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Abstract: Myotonic Dystrophy type 1 (DM1) is an RNA-based disease with no current treatment. 

It is caused by a transcribed CTG-repeat expansion within the 3’ untranslated region (UTR) of the 

dystrophia myotonica protein kinase (DMPK) gene. Mutant repeat expansion transcripts remain in 

the nuclei of patients’ cells, forming distinct microscopically detectable foci that contribute 

substantially to the pathophysiology of the condition. Here we report small molecule inhibitors 

that remove nuclear foci and have beneficial effects in the HSALR mouse model, reducing 

transgene expression leading to improvements in myotonia, splicing and centralized nuclei. Using 

chemoproteomics in combination with cell-based assays, we identify cyclin-dependent kinase 12 

(CDK12) as a druggable target for this condition. CDK12 is a protein elevated in DM1 cell lines 

and patient muscle biopsies and our results showed that its inhibition led to reduced expression of 

repeat expansion RNA. Some of the inhibitors identified in this study are currently the subject of 

clinical trials for other indications and provide valuable starting points for a drug development 

program in DM1. 

One sentence summary: CDK12 inhibition reduces mutant transcripts and nuclear foci in DM1 

cells and produces splicing correction and phenotypic benefit in a mouse model. 

Introduction 

Myotonic Dystrophy type 1 (DM1) is the most common form of adult muscular dystrophy which 

affects 1 in 8,000 people (1). It is caused by a CTG repeat sequence in the 3’ untranslated region 

of the DMPK gene (2-4), which is greatly expanded in patients who may have 50 to several 

thousand repeats on affected chromosomes compared to between 5 and 37 repeats on unaffected 

chromosomes. The expanded repeat is transcribed, and despite being correctly spliced, the repeat 

expansion transcripts remain sequestered in the nucleus forming distinct foci (5-7). These foci 

interact with cellular proteins, such as muscleblind-like splicing regulator 1 (MBNL1), a key 



splicing regulator, which in turn leads to downstream splicing abnormalities (8, 9). In addition to 

the sequestration of proteins, the mutant RNA causes activation of CUGBP, Elav-like family 

member 1 (CELF1), which is also implicated in splicing (10). Additional molecular pathways are 

thought to be affected by the toxic RNA, including repeat associated non-AUG (RAN)  translation 

and inhibition of translation (11, 12).  

There is currently no treatment for DM1, and disease management relies on a fragmented approach 

utilizing specific drugs for the piecemeal treatment of particular symptoms such as mexiletine to 

treat myotonia and modafinil to address daytime sleepiness (13, 14). However, due to the complex 

and variable nature of DM1, management of individual symptoms is not an efficient way to 

manage the condition and an effective treatment is required. Drug development for an RNA-based 

disorder such as DM1 represents a major challenge due to the lack of a suitable protein target (15-

21). Previously we reported an optimized high content screening assay to test the effect of small 

molecules on nuclear foci in DM1 and identified the possible role of a kinase as central to disease 

pathophysiology (22). Thus, we set out to identify the specific kinase involved in reducing the 

accumulation of CUG nuclear foci as a cellular target for DM1 therapy.  

 

 

 

 

 

 

 



Results  

Identification of compounds that reduce nuclear foci 

Our previous work indicated the involvement of kinases in DM1 pathophysiology, and the use of 

kinase inhibitors reduced nuclear foci leading to downstream beneficial cellular effects (22). To 

identify the specific kinase target we utilized the GlaxoSmithKline Published Kinase Inhibitor Set 

(PKIS) (23). Using our previously reported assay we screened the PKIS collection for compounds 

able to reduce nuclear foci. This assay used high content imaging to identify the nuclear 

compartment and quantify foci within this region. Foci were defined based on fluorescent intensity 

above background and at least 300 cells were imaged for each compound concentration (22). Six 

compounds that share a pyrazolo[1,5b]pyridazine core were found to reduce the number of nuclear 

foci following 24-hour treatment of DM1 cells (Fig. 1A-F, fig. S1). This result was consistent 

across 2 DM1 fibroblast lines (table S1). We then analyzed the known selectivity profiles of these 

six compounds to identify the common kinase targets. The log half maximal inhibitory 

concentration (pIC50) values generated from the foci assays were compared to the compound 

inhibition profiles against 224 kinase targets (23). A partial least squares (PLS) model was used to 

cluster the data, which suggested that the common target was likely to be a member of the cyclin-

dependent kinases (CDKs), mitogen-activated protein kinases (MAP kinases), glycogen synthase 

kinases (GSKs) and CDK-like kinases (CMGC) family (Fig. 1G). The CMGC family members 

were then further analyzed to identify the most likely target candidates within this group (fig. S2). 

We compared the kinase percentage inhibition value for all tested compounds, categorizing the six  

nuclear foci reducing compounds as active and the remaining compounds that did not result in 

nuclear foci reduction as inactive (fig. S2). The resulting scatterplots were then evaluated to 

identify if any of the kinase targets showed a clear difference in activity between the actives and 



the inactives. Of the targets covered by the PKIS collection, CDK family members appeared most 

likely to be involved, specifically CDK4, which showed that the six nuclear foci reducing 

compounds had higher inhibitory activity on this target than all other compounds tested (fig. S2D).  

To evaluate the potential role of CDK family members on nuclear foci modulation, we tested 

additional small molecule CDK inhibitors with well-annotated selectivity profiles (fig. S1, fig. S3, 

table S2) in the nuclear foci assay. CDK family inhibitors dinaciclib and SNS-032 reduced nuclear 

foci  (Fig. 1H-I), further suggesting that CDKs could play a role in the pathophysiology of DM1. 

 

Inhibitor treatment as a therapeutic for DM1 

Both dinaciclib and SNS-032 have been used in early clinical trials for cancer therapy (24-28). To 

investigate the potential use of such compounds as a therapy in DM1 we sought to establish the 

time-course of inhibition on nuclear foci and to determine the minimal exposure time required for 

beneficial effect. To determine a dosing regimen with these inhibitors we exposed DM1 fibroblasts 

to SNS-032 for 2 hours, after which time the cells were washed thoroughly and allowed to recover 

in complete growth media. Quantification of untreated DM1 cells showed that 68% had 5 or more 

foci/cell and only 5% had no detectable foci (Fig. 2A). When cells were treated with SNS-032 for 

2 hours, with no recovery time, this distribution shifted to 28% of cells with 5 or more foci and 

10% cells with no foci (Fig. 2B). With increased recovery times of 48 and 72 hours, the proportion 

of cells without nuclear foci increased further to 14% and 36%, respectively (Fig. 2C-D). A short 

(2 hour) treatment with inhibitor, followed by a prolonged (72 hour) recovery, led to a significant 

reduction in nuclear foci (Chi squared test: p<0.0001 for all dosing regimen  compared to untreated 

cells), suggesting that pulsatile treatment could be an efficacious approach to DM1 therapy with 

suitable inhibitors.  



 

Nuclear foci are a key cellular feature in DM1 and act as a useful biomarker for screening. 

Ultimately, we wanted to understand the effect of compounds on the repeat expansion transcript 

directly and to assess any downstream effects. Therefore, we next sought to establish the effect of 

inhibitor treatment on DMPK transcripts. Following treatment with dinaciclib, we utilized a 

previously reported assay based on the presence or absence of a coding BpmI polymorphism (SNP 

rs527221) that allows us to distinguish between wild-type and mutant DMPK transcripts in 

informative patient cell lines (7). Analysis of nuclear and cytoplasmic cell extracts showed that the 

repeat expansion transcripts were still retained within the nuclear fraction (Fig. 2E).  However, 

quantification using Genescan analysis showed a 59% decrease in the relative proportion of repeat 

expansion transcripts compared to unexpanded DMPK transcripts in the nucleus following 

inhibitor treatment (2 way ANOVA, p<0.0001 (Fig. 2F)). To confirm this result, we employed 

digital droplet PCR (ddPCR) to quantify the wild type and mutant DMPK transcript numbers in 

total RNA from two DM1 fibroblast cell lines treated with our most potent compounds, SNS-032 

and dinaciclib (Fig. 2G-2J, fig. S4). Treatment reduced nuclear foci and did not result in cellular 

toxicity. The data shows a reduction between 20 and 60% in mutant repeat-containing transcripts. 

Only in the HK DM1 fibroblast cell line treated with SNS-032 was a  reduction seen in the wild 

type transcript (Fig. 2J). Thus, exposure to these CDK inhibitors appears to reduce predominantly 

the repeat-containing transcript.  

