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Abstract — This work expands the classical current signature 

analysis in induction machines in a two-stage spectral 

decomposition manner. The proposed methodology can be 

summarized in two main steps: initially, the current signals are 

analyzed using a time frequency representation, with the 

analysis focusing on the steady-state regime; thereafter, 

frequency extraction is applied to the spectral signatures of 

interest, aiming to identify specific fault related harmonic 

subcomponents induced by the fault related speed ripple effect. 

The proposed approach is verified experimentally on a 4 kW 

induction motor.  

Index Terms — broken bars, frequency extraction, spectral 

components, t-f analysis 

I. INTRODUCTION 

HE field of induction machines’ condition monitoring 

has been rapidly advancing in the past few decades 

and adjusting to the complexity of the modern 

industrial demands, in order to assert safety, prevent 

downtimes or emergency maintenance and -of course- to 

obviate any potential financial casualties. Rotor faults are 

important to detect at early stages, since their appearance can 

progress internally affecting the rest of the cage and the rotor 

iron core. 

For the detection and diagnosis of rotor faults, the early 

research in the field handled the monitoring of the line 

currents by examination of the signal anomalies over time or 

by examination of its frequency spectra [1]-[4]. The reason 

was the fact that the acquisition of a current measurement 

holds some advantages like: its reliability and low cost [4]-

[5]; it can be done safely from a distance, since it is usually 

measured for control and stabilization purposes [5]; its non-

intrusive character and low computational complexity [5]-[7] 

and –most importantly- it can be applied on-line [3]-[7]. This 

was the stepping-stone for the commercially established 

monitoring equipment applying Motor Current Signature 

Analysis (MCSA) and also for the archiving of the first actual 

on-field industrial history case-studies by means of currents 

[4]-[7]. 

Subsequently, the theoretical background and analytical 

modelling approaches on the harmonic content started to 

update [8]. However, in the light of reports mentioning some 

MCSA deficiencies [4], the knowledge on specific fault 

related harmonic components and their mechanisms required 

further investigations and updating [9]-[11]. In sequence, 

questions were raised for the adequacy of classical signal 

processing techniques like the Fast Fourier Transform (FFT) 

[12]-[14]. This triggered the application of other types of 

analyses along with the reformation of stationarity/non-

stationarity assumptions during fault conditions [15]-[17]. 

Developments to that direction include: the Hilbert 

Transform [14], [18]-[19], envelope analysis [20], the 

Wavelet Transform [21]-[23] and other time-frequency 

representations by means of transforms (Gabor [24], STFT 

[25]-[27], Adaptive Slope [28] etc.) or distributions (Wigner-

Ville [29]-[30] etc.). Meanwhile, further options of 

measurements were also examined with success, like torque 

monitoring [31]-[32], stray flux signature analysis (SFSA) 

[33]-[35] and the zero-sequence current (ZSC) [36]. Some 

works like [3], [33] and [37]-[38] suggest the use of 

additional monitoring methods to be used complementary 

with MCSA for adequate and reliable diagnosis.  

During the last decade, a series of more advanced 

approaches have been proposed for broken rotor bar 

detection. These include statistical-based approaches [39]-

[40], classification techniques [41]-[42] and methods using 

machine learning tools [43], while the field continues to 

update with reported MCSA industrial case-studies [22], 

[44].  

In this work, a newly introduced approach is presented for 

the detection of rotor faults. Given the existing knowledge on 

frequency tracking with MCSA and the fault related 

signatures during broken rotor bars existence, a t-f 

representation is used on the phase current signals to visualize 

the signatures of interest. Accounting for the speed ripple 

effect, the spectral density information at steady state is 

individualized and extracted through the spectrogram for 

each harmonic of interest. The extracted spectral trajectories 

are then examined as periodical oscillations over time and 
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their FFT is evaluated for the frequency tracking of fault-

related subcomponents. The diagnostic validity of the method 

is assessed via extensive 2D FEA simulations on a 4 𝑘𝑊 

induction motor and experimental testing. 

II. THEORETICAL BACKGROUND 

A. Broken Bar Diagnostics: Classical MCSA & TCSA 

At the event of a bar breakage, the bar is electrically 

disconnected from the rest of the cage. Due to the asymmetry 

caused by this open-circuit condition at the point of breakage, 

two counter-rotating magnetic fields of frequencies ±𝑠𝑓𝑠 

exist in the rotor [2]-[10], where 𝑠 the motor slip and 𝑓𝑠 the 

fundamental supply frequency. 

