic potentials. Machine learning (ML) is a branch of
artificial intelligence that discovers underlying patterns in data
without explicit instructions and is often hailed as the fourth
scientific revolution. ML is growing in prominence in
computational modeling as it offers a unique solution to
producing force-configuration space mappings. Rather than
using mathematical closed-form expressions based on physical
domain knowledge, the relationship is learned by using a small
training set of data to update model parameters through
optimization of a loss function. Once a desired level of
accuracy is obtained, the trained ML model is used as an
emulator of the electronic structure calculator at a fraction of
the computational cost. Out of all of the machine learning
methods, artificial neural networks (ANNs) are now the most
widely applied to model potentials due to their ability to
handle large data sets and act as universal approximators that
can in principle model any function to arbitrary precision.
They also benefit from the ease of application thanks to open-
access frameworks like PyTorch23 and TensorFlow24 that allow
for modular neural network construction.
There is existing research that performs MD simulations of

Mg−H systems using ab initio methods, but these have been
restricted to a time scale of tens of ps and have therefore only
partially captured the dehydrogenation, providing insight only
into specific aspects of the process.25 A machine learning
interatomic potential (MLP) has previously been constructed
by Wang et al. with the primary goal of examining the behavior
of magnesium hydride clusters.26 Wang et al. achieved a test-
set RMSE for energy and force of 31.25 and 189.9 meV/Å,
respectively. They have used a large data set of 22,965
reference data points, 90% of which were seen by the model as
the training set and 10% was used as a validation set. Although
their potential was not intended for the study of surface
reactions, the adaptive sampling method from high-temper-
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ature MD simulation runs meant there were data points for
breaking molecular H−H bonds that made it possible to model
the H2 dissociation on a surface.
The work reported below is distinguished by several key

factors. It simulates MgH2 over long time scale (up to 1 ns)
which captures the full atomistic details for the initial stage of
MgH2 dehydrogenation. The model achieves high accuracy
despite using a training set of only a few hundred structures. By
employing an active learning approach, the effectiveness of the
training was enhanced, mitigating the use of a small training set
and allowing for faster training and more efficient model
refinement. Additionally, while most MLP research focuses on
realistic structures, this work deliberately includes extreme,
unrealistic configurations in the training set. These structures
help the model better simulate real-world phenomena by
teaching it to recognize and avoid such unrealistic config-
urations.

2. METHODOLOGY
2.1. Model Construction. Artificial Neural Networks were

employed based around the Behler-Parinello Neural Network
Potential (BPNNP)27 (see Figure 1), which enabled
application of ANNs to handle scalable multidimensional
potential energy surfaces by representing the system energy as
a sum of local atomic energy contributions.

Atomic coordinates were converted to symmetry functions,
which encoded the local chemical environment of each atom
into a descriptor that is invariant to translation, rotation, and
exchange of identical atoms. The radial symmetry function is
expressed as

=G e f R( )i
j i

R R
c ij
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where Rij is the distance between particles i and j, Rc is the
cutoff distance.
The angular symmetry function is given by
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where i, j, k are indices representing atoms, with i as the central
atom and j, k as neighboring atoms. Rij, Rik, and Rjk denote the
distances between pairs of atoms: Rij is the distance between
atoms i and j, Rik is the distance between atoms i and k, and Rjk
is the distance between atoms j and k. The angle θijk is the
angle formed by central atom i and its neighbors j and k.
Committee Neural Network Potential (C-NNP)28 was used,

where an ensemble of multiple models trained on slightly
different sets was used to obtain a cumulative prediction
average over energy and force values. It was found that a single
NNP model displayed nonphysical behavior in the test MD
runs, but this behavior was mitigated when increasing the
number of NNP models in a C-NNP model. A committee of 8
models was chosen to be the optimal size as ensembles with a
higher number of models did not yield any consistent
improvement in accuracy or transferability. The C-NNP
model was trained to predict energies relative to atomic
reference energies, and it used 20 radial symmetry functions
and 60 angular symmetry functions.
Predictions were more accurate when trained to predict