 

To examine if this beneficial effect was translated into an in vivo model we treated human skeletal 

actin, long repeat) (HSALR) transgenic mice, a mouse model of DM1, with 20 mg/kg dinaciclib by 

intraperitoneal injection. The dosing regimen of dinaciclib was established based on previously 



tested doses and tolerability studies in mice and human clinical cancer studies (29).  The HSALR 

mice express repeat expansion RNA at amounts 5- to 8-fold higher than human DM1 muscle (30). 

Blinded analysis was performed 1 day after the final injection. Mice were age and sex matched to 

assess the effect on nuclear foci, HSA transgene amounts and key splice isoform profiles in vehicle 

and dinaciclib-treated samples. Following dinaciclib treatment we observed a reduction in the 

number of cells containing nuclear foci (Fig 3A and B). Likewise when we quantified the repeat 

containing transcript directly by ddPCR we found a significant reduction in the relative amounts 

of the HSA transgene in dinaciclib treated animals (Fig. 3C, t-test p<0.0001). This is consistent 

with the data observed in DM1 fibroblast lines. To assess any beneficial effect on mis-splicing we 

studied 9 transcripts, known to be dysregulated in DM1 (31-37). Across the panel of genes we 

consistently observed improvements in dinaciclib-treated mice (Fig. 3D, fig. S5) Additionally we 

collected muscle samples from vehicle and dinaciclib-treated mice. Staining of muscle fibers 

highlighted a reduction in the presence of centralized nuclei within muscle fibers following 

inhibitor treatment (fig. S6A-B, t-test; p=0.0162).  To understand if the observed molecular 

changes resulted in any functional improvement we conducted electromyography (EMG) and 

graded the animals with a myotonia grade from 0-3, with 3 being the most severe. Dinaciclib 

treatment improved myotonia in all muscles analyzed except the tibialis anterior (Fig. 3E, Mann-

Whitney; p=0.0443, additional data: fig. S6C-D).  

 

 

Kinase inhibitor target deconvolution 

To identify the specific CDK target responsible for these beneficial effects we used the kinobeads 

methodology, which is based on sepharose beads derivatized with a combination of promiscuous 



kinase inhibitors (38-40), to profile 11 compounds, which represent a range of activities in the 

nuclear foci assay. Target profiles were generated by adding each compound to K562 

erythroleukemia cell extract at a concentration of 2µM, followed by incubation with two variations 

of kinobeads and quantification of bead-bound proteins (38, 41) . The profiling results suggested 

that members of the CDK family are common targets of the most active compounds (table s3), 

consistent with the PKIS data. 

 

We sought to expand the target coverage within the CDK family by the immobilization on beads 

of two of the active compounds containing a suitable secondary amine; SNS-032 and AT7519 (fig. 

S7). Beads derivatized with either compound showed good coverage of the CDK family, including 

family members against which the PKIS collection was not profiled. For an in-depth 

chemoproteomics study, profiling inhibitor selectivity across the CDK family, we generated dose-

response competition-binding profiles for all active and one of the inactive compounds 

(PD0332991) in K562 cells or in A204 rhabdomyosarcoma cells (dataset S1). We also conducted 

a comparative whole proteome analysis to confirm that the K562, A204 and DM1 cell lines express 

the same kinases (dataset S1, dataset S2). All CDK/PCTK proteins identified by profiling were 

also identified in the cells used for the nuclear foci assay (fig. S8, dataset S1, dataset S2). The 

resulting dataset comprises IC50 curves for 12 CDK family kinases (fig. S9, table S4). To identify 

the most likely kinase target we plotted pIC50 values for kinobead binding against the pIC50 in the 

foci inhibition assay for each compound. A good correlation of kinase binding affinity with the 

inhibitory activity on foci was observed for CDK7, CDK9, and CDK12. The best correlation of 

kinase pIC50 values with inhibitory activity on foci was observed for CDK12. Dinaciclib was the 

most potent inhibitor against the CDK family, in particular against CDK12 (Fig. 4).   



 

CDK12 in DM1 pathogenesis 

To examine the potential involvement of CDK12 in DM1 pathogenesis, we assessed the 

endogenous amounts of this protein in vastus lateralis muscle biopsy samples from four patients 

with DM1 and four healthy volunteers using western blot. (Fig. 5A). There was an increase in 

CDK12 in DM1 biopsies versus those from healthy volunteers, with 48% more CDK12 protein 

detected in DM1 samples (t-test p=0.02, Fig. 5B).  

 

Next, we used immunohistochemistry to examine the location of CDK12 in DM1 fibroblasts. 

Consistent with previously published data from non-DM1 cells that shows CDK12 co-localization 

with SC35 speckles, we observed nuclear staining in granular structures in both DM1 and non-

DM cells (42). Previous work has also identified a localization of CUG repeat expansion foci with 

nuclear speckles (43). Quantification of the CDK12 granular structures in 400 cells showed that 

the number of granules was significantly elevated in DM1 cells, with an average number of 18.74 

(±3.88), compared to 12.07 (±2.27) in non-DM1 cells (p<0.0001, Fig. 5C). To understand further 

the relationship between CDK12 protein and repeat expansion foci and to confirm that specific 

inhibition of this protein was responsible for nuclear foci reduction, we used shRNA and siRNA 

to reduce CDK12 in DM1 cells. Following infection with lentiviruses (CrkRS shRNA (m) 

Lentiviral Particles, sc-44531-v) expressing three-five short hairpin RNAs (shRNAs) against 

CDK12 we observed a 56% reduction in the number of CDK12 granules and a 69% reduction in 

repeat expansion foci compared to scrambled shRNA treated cells (Fig. 5D-F, fig. S10). This was 

verified by siRNA knockdown of CDK12 and quantification by Western blot analysis (fig. S10). 

Conversely CDK12 overexpression with a full length open reading frame (ORF) clone resulted in 



increased numbers of nuclear foci in a dose dependent manner (One way ANOVA p=0.0017, Fig. 

5G).  

 

CDK12 is a known regulator of transcription, specifically involved in transcriptional elongation, 

rather than at the initiation of transcription (44). To understand the mechanism by which CDK12 

inhibition leads to nuclear foci reduction we tested the effect of CDK12 inhibition on repeat 

expansion transcription. For this we utilized a bi-directional inducible plasmid expressing eGFP 

in one direction and DMPK exons 10-15, containing 960 interrupted CTG repeats, in the other 

(45). This construct was transfected into mouse P19 cells in the presence or absence of the highly 

selective and potent CDK12 inhibitor, THZ531 (46) (Fig 5H, fig. S11). This compound was chosen 

for this analysis as, in contrast to dinaciclib, it is selective for CDK12 (46). Following doxycycline 

induction of the transgene, cells were harvested and RT-PCR and ddPCR analyses were conducted 

to establish the amounts of CUG 960 RNA and eGFP transcription. Transcript amounts were 

normalized to endogenous GAPDH. In untreated cells both transcripts accumulated at the same 

rate (fig. S12) whereas in THZ531-treated cells there was a clear reduction in the amount of CUG 

repeat expansion RNA following CDK12 inhibition compared to eGFP RNA (Fig. 5I, 5J). The 

amount of eGFP transcript did not show any differences in the presence or absence of CDK12 

activity, suggesting that the inhibition of CDK12 leads to a preferential reduction in transcription 

of the expanded repeat (Fig 5I, 5J). To assess if CDK12 inhibition leads to increased rates of 

transcript decline we halted transcript production from the plasmid by removal of doxycycline and 

monitored the transcripts over 24 hours. This showed a natural reduction of both the CUG repeat 

expansion and eGFP transcripts at a similar rate (Fig. 5K, 5L and fig S12). The differential profiles 

for transcript accumulation suggest that the effect of CDK12 inhibition on the repeat expansion 



transcript is specific at the level of transcript production, rather than a generalized effect on global 

transcription. To confirm this we conducted a nuclear run-on experiment to examine the 

transcription of wild-type and mutant transcript in untreated and THZ531-treated DM1 cells. This 

data supports the notion that in DM1 cells THZ531 inhibition affects transcription of the mutant 

transcript more than it affects the wild type transcript (t-test p=0.0017, Fig. 5M). 

 

Discussion  

The highly annotated PKIS collection provides an excellent resource for kinase inhibitor target 

deconvolution. We have employed this cheminformatic collection in conjunction with kinobead 

mass spectrometry to identify CDK12 as a cellular target for DM1 therapy. We utilized a 

phenotypic screen based on nuclear foci, a key molecular feature of this disease, as no clear 

molecular target was known and foci provide a visual biomarker of the condition. Our work has 

established a clear biological link between CDK12 and the molecular signature of DM1. CDK12 

is a transcription elongation-associated C-terminal repeat domain (CTD) kinase, which has been 

shown to regulate phosphorylation of serine 2 in the C-terminal domain of RNA Pol II, a step 

required for productive elongation of transcripts, rather than being involved in the initiation of 

transcription (44, 47). The S. cerevisiae gene CTK1, an orthologue of metazoan CDK12, is not an 

essential gene and reports suggest CDK12 is not part of the core transcriptional apparatus (42, 48). 