The chain reaction of harmonics over the frequency 

spectra due to the counter rotating field at –s∙fs and the genesis 

of fault related speed-ripple effect sidebands, is analytically 

described in [2]-[4], [10] and [23]. The equation for tracking 

the frequency signatures induced by the broken bar fault is 

the following [12], [18], [21], [24]: 
 

                            𝑓𝑏𝑏 = [
𝑘

𝑝
(1 − 𝑠) ± 𝑠] 𝑓𝑠 ,  (1) 

 

where p is the number of pole pairs, 𝑠 the motor slip and 𝑘 ∈

ℤ such that 
𝑘

𝑝
 ∈ ℤ.  

Traditionally applied MCSA inspects those signatures 

over the frequency spectra to evaluate their amplitudes, while 

the motor is operating at the late steady-state. The sum of the 

fundamental harmonic’s sidebands at ±2𝑠𝑓𝑠 is examined in 

[2], proven as a reliable diagnostic index for fabricated rotors. 

Broken bars are examined by MCSA means in [3], combined 

with instantaneous torque and instantaneous power 

accounting for speed and torque ripples. Combination of this 

knowledge is then used by the authors in [4], where rotor 

electric and magnetic asymmetries are deciphered for 

laboratory-scale motors and for industrial-oriented motors 

with “spider”-designed rotors. Moreover, [8] validates the 

theoretical and experimental frequency content for the stator 

and rotor space harmonics under healthy condition, one, two 

and three broken bars. A device for online monitoring of rotor 

faults using the two aforementioned sidebands is presented in 

[10], while a novel approach for monitoring the sidebands’ 

behaviour is proposed in [14] combining the classical FFT 

method with phase analysis via the Hilbert Transform. The 

sidebands amplitude and phase modulations are examined in 

[15] by MCSA means, while [20] presents a low-cost 

diagnosis framework for diagnosing rotor asymmetries at low 

slip values with reduced envelope analysis. 

Nevertheless, the existence of a fault and its progression 

are governed by non-stationarity [17]-[19]. Except from the 

frequencies’ evolution and transitions during the transient 

start-up, at the presence of a fault the machine is subjected to 

local transients. Even at the steady-state regime, the 

disturbances caused by the fault are affecting the acquired 

signals’ instantaneous frequency [13]-[19], or implying 

varying and oscillating amplitudes [14], [15]-[17], [35], [40]. 

These drawbacks can be a vice when using MCSA on the 

pipeline for a diagnostic decision. Therefore, Transient 

Current Signature Analysis (TCSA) [21]-[23] and similar 

approaches have been proposed [24]-[30]. These techniques 

track the evolution of frequencies during the start-up transient 

-or other transient regimes- in terms of trajectories or orbits 

[12], [13], [21]-[30]; otherwise, they demodulate and 

decompose the studied signals’ spectral components to 

examine if any diagnostic information is comprised in the 

instantaneous frequencies [14]-[19]. 
 

B. Time-Frequecny Analysis & STFT 

The STFT analysis is a commonly used time-frequency 

representation [25]-[27]. The continuous time STFT 𝑋(𝑡, 𝑓) 

of a signal is a function of both time 𝑡 and frequency 𝑓 and 

can be computed from the FFT over a sliding window by the 

following equation [25], [35]: 
 

                  𝑋(𝑡, 𝑓) =  ∫ 𝑥(𝑡)𝑤(𝑡 − 𝜏)𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡
+∞

−∞
  (2) 

 
I.  

where 𝑥(𝑡) the given signal, 𝑤(𝑡) the sliding window, 𝜏 the 

window shifting factor and 𝑓 = 2𝜋/𝜔 the frequency. 