energies relative to atomic reference energies, which
correspond to DFT energy predictions for optimized bulk
Mg and H2 gas structures divided by atom count. The C-NNP
model was trained on relative DFT energy values. After
training, reference energies can be added to each of the
model’s energy predictions to give absolute energy. In this
instance, this subsequent correction is not necessary, as this
work only uses the C-NNP model to produce simulations with
constant hydrogen and magnesium counts. In such simu-
lations, the reference energy is held constant and does not
affect the calculation of forces as forces depend on changes to
the energy, not the energy values themselves. As using relative
energies has no bearing on the results, the raw values returned
by C-NNP models are presented here as “potential energies”
without conversion to absolute energy.
Model training was iterated over epochs until a convergence

threshold was achieved. A training convergence threshold was
set for an energy root-mean-square error (RMSE) of ξ0 = 0.1
meV/atom and for the highest energy error of ξ0 = 1 meV/
atom. After training completion, the model with the best
validation set error was selected as the final model.
Overfitting of the results was mitigated through the addition

of a validation step during the training protocol. The training
data set was split into 90% seen and 10% unseen data, and the
chosen parameters were selected on the basis of the best
validation error. Figure 2 shows the parity plots between the
predicted energies and the actual DFT calculations. Selecting
final parameters based on lowest validation error outperformed
a selection based on the final training epoch, having respective
potential energy test errors of 4.78 and 13.81 meV/atom on
unseen data. It also demonstrated good model transferability as
the test error was close to the seen data RMSE of 4.27 meV/
atom, signifying that the model was not just biased toward the
training set but was able to generalize effectively to previously
unexplored configurations.

Figure 1. Schematic of the BPNNP. The model consists of multiple
neural networks, each responsible for a unique element. Atom centred
symmetry functions (ASCFs) calculate descriptors for each local
environment. Descriptors are processed by corresponding ANN to
predict atomic energy contribution. All atomic energy contributions
are summed up to calculate total energy.
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The final model was trained on 316 structures and achieved
an RMSE of 23.4 meV/atom and 56.56 meV/Å for energy and
force, respectively, tested on unseen data.

2.2. Training Data. Since MLPs derive patterns from
training data, the generalizability of an MLP is dependent on a
representative sample of the total configuration space to
maximize information learned in the training process and
provide good transferability.
Reference data were generated from geometrical optimiza-

tions and molecular dynamics simulations between the ranges
of 50 and 1500 K for a wide range of Mg−H structures, such as
bulk Mg and MgH2, H2 gas, MgH2 surface slab, H2 gas on Mg
surface slab, Mg/MgH2 interface, Mg and Mg−H clusters, etc.
(see Supporting Information). Calculations were performed
using CP2K29 at DFT level with a mixed plane wave/Gaussian
basis set.30 A Gradient Generalized Approximation (GGA)
correlation function was utilized with the Perdew−Burke−

Ernzerhof variant31 with Grimme’s D3 dispersion correction
(PBE+D3) including the C9 term.32 Double-ζ polarization
quality Gaussian basis sets33 and a 400 Ry plane-wave cutoff
for the auxiliary grid were employed, in conjunction with the
Goedecker−Teter−Hutter pseudopotentials.34,35 For self-con-
sistent field (SCF) calculations, a target accuracy of 1 × 10−6

Hartree was used. All structures bar Mg systems that were
produced using K-point sampling were employed using large
cell sizes with periodic boundary conditions and Γ-point
approximation.
A total of 62,471 reference structures were generated, via

DFT-based MD simulations and geometry optimizations,
which served as a Mg−H reference data set for the
development of Mg−H potentials. Physically unusual
structures (labeled through single-point DFT calculations)
were added to the training set by either manually constructing
structures to replicate unwanted behaviors (such as three

Figure 2. Parity graphs showing the respective performance of two checkpoints produced during the training process of a NNP. Validation was
performed on selected structures from the trajectories of ab initio molecular dynamics (AIMD) simulations at three different temperatures, which
have been highlighted in different colors.