Assessment of cell essentiality in human cell lines showed that CDK12 is essential in only one 

(KBM7 haploid cells) out of the 4 cell lines tested (KBM7, K562, Rao and Jiyoye) (49). Expression 

analysis showed that only 2.67% of genes, producing primarily long and complex transcripts, had 

altered amounts following CDK12 depletion, thereby  providing a potential link between CDK12 

and transcription of the DM1 expanded repeats (50). As CDK12 is not required at the start of 



transcription and its inhibition does not result in global transcriptional arrest, alongside our data 

that shows continuous treatment is not necessary for beneficial effects, it may be suitable as a 

target for long term DM1 treatment. 

Our results show that genetic knockdown of CDK12, or treatment with inhibitor, leads to reduced 

numbers of nuclear foci, which could be due to two possible mechanisms: reduced production of 

the mutant transcripts or their increased degradation. Using digital droplet PCR we show that 

selective inhibition of CDK12 results in a reduction in mutant RNA transcription, which points to 

a requirement for CDK12 to produce repeat expansion transcripts. Other than RNA Pol II, the 

targets of CDK12 phosphorylation are largely unknown, particularly in muscle, although it has 

been shown to suppress genes involved in supporting metabolic functions during  stress 

and Reactive Oxygen Species (ROS)- induced gene activation (51). 

Here we identify CDK12 as a druggable target for DM1. The development of specific CDK12 

inhibitor molecules has been achieved and some of the molecules presented here have been the 

subject of clinical trials in other indications (24-28). Our data suggests that a pulsatile treatment 

resulting in a temporary transcriptional block in both cell lines and in vivo leads to beneficial 

downstream effects reducing nuclear foci, improving key splicing profiles and functional 

improvements in myotonia. The functional benefit observed in the HSALR mouse model 

demonstrates that the effects of CDK12 inhibition translate from cell-based assays to an in vivo 

model and provide evidence for the application of CDK12 inhibitors in DM1 therapy.   

 

Further development of more selective CDK12 inhibitors will be required to fully understand the 

functional benefit of inhibiting this target for DM1 therapy. Furthermore the HSALR mouse does 

have limitations, despite being the best studied DM1 model, in that expression of the repeat 



expansion transcript is driven from the skeletal actin promoter so these mice do not recapitulate 

all features of the disorder. The model has a repeat number of 250 CTG repeats, which is limited 

in size compared to what is seen in DM1 patients. Testing the effect of small molecules on other 

models should help understand the efficacy of CDK12 inhibition in the brain, for example. Future 

work will be required to refine the targeting of this protein in DM1, and the compounds presented 

here will act as valuable starting points and tool compounds for future drug development 

opportunities.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Materials and Methods 

Study Design 

The objective of this study was to identify the specific protein kinase responsible for previously 

observed beneficial effects in DM1 cell lines treated with kinase inhibitors. The design of the study 

was based on comparative analysis of compound activities in a cell-based screening assay with 

biochemical activity in in vitro assays. The PKIS collection was screened and the target refined 

using kinobead mass spectrometry. Following target identification, we tested key compounds in a 

DM1 in vivo model to establish the translational benefit of this kinase on key molecular events, 

transgene amounts and mis-spliced transcripts, and a key physiological output, myotonia. 

All cell-based screening assays were unblinded but performed in triplicate with appropriate 

controls and analyzed with an automated process. For in vivo experiments, mice were randomized 

to treatment groups and all tests were carried out and analyzed in a blinded manner. Power 

calculations established treatment groups for EMG of 9 mice per group. (Gpower v3.1, for a 

Wilcoxon-Mann-Whitney test for a 50% reduction in scores, based on variance from (52)  Alpha 

= 0.05, power = 0.90, d=1.5). All experiments were carried out in three biological replicates, unless 

stated otherwise in the figure legend. Experimental details and the statistical tests used are listed 

in each figure legend. All data are presented and includes all outliers. Raw data and the 

corresponding statistical test details for the figures are listed in Supplementary data file S3. 

 

 

Sample Use 



 The human biological samples were sourced ethically and their research use in accord with the 

terms of the informed consent. All animal studies were ethically reviewed and carried out in 

accordance with Animals (Scientific Procedures) Act 1986 and the GSK Policy on the Care, 

Welfare and Treatment of Animals. All experiments were performed in accordance with relevant 

guidelines and regulations of the Animal Procedures Act under license number PPL3003449 

(Nottingham), issued 2016-12-05, and granted by The Home Office. All studies were reviewed 

and conducted in accordance with the Institutional Animal Care and Use Committee by the ethical 

review process at the institution where the work was performed.  

 

Cell Culture 

Fibroblast cells were grown in Dulbecco’s Modified Eagles Medium (DMEM) with penicillin and 

streptomycin, and 10% fetal calf serum (FCS) (Sigma). KB Telo MyoD cell line contains 400 CTG 

repeats, LR Telo MyoD cell line contains 1200 CTG repeats, HK Telo MyoD cell line contains 

1600 CTG repeats. 

 

In situ hybridization protocol 

Cells were exposed to compounds for 24hrs after which in situ hybridization was performed to 

identify foci using a Cy3 labelled (CAG)10 probe. Plates were analyzed on a Molecular Devices 

Micro High Content Imaging system, with nine fields imaged per well to give approximately 100 

cells per well, per compound treatment. The nuclear area was identified by Hoechst stain and the 

number, size and intensity of foci were determined by scoring adjacent pixels that were 80 

grayscales or more above background.  

 



Preparation of cell extracts 

K562 and A204 cells were obtained from the American Type Culture Collection (ATCC) and 

cultured in Roswell Park Memorial Institute (RPMI) medium containing 10% FCS. Cells were 

expanded to 1.5 × 106 cells/ml. A204 cells were cultured in McCoy´s 5A medium containing 15% 

FCS. Cells were expanded to 100% confluency. Cells were harvested and subjected to 3 washes 

with ice-cold phosphate buffered saline (PBS). Aliquots were snap frozen in liquid nitrogen and 

stored at −80 °C. Cell extracts were prepared as described (53).  

 
Chemoproteomics 

Affinity profiling was performed as described previously (38, 53). Sepharose beads were 

derivatized with SNS-032 or AT7519 at a concentration of 1 mM to generate a bead matrix, or 

Kinobeads were used as a matrix for profiling. Beads (35 μl in case of Kinobeads or 5 μl in case 

of SNS-032) were washed and equilibrated in lysis buffer at 4 °C for 1 h with 1 ml (5 mg) K562 

cell extract, which was pre-incubated with compound or buffer. Beads were transferred to 

disposable columns (MoBiTec), washed extensively with lysis buffer and eluted with sodium 

dodecyl sulphate (SDS) sample buffer. Proteins were alkylated, separated on 4–12 % NuPAGE 

(Invitrogen), stained with colloidal Coomassie, and quantified by isobaric mass tagging and liquid 

chromatography tandem mass spectrometry (LC-MS/MS).  

 

ddPCR 

Primers and probes used in ddPCR assays were manually designed and synthetized by Integrated 

DNA Technologies, Inc. (IDT). Sequences of primers and probes are listed in Tables S5 and S6. 

All reactions were prepared using BioRad reagents and assays performed with BioRad equipment. 

After reverse transcription, ddPCR reaction solution was prepared to a final volume of 25 μl 



containing 1x ddPCR supermix for probes, 250 nM gene specific primers, 125 nM probes (for ex-

ON and ex-OFF), and cDNA (diluted from 20x to 40x). No template control and no reverse 

transcriptase control (RT-) were included in each ddPCR run to detect possible contaminations. 

The ddPCR reactions were loaded to a DG8 cartridge along with 70 μl of droplet generation oil to 

form droplets in a QX100 droplet generator. 40 μl of partitioned emulsion containing droplets was 

then slowly transferred to 96-Well twin Semi-Skirted PCR Plate (Eppendorf). After heat-sealing 

with foil, the plate containing the droplets was PCR cycled to the final point under conditions at 

95°C, 10 min, 95°C 30 s and 60°C for 60 s for 40 cycles, 98°C for 10 min, then held at 4°C (for 

details about annealing temperature for each gene, please see Table S6). Following PCR, samples 

were read on a droplet reader which automatically reads the droplets from each well of the plate. 