Equation (2) provides the joint t-f representation of the 

spectral density by means of the spectrogram: 
 

                                𝑆(𝑡, 𝑓) =  |𝑋(𝑡, 𝑓)|2  (3) 
 

For the case of a sampled and discretized signal, the 

discrete-time STFT [49] is given from: 
 

                  𝑋[𝑡, 𝑓] = ∑ [𝑥𝑛 ∙ 𝑤𝑛−𝑡]
𝑡+𝐿/2

𝑛=𝑡−𝐿/2
∙ 𝑒−𝑗2𝜋𝑓𝑛𝑡  , (4) 

 

where 𝑡 the discrete time, 𝑓 the frequency and 𝐿 the window 

length. 
 

C. Windowing Limits & Spectral Components Extraction 

The transformation for the STFT analysis is derived using 

a Kaiser-Bessel windowing function, with parameter 𝛽 =
18.13 and 70.4% overlap between the frames. The selection 

accrued from fine tuning of the parameters accounting for 

two factors: initially, to achieve a windowing with a response 

of unitary ripple and as close as possible to rectangular; 

secondly, to yield by the window length a good trade-off 

between time and frequency resolution in order to observe the 

harmonic trajectories in the spectrogram [26]-[27], [45]-[46]. 

Taking advantage of the ripples circled with dashed lines 

in Fig. 1, the spectral components are extracted for a desired 

frequency -e.g. the 5th harmonic and its (5 − 4𝑠)𝑓𝑠 and (5 −
6𝑠)𝑓𝑠 sidebands- using frequency extraction [35], [46]-[49]. 

The spectral density information carried in each extracted 

trajectory is then handled as a function of amplitude and time 

at this specific frequency. During this frequency extraction 

process, one should account for the harmonics’separability. 

This means that the windowing functions will yield a 

frequency resolution able to localize each trajectory in a 



different time-chunk or frequency-bin to prevent aliasing and 

spectral leakage diffusion between sidebands [48]. To ensure 

that, the windowing limits are derived as in [46] and [49], to 

separate harmonics distanced at least 2𝑠𝑓𝑠 from each other. 

 

 
b) 

Fig. 1.  STFT spectrogram of the phase current for one of the motors 

examined with FEM (Motor #1) for the frequency area of the 5th harmonic. 

  

The broken bar fault related components are used to derive 

from Eq. 3 their spectral content at a fixed constant frequency 

over time as follows: 
 

             𝑆 (𝑡, 𝑓𝑎,𝑖)  =  |𝑋(𝑡, 𝑓𝑎,𝑖)|2,                      (5) 
 

where each component 𝑓𝑎,𝑖 regards the a-th harmonic of 

interest and 𝑖 =  1, 2. 

III. TECHNICAL WORK & DATA COLLECTION 

A. FEM Models 

One induction machine has been designed and simulated 

with MagNet 2D FEM software from Mentor/Infologic under 

healthy operation and with 1 broken rotor bar. The motors’ 

geometrical model is presented in Fig. 2 along with the spatial 

distribution of the magnetic flux density during faulty 

condition. The motor’s characteristics are described in Table 

I.  

All simulations are run using the Transient FEA solver 

under 2D with Motion  analysis (rotary load-driven), which 

is a type of simulation accounting for the machines’ motion 

equation, moment of inertia and speed ripple effect. The 

motors are tested at full load condition, which is the constant 

rated torque load in each case. 

 

  

a)                                                    b) 
Fig. 2. a) Geometrical solid model of the induction motor and b) spatial 

distribution of the magnetic flux density B (T) under broken rotor bar fault. 

TABLE I 
CHARACTERISTICS OF THE SIMULATED MOTORS 

Frequency 50Hz 

Stator Connection Δ 

Rated Power 4 kW 

Rated Voltage 400 V 

Rated Current 10 A 

Number of poles 4 

Rated Torque 26 Nm 

Stator slots 36 

Rotor slots 28 

 

B. Experimental Set-up 

The experimental set-up is shown in Fig. 3. Two identical 

50 Hz, 400 V, 4 kW and 4-pole induction motors have been 

used during the experimental validation: the healthy and one 

with the rotor drilled in order to electrically disconnect the 

bar from the cage. The motors are mechanically coupled to a 

permanent magnet generator feeding a Y-connected, 

symmetrical, 3-phase variable resistance. The induction 

motor’s stator winding is connected in Δ. 

For the current measurements, three identical current 

sensors were used. The measurements were logged onto a 

high resolution, deep memory, 8-channel oscilloscope. Each 

signal waveform was captured in a frame of 20 sec, providing 

reliable signal representation in time and frequency domain 

with a sampling frequency of 10 kHz. 