Figure 3. Visualization of the QbC process.
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hydrogen atoms forming a H3 molecule) or by randomly
perturbing all the atoms in a reference structure. Instances of
extreme bonding were required to steer the MD simulation
away from nonphysical behavior.
A small subset of the reference data was selected as the final

training set by filtering the full data set through a “Query by
Committee (QbC) process”, using Atomic Machine Learning
software by Marsalek et al. with slight modifications to handle
structures with different cell sizes.28 This process takes
advantage of the C-NNPs capability to quantify the uncertainty
of a prediction. QbC uses uncertainty to identify the structures
that are most valuable to the training set, enabling an actively
diverse selection of training data.
As visualized in Figure 3, the process of QbC is divided into

the following five steps:
• Step A: A random selection of structures is sampled

from the reference data. These reference structures form
a small initial training set. The remaining structures
(those that were not selected) form a new set called the
candidate set.

• Step B: The training set is used to train a C-NNP.
• Step C: The C-NNP assigns an uncertainty value to each

candidate structure.
• Step D: The candidate structure with the highest

uncertainty values are deemed to contain the most
unique information. These structures are removed from
the candidate set.

• Step E: The high uncertainty structures that were
removed from the candidate set are added to the training
set.

If the resulting training set is sufficiently large, then the
process is complete, and the new training set can be used to
train a final model. Alternatively, steps B−E can be repeated
until the training set reaches the desired size.
When a structure is selected to join the training set, this is

indicative of information contained in that structure that is not
captured well by the existing training points. This means that
the resulting training points share as little information as
possible. QbC ensured the C-NNP model was trained in a
reasonable time frame by reducing the size of the training set
(e.g., by removing structures which do not contribute much to

the training results), while simultaneously achieving more
accurate and transferable results.

2.3. Software. The Atomic Simulation Environment
(ASE)36 was used for data management and analysis.
AML,28 interfaced with n2p2,37 which implements BPNNP,
was used for the QbC process and C-NNP training and testing.
DFT- and C-NNP-based MD simulations were performed
using CP2K,29,30 with results visualized through Visual
Molecular Dynamics (VMD)38 and Materials Studio.39

2.4. Molecular Dynamics Simulations. Slabs were
constructed consisting of the most stable α-MgH2 polymorph
with thickness varying between 2 and 16 Mg layers; for
production runs and subsequent analysis, this work focused on
a surface slab model with 8 Mg layers. Periodic cells were
expanded by >100 Å in the direction perpendicular to the
surface slab to provide a sufficiently large vacant space for the
released hydrogen gas molecules, with the most stable surface
(110) exposed to the vacant space.40,41 DFT (PBE + D3)
geometry optimizations were performed prior to carrying out
MD simulations to ensure slabs were physically realistic and
stable. MD simulations were performed using the canonical
ensemble (NVT) with a 0.5 fs time step and were run for 1 ns
(2,000,000 timesteps) at a temperature of 800 K, which is
slightly higher than the experimentally observed dehydrogen-
ation temperature of MgH2, in order to accelerate the rate of
dehydrogenation reaction, so more events of H2 desorption
can be observed from the C-NNP-based MD simulations for
subsequent analysis. To maintain the temperature of a
simulation, a Canonical Sampling through Velocity Rescaling
(CSVR) thermostat42 was used to maintain the temperature,
using a time constant of 50 fs (for DFT-based MD) or 100 fs
(for C-NNP-based MD). For C-NNP-based MD simulations,
the trajectory was saved every 10 fs (20 MD timesteps), to
obtain more precise information (e.g., timing of key events
such as H2 formation and desorption from the surface) for
further analysis.