Finally, data were analyzed using QuantaSoft software to determine the number of positive 

droplets. A manual selection of “+/-,” “-/+,” “+/+” and “-/-” counts was done using the Lasso 

function in the 2-D plots. The counts were then used by the software to calculate the copy numbers 

of FAM-positive droplets, HEX-positive, FAM- and HEX-double positive and negative droplets 

in the four quadrants. For each ddPCR assay serial dilutions of cDNA were used to obtain the 

lowest number of double-positive droplets; annealing temperature gradients were used to optimize 

PCR conditions and to determine the best separation between negative and positive reactions..  

 

Assay for Repeat Expansion Transcripts 

Reverse transcription was performed using 1 Pg total RNA from compound-treated and untreated 

cells. PCR was carried out using 1/20 of the synthesized cDNA with primers N11, 5’-

CACTGTCGGACATTCGGGAAGGTGC and 133, 

5’GCTTGCACGTGTGGCTCAAGCAGCTG. For Genescan analysis primer N11 was labelled 



with FAM. Amplification was performed with a Tm of 580C. The PCR product was subsequently 

heated to 950C for 2 minutes followed by cooling to 40C. For BpmI restriction digestion analysis 

of DMPK PCR products, 8 Pl of PCR mixture was digested overnight with restriction enzyme 

BpmI (NEB) in a total reaction volume of 20 Pl at 370C. The final products were analyzed by 

electrophoresis at 90V with 3% agarose gels and the density of bands quantified using ImageJ 

software or by fragment analysis on an ABI377 sequencer followed by Genescan quantification.  

 

Western Blots and detection 

Western blotting was performed using a commercial NuPage system (Invitrogen) according to the 

manufacturer’s instructions. The primary antibodies used in this study were human CDK12 

(Abcam, 1:400 dilution) and human α-tubulin (obtained from Santa Cruz and used at a dilution of 

1:500). Anti-mouse IgG-horseradish peroxidise (HRP) was used as the secondary antibody. 

ImageJ software was used for the quantification of bands on western blots. 

 

Immunohistochemistry studies 

Cells were grown on coverslips for 24 hours before being fixed and permeabilized with 50:50 ice 

cold acetone:methanol. Cells were blocked in 5% BSA with 5% sheep serum. Anti-CDK12 

antibody (Abcam) was used at 1:1000 dilution at 4oC overnight followed by staining with 

Alexafluor-488 anti-mouse secondary antibody (1:500). Coverslips were mounted on slides using 

Vectorshield Mounting Media with DAPI. Images were acquired using a Zeiss 710 confocal 

microscope and analyzed using LSM image browser.  

 

CDK12 shRNA knockdown and overexpression 



Cells were plated at 40% confluency the day before infection in 96 well format. Lentiviral titre 

(SantaCruz sc-44343-V) was added at a multiplicity of infection (MOI) of 10 in 5Pg/ml polybrene 

diluted in DMEM media. Cells were spin inoculated by centrifugation at 2500rpm for 30 minutes. 

Following 24 hours incubation the virus was removed and replaced with fresh DMEM media. The 

infection was repeated on day 4 and cells were collected on day 7 for immunohistochemistry and 

in situ hybridization analysis. For overexpression analysis cells were electroporated on day 1 with 

CDK12 full length open reading frame clone; BC150265 (GeneCopeoeia) and in situ hybridization 

conducted 48 hours later. 

 

Transgenic mice 

Homozygous human skeletal actin long repeat (HSALR) transgenic mice were previously described 

(30). Mice are routinely genotyped to confirm the presence of the CTG repeat expansion.  HSALR 

mice, aged 8-12 weeks, housed in standard conditions, in groups of 4 in individual ventilated cages 

with standard laboratory food were used for EMG assessments (n = 12 males per group). They 

were randomly assigned to receive dinaciclib or vehicle alone (200 mg/ml 2-hydroxypropyl-beta-

cyclodextrin, Sigma-Aldrich) by intraperitoneal injection at a 20mg/kg dose. Mice were dosed 

every other day for 4 injections and EMG was performed as previously described (54) by blinded 

examiner. Two mice were excluded from the treatment group due to adverse effects and 3 EMG 

data sets were excluded due to electrical interference. 1 day after the final injection mice were 

euthanized, muscle tissue was snap frozen and used for analysis of HSA transgene amounts and 

alternative splicing (8 samples were chosen at random from each group).  

 

In situ hybridization of HSALR mouse muscle samples 



8 female HSALR(12-17 weeks of age) were dosed 3 times with 20mg/kg of dinaciclib or vehicle 

alone (200 mg/ml 2-hydroxypropyl-beta-cyclodextrin, Sigma-Aldrich) by intraperitoneal injection 

over 24hrs. Mice were sacrificed 2 hrs after the final injection to allow assessment of dinaciclib 

on foci dissipation, in snap frozen gastrocnemius muscles samples. 12Pm cryostat sections were 

thawed onto a Superfrost+ slide. Slides were fixed in 2% paraformaldehyde (PFA) in PBS for 30 

minutes at 4oC. After 2 brief washes in PBS at room temperature slides were permeabilized in 2% 

acetone in PBS for 5 minutes at 4oC, followed by 2 brief washes in PBS. Prehybridization 

(2xSSC/30% formamide) was conducted at room temperature before hybridization at 42oC 

(2xSSC, 30% formamide, BSA, vanadate, 1mg/ml yeast tRNA, 500ng/ml Cy3-labelled (CAG)10 

probe) for 2 hours. Post-hybridization washes were in 2xSSC/30% formamide at 45oC for 30 

minutes followed by 2xSSC at room temperatures for 5x5 minutes. Slides were incubated in PBS 

with 5mM MgCl2 for 15 minutes at room temperature. After 2 brief washes in PBS/5mM MgCl2 

the stained sections were embedded in Vectashield and stored at 4oC. 

 

Image Analysis 

Microscopy was performed on a Zeiss 200M widefield fluorescence microscope using the DAPI 

filter for Hoechst stained nuclei and the TRITC filters for the CUG repeats detected with the Cy3 

probe. Images were captured from 8 evenly spread locations with 20x objective as 16-bit Z stacks 

with 0.7Pm step size over the full thickness of the sections for both the DAPI (nuclei) and the 

TRITC (CUG repeats) channel. Maximal (MAX) projection images were generated for both 

channels and nuclei selected using an IJ-Isodata threshold. Individual nuclei were segmented using 

rolling circle background subtraction and generated a binary mask to define the DAPI files. 

Background signal on the TRITC channel were subtracted from the signal generated using the 



Triangle method. The two channels were merged to allow quantification of the relative amount of 

CAG probe signal per nuclei.  

 

Assay to quantify transcription rates 

Mouse P19 cells were treated with THZ531 at 300nM concentration for 24 hours prior to 

transfection (THZ531 was a gift from Nathanael Gray). Treated and untreated cells were 

transfected with pBItetDT960GFP (1.5Pg) and pTet-One inducer plasmid (1Pg) using Polyfect 

transfection reagent and transcription was induced with the addition of doxycycline to the media 

at 1Pg/ml (pBItetDT960GFP was a gift from Thomas Cooper (Addgene plasmid # 80419)). 24 

hours after induction cells were harvested and total RNA extracted. cDNA was synthesized using 

SuperScript III and processed by RT-PCR and ddPCR. 

 

 

Nuclear Run-on Assay 

Nuclear Run-on analysis was conducted following the protocol described in Gardini (2017) (55). 

KB Telo MyoD (DM1 fibroblasts) were used and transcript analysis was carried out using ddPCR, 

as described above.  

 

Statistical Analysis 

All raw data presented in this manuscript was assessed for normality using Shapiro-Wilk tests (or 

residuals in the case of analysis of variance (ANOVA) tests). Normally distributed data was tested 

for significance using two-tailed t tests, one or 2-way ANOVAs followed by Sidak’s, Dunnet’s or 

Tukey multiple comparison tests. Non-normal data was tested using a Mann Whitney test or Chi 



squared analysis. P values were assumed to be significant if less than 0.05. Bonferroni correction 

was applied to the data in Figure 3D due to multiple testing which reduced the significant p value 

threshold to <0.005 for this dataset. Statistical tests were carried out using Graphpad Prism version 

8. 
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Figure Legends 

Fig. 1. Screening of the PKIS compound collection using the nuclear foci assay  

 (A-F)  Graphs show percentage of nuclear foci relative to DMSO-treated cells across a dilution 

series. Average foci number in DMSO-treated cells=4.09; SD=0.78. All six compounds share a 

pyrazolo[1,5b]pyridazine core structure (A) GW778894X (B) GW779439X (C) GW780056X (D) 

GW810576X (E) GW806290X (F) GW801372X (G) Loading plot of 2-component partial least 

squares model. Kinase activities correlating with the nuclear foci assay are labelled, with cyclin-

dependent kinases highlighted in red. (H) Nuclear foci quantification in DM1 fibroblast cells 

following dinaciclib treatment. (I) Nuclear foci quantification in DM1 fibroblast cells following  

SNS-032 treatment.  