 

 
Fig. 3.  Experimental set-up. 

IV. RESULTS & DISCUSSION 

A. FEM Results 

The extracted spectral information over time regarding the 

trajectory of the 5th harmonic’s lower sideband at (5 − 4𝑠)𝑓𝑠 

is depicted in Fig. 4. From a first inspection it is evident that 

the healthy model’s trajectory (blue) is oscillating at a 

constant small ripple, while the ripple of the faulty case is 

increased and indicative for the existence of a rotor fault. The 

trajectories’ FFT spectra are presented in Fig. 5 for the 5th 

harmonic and in Fig. 6 for the 7th harmonic. 
 



 
Fig. 4.  The extracted S(t, fo,1) amplitude information for healthy (blue) and 

faulty  (red) motors of the (5 − 4𝑠)𝑓𝑠 sideband extracted trajectory. 
 

 

 
a)  

 
b)  

Fig. 5.  FFT spectra of the extracted S(t, fo,1) information for healthy (blue) 

and faulty (red) motor at: a) (5-4s)fs and b) (5-6s)fs. 

 

The amplitudes of the fault related pulsating components 

regarding both motors are shown in Table II and Table III for 

the 5th and the 7th harmonic respectively. The components of 

the faulty motor at frequencies 4𝑠𝑓𝑠 and 6𝑠𝑓𝑠 (black arrows) 

rise at the amplitudes of −12.01 𝑑𝐵 and −23.63 𝑑𝐵 

respectively regarding the 4𝑠𝑓𝑠 sideband. In the trajectory of 

the 6𝑠𝑓𝑠 sideband, the amplitudes are −11.75 𝑑𝐵 and 

−23.24 𝑑𝐵 respectively (Table II). These components are 

practically inexistent in the healthy motor (≤ −50 𝑑𝐵). 

Interestingly, the component at 2𝑠𝑓𝑠 is inexistent in the 

healthy motor while present in the faulty motor. That is due 

to the speed ripple effect. 

 

TABLE II 

FFT AMPLITUDES OF THE 5TH
 HARMONIC’S EXTRACTED COMPONENTS 

Motor 
5fs – 4sfs 5fs – 6sfs 

4sfs 6sfs 4sfs 6sfs 

Healthy -58.11dB -57.88 dB -57.78 dB -56.71 dB 

Faulty -12.01 dB -23.63 dB -11.75 dB -23.24 dB 

 

 
a)  

 
b)  

Fig. 6.  FFT spectra of the extracted S(t, fo,1) information for healthy (blue) 
and faulty (red) motor at: a) (7-6s)fs and b) (7-8s)fs. 
 

 

Similar indications are provided by the spectra of the 7th 

harmonic sidebands. The 6𝑠𝑓𝑠 and 8𝑠𝑓𝑠 components rise with 

amplitudes of −21.12 𝑑𝐵 and −30.91 𝑑𝐵 in the faulty motor 

regarding the signsture 7fs – 6sfs. The extracted spectra of the 

signature 7fs – 8sfs reveal amplitudes of the 6𝑠𝑓𝑠 and 8𝑠𝑓𝑠 

components equal to −20.74 𝑑𝐵 and −27.87 𝑑𝐵 

respectively, an increase of 12.53 𝑑𝐵 and 19.35 𝑑𝐵 

respectively compared with the healthy motor. 
 

TABLE III 

FFT AMPLITUDES OF THE 7TH
 HARMONIC’S EXTRACTED COMPONENTS 

Case 
7fs – 6sfs 7fs – 8sfs 

6sfs 8sfs 6sfs 8sfs 

Healthy -30.32 dB -40.15 dB -32.53 dB -47.22 dB 

Faulty -21.12 dB -30.91 dB -20.74 dB -27.87 dB 
 

B. Experimental Results 

Regarding the experimental measurements, the 

trajectories’ FFT spectra are presented in Fig. 7 for the 5th 

harmonic and in Fig. 8 for the 7th harmonic. The amplitudes 

of the components are shown in Table IV and Table V for the 

5th and the 7th harmonic respectively for both motors. 
 



 
a)  

 
b)  

Fig. 7.  FFT spectra of the extracted S(t, fo,1) information for the healthy 

(blue) and faulty (red) motor at: a) (5-4s)fs and b) (5-6s)fs. 