3. RESULTS AND DISCUSSION
3.1. Further Model Validation. To judge the accuracy of

force and energy predictions, the model was used to run 36
MD simulations at different temperatures for a variety of Mg−
H structures that are similar to those considered in the training

Figure 4. Parity graphs, comparing the predictions of the C-NNP model with the predictions of DFT on (a) energy and (b) forces.
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set but are much smaller than the thick MgH2(110) surface
slab considered for production MD simulations based on the
best C-NNP model. These simulations each ran for 1 ns with a
0.5 fs time step. After 200 ps of simulation time, single-point
energy and force calculations were performed using both the
DFT method and the C-NNP model every 100 ps. The two
sets of results were compared to assess the model’s
performance.
As shown in Figure 4, the model made accurate predictions,

with an RMSE of 23.4 and 56.5 meV/Å for energy and force,
respectively. For comparison, Wang et al. trained and tested a
MLP for Mg−H system and achieved an RMSE performance
of 31.25 meV/atom and 189.9 meV/Å for energy and force,
respectively.26 Given the wide range of temperatures and
variety of Mg/H coordination environments in the validation
set, these low prediction errors give reassuring indication that
the C-NNP model can maintain stable performance over long
time scale simulations.

3.2. Hydrogen Molecule Formation. Using the most
transferable C-NNP, a long time scale and large-size molecular
dynamics simulation was run, aiming to get a better
fundamental understanding of the dehydrogenation mecha-
nism of MgH2. Previous DFT calculations have shown that the
(110) surface is the most stable surface facet of MgH2,

40,41 so a
MgH2(110) surface slab with an 8-layer thickness in a 6 × 3
supercell (a total of 864 atoms, see Figure 5a) was considered
in the MD simulation. The MD simulation was run for a
duration of 1 ns with an MD time step of 0.5 fs (a total of
2,000,000 MD steps) at a temperature of 800 K. Despite the
fact that the MD simulation was run for such a long period of

time, we only observed the desorption of eight hydrogen
molecules in this simulation, corresponding to <3% of the total
number of hydrogen atoms in the surface slab.
Next, the individual process for the formation and

desorption of the eight hydrogen molecules was investigated.
It is generally believed that the desorption of H2 molecules
from MgH2 follows the process of hydrogen atoms diffusing
from the bulk (or subsurface) toward the surface of MgH2,
after which two hydrogen atoms combine at the surface to
form a H2 molecule which then desorbs from the surface.
Interestingly, it was found that all eight H2 molecules that
desorbed within the 1 ns MD simulation were not formed on
the surface; instead, they were formed in the subsurface layer
(defined as the layer with a distance of <5 Å into the bulk from
Mg atoms on the surface with 5-fold coordination) of the
MgH2(110) surface slab and diffused to the surface.
Taking one of the eight desorbed H2 molecules (Molecule

3) as an example, the atomic structures of these two H atoms
involved in Molecule 3 at various stages are shown in Figure 5.
At the start of the simulation (a pristine MgH2(110) surface
slab, see Figure 5a), one H atom was located on the surface,
with the other H atom located between the top layer and
subsurface layer, and the two H atoms were separated by a
distance of 2.76 Å (Figure 5a). During the next 300 ps of MD
simulation, the two H atoms vibrated around their equilibrium
positions: at 304.62 ps, the two H atoms were separated by a
distance of 3.14 Å (Figure 5b), and at 305.62 ps, the two H
atoms were separated by a distance of 3.22 Å (Figure 5c). After
another 1 ps, the two H atoms started to vibrate toward each
other, with a much shorter distance of 1.05 Å at 306.62 ps

Figure 5. (a) An 8-layer thick MgH2(110) surface slab in a 6 × 3 supercell. The two H atoms of interest are represented as blue balls. Atomic
structure of the MgH2 surface slab at MD simulation timesof (b) 304.62 ps, (c) 305.62 ps, (d) 306.62 ps, (e) 307.62 ps, and (f) 349.58 ps. (g) Trail
of the two H atoms of interest (gray balls) from the onset of formation utill its release from the surface slab. Mg and H atoms are represented in
green and blue sticks in (a)−(f), respectively. Mg and H atoms are represented in pink and white balls in (g), respectively. For clarity, only part of
the surface slab is shown in (b)−(g).