 

Fig. 2. Inhibitor treatment as a therapeutic for DM1 

(A-D) Histograms show percentage of cells in the population with 0, <2, <5 and ≥5 foci per nucleus 

(A) Untreated DM1 cells. (B) DM1 cells treated with SNS-032 for 2 hours. (C) DM1 cells treated 

with SNS-032 for 2 hours with 48 hours recovery in growth media. (D) DM1 cells treated with 

SNS-032 for 2 hours with 72 hours recovery in growth media. (Chi squared test, p<0.0001) (E) 

Ethidium bromide stained gel showing RT-PCR products from nuclear (N) and cytoplasmic (C) 

RNA fractions following amplification and BpmI digest of a fragment of DMPK. GAPDH is used 

as a loading control. (F) Histograms showing the relative proportions of nuclear mutant DMPK 

transcripts compared to wild type DMPK transcripts. The BpmI polymorphism was used to 

distinguish copy number of mutant and wild type transcripts of DMPK.  (2 way ANOVA, Sidak 

post-hoc: treatment vs control for wild type transcript: ns. treatment vs control for mutant 

transcript: p<00001, N=3-4)  (G-H) ddPCR on total RNA from KB Telo MyoD (N=4-5) (G) KB 



with dinaciclib (2 way ANOVA: Sidak post-hoc: Wildtype transcript; treatment vs DMSO: ns. 

Mutant transcript; treatment vs DMSO, p <0.0001.) (H) KB with SNS-032 (Sidak post-hoc: 

Wildtype transcript; treatment vs DMSO: ns. Mutant transcript; treatment vs DMSO, p = 0.043) 

and (I-J) HK Telo MyoD (N=5). (I) HK with dinaciclib (2 way ANOVA: Sidak post-hoc: 

Wildtype transcript; treatment vs DMSO: ns. Mutant transcript; treatment vs DMSO, p <0.0001.) 

(J) HK with SNS-032 (Sidak post-hoc: Wildtype transcript;  treatment vs DMSO, p<0.0015. 

Mutant transcript; treatment vs DMSO, p <0.0001.) Cells were treated with 1PM dinaciclib and 

0.15PM SNS-032 for 24 hours. Bars show mean ± SD. p values of <0.05 were considered to be 

statistically significant.  

 

Fig. 3. Inhibitor treatment in a DM1 mouse model 

(A) Example images showing sections of gastrocnemius muscle from vehicle treated and 

dinaciclib HSALR treated mice following in situ hybridization to detect nuclear foci. (B) Nuclear 

foci fluorescent signal intensity in vehicle and dinaciclib treated HSALR mice (Two tailed t-test 

p=0.0052, N=4 animals per treatment group) (C) HSA transgene amount was quantified by ddPCR 

following vehicle and dinaciclib treatments (Two-tailed t-test, p<0.0001, 8 animals per treatment 

group) (D) 9 key splice isoforms were analyzed in gastrocnemius muscle samples from vehicle 

and dinaciclib treated mice (two tailed student t test  and Mann-Whitney testing for non-normal 

data; Bonferroni correction applied and p values of <0.005 were considered significant)  (E) 

Myotonia grade scores in gastrocnemius muscle from HSALR mice following vehicle and 

dinaciclib compound treatment (n=9-10 per treatment group; Mann-Whitney; p=0.0443, p values 

of  <0.05 were considered significant).  Myotonia was performed by blinded examiner and graded 

as follows: 0 indicates no myotonia; 1, occasional myotonic discharge in less than 50% of electrode 



insertions; 2, myotonic discharge in greater than 50% of insertions; 3, myotonic discharge with 

nearly every insertion.  Wild-type mice of the same inbred strain background (FVB) do not show 

myotonia.  Bars show mean ± SD. 

 

Fig. 4. Chemoproteomics target deconvolution 

IC50 values were generated by affinity capturing of kinases (A) CDK1 (B) CDK2 (C) CDK4 (D) 

CDK5 (E) CDK6 (F) CDK7 (G) CDK9 (H) CDK10 (I) CDK12 (J) CDK13 (K) PCTK1 (L) 

PCTK2 from K562 or A204 cell extract using beads derivatized with SNS-032, in the presence of 

different concentrations of free competing compound or vehicle (DMSO).  pIC50 values are plotted 

against the pIC50 in the foci inhibition assay for each of the 11 compounds tested (dinaciclib, 

GW780056, SNS-032, AT7519, 488, 732, AG-12275, PD0332991, 155, GW805758, GW781673). 

r: Pearson correlation coefficient.  

 

Fig. 5. CDK12 in DM1 

(A) Western blot of protein from vastus lateralis muscle biopsy samples in non-DM1 and DM1 

patients for CDK12. Blots are normalized to D-tubulin. (B) Histogram to quantify amounts of 

CDK12 protein normalized to D-tubulin (two tailed t-test, p=0.02, N=4). (C) Quantification of the 

number of CDK12 nuclear granules in DM1 and non-DM1 fibroblast cells (two tailed t-test, 

p<0.0001). (D) CDK12 protein granules (green) and CUG repeat expansion RNA foci (red) 

following shRNA treatment with scrambled control and CDK12 specific shRNAs. White 

bars=10Pm (E) CDK12 granule number following shRNA treatment (two tailed t-test, p<0.0001) 

(F) CUG repeat expansion foci number following CDK12 shRNA treatment (two tailed t-test 

p<0.0001) Bars show mean ± SD. (G) CUG repeat expansion foci number following 



overexpression of CDK12 full length open reading frame clone. (One way ANOVA, p=0.0017, 

N=6)  (H) Experimental design for the inducible bi-directional plasmid expression 960 CTG 

repeats (I) Ethidium bromide stained gel showing CUG repeat RNA and eGFP RNA in the 

presence or absence of THZ531 inhibitor (J) ddPCR quantitative analysis showing transcription 

of 960 CUG repeat RNA and eGFP RNA with and without THZ531 treatment, normalized to 

endogenous GAPDH (2 way ANOVA: Sidak post-hoc: CUG 960 transcript -/+ THZ531, 

p=0.0038; eGFP transcript -/+ THZ531: ns) (K) Ethidium bromide stained gel showing CUG 

repeat RNA and eGFP RNA in the presence or absence of THZ531 inhibitor 24hrs after the 

removal of doxycycline following induction for 24hrs. (L) ddPCR quantitative analysis 

quantifying both CUG 960 and eGFP transcripts following removal of doxycycline, in the presence 

or absence of THZ531, compared to +DOX samples (normalized to endogenous GAPDH) 

Corresponding statistical values listed in Suppl. Dataset S3. (M) Nuclear run-on experiment in 

DM1 fibroblast cells quantifying wild type and mutant DMPK transcripts following CDK12 

inhibition by THZ531 (two tailed t-test on mutant transcript, p=0.0017, N=4) 
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Figure 5 



Supplementary Methods 

Peptide and protein identification and quantification 

Sample preparation and labeling with tandem mass tag (TMT) isobaric mass tags was performed 

essentially as described (53). For mass spectrometric analyses samples were dried in vacuo and 

resuspended in 0.1% formic acid in water and aliquots of the sample were injected into a nano-

liquid chromatography (nano-LC) system coupled to a mass spectrometer: Eksigent 1D+ coupled 

to LTQ-OrbitrapXL mass spectrometer, Waters nanoAcquity coupled to Orbitrap Elite mass 

spectrometer, or Ultimate 3000 RSLC nano coupled to Q Exactive mass spectrometer (Thermo 

Fisher Scientific). Peptides were separated on custom 50 cm × 75 μM (internal diameter) reversed-

phase columns (Reprosil) at 40 °C. Gradient elution was performed from 3% acetonitrile to 40% 

acetonitrile in 0.1% formic acid over 120–270min. LTQ-Orbitrap XL was operated with Xcalibur 

2.0, Orbitrap Elite and Q Exactive instruments were operated with Xcalibur 2.2 software. Intact 

peptides were detected in the LTQ-OrbitrapXL/Orbitrap Elite at 30.000 resolution (measured at 

m/z = 400), in the Q Exactive at 70.000 resolution (m/z = 200). Internal calibration was performed 

with LTQ-OrbitrapXL using the ion signal from (Si(CH3)2O)6H+ at m/z 445.120025. Data-

dependent tandem mass spectra were generated for up to ten peptide precursors (LTQ-

OrbitrapXL/Orbitrap Elite six precursor, Q Exactive ten) using a combined collision-induced 

dissociation/higher-energy collisional dissociation (CID/HCD) (LTQ-Orbitrap XL) approach or 

using HCD only (Orbitrap Elite/Q Exactive) at a resolution of 15.000/17.500. For CID up to 5,000 

ions (LTQ-Orbitrap XL) were accumulated in the ion trap (maximum ion accumulation time = 150 

msec), for HCD up to 50.000 ions (LTQ-OrbitrapXL, maximum ion accumulation time = 350 

msec), up to 30.000 ions (Orbitrap Elite, maximum ion accumulation time = 150 msec) and 1e6 

ions (Q Exactive, maximum ion accumulation time = 60 msec) were accumulated in the HCD cell. 