 
TABLE IV 

FFT AMPLITUDES OF THE 5TH
 HARMONIC’S EXTRACTED COMPONENTS 

Case 
5fs – 4sfs 5fs – 6sfs 

4sfs 6sfs 4sfs 6sfs 

Healthy -34.93 dB -46.18 dB -34.69 dB -45.91 dB 

Faulty -28.49 dB -40.51 dB -28.27 dB -40.23 dB 

 

The amplitudes of the examined components at 4𝑠𝑓𝑠 and 

6𝑠𝑓𝑠 frequencies (circled in dashed in Fig. 7) rise at the 

amplitudes of −28.49 𝑑𝐵 and −40.51 𝑑𝐵 respectively 

regarding the lower 5th harmonic’s sideband (Table IV). This 

implies an increase of 6.44 𝑑𝐵 and 5.67 𝑑𝐵 respectively, 

compared to the healthy motor. For the trajectory of the upper 

sideband, these spike at −28.27 𝑑𝐵 and −40.23 𝑑𝐵 

respectively. Compared to the healthy motor, this is an 

increase of 6.42 𝑑𝐵 and 5.68 𝑑𝐵 respectively. Note that the 

component at 2𝑠𝑓𝑠 is dimly present in the low frequency rage 

for the healthy motor (red arrows in Fig. 7). This component 

is evident in the experiments, due to inherent cage 

asymmetries -like magnetic anisotropy or the cage porosity- 

which are not accounted for by 2D FEM. Hence, this 

component exists only in actual healthy motors, where these 

phenomena are implied by naturally existing manufacturing 

defects. 

 

 
a)  

 
b)  

Fig. 8.  FFT spectra of the extracted S(t, fo,1) information for the healthy 
(blue) and faulty (red) motor at: a) (7-6s)fs and b) (7-8s)fs. 

 
 

TABLE V 

FFT AMPLITUDES OF THE 7TH
 HARMONIC’S EXTRACTED COMPONENTS 

Case 
7fs – 6sfs 7fs – 8sfs 

6sfs 8sfs 6sfs 8sfs 

Healthy -47.54 dB -47.16 dB -47.54 dB -47.65 dB 

Faulty -27.42 dB -32.48 dB -27.03 dB -31.91 dB 

 

The amplitudes of the examined components at 6𝑠𝑓𝑠 and 

8𝑠𝑓𝑠 frequencies (circled in dashed in Fig. 8) rise at the 

amplitudes of −27.42 𝑑𝐵 and −32.48 𝑑𝐵 respectively, 

regarding the lower 7th harmonic’s sideband (Table V). This 

implies an increase of 20.12 𝑑𝐵 and 14.68 𝑑𝐵 respectively, 

compared to the healthy motor. For the trajectory of the upper 

sideband, these spike at −28.27 𝑑𝐵 and −40.23 𝑑𝐵 

respectively. Compared to the healthy motor, this is an 

increase of 6.42 𝑑𝐵 and 5.68 𝑑𝐵 respectively. Apart from the 

fact the 7th harmonic’s sidebands provide a compelling 

diagnostic value for rotor faults with the proposed approach; 

it is also interesting to report that the impact of the component 

at 2𝑠𝑓𝑠 is almost negligible for the 7th harmonic’s sidebands 

(red arrows in Fig. 8). 

V. CONCLUSION 

This work presented a new approach for the detection of 

rotor electrical faults in induction motors, ushering the 

presence of a subset of harmonic components in the low 

frequencies range. These components are revealed by 

frequency extraction of the fault-related trajectories’ spectral 

information in measured phase current signals. Taking 

advantage of the speed-ripple effect, the spectral density 

information 𝑆(𝑡, 𝑓𝑎,𝑖) is initially extracted via the Short-Time 



Fourier Transform for the a-th harmonic of interest. 

Thereafter, each trajectory is treated as a periodical time 

signal and is evaluated with the classical FFT, to track and 

detect the modulations implied by the fault. The proposed 

diagnostic method has been applied on both FEM 

simulations’ and experimental data with success, while 

offering reliable online and non-intrusive diagnostic 

potential. 
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