Figure 6. Interatomic distances (left Y-axis, represented as empty circles) between H atoms and their location (relative to the center of the
simulation box, right Y-axis, represented as red and blue dots) of three selected H2 molecules as a function of MD simulation time (X-axis): (a)
Molecule 1, (b) Molecule 2, and (c) Molecule 3. The trapped H2 molecules are indicated by light blue shaded areas on the plots.
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(Figure 5d). Immediately after that, a H2 molecule was formed
in the subsurface layer, and the interatomic distance between
the two H atoms oscillated around 0.7 Å (Figure 5e).
Interestingly, the H2 molecule formed in the subsurface layer
did not desorb from the surface immediately. Instead, it was
trapped in the subsurface layer for another 43 ps before it was
able to diffuse to the surface from where it was immediately
desorbed (Figure 5f). The trail of this H2 molecule
(represented as gray balls) from the onset of formation in
the subsurface layer until its release from the surface slab is
shown in Figure 5g. It was found that this H2 molecule moved
around near its initial site of formation before it was desorbed
from the surface.
After analysis of the desorption process of the other seven

H2 molecules, it was found that many other H2 molecules were
also trapped in the subsurface layer before they were released.
Among the eight H2 molecules desorbed within the 1 ns MD
simulation, six of the H2 molecules were trapped in the
subsurface layer for more than 10 ps before release, with one
H2 molecule being trapped for 61 ps. Only two H2 molecules
desorbed from the surface within 1 ps of formation in the
subsurface layer. Further analysis of the three H2 molecules
which were trapped in the subsurface layer for more than 40
ps, including Molecule 3 discussed earlier, is shown in Figure 6.
While the two H atoms involved in the formation of Molecule
3 were initially located next to each other with a separation of
2.76 Å (Figures 5a and 6c), it was found that this was not the
case for Molecules 1 and 2, of which the initial H−H
separations at the start of the MD simulation were 7.71 Å
(Figure 6a) and 8.95 Å (Figure 6b), respectively. In fact, it was
found that among the eight H2 molecules desorbed, there were
only two H2 molecules of which the initial H−H separations
are smaller than 3.9 Å; for the other six H2 molecules, the
initial H−H separations range between 6.9 and 9.4 Å,
indicating atomic diffusion of H atoms (see Figure 6a and b)
was needed before the two H atoms can combine to form a H2
molecule. For the locations (relative to the center of the
simulation box) of hydrogen atoms in Figure 6, it was also
found that the three H2 molecules were indeed trapped in the
subsurface layer for a period of time (between 43 and 61 ps,
represented by short H−H separation and nearly constant
distance of 10 Å to the center of the box), before they
desorbed from the surface (exemplified by large variations in
the distance of H atoms to the center of simulation box).
Checking the origin of the eight desorbed H2 molecules, it was
found that H atoms involved in the formation of these eight H2
molecules were initially located at the surface or subsurface.
While it was found from the 1 ns MD simulation that H2
molecules only formed in the subsurface layer, it is plausible
that, e.g., if the MD simulation is run for much longer, H2
molecules may also form deeper in the surface slab, or that H
atoms may diffuse from deep within the slab to the surface or
subsurface and combine with other H atoms to form H2
molecules.
In addition to the eight H2 molecules which were initially