Mascot 2.3 and 2.4 (Matrix Science) was used for protein identification using 10 p.p.m. mass 

tolerance for peptide precursors and 0.6 Da (CID) or 20 mDa (HCD) tolerance for fragment ions. 

Carbamidomethylation of cysteine residues and TMT modification of lysine residues were set as 

fixed modifications and methionine oxidation, N-terminal acetylation of proteins and TMT 

modification of peptide N-termini were set as variable modifications. The search database 

consisted of a customized version of the International Protein Index database combined with a 

decoy version of this database created using a script supplied by Matrix Science. Criteria for 

protein quantification were: a minimum of 2 sequence assignments matching to unique peptides 

was required (false discovery rate (FDR) for quantified proteins <<0.1 %), Mascot ion score > 10, 

signal to background ratio of the precursor ion > 4, signal to interference > 0.5 (56). Reporter ion 

intensities were multiplied with the ion accumulation time yielding an area value proportional to 

the number of reporter ions present in the mass analyzer.  Peptide fold changes were corrected for 

isotope purity as described and adjusted for interference caused by co-eluting nearly isobaric peaks 

as estimated by the signal-to-interference measure (57).  

siRNA synthesis 

The siRNA oligonucleotides were synthesized on an ABI 394 DNA/RNA synthesizer using a 

standard 0.2 μM scale protocol, but with a 10 min coupling time for each nucleotide addition step. 

Columns (SynBaseTM controlled pore glass (CPG) 1000Å, RNA: 0.2 μmol), standard 2'-O tert-

butyldimethylsilyl (TBDMS) RNA-phosphoramidites and reagents for the synthesizer were 

purchased from Link Technologies Ltd., MeNH2 solution (33 wt.% in ethanol) was obtained from 

Fluka, NEt3•3HF, N-methylpyrrolidinone (NMP) were purchased from Aldrich, illustra Nap-10 

columns were obtained from GE Healthcare Europe GmbH. Dichloromethane and acetonitrile 

were freshly distilled from CaH2 before use on the synthesizer. 



CDK12 siRNA knockdown  

Scrambled: 5’ ACGUGACACGUUCGGAGAAUU and CDK12: 5’ 

CGAAAUAAUGAUGUUGGCACCAGUU siRNA sequences. Cells were electroporated on day 

1 and day 4 with 800nM of scrambled or CDK12 siRNA using the Amaxa Nucleofector system. 

Cells were collected on day 7 for immunohistochemistry, in situ hybridisation and western blot 

analysis. 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. S1: Chemical structures of compounds used in this study 

The chemical structures of all compounds used in the experiments of this study are shown above 

with references to the associated manuscripts for each compound. 

 

 

 



 

 

Fig. S2: Screening the PKIS collection identifies the CMGC kinase family 

For each kinase target identified by the partial least squares analysis the percentage inhibition is 

plotted. (A) CDK1 (B) CDK2/cyclin A (C) CDK3 (D) CDK4 (E) CDK5 (F) CDK6 (G) ARK5 



(H) CLK2 (I) DYRK1A (J) DYRK1B (K) FMS (L) GSK3D (M) HIPK1 (N) HIPK4 (O) KIT. 

The compounds are categorized into the six identified active nuclear foci reducing compounds and 

the remaining inactive compounds from the PKIS collection.  

 

 

 

 

 

 

 

 

 



 

 

Fig. S3: CDK family inhibitor screen 

Graphs show the percentage of nuclear foci relative to DMSO treated cells. DM1 fibroblast cells 

were treated with additional commercially available small molecule CDK inhibitors across 

adilution curve. (A) SNS-032 (B) AT7519 (C) Dinaciclib (D) 488 (E) 732 (F) AG-12286 (G) AG-

12275 (H) PD0332991 (I) Olomoucine (J) R-roscovitine. 

 

 

 



 

 

 

Fig. S4: Selectivity of the probes designed to recognize the SNP within DMPK   

(A) Probe design: ZEN-Iowa Black dual-quencher probes used in DMPK copy number 

quantification in cDNA. The rs527221 SNP in exon 10 of DMPK (known as BpmI polymorphism) 

was used to distinguish normal-size and mutant alleles. Position of primers (F and R) is shown by 

arrows and probes are displayed in their binding sites. For details about ddPCR probes and primers 

used in the analysis, please see Tables S5 and S6. (B and C) 1-D (panel B) and 2-D (panel C) 

amplitude plots: (B) 1-D amplitude plot of FAM- and HEX-labeled PCR products for normal and 

mutant DMPK mRNA in a human DM1 sample. FAM-positive and HEX-positive droplets are 

shown in blue and green, respectively, whereas negative droplets are shown in grey. (C) 2-D 

amplitude plot. Simultaneous utilization of two competitive probes (well F02). FAM-labelled 

probe only included in ddPCR reaction for the BpmI SNP in exon 10 of DMPK (well G02). HEX-

labelled probe only included in ddPCR reaction for the BpmI SNP in exon 10 of DMPK.  The 



selectivity of the BpmI SNP-recognizing probes was confirmed with alternative sets of probes with 

reversal of the fluorophores in their 5’-end (for more details, please see reference (33)).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. S5: ddPCR used in aberrant splicing analysis  

Probe design: An alternative exon inclusion probe (FAM-labeled) and alternative exon exclusion 

probe (HEX-labeled) used in alternative splicing assays; the probes have ZEN-Iowa Black as the 

dual-quencher. An alternative exon (exB) is indicated in red, and it’s flanking exons (exA and exC) 

in blue and green. Location of primers (F and R) are shown by arrows and ZEN probes are 

displayed in their binding exons. For details about ddPCR probes and primers used in aberrant 

splicing analysis, please see Tables S5 and S6. 



 

Fig. S6: HSALR muscle pathology and EMG analysis following dinaciclib treatment 

(A) Laminin and hoescht stain to assess centralized nuclei in muscle fibres of vehicle control 

animals, compared to  dinaciclib treated mice. (B) Average number of centralized nuclei per fibre 

in gastrocnemius muscle samples from vehicle and dinaciclib treated mice (t-test, p=0.0162).  (C) 

Combined myotonia grade scores in quadriceps, gastrocnemius and paraspinal muscles from 

HSALR mice following vehicle and dinaciclib treatment (20mg/kg dose, 12 injections, mixed 

gender animals n=6 per treatment group, t-test p=0.0021). Myotonia was assessed by a blinded 

examiner and graded as follows: 0 indicates no myotonia; 1, occasional myotonic discharge in less 

than 50% of electrode insertions; 2, myotonic discharge in greater than 50% of insertions; 3, 

myotonic discharge with nearly every insertion. Wild type mice of the same inbred strain 



background (FVB) do not show myotonia. (D) Myotonia grades by muscle type in dinaciclib and 

vehicle treated HSALR mice. (Bars show mean ±SD, p values calculated by t-tests) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. S7: Comparison of protein binding profiles for immobilized inhibitors SNS-032 and 

AT7519  

Kinase selectivity profile of SNS-032 and AT7519: SNS-032 and AT7519 were immobilized to a 

bead-matrix and also used for competition. The figure shows all protein kinases affected by SNS-

032 and AT7519 in a competition binding assay (no bar, protein was not identified; maximum 

compound concentration analyzed was 20 μM). 

 

 

 

 

 



 



 

Fig. S8: CDK family member proteins identified by whole proteome analysis of DM1 

fibroblasts 

The table shows all CDK family members identified by whole proteome expression profiling of 

DM1 fibroblasts. To analyze the proteins in the extract by LC-MS/MS, a tryptic digest was 

performed. The identified peptides are indicated in red in the protein sequences. 



 

 

 

Fig. S9: Dose-response competition-binding curves for different compound/target 

combinations 

An affinity matrix was generated by immobilization of SNS-032 to sepharose beads and affinity 

capturing was performed from (A-H, M-P) K562- or (I-L)  A204 cell extract in the presence of 

vehicle (DMSO) or different concentrations of inhibitor as indicated. (A-D) GW780056 (E-H) 488 

(I-L) 732 (M-P) AG12275.  IC50 concentration and inflication points of the dose-response 

competition curves are indicated by dotted lines. 



 

 

 

Fig. S10: CDK12 protein knockdown by siRNA and shRNA 

(A) Immunohistochemistry of CDK12 with scrambled shRNA and CDK12-specific shRNA 

treatments. (B) Quantification of granule number with CDK12 shRNAs (t-test, p<0.001). (C) In 

situ hybridisation detecting nuclear foci following treatment with scrambled shRNA and CDK12-

specific shRNA (D) Nuclear foci quantification following CDK12 shRNA treatment (t-test, 

p<0.001). (E) The distribution of cells containing 0-5+ foci were quantified for the cell population. 

(F) Immunohistochemistry of CDK12 with scrambled siRNA and CDK12-specific siRNA 

treatments. (G) Quantification of granule number with CDK12 siRNA (t-test, p<0.001). (H-I) 



Western blot analysis shows the amount of CDK12 protein following CDK12 siRNA treatment. 

(J) In situ hybridisation detecting nuclear foci following treatment with scrambled siRNA and 

CDK12-specific siRNA. (K) Nuclear foci following CDK12 siRNA treatment (t-test, p<0.01). (L) 

The distribution of cells containing 0-5+ foci were quantified for the cell population.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. S11: THZ531 foci removal in DM1 fibroblast cells 

12 point dilution of THZ531 in KB Telo MyoD cells compared to DMSO treatment. 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. S12: Dynamics of the accumulation and degradation of CUG960 and eGFP transcripts 

ddPCR analysis of RNA extracted from cells transfected with pBItet-DT960GFP shows the rate 

of accumulation and degradation (A) following induction with doxycycline (B) following 

removal of doxycycline. 

 

 

 

 

 

 

 

 

 



 

 

 

 pIC50 value 
Compound KB Telo MyoD LR Telo MyoD 

GW778894X 5.6 4.9 
GW779439X 5.3 6.3 
GW780056X 6.1 6.3 
GW801372X 5.0 5.5 
GW806290X 4.8 6.2 
GW810576X 5.3 6.3 

 

Table S1: pIC50 values in the nuclear foci assay of six PKIS hit compounds in two DM1 

cell lines 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

CDK1/ 
cyclin B 

CDK2/ 
cyclin A 

CDK3/ 
cyclin E 

CDK4/ 
cyclinD3 

CDK5/ 
p35 

CDK6/ 
cyclin D3 

CDK7/ 
cyclin H 

CDK8/ 
cyclin C 

CDK9/ 
cyclin T 

Reference 

Nuclear Foci Active           
Dinaciclib 72 2  127 45  170  178 65 

AT7519 210 47 360 100 13 170 2400  <10 66 

SNS-032 (BMS-387032) 480 38  925 340  62  4 67 

488  450  38      62 

AG-12275 325 220  3.3      68 

AG-12286 2.2 5.7  13      68 

732  120  80      62 

           

Nuclear Foci Inactive           

PD0332991    9  15   400 69, 70 

Olomoucine  7000   3000   94000 9100 71, 72 

R-roscovitine 2690 700  1421 160  490   71, 73 

 

Table. S2: IC50 values (nM) of previously reported CDK inhibitors 

 

 

 

 

 

 

 

 

 

 



 

Compound 
Name  D

in
ac

ic
lib
 

G
W

78
00

56
 

 S
N

S-
03

2 

A
T7

51
9 

   
48

8 

   
73

2 

 A
G

-1
22

75
 

 P
D

03
32

99
1 

   
15

5 

G
W

80
57

58
 

G
W

78
16

73
 

pIC50 foci 

assay 8.7 6.3 6.1 6 5.3 5 4.5 <4  <4  <4 <4 
AAK1 1.05 0.17 0.95 0.96 0.09 0.45 0.97 0.76 0.1 0.84 0.89 
ACVR1 0.99 0.37 0.97 0.97 0.32 0.84 0.98 1.05 0.72 0.94 1.03 
AURKA 1.03 0.8 0.88 0.97 0.92 0.91 0.97 0.99 0.5 0.86 0.98 
AURKB 0.99 0.27 0.89 0.98 0.92 0.75 0.94 0.82 0.79 1.02 0.98 
BMP2K 1.05 0.28 0.96 0.98 0.14 0.81 1.01 0.79 0.16 0.92 0.92 
CAMKK2 0.82 0.6 0.78 0.75 0.73 0.43 0.97 0.87 0.96 0.92 0.9 
CDC2 0.54 0.51 0.39 0.39 0.78 0.61 0.9 0.92 0.89 0.93 0.87 
CDK2 0.17 0.42 0.1 0.11 0.57 0.45 1.01 0.85 0.92 1.01 0.9 
CDK5 0.19 0.7 0.6 0.37 0.87 0.56 1 0.88 0.94 0.92 0.84 
CDK7 0.22 0.21 0.26 0.59 0.35 0.75 0.98 0.89 0.68 0.9 0.9 
CDK9 0.11 0.14 0.16 0.16 0.3 0.2 0.64 0.64 0.86 0.51 0.41 
CSNK1A1 0.96 0.2 0.81 0.99 0.67 0.52 0.95 1.02 0.99 0.9 0.73 
CSNK1D 0.95 0.16 0.73 0.92 0.61 0.23 0.92 0.93 0.92 0.72 0.33 
CSNK1E 0.9 0.33 0.89 1.07 0.71 0.44 1.07 0.99 0.92 0.82 0.67 
CSNK2A1 0.99 0.46 0.96 0.96 0.31 0.61 0.9 0.58 0.46 0.68 0.95 
CSNK2A2 1.02 0.24 0.9 0.93 0.08 0.54 1.02 0.24 0.11 0.67 0.98 
GAK 1.01 0.59 0.92 0.98 0.19 0.87 1.05 0.98 0.31 1.04 1.01 
GSK3A 0.95 0.6 0.34 0.09 0.99 1.01 1.03 1.14 1.07 0.86 1.1 
GSK3B 0.96 0.66 0.55 0.21 1.07 1.03 0.93 1.09 1.12 0.86 1.06 
IKBKE 1.07 0.99 1.02 1.06 0.83 0.95 1.03 1.01 0.5 0.91 0.99 
JAK1 0.95 0.58 0.99 0.95 0.44 0.93 0.96 1.02 0.77 0.84 0.98 
KIT 0.97 0.16 1 0.91 0.75 0.85 1.1 0.94 0.92 0.64 0.98 
LIMK2 1.01 0.7 0.81 0.85 0.53 0.89 0.66 0.83 0.37 1.04 0.69 
MAPK8 0.99 0.34 1.02 0.97 0.38 0.56 0.97 0.92 0.31 0.92 0.99 
MAPK9 0.98 0.65 1.07 0.97 0.49 0.68 0.95 0.83 0.53 1.06 0.95 
MELK 1.02 0.57 0.75 0.99 0.39 0.71 1 0.85 0.84 0.97 0.9 
NEK9 1.02 0.42 1 1.01 0.26 0.79 1 1.08 0.06 0.86 1.02 
PIK3C3 1.06 0.43 1 1.02 0.43 0.78 1.05 0.74 0.69 0.89 1.1 
PIK3R4 0.96 0.5 1.01 1.05 0.5 0.84 0.93 0.65 0.72 0.89 0.97 
PIP4K2A 0.85 0.62 0.95 0.93 0.63 0.82 0.9 0.45 0.95 0.73 0.73 
PIP4K2C 0.96 0.22 0.96 0.98 0.36 0.75 1.04 0.21 0.83 0.64 0.8 
PIP5K3 1 0.48 1.01 0.99 0.58 1 0.92 1.03 0.73 0.89 0.96 
PTK2 1.02 0.33 0.95 0.98 0.7 0.95 0.96 0.98 0.92 0.92 0.95 
RIOK2 0.98 0.49 0.91 1.01 0.43 0.53 1.03 1.07 0.94 0.77 0.77 
STK16 0.9 0.33 1.14 1.15 0.35 0.98 1.08 0.48 0.41 0.92 1.14 
TAOK2 0.9 0.86 0.84 0.32 0.75 0.66 0.9 0.82 0.7 1.03 0.94 
TAOK3 0.69 0.77 0.96 0.45 0.82 0.78 0.95 0.8 0.67 0.93 1.05 
TBK1 1.11 1.05 1.04 0.98 0.79 1.05 0.98 1.08 0.31 0.97 1 
TYK2 0.95 0.4 0.93 0.91 0.46 0.93 0.91 0.95 0.84 0.92 0.9 
ULK3 0.99 0.9 1.07 0.99 0.8 0.97 0.99 0.98 0.27 1.08 0.95 
 

Table S3: Kinobeads profiling of a set of 11 compounds which represent a range of activities 

in the nuclear foci assay.  