formed in the subsurface layer and ultimately desorbed from
the surface, there were two incidences where H2 molecules
were formed in the subsurface layer of the slab and were
trapped in the interior for a period of time (41 and 48 ps,
respectively), before the H2 molecules dissociated into atomic
H again, see Figure 7. In fact, one of the H atoms (Atom 112)
involved in the formation of Molecule 1 initially formed an H2
molecule (Molecule 5) with a different H atom (Atom 133)

and was trapped in the subsurface layer for about 48 ps (see
Figure 7), after which the H2 molecule (Molecule 5)
dissociated. Interestingly, before the formation of Molecule 5
at around 125 ps, Atom 133 formed another H2 molecule
(Molecule 4) with a third hydrogen atom (Atom 284) at
around 84 ps, which was trapped in the subsurface layer for
about 41 ps (see Figure 7), after which the H2 molecule
(Molecule 4) dissociated, with Atom 133 forming a new H2
molecule (Molecule 5, see Figure 7) with Atom 112 shortly
after, and Atom 284 forming a H2 molecule with a different H
atom at around 125 ps which desorbed from the surface at
around 137 ps (i.e., this H2 molecule was trapped for about 12
ps). This is the reason why the H−H separation between Atom
133 and Atom 284, which were involved in the formation of
Molecule 1, became so big after about 137 ps (see the inset of
Figure 7).

3.3. Discussion. As shown in the Results and Discussion, it
was found that the formation of H2 molecules in the subsurface
layer during the initial stage of the dehydrogenation of MgH2 is
common. For all eight H2 molecules desorbed within an MD
simulation time of 1 ns at 800 K, all of them were initially
formed in the subsurface layer, and the majority of them (6 out
of 8) were trapped in the subsurface layer for more than 10 ps
before they were released from the surface slab, with one H2
molecule trapped for more than 60 ps before desorption. It was
also found that H2 molecules can form and get trapped (e.g.,
for more than 40 ps) in the subsurface layer temporarily before
they dissociated, followed by atomic hydrogen diffusion into
vacancy or formation of new H2 molecules with other
hydrogen atoms nearby. These simulation results provide
new insights into the atomic mechanism of the dehydrogen-
ation of MgH2. It is well-known that the kinetics of the MgH2
dehydrogenation reaction is sluggish. For example, Hanada et
al. showed that it took more than 200 min at 308 °C to fully
dehydrogenate pure ball-milled MgH2.

43 Long time scale MD
simulation based on the C-NNP indicates this could be partly
due to the formation and trapping of H2 molecules in the
subsurface layer of MgH2. The MLP based MD simulation was
run at a relatively high temperature of 800 K in order to

Figure 7. Interatomic distances (Y-axis, represented as empty circles)
between H atoms of two selected H2 molecules as a function of MD
simulation time (X-axis). The H−H distances related to the two H2
molecules are represented by black and red circles, respectively. The
temporarily formed H2 molecules (represented by small H−H
separations) are indicated by dashed boxes on the plots. The inset
figure shows the same data but with full scale Y-axis, showing the large
H−H separation for the two H atoms involved in Molecule 4 after the
H2 molecule dissociation at 125 ps.
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accelerate the rate of the dehydrogenation reaction so more H2
desorption events can be observed. The trapping time of
molecular H2 in the subsurface layer of MgH2 slab as observed
in the MD simulation is likely to be much longer, if the
temperature of the MD simulation is decreased, e.g. to 581 K
(the experimentally observed dehydrogenation temperature of
uncatalysed ball-milled MgH2).

43 The long trapping time of
molecular H2 in the subsurface layer may play an important
role in the sluggish dehydrogenation kinetics of uncatalysed
MgH2.
To verify that the formation of the H2 molecules in the

subsurface layer of MgH2 was not an artifact of the C-NNP,
configurations with a H2 molecule trapped in bulk MgH2 or in
the subsurface layer of a MgH2(110) slab (with 4-layer
thickness, see Figure 8a) were created, by manually moving
one H atom toward another H atom to form a trapped H2
molecule in the space previously occupied by the second H
atom (which produced a H vacancy at the location of the first
H atom at the same time), see Figure 8b. The structures were
then relaxed using DFT, and the energies of the perfect MgH2
configurations and the configurations with trapped H2
molecule were calculated using C-NNP. For bulk MgH2, it
was found the energy penalty of forming a trapped H2
molecule was 215 kJ/mol with DFT and 225 kJ/mol with C-
NNP (representing an error of <5% and showing excellent
accuracy of the C-NNP). In the surface slab, it was found the
energy penalty of forming a trapped H2 molecule was reduced
by more than 25% to 159 kJ/mol with DFT (163 kJ/mol with
C-NNP, again, excellent agreement with DFT), possibly due to
the lower energy penalty of H vacancy formation at/near the
surface and also because Mg atoms have more space to relax

near the surface (and less strain), i.e. the energy penalty to
displace Mg atoms due to trapping of H2 molecule is
significantly reduced.
To further verify that the H2 molecule is kinetically stable in

the subsurface layer of MgH2 and is not an artifact of the C-
NNP, a DFT-based MD simulation of a 4-layer thick
MgH2(110) slab with a H2 molecule in the subsurface layer
(see Figure 8b) was performed for up to 20 ps (40,000 MD
timesteps) at a temperature of 800 K. It was found that the
trapped H2 molecule remained stable throughout the duration
of the 20 ps DFT based MD simulation, exemplified by the
short H−H distance (below 1 Å) and long Mg−H distances
(largely above 2 Å) between the two H atoms and three nearby
Mg atoms, see Figure 8c. In Figure 8d, the trail of the two H
atoms of interest throughout the duration of the DFT-based
MD simulation is shown, and it was found that the trapped H2
molecule moved around its immediate vicinity but remained
stable without splitting into atomic H and forming chemical
bonds with Mg atoms nearby. The long lifetime (>20 ps) of
the H2 molecule trapped in the subsurface layer observed in
the DFT based MD simulation echoes what was observed in
the long time scale C-NNP-based MD simulation at the same
temperature, which again demonstrates that H2 molecules
being trapped in the subsurface layer is not an artifact of the C-
NNP.
The formation of “internally” trapped H2 has been discussed

in other related materials; e.g., Fukumuro et al. suggested that
Pd vacancies can be formed at higher H concentration in
PdHx, which are filled with H2 molecules.44 In another study
by He et al., the authors also showed that H2 molecule trapped
in the Pd vacancy is stable with a short separation distance of

Figure 8. DFT optimized structures of a 4-layer thick MgH2(110) surface slab in a 6 × 3 supercell: (a) the perfect cell and (b) a manually created
cell with a molecular H2 being trapped in the subsurface layer. The two H atoms of interest are represented as blue balls. (c) Distances between the
two H atoms of interest (H1 and H2) and between the two H atoms and three nearby Mg atoms (Mg1, Mg2, and Mg3) as a function of MD
simulation time. (d) Trail of the two H atoms of interest (gray balls) during the DFT-based MD simulation. Mg and H atoms are represented in
green and blue sticks in (a) and (b), respectively. Mg and H atoms are represented in pink and white balls in (d), respectively.
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0.77 Å, and the energy barrier for dissociating the H2 molecule
in the Pd vacancy to atomic H located near two tetragonal sites
was found to be 0.84 eV, which means it is difficult for the H2
molecule to thermally escape from the Pd vacancy once the H2
molecule is trapped at a high H concentration.45 While the
energy penalty of forming a trapped H2 molecule in bulk and
surface slab of MgH2 seems to be high, H2 molecules being
trapped in the subsurface layer of MgH2 slab were observed in
long time scale MD simulations and will likely be subjected to
high energy barriers for dissociation into atomic H and for
diffusion into neighboring sites or onto the surface. This can be
reflected by the long period of time the H2 molecules were
trapped in the subsurface layer, before they diffused onto the
surface and desorbed from the surface or dissociated into
atomic H; of the ten H2 molecules formed during the MD
simulation, including eight that desorbed from the surface
ultimately and two temporarily formed, eight of them were
trapped for more than 11 ps, and five of them were trapped for
more than 41 ps.
These results suggest the slow dehydrogenation kinetics of