Target profiles were generated by adding each compound to K562 cell extract at a concentration 

of 2PM followed by incubation with Kinobeads and quantification of bead-bound proteins. Values 

indicate fold changes compared to vehicle control (loss of bead binding due to compound 

competition) Values highlighted in red show the strongest interacting kinase targets. 



 

 

 

 pIC50 values from SNS-032 Kinobeads profiling in K562 and A204 extract 
 

Experiment 
identifier 

 
Cell line 

 

compound 

 
pIC50 
Foci 
assay 

 
 

CDK1 

 

CDK2 

 

CDK4 

 

CDK5 

 

CDK6 

 

CDK7 

 

CDK9 

 

CDK10 

 

CDK12 

 

CDC13 

 

PCTK1 

 

PCTK2 

XO16768 K562 Dinaciclib 8.7 5.5

9 

6.5

4 

6.2 7.1

7 

7.6

4 

6.7 7.8 7.59 7.68  6.39 6 

XO15636 K562 GW780056 6.3 <5 5.0

6 

5.2

1 

5.1

5 

6.7

2 

6.4 7.6

2 

6.6 5.92 5.77 6.82 6.54 

XO15785 A204 GW788056 6.3 <5 5.7

3 

5.7

2 

5.6

5 

 5.8

2 

7.8 6.3 6.34  7.39 6.81 

XO15510 K562 SNS-032 6.1 5.7

8 

5.9

7 

5.5 5.6 6.3

5 

6.4

8 

6.6 6.09 6.4 6.36 7 6.96 

XO15861 K562 488 5.3 <5 5.4

4 

5.8

5 

5.0

4 

5.9

6 

6.3

1 

6.1

2 

5.42 5.28 5.02 6.66 6.42 

XO15862 K562 488 5.3 <5 5.2 5.2

7 

<5 5.8

5 

6.0

2 

5.8

9 

5.22 <5 <5 6.49 6.34 

XO15766 K562 732 5 <5 <5 5.0

6 

5.5

9 

6.0

8 

<5 5.7

7 

<5 <5 <5 5.25 5.07 

XO15816 A204 732 5 <5 5.5

9 

<5 6.0

3 

 5.7

5 

6.0

9 

5.69   5.43 5.53 

XO15637 K562 AG-12275 4.5 <5 <5 <5 <5 6.6

4 

<5 5.8

2 

6.52 <5 <5 5.02 5.19 

XO15706 K562 PD0332991 <4 <5 <5 6.2

5 

<5 7.1

7 

<5 <5 <5 <5 <5 5.82 5.52 

XO15815 K562 155 <4 <5 <5 <5 <5 <5 5.2

1 

<5 <5 <5 <5 5.62 5.48 

Table S4: pIC50 values generated by affinity capturing with the SNS-032 affinity matrix in 

K562 cell extract for the different CDK inhibitors added to the cell extracts 

 

 

 

 

 

 

 

 



 

 

Name Alternative 
exon Sequence 

Clcn1_HEX Ex7a /5HEX/TGGTGTCTA/ZEN/TGAGCAGCCATAC/3IABkFQ/ 
Clcn1_FAM  /56-FAM/TGTCTATGA/ZEN/GGACCGTGCCTGG/3IABkFQ/ 
Nfix_HEX Ex7 /5HEX/ACGTGGATG/ZEN/CAGGGAGCCCCCGG/3IABkFQ/ 
Nfix_FAM  /56-FAM/CGTGGATGC/ZEN/AGGCCCTGCTTCT/3IABkFQ/ 
Trim55_HEX Ex9 /5HEX/TGGTGACAC/ZEN/AGATTGGATTTGA/3IABkFQ/ 
Trim55_FAM  /56-FAM/CTACCTCTC/ZEN/AGATTGGATTTGA/3IABkFQ/ 
MBNL1_HEX Ex5 /5HEX/CAGCTGCCA/ZEN/TGGGAATTCCTCA/3IABkFQ/ 
MBNL1_FAM  /56-FAM/CAGCTGCCA/ZEN/TGACTCAGTCGGC/3IABkFQ/ 
Mbnl2_HEX Ex7 /5HEX/CATCCCCAC/ZEN/AGATAATTCTGAA/3IABkFQ/ 
Mbnl2_FAM  /56-FAM/CCACAGTAC/ZEN/CCATGATGCACAG/3IABkFQ/ 
Vps39_HEX Ex3 /5HEX/AAGGATGTT/ZEN/GGTTGTAACAGGTT/3IABkFQ/ 
Vps39_FAM  /56-FAM/TGAAAGCGG/ZEN/CAGTTGTAACAGGT/3IABkFQ/ 
PHKA1_HEX E19 /5HEX/CAAGTAATG/ZEN/ATGTTCACATGTA/3IABkFQ/ 
PHKA1_FAM  /56-FAM/TGCATATAC/ZEN/AGAATGTTCACAT/3IABkFQ/ 
Clasp1_HEX E23 /5HEX/ACGCTCTGA/ZEN/AGAAGCCTGTGAGA/3IABkFQ/ 
Clasp1_FAM  /56-FAM/CAGGAGCAA/ZEN/GAAGAAGCCTGTG/3IABkFQ/ 
Ldb3_HEX Ex8 /5HEX/CGAAGGTCA/ZEN/AGGCCACAGGCCT/3IABkFQ/ 
Ldb3_FAM  /56-FAM/CGAAGGTCA/ZEN/AGCACCCCTATTG/3IABkFQ/ 
h_ACTA  /56-FAM/ATGCTTCTA/ZEN/GACACACTCCACCTCCA/3IABkFQ/ 
m_Gapdh  /5HEX/TGGAGAAAC/ZEN/CTGCCAAGTATGATGAC/3IABkFQ/ 
h_3’UTR DMPK 
(plasmid) 

 /56-FAM/AG GCC CTG A/ZEN/C GTG GAT GGG CAA /3IABkFQ/ 

EGFP (plasmid)  /5HEX/AC ATC GAG G/ZEN/A CGG CAG CGT GCA /3IABkFQ/ 
 BpmI 

polymorphism 
 

DMPK_HEX G 5- /5HEX/CAC ACC CAT /ZEN/GGA AGT GGA GGC CGA GCA /3IABkFQ/ -3 
DMPK_FAM C 5- /56-FAM/CAC ACC CAT /ZEN/GGA ACT GGA GGC CGA GCA /3IABkFQ/ -3 

 

Table S5: Dual-labeled probes used in ddPCR assays 

 

 

 

 

 

 

 



 

 

 

 

 

Name 
Alternative 
exon length 

[bp] 
Sequence (5’-3’) PCR product 

length [bp] 
Annealing 

temperature [oC] 

Clcn1 79 F: TGGTAGCTTTGACAGCTGGACT 293 60 
  R: GCACTCCTCCAAGTGGTGTT   
Nfix 123 F: CGACGACAGTGAGATGGAGAGT 296 60 
  R: ACTGCTGGATGATGGACGTG   
Trim55 288 F: CTTCCCGCAGAGCTTCAGGT 468 54 
  R: GCGAGCTGGCTCAGGATCA   
Mbnl1 54 F: GCCCAATACCAGGTCAACCA 160 60 
  R: GAGCAGGCCTCTTTGGCAAT   
Mbnl2 95 F: GTCTTCAACCCCAGCGTCTT 346 54 
  R: GAACTAGCCTTAGGGTTGTGGTCT   
Vps39 33 F:  ACCAAGCAAGGGCATCTTCT 155 60 
  R: ACCACATGGATCTGCTGGAT   
Phka1 177 F: GGCAACTGGATGGACAGCTA 321 54 
  R: ATGAACGGAAGGAACCTGGC   
Clasp1 24 F: AGTACCAGCACTGACCTGGA 138 60 
  R: GGAGGCATCACTGTTGGCAT   
Ldb3 186 F: GTCCTCCAACCTGCAGTCTC 352 54 
  R: GTAGCTGGTATGGGCAGAGG   
ACTA N/A F: CCTTCCAGCAGATGTGGATCA 117 60 
  R: TCGTCGTCCTGAGAAGTCG   
Gapdh N/A F:AAGGTCATCCCAGAGCTGAA 138 56 
  R:CTGCTTCACCACCTTCTTGA   
EGFP_plasmid N/A F: TGAACTTCAAGATCCGCCACA 153 56 
  R: TTCTCGTTGGGGTCTTTGCT   
3’UTR 
DMPK_plasmid 

N/A F: TTCTTTCTTTCGGCCAGGCT 127 56 

  R: GCACTTTGCGAACCAACGAT   
 

Table S6: Primers used in ddPCR assays 

 

 

 

 

 



 