uncatalyzed MgH2 may be partly due to the formation and
trapping of H2 molecules in the subsurface layer of MgH2. In
the work by Hanada et al., the authors found that for a ball-
milled MgH2 sample with 2 mol % metallic Ni nanoparticles,
90% of the hydrogen was desorbed within 100 min at a much
lower temperature of 163 °C.43 The much faster kinetics of
this catalyzed MgH2 dehydrogenation reaction may be
explained by the presence Ni metal in the MgH2 sample, of
which Ni may mix into MgH2 during the ball milling process. It
is known that Mg metal is not a good catalyst for the
dissociation of H2 molecule; e.g., Du et al. reported that the
dissociation barrier of hydrogen molecule on a pure Mg(0001)
surface was 1.05 eV, and incorporating Ti into Mg(0001)
surface reduced the barrier to only 0.103 eV due to the strong
interaction between the molecular orbital of hydrogen and the
d metal state of Ti.46 The incorporation of Ni metal in ball-
milled MgH2 will have a similar effect; i.e., the presence of Ni
metal can help to reduce the energy barrier of dissociating H2
molecules trapped in the subsurface layer of MgH2 into atomic
H, which is likely to reduce the trapping time of H2 molecules
in the subsurface layer. Meanwhile, it is much easier for atomic
H to diffuse toward the surface and combine with other H
atoms to form H2 molecules on the surface and then desorb
from the surface. In addition, the mixing of Ni atoms into
MgH2 could introduce lattice distortion, which may also help
to reduce the trapping time of the H2 molecules in the
subsurface layer.

4. CONCLUSION
A machine learning interatomic potential was developed for
the Mg−H system based on accurate DFT reference data
obtained on a diverse range of Mg metal, hydrogen, and Mg−
H structures featuring different chemical environments of Mg
and H. Using a combination of Query by Committee sampling
to filter a large reference data set and an additional manual
insertion of physically unusual structures to encourage the
simulation to avoid unrealistic scenarios, an information-dense
training set of 316 structures was used to train the final MLP
model. High quantitative accuracy was achieved, exceeding
existing MLP error values for the Mg−H system at a fraction of
the training data used by other research groups.
Further validation was performed using the best C-NNP on

structures not seen during training, and the results were

compared with DFT, which showed excellent accuracy of the
committee neural network potential. The C-NNP was then
used to run long time scale and large size molecular dynamics
simulations for up to 1 ns to study the atomistic mechanism of
the initial stage of MgH2 dehydrogenation. It was found that
H2 molecules formed in the subsurface layer of the MgH2
surface and were trapped for a long period of time before they
desorbed from the surface. These results suggest that the slow
kinetics of the MgH2 dehydrogenation reaction may be partly
associated with the formation and trapping of H2 molecules in
the subsurface layer of MgH2.
These results also provide a new interpretation of the

experimental observation of why transition metal catalysts such
as Ni help to improve the kinetics of the MgH2 dehydrogen-
ation reaction. It is hoped these new insights from the
computational simulation can be used to design new catalysts
that are cheaper and more efficient to accelerate the
dehydrogenation reaction of MgH2 and make it more suitable
for practical hydrogen storage applications. As for the next
step, we plan to run even longer molecular dynamics
simulations, e.g., for 50 ns (100,000,000 MD timesteps), to
observe and understand the atomistic mechanism of the full
dehydrogenation of MgH2, from which we aim to gain a better
understanding of the origin of the sigmoid shape of
uncatalysed MgH2 dehydrogenation kinetics curve.43
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